WO1996030297A1 - Procedimiento para la separacion electrolitica del oxigeno de sus mezclas y equipo para la realizacion de este procedimiento - Google Patents

Procedimiento para la separacion electrolitica del oxigeno de sus mezclas y equipo para la realizacion de este procedimiento Download PDF

Info

Publication number
WO1996030297A1
WO1996030297A1 PCT/ES1996/000068 ES9600068W WO9630297A1 WO 1996030297 A1 WO1996030297 A1 WO 1996030297A1 ES 9600068 W ES9600068 W ES 9600068W WO 9630297 A1 WO9630297 A1 WO 9630297A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
oxygen
cathode
electrolyte
equipment according
Prior art date
Application number
PCT/ES1996/000068
Other languages
English (en)
French (fr)
Inventor
Juan Casado Gimenez
Enrique Brillas Coso
Original Assignee
Sociedad Española De Carburos Metalicos, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sociedad Española De Carburos Metalicos, S.A. filed Critical Sociedad Española De Carburos Metalicos, S.A.
Priority to CA002191625A priority Critical patent/CA2191625C/en
Priority to EP96906780A priority patent/EP0771759B1/en
Priority to AT96906780T priority patent/ATE216679T1/de
Priority to DE69620842T priority patent/DE69620842T2/de
Publication of WO1996030297A1 publication Critical patent/WO1996030297A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0288Combined chemical and physical processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0003Chemical processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0003Chemical processing
    • C01B2210/0006Chemical processing by reduction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/001Physical processing by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Definitions

