WO1996027394A1 - Verwendung von ferriten zur bestimmung der perfusion von menschlichem gewebe mittels mr-diagnostik - Google Patents

Verwendung von ferriten zur bestimmung der perfusion von menschlichem gewebe mittels mr-diagnostik Download PDF

Info

Publication number
WO1996027394A1
WO1996027394A1 PCT/EP1996/000967 EP9600967W WO9627394A1 WO 1996027394 A1 WO1996027394 A1 WO 1996027394A1 EP 9600967 W EP9600967 W EP 9600967W WO 9627394 A1 WO9627394 A1 WO 9627394A1
Authority
WO
WIPO (PCT)
Prior art keywords
perfusion
diagnostic agents
agents according
metal oxide
oxide particles
Prior art date
Application number
PCT/EP1996/000967
Other languages
English (en)
French (fr)
Inventor
Thomas Balzer
Andreas Mühler
Peter Reimer
Original Assignee
Schering Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering Aktiengesellschaft filed Critical Schering Aktiengesellschaft
Priority to AU51030/96A priority Critical patent/AU5103096A/en
Publication of WO1996027394A1 publication Critical patent/WO1996027394A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1863Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being a polysaccharide or derivative thereof, e.g. chitosan, chitin, cellulose, pectin, starch

Definitions

  • the invention relates to the subject matter characterized in the claims, that is to say the use of diagnostic agents containing superparamagnetic metal oxide particles which are coated with an alkali-treated polysaccharide in a pharmaceutically acceptable suspension medium for MR perfusion diagnostics.
  • MR tomography NMR diagnostics
  • the imaging is based on the short-term excitation of hydrogen protons in a magnetic field using high-frequency pulses.
  • the energy that is radiated in is released as a so-called echo and can then be used to calculate a sectional image using appropriate methods.
  • MR tomography is superior to all other diagnostic imaging methods in the resolution of tissue contrasts, a further increase in signal and contrast can be achieved by using contrast media.
  • Certain paramagnetic substances such as Gadolinium
  • superparamagnetic particles such as Magnetite
  • functional information e.g. about perfusion
  • Contrast agents have therefore gained a firm place in clinical routine in MR tomography in recent years.
  • ferrites such as magnetites or hematites are only distributed in the intravascular space and can therefore in principle can also be used as a blood pool contrast agent (Chambon et al., Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence, Magn. Reson. Imaging, 11: 509-519, 1993).
  • the distribution space of such blood pool contrast media is 6 to 8% of the body volume and thus only half that of extracellular contrast media. Due to the exclusive distribution of the iron oxide particles in the blood space, these are distributed according to the blood flow in the tissue.
  • the blood volume on the one hand or the perfusion on the other hand are to be determined by means of contrast-assisted MR tomography, it must be taken into account that depending on the parameters to be determined, different measurement modes and also different types of contrast medium application are required.
  • the contrast medium can be injected quickly intravenously as a compact contrast medium bolus.
  • Ferridex ® according to the technical information of the Federal Association of the Pharmaceutical Industry eV necessary to infuse the contrast medium slowly (over 30 minutes) in the form of a highly diluted solution. With rapid bolus injection, drastic side effects are observed, as was found in animal experiments in first-pass investigations with AMI 25 (Bradley et al., Middle cerebral artery occlusion in rats studied by magnetic resonance imaging, Stroke 20: 1032-1036, 1989; Kent et al., Assessment of a superparamagnetic iron oxide (AMI-25) as a brain contrast agent, Magn.Reson.Med. 13: 334-343, 1990).
  • AMI 25 Brain et al., Middle cerebral artery occlusion in rats studied by magnetic resonance imaging, Stroke 20: 1032-1036, 1989
  • Kent et al. Assessment of a superparamagnetic iron oxide (AMI-25) as a brain contrast agent, Magn.Reson.Med. 13: 334-343, 1990.
  • contrast media which are suitable for diagnosing tissue perfusion, in particular cerebral perfusion, and which moreover have the other positive properties of ferrites, such as high susceptibility.
  • compositions containing superparamagnetic metal oxide particles which are coated with an alkali-treated polysaccharide can surprisingly be injected as a bolus in a pharmaceutically acceptable suspension medium and are therefore outstandingly suitable for perfusion studies by means of MR diagnostics.
  • Water which if desired contains the additives and stabilizers customary in galenicals, is suitable as the suspension medium.
  • Suitable additives are, for example, physiologically acceptable buffers (such as tromethamine), electrolytes such as B. sodium chloride or antioxidants such as. B. ascorbic acid.
  • physiologically acceptable buffers such as tromethamine
  • electrolytes such as B. sodium chloride
  • antioxidants such as. B. ascorbic acid.
  • Other auxiliaries may be mentioned include methyl cellulose, lactose, mannitol and / or surfactants (such as lecithin, Tweens ®, Myrj ®) and mono- or Dicarbonklaren.patii monocarboxylic acids are preferred.