  • the present invention relates to an electrochemical process of separation and purification of oxygen from mixtures of gases containing it (eg air) in aqueous medium. It also refers to the equipment for performing this procedure.
  • the present invention is limited to the use of aqueous electrolytes, so references to organic electrolytes (for example dimethylsulfoxide + tetraalkylammonium tetrafluoroborate) or to solid ionic conductors (for example yttrium stabilized zirconium oxide) are also included here.
  • organic electrolytes for example dimethylsulfoxide + tetraalkylammonium tetrafluoroborate
  • solid ionic conductors for example yttrium stabilized zirconium oxide
  • oxygen concentration processes are known, from a feed gas containing it, using solid electrolytes containing ion exchange resins, described for example in US Pat. No. 5,338,412.
  • such procedures do not allow obtaining pure oxygen since the electrolyte used has permeability not only to oxygen gas but also to other gases, such as nitrogen gas.
  • the systems used for said oxygen concentration comprise two electrodes separated by a solid polymer with ion exchange resin so that when the conductivity of said polymer decreases the entire system must be replaced because the polymer and the electrodes form a only compact unit therefore carrying an additional cost to the system.
  • the cathode was a graphite powder with 10% Pt and 60% PTFE hot compressed on Naphion, while its other side was coated with Pt to form the anode.
  • the device operated at 200 mA cm ⁇ 2 produced 70.9 ml min -1 of oxygen with a purity of 98.4%
  • Another more efficient system for the tetraelectronic procedure has been designed by Acc Tseung and SM Jasem [J. Appl.
  • the present invention constitutes a new method capable of separating oxygen from a gas mixture that contains it by means of an electrochemical process involving 2 electrons per molecule of purified oxygen.
  • the system is applicable to a multitude of gaseous mixtures that contain oxygen both to obtain pure oxygen and to obtain mixtures of totally or partially deoxygenated gases, it has been designed with the separation and purification of oxygen from the air, so that from now on we will refer to 'air' as a generic example of any gas mixture to which the present invention is applicable.
  • the process of the invention for electrolytic separation of oxygen from its mixtures comprises the steps of: a) contacting an oxygen-containing gas with a gas diffusion cathode which does not contain hydrogen peroxide decomposition catalyst, b) provide a potential difference between the cathode and an anode, so that b- oxygen is converted to hydrogen peroxide or its conjugate base in the cathode according to a bi-electronic process, b.2- hydrogen peroxide or its base is diffused conjugated through an aqueous electrolyte from the gas diffusion cathode to the anode, and b.3- hydrogen peroxide or its conjugate base is converted diffused to pure oxygen in the anode according to a bi-electronic process.
  • Both electrode procedures have the characteristic of being bielectronic, which implies a lower consumption of electricity per kilogram of oxygen than other electrochemical procedures.
  • the pH of the electrolyte is normally high. However, we have verified that the generation of hydrogen peroxide can be carried out with good performance from pH 2.5, so that the framework of this invention includes any electrolyte of pH equal to or greater than 2.5, although a pH is preferred greater than 11 to avoid corrosion problems and to be able to use an alkali as a background electrolyte (hydroxides of Li, Na, K, ...) due to its high conductivity at moderate concentrations.
  • the applicable concentrations range between 0.1 M and 10 M, although values between 0.5 and 6 M. are preferred. Under these circumstances, the cathodic (le) and anodic (5) reactions are exactly the opposite, as we have seen before.
  • the air pressure on the cathode is not significantly higher than an atmosphere. Notwithstanding one Higher partial pressure of the inlet oxygen benefits the process, which can be performed with inlet gas pressures between atmospheric pressure and 100 bar, preferably between 1 and 10 bar. For the same reason it is beneficial to aspirate the exit oxygen.
  • the oxygen produced in the anode can be collected or aspirated at a pressure between atmospheric and 0.01 bar, preferably between 1 and 0.1 bar.
  • the only significant impurity in said oxygen is moisture, which can be removed by conventional condensation or drying equipment.
  • H 2 0 2 It is known that commercial solutions of H 2 0 2 normally contain small concentrations of stabilizers such as urea, diphosphates, tin compounds, acetanilide, alcohol, etc. In general, they are complexers capable of trapping small amounts of transition metals, for example iron, that catalyze the decomposition of hydrogen peroxide. It has been proven that the addition of some of these compounds increases the yield of the process.
  • stabilizers such as urea, diphosphates, tin compounds, acetanilide, alcohol, etc.
  • transition metals for example iron
  • the device can work between 0 and 100 ° C. In pressure systems it can be operated at temperatures above 100 ° C. However, when the Oxygen evolves through the electrolyte and in order not to obtain it excessively humid it is preferable to use moderate temperatures, between 20 and 50 ° C.
  • the designed system consists of a single compartment cell containing a cathode of coal bonded with a hydrophobic polymer, for example PTFE, polyethylene or polyvinyl chloride (PVC), without any other catalyst (the addition of Pt or perowskite-type metal oxide they produce the tetraelectronic reaction of 0 2 to H 2 0 which is intended to be avoided), fed with air, a stable anode under the conditions of the process and a solution of an alkali.
  • a hydrophobic polymer for example PTFE, polyethylene or polyvinyl chloride (PVC)
  • Figure 1 refers to the equipment of the invention described below. It is a thermostated Ni-CT cell used for electrolytic separation of oxygen from air. Said equipment is only one of the possible ones within the framework of this invention and has been chosen for being the one that was used in the experiments provided as examples.
  • the electrolytic cell consisted of a glass cylindrical tube 1 with an external thermostatting jacket 2, with an inlet 3 and an outlet 4 of water directed to the thermostat, and an upper outlet tube 5 for the collection of oxygen gas and for the intake of samples.
  • Two electrode supports 6 and 7 are introduced at the ends of the tube, which are adjusted with Bakelite threads. Each of these supports was a hollow polypropylene cylinder and at its inner end the corresponding electrode, cathode 8 and anode 9, were connected to a conventional direct current power supply by means of a conductive wire 10 and 11.
  • the anode can be of any conductive material, stable and capable of oxidizing hydrogen peroxide to oxygen, for example metals, alloys, conductive metal oxides, graphite or carbon-PTFE.
  • metals, alloys, conductive metal oxides, graphite or carbon-PTFE In the design presented in Fig. 1 was a Ni iron, but they have also Used carbon anodes-PTFE with good results.
  • Anodes may also be used containing a catalyst for the decomposition of H 2 0 2 such as Pt, but skitas or certain transition metal compounds, such as Fe (III) or N ⁇ (II).
  • the CT cathode was a mixture of carbon-PTFE, without another catalyst, hot compressed on a Ni mesh.
  • the active surface of carbon-PTFE is in contact with the solution, while the Ni mesh acts as a distributor of the electric current and is in contact with the Ni-Cr connecting wire.
  • To prepare the carbon-PTFE 75% carbon black and 25% PTFE dispersion were mixed. The resulting mixture was dried at 240 ° C and pulverized with a grinder. After hot pressing the cathodes used had a thickness of about 0.4 mm. Although electrodes up to 5 mm thick can be used, 0.1 to 0.5 mm are preferred for the easiest diffusion of oxygen through it.
  • Ni anode and the CT cathode were adjusted to their corresponding supports by polypropylene threads with a cylindrical central opening.
  • the area of each electrode in contact with the KOH solution was 0.785
  • the air needed to feed the carbon-PTFE cathode (CT) was supplied by a power ba compressor that produced a flow of 140 ml mm "1 through a glass tube 12 inside the cathodic support, the remaining gas being expelled to the atmosphere. In this configuration, therefore, the air pressure on the cathode was not significantly higher than an atmosphere
  • the cell used did not include any device to agitate the electrolyte, since it is not necessary for its operation.
  • evidence of diffusion control has been found in the anodic oxidation of hydrogen peroxide at low concentrations so that any device for stirring or recirculating the closed circuit electrolyte must be beneficial for the procedure.
  • a porous anode for example a grid, mesh or wire netting, or a sintered material
  • This flow would have the additional advantage of dragging the formed oxygen bubbles and allowing a closer approach between electrodes.
  • a porous anode can also be used advantageously without recirculation if placed horizontally, above and near the cathode.
  • gravity itself is responsible for dragging the gas bubbles out of the interelectrodic region, where interference, short circuits, conductivity drops and / or unwanted side reactions could occur.
  • Pernicious effects such as these were observed in the cell of Fig. 1 when the distance between electrodes was less than 5 mm, which has therefore been the distance used in most experiments.
  • this distance which can range from 0.1 to 10 mm, should be reduced when the design allows, preferably working between 0.1 and 1 mm.
  • the approach between electrodes allows working with lower alkali concentrations, which in turn are compatible with higher concentrations of H0 2 " that improve process performance and reduce cell voltage.
  • Another useful accessory to the present device is a thin membrane or permeable diaphragm between the electrodes (for example of paper, cloth, asbestos, glass or plastic grid) whose function is to separate them to avoid short circuits but keeping them very close, to minimize transport difficulties of the species in solution and the losses due to ohmic fall.
  • a suitable design of this device would also allow it to be used as a promoter of turbulence with the same purpose.
  • H0 2 " is generated from the reduction of 0 2 of the air according to the reaction (le). If operating at sufficiently low voltages, preferably between 0.1 and 1 V, the reduction does not occur of H 2 0 (less energy-efficient), only H0 2 " is generated in the cathode and the overall cell procedure will be bi-electronic. However, oxidation of the OH ion " according to reaction (4) and that of ion H0 2 " can occur simultaneously at the anode according to reaction (5). In the absence of H0 2 " only the discharge of OH will occur " and n will be 4, while when the H0 2 ⁇ is electrodecomposed n will vary between 2 and 4.
  • the objective of the device presented is to achieve a steady state operation that produces oxygen at potentials lower than IV and with a consumption of 2 electrons per molecule of purified oxygen. From voltage values greater than 0.2 V, current density has been observed and therefore oxygen begins to be generated.
  • the cathode rejection gas is depleted or oxygen-deprived air that can be applied, for example, in inertization procedures.
  • the mixture of part of this gas with the pure oxygen that comes from the anode allows to obtain mixtures enriched in oxygen in any concentration between 21 and 1001. These mixtures have, among others, hospital uses and favor the difficult combustion and oxidation in ordinary air . They are also used in the smelting of certain metals.
  • the present invention presents improvements over previous works. Experimental tests have allowed improving the results obtained with previous devices.
  • the voltages to be applied to obtain a certain flow of pure oxygen have been reduced and the energy efficiency of the process has been significantly increased, as will be verified in the examples given later.
  • To increase the oxygen flows produced in addition to the usual scaling in industrial processes, it is also possible to interconnect a sufficient number of individual cells.
  • Example 1 In the cell of Fig. 50 ml of a solution of 2.4 M KOH was electrolyzed at a current density 100 mA constant was "2 for 10 hours, determining the volume of oxygen gas released, the change in the concentrations of H0 2 ⁇ and OH " , as well as the potential difference between the electrodes. The inter-electrode distance was 5 mm and the temperature 25 ° c.
  • Example 2 In the same cell of Example 1 was electrolizaron 50 ml of a 2.4 M KOH solution and H0 2 "0.18M to constant current densities of 38, 100 and 191 mA cm" - 'for 9 hours , determining the volume of oxygen gas released, the change in the concentrations of HO " and OH-. as well as the variation of the voltage.
  • the interelectrode distance was 5 mm and the temperature 25 ° C.
  • n gradually decreased with the electrolysis time from 2.38 to 2.05, while 4.6 millimoles of H0 2 ⁇ accumulated in the medium, proof that at this current density the steady state corresponds to a concentration of peroxide greater than 0.2 M.
  • the electrolyte contained urea with a concentration of 1.5 mM
  • the Ni-CT cell can operate at current densities of 100 mA cm “2 by applying voltages of 0.98 V at 25 ° C to give an oxygen yield of 0.609 kg0 2 kwh " 1 .
  • This value is significantly higher than the yields of 0.388 and 0.486 kg 0 2 kwh “1 to 100 A cm “ 2 obtained by Tseung and Jasem at 25 ° C and 40 ° C, respectively, which are the best values found in the literature for obtaining electrolytic oxygen.
  • Our best performance at 100 mA cm “2 has been 0.815 kg 0 2 kwh " 1 at 45 ° C. In this test a small amount of urea was added to the solution. At lower current densities, yields greater than 1 Kg 0 2 / Kwh can be easily obtained, even at room temperature.
  • Example 4 In this case the same cell was used as in the previous examples but equipped with a CT anode instead of Ni.
  • This fact indicates that most of the oxygen generated in the CT anode diffuses through it instead of releasing through dissolution, which would allow its extraction by means of a vacuum cleaner with a minimum degree of humidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

El procedimiento comprende las etapas de: a) poner en contacto un gas que contiene oxígeno con un cátodo de difusión de gases el cual no contiene catalizador de descomposición del peróxido de hidrógeno, b) suministrar una diferencia de potencial entre el cátodo y un ánodo, de modo que se convierte el oxígeno a peróxido en el cátodo, se difunde el peróxido a través de un electrolito acuoso hasta el ánodo, y se convierte el peróxido a oxígeno puro en el ánodo. Consiste en un nuevo método capaz de separar el oxígeno mediante un procedimiento bielectrónico. El equipo comprende una celda electrolítica de un solo compartimiento (1) con al menos un cátodo (8) y un ánodo (9), una entrada (12) a través del cátodo de una mezcla de gases que contiene oxígeno y una salida (5) del oxígeno puro producido en la celda.