Abstract

Die Erfindung betrifft die Verwendung von pharmazeutischen Mitteln, enthaltend superparamagnetische Metalloxid-Partikel, die mit einem alkalibehandelten Polysaccharid umhüllt sind, für Perfusionsuntersuchungen, insbesondere des zerebralen Bereichs, mittels MR-Diagnostik.

Description

Verwendung von Ferriten zur Bestimmung der Perfusion von menschlichem Gewebe mittels MR-Diagnostik
Die Erfindung betrifft den in den Patentansprüchen gekennzeichneten Gegenstand, daß heißt Verwendung von diagnostischen Mitteln, enthaltend superparamagnetische Metalloxid-Partikel, die mit einem alkalibehandelten Polysaccharid umhüllt sind, in einem pharmazeutisch akzeptablem Suspensionsmedium, für die MR-Perfusions- Diagnostik.
In der NMR-Diagnostik (MR-Tomographie) beruht die Bildgebung auf der kurzzeitigen Anregung von Wasserstoff-Protonen in einem Magnetfeld mittels Hochfrequenz-Impulsen. Die dabei eingestrahlte Energie wird als sogenanntes Echo wieder freigesetzt und kann dann durch entsprechende Verfahren zur Errechnung eines Schnittbildes dienen. Obwohl die MR-Tomographie allen anderen bildgebenden diagnostischen Verfahren in der Auflösung von Gewebekontrasten überlegen ist, kann durch den Einsatz von Kontrastmitteln eine weitere Steigerung von Signal und Kontrast erreicht werden. Bestimmte paramagnetische Substanzen (wie z.B. Gadolinium) oder superparamagnetische Partikel (wie z.B. Magnetite) können die Energieabgabe der Wasserstoff-Protonen und damit das entstehende Echo beeinflussen. Weiterhin können durch den Einsatz spezieller Kontrastmittel aus den detaillierten morphologischen Informationen der nativen MR-Tomographie Funktionsaussagen (z.B. über die Perfusion) erhalten werden. Kontrastmittel haben sich deshalb in den letzten Jahren in der klinischen Routine auch in der MR- Tomographie einen festen Platz erobert.
Die zur Zeit klinisch eingesetzten Kontrastmittel für die modernen bildgebenden Verfahren Kernspintomographie und Computertomographie wie z.B. Gd-DTPA (Magnevist®) verteilen sich im gesamten extrazellulären Raum des Körpers
(Intravasalraum und Interstitium). Dieser Verteilungsraum umfaßt etwa 20% des Körpervolumens. Damit spiegelt die Anreicherung des Kontrastmittels nicht die Perfusion wider, sondern ist primär von der Größe des extrazellulären Raumes im entsprechenden Gewebe abhängig. Deshalb verbietet sich die Anwendung extrazellulärer Kontrastmittel zur Diagnostik der Perfusion von Geweben.
Im Gegensatz dazu verteilen sich Ferrite wie z.B. Magnetite oder Hämatite auf Grund ihrer Größe (20-200 nm) nur im Intravasalraum und können deshalb grundsätzlich auch als Blutpool-Kontrastmittel verwendet werden (Chambon et al., Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence, Magn. Reson. Imaging, 11 :509-519, 1993). Der Verteilungsraum solcher Blutpool-Kontrastmittel beträgt 6 bis 8 % des Körpervolumens und somit nur die Hälfte dessen von extrazellulären Kontrastmitteln. Durch die exklusive Verteilung der Eisenoxidpartikel im Blutraum werden diese entsprechend dem Blutfluß in dem Gewebe verteilt.
Die klinische Bedeutung der Anwendung der Ferrite zur Diagnostik der Perfusion ergibt sich aus der Häufigkeit der zu diagnostizierenden bzw. zu therapierenden
Erkrankungen, wie sie z.B. durch Karottisarterienstenosen verursacht werden. In den entwickelten Industriestaaten nehmen Erkrankungen des Herz-Kreislaufsystems und der Blutgefäße den ersten Rang in der Todesartstatistik ein. Für die Prognose und Therapie solcher Patienten ist deshalb von großer Bedeutung, daß Perfusionsdefizite rechtzeitig entdeckt und der Therapieerfolg mit objektiven Kriterien kontrolliert werden kann. Wegen der großen Bedeutung des Gehirns als zentrales Steuerorgan der meisten Körperfunktionen und der fehlenden Möglichkeit der Regeneration von Nervengewebe im Erwachsenenalter nach Schädigungen, kommt der Diagnostik der zerebralen Perfusion eine überaus wichtige klinische Rolle zu. Deshalb ist die Diagnostik der Perfusion im Allgemeinen und insbesondere der Diagnostik der zerebralen Perfusion von großer potentieller klinischer Bedeutung, insbesondere
• zur Unterscheidung zwischen Patienten mit intermittierenden ischämischen Anfällen bzw. atypischer Migraine und Patienten mit Schlaganfall, • bei der Erkennung und der Therapiekontrolle von Patienten mit Gehirntumoren, bei denen das Tumorgewebe einer interventionellen Embolisation unterzogen wurde,
• bei der Festlegung der Behandlungsmethode bei cerebralen Ischämien (zur Erkennung von Bereichen, in denen der Gewebeschaden reversibel ist), • bei der Ermittlung von Patienten, bei denen eine Stenose in der extracranialen Halsschlagader chirugisch behandelt werden sollte.
In der Physiologie wird als Perfusion der Blutfluß pro Zeiteinheit und Gramm Gewebe bezeichnet. Im Gegensatz dazu steht das Blutvolumen eines Gewebes, das den Anteil von Blut in einem Gewebevolumen angibt (aber eben nicht die Blutversorgung). Das Blutvolumen kann bei verschlechterter Sauerstoffzu uhr durch die vasodilatatorische Wirkung anaerober Stoffwechselprodukte eher vergrößert als verringert sein. Nur der Parameter Perfusion kann deshalb die Sauerstoffzufuhr in ein Gewebe widerspiegeln und zur Beurteilung des Zustandes der Blutgefäße und der Größe des daraus entstehenden Schadens herangezogen werden.
Sollen das Blutvolumen einerseits oder die Perfusion andererseits mittels kontrastmittelunterstützter MR-Tomographie bestimmt werden, so ist zu berücksichtigen, daß je nach zu bestimmenden Parameter unterschiedliche Meßmodi sowie auch unterschiedliche Arten der Kontrastmittel -Applikation erforderlich sind.
Zur Messung des Blutvolumens eines Gewebes genügen herkömmliche Spin- Echo (SE)-Sequenzen. Da eine Gleichverteilung des Kontrastmittels im
Verteilungsraum, d.h. im Blutraum erforderlich ist, kann das Kontrastmittel infundiert werden, d.h. eine schnelle Bolusinjektion ist nicht erforderlich.
Im Gegensatz dazu erfolgt die Messung der Perfusion eines Gewebes dadurch, daß die Dynamik des ersten Durchflusses eines kompakten Kontrastmittelbolus durch das interessierende Gewebe verfolgt wird (sogenannte first-pass-Untersuchung). Aus der Anstiegs- und der Auswaschgeschwindigkeit des Kontrastmittels (Signaldynamik) kann man den Blutfluß in diesem Gewebe und damit die Perfusion beurteilen. Diese Methode ist in der Literatur beschrieben worden (Wilke et al., Concepts of myocardial perfusion imaging in magnetic resonance imaging, Magnetic Resonace Quarterly 10:249-286, 1994).
Darüber hinaus erfordert eine solche first-pass-Untersuchung den Einsatz moderner, schneller Meßsequenzen (wie z.B. Echo-Planar-Imaging, Turbo-Flash) mit einem Beobachtungsintervall von einer bzw. nur wenigen Sekunden.
Somit ist unabdingbare Voraussetzung, daß das Kontrastmittel schnell intravenös als kompakter Kontrastmittelbolus injiziert werden kann.
Diese Voraussetzung erfüllen die bisher in der Klinik zur Anwendung gelangenden Eisenoxid-Formulierungen nicht. So ist es im Falle von AMI 25 (Endorem®,