Description

PROCEDIMIENTO PARA LA SEPARACIÓN ELECTROLÍTICA DEL OXIGENO DE SUS MEZCLAS Y EQUIPO PARA LA REALIZACIÓN DE ESTE
PROCEDIMIENTO
La presente invención se refiere a un procedimiento electroquímico de separación y purificación del oxígeno de mezclas de gases que lo contengan (por ejemplo aire) en medio acuoso. También se refiere al equipo para la realización de este procedimiento.
ANTECEDENTES DE LA INVENCIÓN
La presente invención se circunscribe al uso de electrólitos acuosos, por lo que no se incluyen aquí referencias a electrólitos orgánicos (por ejemplo dimetilsulfóxido + tetrafluoroborato de tetraalquilamonio) o a conductores iónicos sólidos (por ejemplo óxido de circonio estabilizado con óxido de itrio) que también han sido empleados para la obtención o purificación de oxígeno. Así por ejemplo, son conocidos procedimientos de concentración de oxígeno, a partir un gas de alimentación que lo contenga, utilizando electrolitos sólidos que contienen resinas de intercambio iónico, descritos por ejemplo en la patente americana US-5.338.412. Sin embargo, dichos procedimientos no permiten la obtención de oxígeno puro puesto que el electrólito utilizado presenta permeabilidad no sólo al gas oxígeno sino también a otros gases, como el gas nitrógeno. Ello permite únicamente una concentración del oxígeno y no la obtención de oxígeno puro a partir de una mezcla de gases que lo contenga. Por otro lado, los sistemas empleados para dicha concentración de oxígeno comprenden dos electrodos separados por un polímero sólido con resina de intercambio iónico de manera que cuando la conductividad de dicho polímero disminuye debe substituirse el sistema íntegro debido a que el polímero y los electrodos forman una única unidad compacta conllevando por lo tanto un coste adicional al sistema.
Asimismo quedan también explícitamente fuera de esta descripción los sistemas de separación de oxígeno basados en complejos organometálicos de Fe ó Co, que pueden actuar como portadores ('carriers') para facilitar el transporte de dicho gas de una forma semejante a como lo hace la hemoglobina en la sangre. En el presente estado del arte nos ceñimos a las publicaciones más próximas a la invención que se detalla. En los últimos años se han publicado diversos trabajos relativos a la reducción catódica del oxígeno sobre electrodos de grafito y de difusión de gases en diferentes medios acuosos. Los electrodos de difusión de gases están constituidos esencialmente por polvos de carbón (negro de humo) mezclados con politetrafluoroetileno (PTFE) como aglomerante, que se comprimen en caliente sobre un soporte (normalmente una malla metálica) que actúa además como distribuidor de corriente. En estas condiciones, el procedimiento de electrorreducción del oxígeno es bielectrónico y conduce a la formación de peróxido de hidrógeno a pH<ll,6 o bien de su base conjugada, el ion hidroperóxido, a pH>ll,6. Las reacciones que tienen lugar son [E. Yeager, Electrochim. Acta, 29, 1572 (1984)]:
pH<5 02 + 2 H+ + 2 e" > H202 (la)
5<pH<ll,6 02 + 2 H20 + 2 e" > H202 + 2 OH" (Ib)
pH>ll,6 02 + H20 + 2 e" > H02 " + OH" (le)
La primera síntesis electroquímica del peróxido de hidrógeno por reducción del oxígeno se debe a Traube y data de 1882. Esta reacción se ha estudiado en medios ácidos y básicos, e incluso en agua pura con una membrana de intercambio de protones de Nafion® 117 como electrólito [P. Tatapudi y J.M. Fenton, J. Electrochem. Soc, 140, L55 (1993)]. Las mejores eficiencias de corriente para la generación de H202 se han obtenido en medio básico. Así, Mathur, James y Bisset [European Patent 248433 (1987), US Pat. 4,927,509 (1990)] han utilizado una celda bipolar con un diafragma permeable Celgardβ, un cátodo de grafito-carbón-PTFE alimentado con oxígeno y un ánodo de Ni con una cantidad electrocatalítica de compuestos de Co y w, para producir H02 " (30,5 g/litro) en una disolución acuosa conteniendo NaOH (38,5 g/litro). La eficiencia de corriente fue del 92,2% para una densidad de corriente (j) de 0,3 A/pulgada cuadrada y un voltaje (V) de 1,78 V. Por otra parte, Do y Chen [J. Electrochem. Soc, 140, 1632 (1993)] han estudiado el efecto del pH y de la temperatura sobre la electrogeneración del H202 en el compartimiento catódico de una celda tipo H empleando grafito alimentado con 02 como cátodo y un hilo de Pt como ánodo. Estos autores han encontrado una eficiencia del 88,4% al circular una densidad de corriente de 50 mA cm~2 a pH= 13 y 25 °c , y consideran que la pérdida de iones hidroperóxido electrogenerados se debe a la siguiente reacción de descomposición en medio alcalino:
2 H02 " > 02 + 2 OH" (2)
El método más común para la obtención electroquímica del oxígeno es la electrólisis de agua. El voltaje teórico para la descomposición electrolítica del agua en H2 y 02 es 1,23 V a 25 °C, pero la elevada sobretensión en el ánodo provoca un aumento del voltaje de la celda hasta un valor de 2,2 V en KOH 5 M a j= 100 mA cπT2. Ello supone una eficiencia energética de sólo 0,135 Kg 02/Kwh. Además la formación de hidrógeno en el cátodo supone un riesgo potencial en los lugares donde se usan generadores de 02 portátiles. Para lograr valores menores de V, mejores rendimientos y que sólo evolucione gas oxígeno puro de la celda, se han diseñado varios sistemas capaces de reducir catódicamente el oxígeno del aire vía 4 electrones para dar lugar a iones hidroxilo según la reacción:
02 (del aire)+ 2 H20 + 4 e" > 4 OH" (3)
y simultáneamente, oxidar anodica ente los iones hidroxilo para liberar la misma cantidad de oxígeno puro mediante la reacción contraria:
4 OH" > 02 (puro) + 2 H20 + 4 e~ (4)
Uno de estos sistemas es un separador electroquímico de oxígeno con una membrana de intercambio iónico de Nafión* de 100 cm2 como electrólito [Y.Fujita, H.Nakamura y T. Muto, J. Appl. Electrochem. 16(1986)935-940].
El cátodo era un polvo de grafito con un 10% de Pt y un 60% de PTFE comprimido en caliente sobre el Nafión, mientras su otra cara se recubría con Pt para formar el ánodo. Alimentando el cátodo con un flujo de aire de 4 1 min" 1, se ha conseguido una j = 100 mA cm~2 con un voltaje en esta celda de 1,25 V a 40 °C. El dispositivo operado a 200 mA cm~2 produjo 70,9 mi min-1 de oxígeno con una pureza del 98,4%. Otro sistema más eficiente para el procedimiento tetraelectrónico ha sido diseñado por A.c.c. Tseung y S.M. Jasem [ J. Appl. Electrochem., 11, 209 (1981)]. Consiste en una celda tipo H con sendos electrodos de negro de platino-PTFE, separados por una membrana de fibra de vidrio y conteniendo KOH 5 M. En el compartimiento catódico, el electrodo flota sobre la disolución de KOH siendo alimentado con aire. Estos autores lograron unos voltajes de 1,3 V a 25 °C y de 1,0 V a 40 °C para j = 100 A crn-2, determinando experimentalmente un rendimiento de oxígeno de 0,298 kg 02 kwh"1 a 40 °c, exactamente igual al predicho teóricamente. Tseung y Jasem también han descrito un método electroquí ico-químico integrado para la extracción del 02 del aire en KOH 5 M, utilizando una celda de tres cámaras [U.S. Patent No. 4300987, 17 Nov 1981]. En la cámara catódica se encuentra un cátodo de grafito-PTFE, que flota sobre la disolución y que al ser alimentado con aire reduce el oxígeno a H02 " de acuerdo con la ec. (le). Colocando una malla de Ni recubierta con NiCo20 en la cámara intermedia, el H02 ~ electrogenerado se descompone químicamente a 02 según la reacción (2), mientras que en la cámara anódica, se produce el desprendimiento de 02 (reacción (4)) sobre un ánodo de NiCo20^-PTFE. Así, se consigue que la misma cantidad de oxígeno reducida bielectronicamente en el cátodo pueda recogerse de la cámara de descomposición más la cámara anódica. Con este sistema, dichos inventores han sido capaces de obtener rendimientos de 0,378 y 0,486 kg 02 kwh"1 a 25 °C y 40 °C, respectivamente, con unos voltajes (una vez descontada la caída óhmica) de 1,34 V y 1,04 V a j = 100 mA cm-2.
En todos los trabajos anteriores relativos a la separación electroquímica del oxígeno del aire en medio básico se ha operado en ausencia de H02 " cerca del ánodo, sin tener en cuenta su posible oxidación anódica para generar O .
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención constituye un nuevo método capaz de separar el oxígeno de una mezcla de gases que lo contenga mediante un procedimiento electroquímico en el que intervienen 2 electrones por molécula de oxígeno purificado. Aunque el sistema es aplicable a multitud de mezclas gaseosas que contengan oxígeno tanto para obtener oxígeno puro como para obtener mezclas de gases total o parcialmente desoxigenadas, ha sido diseñado pensando en la separación y purificación del oxígeno del aire, de manera que en adelante nos referiremos a 'aire' como ejemplo genérico de cualquier mezcla de gases a la que la presente invención sea aplicable. El procedimiento de la invención para la separación electrolítica del oxígeno de sus mezclas comprende las etapas de: a) poner en contacto un gas que contiene oxígeno con un cátodo de difusión de gases el cual no contiene catalizador de descomposición del peróxido de hidrógeno, b) suministrar una diferencia de potencial entre el cátodo y un ánodo, de modo que b.l- se convierte el oxígeno a peróxido de hidrógeno o su base conjugada en el cátodo según un proceso bielectrónico, b.2- se difunde el peróxido de hidrógeno o su base conjugada a través de un electrolito acuoso desde el cátodo de difusión de gases hasta el ánodo, y b.3- se convierte el peróxido de hidrógeno o su base conjugada difundidos a oxígeno puro en el ánodo según un proceso bielectrónico.
Ambos procedimientos electródicos tienen la característica de ser bielectrónicos, lo cual implica un menor consumo de electricidad por kilogramo de oxígeno que otros procedimientos electroquímicos.
El funcionamiento de esta celda se basa en la electrogeneración de H02 ~ por reducción catódica del oxígeno del aire según la reacción (le) y su posterior descomposición anódica generando 02 puro vía 2 electrones:
H02 " + OH" > 02 (puro) + H20 + 2 e" (5)
La misma cantidad de oxígeno reducido en el cátodo es liberado en el ánodo, eε decir, ocurre la separación/purificación 02 (aire) > 02 (puro), mediante un procedimiento global bielectrónico.
La ausencia de catalizador de descomposición del peróxido de hidrógeno en el cátodo de difusión de gases evita la reacción tetraelectrónica de 02 a H20.
El pH del electrólito es normalmente alto. No obstante, hemos comprobado que la generación de agua oxigenada puede realizarse con buen rendimiento a partir de pH 2,5, por lo que el marco de esta invención incluye cualquier electrólito de pH igual o superior a 2,5, aunque se prefiere un pH superior a 11 para evitar problemas de corrosión y poder utilizar un álcali como electrólito de fondo (hidróxidos de Li, Na, K, ... ) por su alta conductividad a concentraciones moderadas. Las concentraciones aplicables oscilan entre 0,1 M y 10 M, aunque se prefieren valores entre 0,5 y 6 M. En estas circunstancias, las reacciones catódica (le) y anódica (5) son exactamente opuestas, como hemos visto antes. Aunque no se han observado incidencias negativas en el procedimiento del aire empleado, es obvio que resultará ventajoso filtrar y purificar dicho gas de entrada a la manera usual en otros procedimientos de obtención del oxígeno atmosférico. En particular el anhídrido carbónico y ciertos contaminantes ácidos presentes en el aire suponen un peligro para un electrólito alcalino, ya que, por ejemplo, pueden degradarlo por carbonatación.
Afortunadamente una disolución del propio álcali puede actuar eficientemente en un lavador de gases eliminando previamente dichos componentes indeseados. En la práctica ello supone una nueva utilidad para el electrólito usado, que de esta forma puede reutilizarse hasta bajar su pH a 10, resultando menos costoso y más fácil su posterior tratamiento como agua residual. De cualquier modo siempre que se tomen las precauciones oportunas no hay razones para suponer que un mismo electrólito no pueda emplearse indefinidamente. Se trata por tanto de un procedimiento seguro y ambientalmente aceptable.
La presión del aire sobre el cátodo no es significativamente superior a una atmósfera. No obstante una mayor presión parcial del oxígeno de entrada beneficia al procedimiento, que puede realizarse con presiones del gas de entrada entre presión atmosférica y 100 bar, preferiblemente entre 1 y 10 bar. Por la misma razón resulta beneficioso el aspirar el oxígeno de salida. El oxígeno producido en el ánodo puede ser recogido o aspirado a una presión entre la atmosférica y 0,01 bar, preferiblemente entre 1 y 0,1 bar. La única impureza significativa en dicho oxígeno es la humedad, que puede ser eliminada mediante equipos de condensación o desecación convencionales.
Dado que el agua oxigenada es generada en el cátodo, transportada hacia el ánodo y oxidada en él, es obvio para cualquier experto en la materia que acabará teniendo en la disolución una concentración estacionaria, que no variará a menos que se modifiquen parámetros como la densidad de corriente, la concentración de electrólito o la temperatura. Sin embargo, la obtención de dicho estado estacionario puede resultar muy lenta y resulta ventajosa la adición inicial de una cantidad de H202 tal que permanezca constante durante el procedimiento. De este modo, el estado estacionario puede lograrse inmediatamente.
Es conocido el hecho de que las disoluciones comerciales de H202 normalmente contienen pequeñas concentraciones de estabilizantes como urea, difosfatos, compuestos de estaño, acetanilida, alcohol,etc. Se trata en general de complejantes capaces de atrapar las pequeñas cantidades de metales de transición, por ejemplo hierro, que catalizan la descomposición del peróxido de hidrógeno. Se ha comprobado que la adición de algunos de estos compuestos permite aumentar el rendimiento del proceso.
Se ha comprobado que el procedimiento funciona me or a temperaturas por encima de la ambiente, tal como ocurre en muchas otras electrólisis. El dispositivo puede trabajar entre 0 y 100°C. En sistemas a presión puede operarse a temperaturas superiores a 100°C. No obstante, cuando el oxígeno evoluciona a través del electrólito y con objeto de no obtenerlo excesivamente húmedo es preferible emplear temperaturas moderadas, entre 20 y 50°C.
El sistema diseñado consiste en una celda de un solo compartimiento que contiene un cátodo de carbón aglomerado con un polímero hidrófobo, por ejemplo PTFE, polietileno o cloruro de polivinilo (PVC), sin ningún otro catalizador (la adición de Pt u óxido metálico tipo perowskita producen la reacción tetraelectrónica de 02 a H20 que se pretende evitar), alimentado con aire, un ánodo estable en las condiciones del procedimiento y una disolución de un álcali.