Ferridex®) gemäß Fachinformation des Bundesverband der Pharmazeutischen Industrie e.V. erforderlich, das Kontrastmittel langsam (über 30 Minuten) in Form einer stark verdünnten Lösung intravenös zu infundieren. Bei einer schnellen Bolusinjektion werden drastische Nebenwirkungen beobachtet, wie im Tierexperiment in first-pass- Untersuchungen mit AMI 25 festgestellt wurde (Bradley et al. , Middle cerebral artery occlusion in rats studied by magnetic resonance imaging, Stroke 20:1032-1036, 1989; Kent et al. , Assessment of a superparamagnetic iron oxide (AMI-25) as a brain contrast agent, Magn.Reson.Med. 13:334-343, 1990). Die für AMI 25 gemachten Beobachtungen bestätigten sich in gleicher Weise für eine Vielzahl weiterer Magnetit- bzw. Ferritformulierungen (McLachlan et al., Phase I clinical evaluation of a new iron oxide MR contrast agent, J. Magn. Reson. Imaging 4:301-307, 1994).
Mit anderen Worten, herkömmliche Ferritformulierungen sind nur für Untersuchungen in der Equilibriumphase geeignet, folglich können bei Verwendung herkömmlicher Formulierungen nur Aussagen über das Blutvolumen, nicht aber über die Perfusion des Gewebes getroffen werden (Hahn et al., Clinical application of superparamagnetic iron oxide to MR imaging of tissue perfusion in vascular liver tumors, Radiology 174:361-366, 1990; Grangier et al., Enhancement of liver hemangiomas on Tr weighted MR SE images by superparamagnetic iron oxide particles, J.Comp.Assist.Tomogr. 18:888-896, 1994).
Es besteht daher die Aufgabe, Kontrastmittel zu finden, die für die Diagnose der Perfusion des Gewebes, insbesondere der zerebralen Perfusion, geeignet sind und die darüber hinaus die übrigen positiven Eigenschaften von Ferriten, wie eine hohe Suszeptibilität, aufweisen.
Diese Aufgabe wird durch die vorliegende Erfindung gelöst.
Es wurde gefunden, daß pharmazeutische Mittel enthaltend superparamagnetische Metalloxid-Partikel, die mit einem alkalibehandelten Polysaccharid umhüllt sind, in einem pharmazeutisch akzeptablem Suspensionsmedium überraschenderweise als Bolus injiziert werden können und damit hervorragend für Perfusionsuntersuchungen mittels MR-Diagnostik geeignet sind.
Die genannten Formulierungen zeichen sich durch eine hervorragende Verträglichkeit unabhängig von der gewählten Applikationsart aus, wie in einer Vielzahl von
Untersuchungen am Menschen gezeigt werden konnte. Sie sind damit besonders für First-Pass-Untersuchungen, d.h. für die Perfusionsdiagnose des Gehirns - insbesondere zur Diagnostik und Verlaufsbeurteilung zerebraler Ischämien -, der Leber, der Nieren, der Mamma sowie des Herzens - insbesondere des Myokards - geeignet. Durch die unterschiedliche Perfusion von physiologischem und pathologischem Gewebe ist darüber hinaus auch eine Tumordiagnostik der perfundierten Körperregionen möglich. Aufgrund des stark Suszeptibilitätseffekt, zeigen die genannten superparamagnetischen Eisenoxid-Formulierungen bei der Untersuchung der zerebralen Perfusion zusätzlich einen deutlich besseren bildgebenden Effekt als bislang verfügbare paramagnetischen Blutpool-Kontrastmittel auf der Basis von Metallchelaten.
Zusammensetzung und Herstellung der erfindungsgemäß einsetzbaren Partikel und Mittel, werden in der EP 0 186 616, der EP 0 525 199 und der EP 0 543 020 detailiert beschrieben.
Erfindungsgemäß verwendbar sind insbesondere Mittel enthaltend superparamagnetische Eisenoxid-Partikel. Als Hüll- bzw. Coatungsmaterial dienendes Polysaccharid kommt insbesondere ein alkalibehandeltes Dextran (Carboxydextran) infrage. Die gecoateten magnetischen Partikel können vorzugsweise, z.B. durch Einleiten von Sauerstoff oder Ozon in ein die Partikel enthaltendes Sol oder durch Umsetzung mit Peroxiden, oxidiert werden.