La figura 1 se refiere al equipo de la invención que se describe a continuación. Se trata de una celda termostatizada de Ni-CT empleada para la separación electrolítica del oxígeno del aire. Dicho equipo es solo uno de los posibles dentro del marco de esta invención y se ha escogido por ser el que se empleó en los experimentos aportados como ejemplos.
La celda electrolítica consistía en un tubo cilindrico de vidrio 1 con una camisa externa de termostatización 2, con una entrada 3 y una salida 4 de agua dirigida al termostato, y un tubo de salida superior 5 para la recogida del gas oxígeno y para la toma de muestras. Por los extremos del tubo se introducen sendos soportes electródicos 6 y 7, que se ajustan con roscas de baquelita. Cada uno de estos soportes era un cilindro hueco de polipropileno y en su extremo interno se situó el correspondiente electrodo, cátodo 8 y ánodo 9, que se conectaban a una fuente de alimentación convencional de corriente continua mediante un hilo conductor 10 y 11.
El ánodo puede ser de cualquier material conductor, estable y capaz de oxidar el peróxido de hidrógeno a oxígeno, por ejemplo metales, aleaciones, óxidos metálicos conductores, grafito o carbón-PTFE. En el diseño presentado en la Fig.l era una plancha de Ni, pero también se han empleado ánodos de carbón-PTFE con buenos resultados. También pueden utilizarse ánodos conteniendo un catalizador para la descomposición del H202 tal como Pt, pero skitas o ciertos compuestos de metales de transición, como por ejemplo Fe(III) o Nι(II) .
El cátodo CT era una mezcla de carbón-PTFE, sin otro catalizador, comprimida en caliente sobre una malla de Ni. La superficie activa de carbón-PTFE se halla en contacto con la disolución, mientras que la malla de Ni actúa como distribuidor de la corriente eléctrica y está en contacto con el hilo de conexión de Ni-Cr. Para preparar el carbón-PTFE se mezcló un 75% de negro de humo y un 25% de dispersión de PTFE. La mezcla resultante se secó a 240°C y se pulverizó con un molinillo. Tras el prensado en caliente los cátodos empleados tenían un espesor de unos 0,4 mm. Aunque pueden emplearse electrodos de hasta 5 mm de espesor se prefieren entre 0,1 y 0,5 mm para la más fácil difusión del oxígeno a su través.
El ánodo de Ni y el cátodo CT se ajustaron a sus correspondientes soportes mediante roscas de polipropileno con una apertura central cilindrica. El área de cada electrodo en contacto con la disolución de KOH era de 0,785
El aire necesario para alimentar el cátodo de carbón-PTFE (CT) era suministrado por un compresor de ba a potencia que producía un flujo de 140 mi mm"1 a través de un tubo de vidrio 12 dentro del soporte catódico, siendo el gas restante expelido a la atmosfera. En esta configuración, por tanto, la presión del aire sobre el cátodo no era significativamente superior a una atmosfera
La celda empleada no incluía ningún dispositivo para agitar el electrólito, dado que éste no es necesario para su funcionamiento. No obstante se han encontrado evidencias de control por difusión en la oxidación anódica del peróxido de hidrógeno a bajas concentraciones por lo que cualquier dispositivo para agitar o recircular el electrólito en circuito cerrado ha de ser beneficioso para el procedimiento. En otro diseño conteniendo un dispositivo de recirculación se emplearía un ánodo poroso (por ejemplo una rejilla, malla o tela metálica, o bien un material sinterizado) a través del cual se forzaría el paso del electrólito en dirección opuesta al cátodo. Este flujo tendría la ventaja adicional de arrastrar las burbujas de oxígeno formadas y permitir un mayor acercamiento entre electrodos.
No obstante un ánodo poroso también puede emplearse ventajosamente sin recirculación si se coloca horizontalmente, por encima y cerca del cátodo. En este caso la propia gravedad se encarga de arrastrar las burbujas de gas fuera de la región interelectródica, donde podrían producirse interferencias, cortocircuitos, descensos de conductividad y/o reacciones secundarias indeseadas. Efectos perniciosos como éstos se observaron en la celda de la Fig. 1 cuando la distancia entre electrodos era inferior a 5 mm, que por ello ha sido la distancia empleada en la mayoría de experimentos. Sin embargo esta distancia, que puede ir de 0,1 a 10 mm, conviene reducirla cuando el diseño lo permita, trabajándose preferiblemente entre 0,1 y 1 mm. El acercamiento entre electrodos permite trabajar con concentraciones de álcali inferiores, que a su vez son compatibles con concentraciones más altas de H02 " que mejoran el rendimiento del proceso y reducen el voltaje de la celda.
Otro accesorio útil al presente dispositivo es una fina membrana o diafragma permeable entre los electrodos (por ejemplo de papel, tela, asbesto, vidrio o retícula de plástico) cuya función es separarlos para evitar cortocircuitos pero manteniéndolos muy cerca, para minimizar las dificultades del transporte de las especies en disolución y las pérdidas por caída óhmica. Un diseño adecuado de este dispositivo permitiría emplearlo también como promotor de turbulencia con idéntico fin.
En una celda como la empleada se electrogenera H02 " a partir de la reducción del 02 del aire según la reacción (le). Si se opera a voltajes lo suficientemente bajos, preferiblemente entre 0,1 y 1 V, no ocurre la reducción del H20 (menos favorable energéticamente), en el cátodo sólo se genera H02 " y el procedimiento global de la celda será bielectrónico. Sin embargo, en el ánodo puede ocurrir simultáneamente la oxidación del ion OH" según la reacción (4) y la del ion H02 " según la reacción (5). En ausencia de H02 " sólo se producirá la descarga del OH" y n será 4, mientras que cuando el H02 ~ se electrodescomponga n variará entre 2 y 4. El objetivo del dispositivo presentado es lograr un funcionamiento en estado estacionario que produzca oxígeno a potenciales inferiores a IV y con un consumo de 2 electrones por molécula de oxígeno purificado. A partir de valores de voltaje superiores a 0,2 V se ha observado densidad de corriente y por lo tanto se empieza a generar oxígeno. El gas de rechazo del cátodo es aire empobrecido o desprovisto de oxígeno que puede aplicarse, por ejemplo, en procedimientos de inertización. La mezcla de parte de este gas con el oxígeno puro que porviene del ánodo permite obtener mezclas enriquecidas en oxígeno en cualquier concentración entre el 21 y el 1001. Estas mezclas tienen, entre otros, usos hospitalarios y favorecen las combustiones y oxidaciones difíciles en aire ordinario. También se emplean en la fundición de ciertos metales. La presente invención presenta mejoras respecto a los trabajos anteriores. Las pruebas experimentales realizadas han permitido mejorar los resultados obtenidos con anteriores dispositivos. Concretamente se han reducido los voltajes a aplicar para obtener una determinado flujo de oxígeno puro y se ha aumentado sensiblemente la eficiencia energética del procedimiento, como se comprobará en los ejemplos que se dan más adelante. Para aumentar los flujos de oxígeno producidos, además del escalado habitual en procedimientos industriales, también es posible interconectar un número suficiente de celdas individuales. El rendimiento energético de oxígeno r en términos de kg de 02 por kwh consumido puede calcularse fácilmente y sólo depende del número de electrones consumidos por molécula de oxígeno desprendido (n) y de la diferencia de potencial aplicado. En el caso que n = 4, es decir, si sólo el ion OH" se oxidase en el ánodo según la reacción (4) y todo el H02 " se acumulase en el medio de la celda, el rendimiento es:
(6) r= 0,298/V
donde V es el potencial en voltios. Esta ecuación puede aplicarse a las celdas convencionales de extracción de oxígeno. En cambio, si todo el H02 ~ es capaz de oxidarse en el ánodo como indica la reacción (5) y n = 2, el rendimiento de oxígeno de la celda resulta ser:
(7) r= 0,596/V
Comparando las ecuaciones (6) y (7), resulta evidente que una celda bielectrónica posee el doble de rendimiento energético de oxígeno que una celda convencional tetraelectrónica para el mismo valor de V, aunque operen a distinta densidad de corriente. Por su parte el numero de electrones n es fácilmente deter inable mediante la ley de Faraday a partir de la carga eléctrica consumida y el volumen de oxígeno desprendido del ánodo.
EJEMPLOS
Ejemplo 1. En la celda de la Fig.l se electrolizaron 50 mi de una disolución de KOH 2,4 M a una densidad de corriente constante de 100 mA era"2 durante 10 horas, determinando el volumen de gas oxígeno desprendido, el cambio en la concentraciones de H02 ~ y OH", así como la diferencia de potencial entre los electrodos. La distancia interelectródica era de 5 mm y la temperatura 25 °c. La figura 2 representa en las ordenadas de la derecha de la figura los valores de rendimiento r expresado en Kg 02 Kwh"1 (curva b) y en las ordenadas de la izquierda de la figura los valores del número n de electrones por mol de oxígeno desprendido (curva a) y en abeisas el tiempo transcurrido expresado en horas. En ella se observa que el número de electrones por mol de oxígeno desprendido de la celda desciende gradualmente desde n = 4 (instante inicial) hasta n = 2,17 al cabo de las 10 horas de electrólisis. Este resultado indica un aumento de la velocidad de electrodescomposición del H02 ~ a medida que su concentración en el medio crece. Por otra parte, se observa que el voltaje también decrece desde un valor inicial de 1,21 V a un valor final de 1,10 V. Este hecho, junto al descenso de n, provoca un incremento gradual de r desde 0,247 hasta 0,495 kg 02 kwh"1 durante el tiempo de electrólisis. La concentración final de H02 " resultó ser 0,15M, en concordancia con el descenso observado en la concentración de OH".
Ejemplo 2. En la misma celda del ejemplo 1 se electrolizaron 50 mi de una disolución de KOH 2,4 M y H02 " 0,18 M a densidades de corriente constantes de 38, 100 y 191 mA cm"-' durante 9 horas, determinando el volumen de gas oxígeno desprendido, el cambio en la concentraciones de HO " y OH-. así como la variación del voltaje. La distancia interelectródica era de 5 mm y la temperatura 25 °C. A 38 mA cm-2 se mantuvo el voltaje entre 0,68 V y 0,72 V, a 100 mA cm"2 entre 1,02 V y 1,05 V, mientras a 191 mA cm" disminuyó gradualmente desde 1,61 V hasta 1,46 V a las 9 horas de electrólisis. El volumen de oxígeno desprendido se ajustó muy bien al previsto teóricamente suponiendo n = Ξ para j = 38 y 100 mA cm"2, condiciones en las que la composición del medio prácticamente no varió durante la electrólisis. Sin embargo, el ajuste no es bueno para j =191 mA cm"2. En este caso, el valor de n decreció paulatinamente con el tiempo de electrólisis desde 2,38 hasta 2,05, mientras en el medio se acumularon 4,6 milimoles de H02 ~, prueba de que a esta densidad de corriente el estado estacionario corresponde a una concentración de peróxido superior a 0,2 M.
Ejemplo 3. Experimentos semejantes a los del ejemplo 2 fueron realizados con distintas composiciones del electrólito y a diferentes temperaturas, aplicando densidades de corriente constantes de 38 y 100 mA cm""- durante tiempos de 1 a 3 horas. En la tabla 1 se recogen los voltajes de celda, el valor medio de n determinado a partir del volumen de oxígeno obtenido cada 10 minutos de electrólisis y el rendimiento energético de oxígeno obtenido para n = 2 (como se comprobó experimentalmente) .
Tabla 1. Valores de n y rendimiento de oxígeno (r) determinados para diferentes celdas Ni-CT funcionando en estado casi estacionario a densidad de corriente constante.
[KOH]/M, [H02 "]/M, Temp/°c, j/mA cm"2, Voltaje/V, n, r
0,8 0,121 25 38 0,89 1,99 0,671
0,216 25 38 0,57 2,01 1,047
0,381 25 38 0,52 1,96 1,148
25 100 1,02 2,05 0,585
35 100 0,90 2,00 0,663
45 100 0,86 1,95 0,694
2,4 0,124 25 38 0,76 1,97 0,786
0,185 25 38 0,68 1,99 0,878
25 100 1,02 2,00 0,585
35 100 0,90 1,97 0,663
45 100 0,82 1,97 0,728
0,266 25 100 0,98 2,03 0,609
35 100 0,85 1,96 0,702
45 100 0,77 1,98 0,775
0,459a 25 100 0,73 1,98 0,816
El electrólito contenía urea con una concentración 1,5 mM
Según se observa en la Tabla 1, a densidad de corriente y temperatura constantes, el rendimiento de oxígeno crece notablemente con la concentración de H02 " . Al aumentar la temperatura, se produce un descenso del voltaje de la celda y el rendimiento de oxígeno también crece.
La celda Ni-CT puede operar a densidades de corriente de 100 mA cm"2 aplicando voltajes de 0,98 V a 25 °C para dar un rendimiento de oxígeno de 0,609 kg02 kwh"1. Este valor es notablemente mayor que los rendimientos de 0,378 y 0,486 kg 02 kwh"1 a 100 A cm"2 obtenidos por Tseung y Jasem a 25 °C y 40 °C, respectivamente, que son los mejores valores hallados en la bibliografía para la obtención electrolítica del oxígeno. Nuestro mejor rendimiento a 100 mA cm"2 ha sido de 0,815 kg 02 kwh"1 a 45 °C. En este ensayo se añadió una pequeña cantidad de urea a la disolución. A densidades de corrientes inferiores pueden obtenerse fácilmente rendimientos superiores a 1 Kg 02/Kwh, incluso a temperatura ambiente.
Ejemplo 4. En este caso se empleó la misma celda que en los ejemplos anteriores pero equipada con un ánodo CT en lugar de Ni. A efectos comparativos se ha estudiado una celda CT-CT en las mismas condiciones que la celda Ni-CT, a 25 °C y 5mm de distancia interelectródica. Se ha encontrado que la curva j-v casi estacionaria de una celda CT-CT con KOH 0,8 M y H02 ~ 0,46 M tiene menor pendiente que la de una celda Ni-CT análoga, de manera que aquella es mejor que esta a voltajes inferiores a 0,6 V. Así, mientras sólo se precisa un voltaje de 0,48 V para j = 38 mA cm"2 en la celda CT-CT, se necesitan 0,55 V para obtener la misma densidad de corriente con un ánodo de Ni. No obstante es necesario aplicar 1,55 V para que circulen 100 mA cm"2 a través de la celda CT-CT, es decir unos 0,50 v más que para una celda Ni-CT.
Por otra parte, los volúmenes de oxígeno desprendidos de la disolución son pequeños: 3 mi a 38 mA c "" y 7,5 mi a 100 mA cm"2, cuando los volúmenes respectivos para n = 2 deberían ser de 13,7 mi y 36,6 mi, respectivamente. Este hecho indica que la mayor parte del oxígeno generado en el ánodo CT difunde a través de él en vez de desprenderse a través de la disolución, lo que posibilitaría su extracción mediante un aspirador con un mínimo grado de humedad.