Als Suspensionsmedium kommt Wasser, das gewünschtenfalls die in Galenik üblichen Zusätze und Stabilisatoren enthält, infrage. Geeignete Zusätze sind beispielsweise physiologisch unbedenkliche Puffer (wie z. B. Tromethamin), Elektrolyte wie z. B. Natriumchlorid oder Antioxidantien wie z. B. Ascorbinsäure. Als weitere Hilfsstoffe seien beispielhaft genannt Methylcellulose, Lactose, Mannit und/oder Tenside (wie z.B. Lecithine, Tweens®, Myrj®) sowie Mono- oder Dicarbonsäuren.wobei Monocarbonsäuren bevorzugt sind.
Für die erfindungsgemäße Verwendung der genannten Eisenoxid-Formulierungen eignen sich insbesondere Kontrastmittelpräparationen mit einem Eisengehalt von 0, 1 - 0,8 mol/1 Suspensionsmedium. Die Mittel werden je nach zu untersuchender Körperregion in einer Dosis von 4 μmol Eisen/kg Körpergewicht (nachfolgend abgekürzt als KG) bis zu maximal 40 μmol Eisen/kg KG als intravenöser Bolus injiziert.
Die nachfolgenden Beispiele dienen der näheren Erläuterung des Erfindungsgegenstandes, ohne ihn auf diese beschränken zu wollen. Beispiel 1
Mit einer Formulierung hergestellt nach Beispiel 10 der EP 0 525 199 wurden 3 Patienten untersucht, wobei jeweils drei unterschiedliche Dosierungen (4, 8 und 16 μmol Eisen/kg KG) zur Anwendung kamen. Die Verträglichkeit nach
Bolusapphkation war für alle Dosen ausgezeichnet. Die Untersuchung wurde an einem 1.0 Tesla-Gerät durchgeführt. Es wurden mit Ti-gewichteten Sequenzen sagittale Schnittebenen untersucht sowie axiale Schittebenen in T2-gewichteten Flash- Sequenzen. Dabei wurden innerhalb der ersten 87 Sekunden nach Kontrastmittelgabe 40 Bilder erzeugt und postprozessoral das zerebrale Blutvolumen mittels einer Voxelanalyse des First-Pass errechnet.
Die Ergebnisse dieser Untersuchungen zeigen einen Signalabfall in der grauen sowie der weißen Hirnsubstanz, der eine eindeutige Dosisabhängigkeit aufweist. Dabei beträgt jedoch das Verhältnis der Signalintensitäten von grauer zu weißer Hirnsubstanz dosisunabhängig etwa 2/1. Der prozentuale Abfall der Signalintensität ist in der nachfolgenden Tabelle zusammengestellt.
graue Hirnsubstanz weiße Hirnsubstanz
4 μmol Fe/kg KG 13% 7% 8 μmol Fe/kg KG 28% 16% 16 μmol Fe/kg KG 44% 20%
Diese Untersuchungen an gesundem Hirngewebe zeigen deutlich, daß die Abgrenzung zu pathologischen Strukturen deutlich verbessert werden kann. Der Effekt der niedrigsten Dosis von 4 μmol Eisen/kg KG ist bereits vergleichbar mit den Effekten, die man mit herkömmlichen paramagnetischen Kontrastmitteln bei einer Dosis von 0,1 mmol/kg KG erzielen kann. Mittels der höheren, noch gut verträglichen Dosierung, kann eine deutliche Verbesserung der Bildgebung und damit auch der diagnostischen Aussagekraft erzielt werden.
Neben diesen signifikanten Signalintensitätsverlusten konnte mittels der Erstellung von "CBV-maps" ("Cerebrales Blutvolumen Bild") die Darstellbarkeit der Hirnanatomie deutlich verbessert werden (siehe Fig. 1). Das Bild wurde für eine Dosis von 8 μmol Fe/kg KG berechnet. Die Berechnung erfolgte auf Basis der Einzelbilder der Fig. 2, wobei die Intensität des Signals näherungsweise dem Blutvolumen entspricht. Fig. 2 zeigt FLASH Aufnahmen vor (obere, linke Bildhälfte) und unmittelbar nach der Injektion (obere, rechte Bildhälfte) einer 8 μm Fe/kg KG enthaltenden Suspension sowie in den unteren Bildhälften Aufnahmen während des maximalen Signaleffekts (links) und zum Ende der Perfusion (rechts).
Dieses Beispiel demonstriert, daß erstmalig und überraschenderweise eine Formulierung für ein Eisenoxidpartikel gefunden wurde, die eine bolusartige Applikation und somit ein First-Pass-Imaging zuläßt.
Beispiel 2
Analoge Untersuchungen wurden am Myokard und den Nieren durchgeführt und führten zu ähnlichen Resultaten. Auch hier war eine gute Unterscheidung zwischen gesunden und pathologischen Strukturen möglich.