Claims

REIVINDICACIONES
1. Procedimiento para la separación electrolítica del oxígeno de sus mezclas que comprende las etapas de: a) poner en contacto un gas que contiene oxígeno con un cátodo de difusión de gases el cual no contiene catalizador de descomposición del peróxido de hidrógeno, b) suministrar una diferencia de potencial entre el cátodo de difusión de gases y un ánodo, de modo que b.l- se convierte el oxígeno a peróxido de hidrógeno o su base conjugada en el cátodo según un proceso bielectrónico, b.2- se difunde el peróxido de hidrógeno o su base conjugada a través de un electrolito acuoso desde el cátodo de difusión de gases hasta el ánodo, y b.3- se convierte el peróxido de hidrógeno o su base conjugada difundidos a oxígeno puro en el ánodo según un proceso bielectrónico.
2. Procedimiento según la reivindicación 1, caracterizado por el hecho de que la diferencia de potencial entre ánodo y cátodo es suficientemente baja para que no tenga lugar la reducción del agua, y está comprendida preferiblemente entre 0,1 V y 1 V.
3. Procedimiento según la reivindicación 1 ó 2, caracterizado por el hecho de que el procedimiento se realiza preferiblemente a temperaturas entre 20 y 50°C.
4. Procedimiento según cualquiera de las reivindicaciones 1 a 3, caracterizado por el hecho de que la presión de la mezcla de gases- que contiene oxígeno está comprendida entre 1 bar y 10C bar, pref riblemente entre 1 y 10 bar.
5. Procedimiento según cualquiera de las reivindi¬ caciones 1 a 4, caracterizado por el hecho de que el oxígeno puro producido es recogido o aspirado a una presión entre la atmosférica y 0,01 bar, preferiblemente entre 1 y 0,1 bar.
6. Procedimiento según la reivindicación 5, caracterizado por el hecho de que el oxígeno puro producido es recogido o aspirado a través del ánodo.
7. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que el electrólito contiene un hidróxido de Li, Na ó K.
8. Procedimiento según la reivindicación 7, caracterizado por el hecho de que el electrólito tiene una concentración comprendida entre 0,1 M y 10 M, preferible- mente de 0,5 M a 6 M de hidróxido de Li, Na ó K.
9. Procedimiento según la reivindicación 7 ó 8, caracterizado por el hecho de que se añade al electrólito una cantidad inicial de peróxido de hidrógeno, de manera que su concentración permanezca estacionaria durante el proceso.
10. Procedimiento según cualquiera de las reivindicaciones 7 a 9, caracterizado por el hecho de que se añade al electrólito una pequeña concentración de un complejante metálico.
11. Procedimiento según la reivindicación 10, caracterizado por el hecho de que el complejante metálico es urea.
12. Equipo para producir oxígeno puro a partir de una mezcla de gases que lo contenga, caracterizado por el hecho de que comprende una celda electrolítica de un solo compartimiento (1) en la cual están dispuestos al menos un cátodo (8) y un ánodo (9), una entrada (12) a través del cátodo de una mezcla de gases que contiene oxígeno y una salida (5) del oxígeno producido en la celda, conteniendo el cátodo un polímero hidrófobo y no conteniendo un catalizador de descomposición del peróxido de hidrógeno, y siendo el ánodo estable a los componentes- presentes en el electrólito.
13. Equipo según la reivindicación 12, caracterizado por el hecho de que la celda electrolítica comprende una camisa externa de termostatización (2).
14. Equipo según la reivindicación 12 ó 13, caracterizado por el hecho de que comprende un dispositivo para agitar o recircular el electrólito.
15. Equipo según cualquiera de las reivindicaciones
12 a 14, caracterizado por el hecho de que los cátodos tienen hasta 5 mm de espesor, preferiblemente entre 0,1 y 0,5 mm.
.
16. Equipo según la reivindicación 12 ó 15, caracterizado por el hecho de que la distancia entre cátodo y ánodo es de 0,1 a 10 mm, preferiblemente entre 0,1 y 1 mm.
17. Equipo según la reivindicación 12, 13, 14 ó 16, caracterizado por el hecho de que el ánodo inerte es un ánodo de cualquier material conductor, estable en las condiciones del procedimiento y capaz de oxidar el peróxido de hidrógeno a oxígeno, preferiblemente metales, aleaciones, óxidos metálicos conductores, grafito o carbón-PTFE.
18. Equipo según la reivindicación 16 ó 17, caracterizado por el hecho de que el ánodo de estos materiales es un ánodo poroso.
19. Equipo según la reivindicación 16 ó 18, caracterizado por el hecho de que el ánodo poroso es una rejilla, malla o tela metálica, o bien un material conductor sinterizado.
20. Equipo según la reivindicación 16, 17 ó 18, caracterizado por el hecho de que el ánodo poroso está dispuesto horizontalmente, por encima y cerca del cátodo.
21. Equipo según cualquiera de las reivindicaciones
12 a 20, caracterizado por el hecho de que el ánodo y el cátodo están dispuestos de manera que el electrólito fluye a través del ánodo en dirección opuesta al cátodo arrastrando consigo el oxígeno producido.
22. Equipo según cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que comprende entre ánodo y cátodo una fina membrana o diafragma permeable, preferiblemente de papel, tela, asbesto, vidrio o retícula de plástico.
PCT/ES1996/000068 1995-03-31 1996-03-28 Procedimiento para la separacion electrolitica del oxigeno de sus mezclas y equipo para la realizacion de este procedimiento WO1996030297A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002191625A CA2191625C (en) 1995-03-31 1996-03-28 A process for the electrolytic separation of oxygen from its mixtures and equipment to perform this process
EP96906780A EP0771759B1 (en) 1995-03-31 1996-03-28 Process for the electrolytic separation of oxygen from its mixtures and equipment for implementing such process
AT96906780T ATE216679T1 (de) 1995-03-31 1996-03-28 Verfahren zur elektrolytischen abtrennung von sauerstoff aus sauerstoff enthaltenden mischungen und vorrichtung dafür
DE69620842T DE69620842T2 (de) 1995-03-31 1996-03-28 Verfahren zur elektrolytischen abtrennung von sauerstoff aus sauerstoff enthaltenden mischungen und vorrichtung dafür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES09500641A ES2094099B1 (es) 1995-03-31 1995-03-31 Procedimiento para la separacion electrolitica del oxigeno de sus mezclas y equipo para la realizacion de este procedimiento.
ESP9500641 1995-03-31