Claims

Patentansprüche
1 ) Verwendung von diagnostischen Mitteln enthaltend superparamagnetische Metalloxid-Partikel, die mit einem alkalibehandelten Polysaccharid umhüllt sind, in einem pharmazeutisch akzeptablem Suspensionsmedium für die MR-
Perfusions-Diagnostik.
2) Verwendung von diagnostischen Mitteln nach Anspruch 1 enthaltend als Metalloxid-Partikel Ferrit Partikel.
3) Verwendung von diagnostischen Mitteln nach Anspruch 1 enthaltend als Metalloxid-Partikel Magnetit Partikel.
4) Verwendung von diagnostischen Mitteln nach Anspruch 1 enthaltend als Metalloxid-Partikel Hämatit Partikel.
5) Verwendung von diagnostischen Mitteln nach Anspruch 1 dadurch gekennzeichnet, daß die Metalloxid-Partikel mit einem Oxidationsmittel teilweise oder vollständig oxidiert wurden.
6) Verwendung von diagnostischen Mitteln nach Anspruch 1 bis 5 enthaltend als alkalibehandeltes Polysaccharid Carboxydextran.
7) Verwendung von diagnostischen Mitteln nach Anspruch 1 worin das pharmazeutisch akzeptable Suspensionsmedium eine wasserlösliche organische
Monocarbonsäure enthält .
8) Verwendung von diagnostischen Mitteln gemäß Anspruch 1 bis 7 für die Perfusionsdiagnostik des Gehirns.
9) Verwendung von diagnostischen Mitteln gemäß Anspruch 1 bis 7 für die Perfusionsdiagnostik des Herzens, des Myocards, der Nieren, der Mamma oder der Leber.
10) Verwendung von diagnostischen Mitteln gemäß Anspruch 1 bis 7 für die Perfusionsdiagnostik von Tumoren. 11) Verwendung von diagnostischen Mitteln gemäß Anspruch 1 bis 7 in einer MR- diagnostischen Methode, die eine Bolusinjektion erfordert.
PCT/EP1996/000967 1995-03-08 1996-03-07 Verwendung von ferriten zur bestimmung der perfusion von menschlichem gewebe mittels mr-diagnostik WO1996027394A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU51030/96A AU5103096A (en) 1995-03-08 1996-03-07 Use of ferrites for determining the perfusion of human tissue by m.r. diagnosis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19509694A DE19509694A1 (de) 1995-03-08 1995-03-08 Verwendung von Magnetiten zur Bestimmung der Perfusion von menschlichem Gewebe mittels MR-Diagnostik
DE19509694.0 1995-03-08

Publications (1)

Publication Number Publication Date
WO1996027394A1 true WO1996027394A1 (de) 1996-09-12

Family

ID=7756943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000967 WO1996027394A1 (de) 1995-03-08 1996-03-07 Verwendung von ferriten zur bestimmung der perfusion von menschlichem gewebe mittels mr-diagnostik

Country Status (5)

Country Link
AU (1) AU5103096A (de)
DE (1) DE19509694A1 (de)
IL (1) IL117372A0 (de)
WO (1) WO1996027394A1 (de)
ZA (1) ZA961919B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074245A1 (en) * 2000-03-31 2001-10-11 Amersham Health As Method of magnetic resonance imaging
US6690962B2 (en) 2000-09-15 2004-02-10 Institut fur Diagnostikforshung GmbH Process for graphic visualization and diagnosis of thrombi by means of nuclear spin tomography with use of particulate contrast media
WO2005046563A2 (fr) * 2003-11-12 2005-05-26 Guerbet Nouvel agent de diagnostic pour l’irm dans les pathologies impliquant des proteinases
US7082326B2 (en) 2000-03-31 2006-07-25 Amersham Health As Method of magnetic resonance imaging
US7179660B1 (en) 2000-03-06 2007-02-20 Dade Behring Marburg Gmbh Carriers coated with polysaccharides, their preparation and use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046514A1 (de) * 2000-09-15 2002-04-25 Diagnostikforschung Inst Verfahren zur bildlichen Darstellung und Diagnose von Thromben mittels Kernspintomographie unter Verwendung partikulärer Kontrastmittel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001899A1 (en) * 1988-08-16 1990-03-08 Advanced Magnetics, Incorporated Vascular magnetic imaging method and agent
EP0525199A1 (de) * 1991-01-19 1993-02-03 Meito Sangyo Kabushiki Kaisha Ultrafeine magnetische metalloxideteilchen enthaltende zusammensetzung
EP0543020A1 (de) * 1991-06-11 1993-05-26 Meito Sangyo Kabushiki Kaisha Oxidierte zusammensetzung, enthaltend eine wasserlösliche carboxyl-polysaccharide und magnetisches eisenoxid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3443251C2 (de) * 1984-11-23 1998-03-12 Schering Ag Eisenoxid-Komplexe für die NMR-Diagnostik, diese Verbindungen enthaltende diagnostische Mittel, ihre Verwendung und Verfahren zu deren Herstellung
PT81498B (pt) * 1984-11-23 1987-12-30 Schering Ag Processo para a preparacao de composicoes para diagnostico contendo particulas magneticas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001899A1 (en) * 1988-08-16 1990-03-08 Advanced Magnetics, Incorporated Vascular magnetic imaging method and agent
EP0525199A1 (de) * 1991-01-19 1993-02-03 Meito Sangyo Kabushiki Kaisha Ultrafeine magnetische metalloxideteilchen enthaltende zusammensetzung
EP0543020A1 (de) * 1991-06-11 1993-05-26 Meito Sangyo Kabushiki Kaisha Oxidierte zusammensetzung, enthaltend eine wasserlösliche carboxyl-polysaccharide und magnetisches eisenoxid

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 109, no. 12, 19 September 1988, Columbus, Ohio, US; abstract no. 101692, CARVLIN, MARK J. ET AL: "Superparamagnetic and paramagnetic MRI contrast agents: application of rapid magnetic resonance imaging to assess renal function" XP002008727 *
DATABASE MEDLINE US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; XP002008728 *
DATABASE MEDLINE US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; XP002008729 *
LANIADO M. ET AL.: "THE ENDOREM TOLERANCE PROFILE.", RADIOLOGE, vol. 35, no. 11SUP2, November 1995 (1995-11-01), pages 266 - 270 *
PROC. SPIE-INT. SOC. OPT. ENG. (1988), 914(MED. IMAGING 2: IMAGE FORM., DETECT., PROCESS. INTERPRETAT., PT. A), 10-19 CODEN: PSISDG;ISSN: 0277-786X, 1988 *
REIMER P. ET AL.: "APPLICATION OF A SUPERPARAMAGNETIC IRON OXIDE (RESOVIST) FOR MR IMAGING OF HUMAN CEREBRAL BLOOD VOLUME.", MAGNETIC RESONANCE IN MEDICINE, vol. 34, no. 5, November 1995 (1995-11-01), MN US, pages 694 - 697, XP002008726 *
SCHLIEF R.: "ULTRASOUND CONTRAST AGENTS.", CURRENT OPINION IN RADIOLOGY, vol. 3, no. 2, April 1991 (1991-04-01), pages 198 - 207, XP002966009 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179660B1 (en) 2000-03-06 2007-02-20 Dade Behring Marburg Gmbh Carriers coated with polysaccharides, their preparation and use
WO2001074245A1 (en) * 2000-03-31 2001-10-11 Amersham Health As Method of magnetic resonance imaging
US7082326B2 (en) 2000-03-31 2006-07-25 Amersham Health As Method of magnetic resonance imaging
US6690962B2 (en) 2000-09-15 2004-02-10 Institut fur Diagnostikforshung GmbH Process for graphic visualization and diagnosis of thrombi by means of nuclear spin tomography with use of particulate contrast media
WO2005046563A2 (fr) * 2003-11-12 2005-05-26 Guerbet Nouvel agent de diagnostic pour l’irm dans les pathologies impliquant des proteinases
WO2005046563A3 (fr) * 2003-11-12 2006-02-09 Guerbet Sa Nouvel agent de diagnostic pour l’irm dans les pathologies impliquant des proteinases