Publications (1)

Publication Number Publication Date
WO1996030297A1 true WO1996030297A1 (es) 1996-10-03

Family

ID=8289955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1996/000068 WO1996030297A1 (es) 1995-03-31 1996-03-28 Procedimiento para la separacion electrolitica del oxigeno de sus mezclas y equipo para la realizacion de este procedimiento

Country Status (7)

Country Link
EP (1) EP0771759B1 (es)
AT (1) ATE216679T1 (es)
CA (1) CA2191625C (es)
DE (1) DE69620842T2 (es)
ES (2) ES2094099B1 (es)
PT (1) PT771759E (es)
WO (1) WO1996030297A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905739A (zh) * 2020-08-31 2020-11-10 中国科学技术大学先进技术研究院 一种应用于制氧机的催化剂的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541159B1 (en) 1999-08-12 2003-04-01 Reveo, Inc. Oxygen separation through hydroxide-conductive membrane
DE10053546A1 (de) * 2000-10-27 2002-05-02 Angewandte Technik Mbh Greifsw Portabler elektrochemischer Sauerstoffgenerator
DE10156349B4 (de) * 2001-11-16 2006-01-26 Ballard Power Systems Ag Brennstoffzellenanlage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061554A (en) * 1975-04-24 1977-12-06 Societe Generale De Constructions Electriques Et Mecaniques "Alsthom Et Cie" Electrochemical method for producing oxygen
EP0005325A1 (en) * 1978-04-14 1979-11-14 Alfred Chan Chung Tseung Method for separating a gas from a gaseous mixture and electrochemical cell therefor
EP0147012A2 (en) * 1983-12-27 1985-07-03 AQUANAUTICS CORPORATION (a Delaware corporation) Method and apparatus for separating oxygen from a gaseous mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061554A (en) * 1975-04-24 1977-12-06 Societe Generale De Constructions Electriques Et Mecaniques "Alsthom Et Cie" Electrochemical method for producing oxygen
EP0005325A1 (en) * 1978-04-14 1979-11-14 Alfred Chan Chung Tseung Method for separating a gas from a gaseous mixture and electrochemical cell therefor
EP0147012A2 (en) * 1983-12-27 1985-07-03 AQUANAUTICS CORPORATION (a Delaware corporation) Method and apparatus for separating oxygen from a gaseous mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905739A (zh) * 2020-08-31 2020-11-10 中国科学技术大学先进技术研究院 一种应用于制氧机的催化剂的制备方法

Also Published As

Publication number Publication date
PT771759E (pt) 2002-10-31
DE69620842D1 (de) 2002-05-29
EP0771759A1 (en) 1997-05-07
ES2094099B1 (es) 1997-08-01
CA2191625C (en) 2001-12-04
DE69620842T2 (de) 2002-11-21
ES2176442T3 (es) 2002-12-01
EP0771759B1 (en) 2002-04-24
ES2094099A1 (es) 1997-01-01
CA2191625A1 (en) 1996-10-03
ATE216679T1 (de) 2002-05-15

Similar Documents

Publication Publication Date Title
US8491763B2 (en) Oxygen recovery system and method for recovering oxygen in an electrochemical cell
JPS6380480A (ja) 燃料電池及び燃料電池で発電する方法
US4455203A (en) Process for the electrolytic production of hydrogen peroxide
CN109996905A (zh) 有机氢化物制造装置和有机氢化物的制造方法
CN109487292B (zh) 一种使用膜电极产生氢气和氧气的方法和装置
JP3274880B2 (ja) 電解オゾン発生装置
CN106486687A (zh) 光催化产过氧化氢与光催化燃料电池耦合系统
JPH07126880A (ja) 塩水電解方法及び電解槽
CN1035488C (zh) 电化学双极制氧的方法及装置
WO2020038383A1 (zh) 液流电池电解液的纯化方法和纯化装置
WO1996030297A1 (es) Procedimiento para la separacion electrolitica del oxigeno de sus mezclas y equipo para la realizacion de este procedimiento
CN114405231B (zh) 一种面向稀薄气源的电驱动化学碳泵复合循环装置及方法
CN1065005C (zh) 电化学氧阴极制氧方法及其电解槽
JP2005011691A (ja) 直接液体型燃料電池システム
CN115400550A (zh) 一种超低能耗二氧化碳电化学捕集方法及系统
CN2321786Y (zh) 高效制氧装置ⅲ
JP2007059196A (ja) 発電システム
KR102610119B1 (ko) 물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치
JP7423753B2 (ja) 金属空気電池システム
JPH0627654Y2 (ja) オゾンガス発生用水電解装置
JPH07118002A (ja) 過酸化水素の製造方法及び製造装置
CN111005030B (zh) 一种电化学臭氧发生装置
KR100539753B1 (ko) 연료전지 시스템의 물공급장치
EP4209488A1 (en) Method for producing ethylene oxide
Yeager Oxygen Electrodes for industrial electrolysis and electrochemical power generation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP MX NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2191625

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1996906780

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1997 750337

Country of ref document: US

Date of ref document: 19970222

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1996906780

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996906780

Country of ref document: EP