Also Published As

Publication number Publication date
IL117372A0 (en) 1996-07-23
ZA961919B (en) 1996-07-16
DE19509694A1 (de) 1996-09-19
AU5103096A (en) 1996-09-23

Similar Documents

Publication Publication Date Title
Namimoto et al. Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion‐weighted echo‐planar MR imaging
DE3650572T3 (de) Kontrastmittel zur darstellung des leber-gallensystems mittels nmr-kontrastmittel
EP1960002B1 (de) Wässrige dispersion von superparamagnetischen eindomänenteilchen, deren herstellung und verwendung zur diagnose und therapie
DE69827263T2 (de) Kontrastmittelverstärkte magnetresonanzbildgebung der perfusion von gewebe
EP2152369B1 (de) Verwendung von fluorhaltigen verbindungen zu diagnosezwecken mit hilfe bildgebender verfahren
Pedersen et al. Renal hemodynamics and oxygenation in transient renal artery occluded rats evaluated with iron-oxide particles and oxygenation-sensitive imaging
JP2003500136A5 (de)
Reimer et al. Application of a superparamagnetic iron oxide (Resovis®) for MR imaging of human cerebral blood volume
WO1996027394A1 (de) Verwendung von ferriten zur bestimmung der perfusion von menschlichem gewebe mittels mr-diagnostik
DE19808079A1 (de) Hydroxyethylstärke-Konjugate, Verfahren zu ihrer Herstellung und diese enthaltende pharmazeutische Mittel
DE60216770T2 (de) Ionisches und nicht-ionisches radiographisches kontrastmittel zur verwendung in der kombinierten roentgen- und kernspintomographiediagnostik
US20030120151A1 (en) Magnetic resonance imaging methods and compositions
KR20000005194A (ko) Res기관의t1가중자기공명영상ㅇ형성방법
DE19744004C1 (de) Lipophile Metall-Komplexe für Nekrose und Infarkt-Imaging
Klug et al. Murine atherosclerotic plaque imaging with the USPIO Ferumoxtran-10
Wyttenbach et al. Detection of acute myocardial ischemia using first‐pass dynamics of MnDPDP on inversion recovery echoplanar imaging
DE60026743T2 (de) Verwendung von Kontrastmitteln zur Herstellung eines Diagnostischen Mittels für die Darmlumenbildgebung
BRASCH et al. Facilitated magnetic resonance imaging diagnosis of pulmonary disease using a macromolecular blood-pool contrast agent, polylysine-(Gd-DTPA) 40
WO2002022011A1 (de) Verfahren zur bildlichen darstellung und diagnose von thromben mittels kernspintomographie unter verwendung partikulärer kontrastmittel
Kroft et al. Ultrasmall superparamagnetic particles of iron oxide (USPIO) MR imaging of infarcted myocardium in pigs
DE10040380B4 (de) Verwendung von perfluoralkylhaltigen Metallkomplexen als Kontrastmittel im MR-Imaging zur Darstellung von Plaques
EP3328441B1 (de) Verfahren zur diagnose von karzinomen mittels irgd und magnetresonanztomographie (mrt)
DE202016006847U1 (de) Eisenpräparate für medizinische Bildgebung
DE19529921C2 (de) Verwendung von MRT-Kontrastmitteln zur Ventilations-Bildgebung der Lunge
DE19529922A1 (de) Verwendung von liposomalen Zubereitungen in der indirekten MRT-Lymphographie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN HU JP KR NO NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase