WO1996025834A1 - Appareil de traitement du plasma - Google Patents
Appareil de traitement du plasma Download PDFInfo
- Publication number
- WO1996025834A1 WO1996025834A1 PCT/JP1995/000227 JP9500227W WO9625834A1 WO 1996025834 A1 WO1996025834 A1 WO 1996025834A1 JP 9500227 W JP9500227 W JP 9500227W WO 9625834 A1 WO9625834 A1 WO 9625834A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic wave
- plasma processing
- plasma
- processing apparatus
- electrode
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/32238—Windows
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
Definitions
- the present invention relates to a plasma processing apparatus that generates plasma using a microphone mouth wave or high frequency of inductive coupling, and performs a surface treatment on a substrate using the plasma.
- the present invention relates to a surface treatment for a substrate and a subsequent reaction chamber wall surface.
- the present invention relates to a self-cleaning type plasma processing apparatus that repeatedly performs cleaning of a substrate using microwaves or high frequencies.
- CVD Chemical Vapor Deposition
- a plasma processing apparatus that uses electromagnetic waves such as microwaves or high-frequency waves
- deposits are deposited in the reaction chamber at the same rate as the deposition rate on the substrate. Accumulates, which may come off and fall, requiring cleaning treatment.
- an etching process other than CVD for example, when trying to etch silicon oxide using a fluorocarbon-based gas, since the fluorocarbon-based gas is a deposition gas, it is deposited on the reaction chamber wall. Cleaning treatment is required because the deposits adhere.
- the click renin grayed, fluorine-based gas (NF a, C 2 F S , SF e , etc.) using, Serufuku cleaning method of cleaning to generate plasma by electromagnetic waves in the same manner as in the film deposition is normally employed .
- Cleaning of the plasma chamber is also important for milling / sputtering equipment equipped with a plasma ion source. The speed of this self-cleaning governs the throughput of the entire apparatus, and speeding up the re-cleaning is a very important technical issue.
- a microphone that can easily obtain high-density plasma even at low pressure Chromatic wave, inductively coupled high frequency, and helicon methods have recently become widely used ⁇
- ⁇ These have a common feature: an introduction window for introducing electromagnetic waves made of dielectric material such as quartz or alumina. Have.
- cleaning consists of (1) the supply of highly reactive free radicals formed by gas decomposition in the plasma, and (2) the high speed of ions in the plasma to the object to be cleaned (100-1 OOO eV ) Can increase the speed due to the synergistic effect of the collision.
- This phenomenon is generally known as an ion assisted etching reaction.
- the reaction chamber mainly consists of a substrate holder, a metal wall, and a dielectric introduction window.
- the metal wall is generally separated from the substrate holder or a metal wall electrically insulated against ground by a separate high frequency (this is different from the electromagnetic wave introduced through the introduction window at 400 kHz to 13 MHz).
- high frequency electro-coupling
- the plasma is electrostatically coupled, and the ions can be accelerated and collided by the self-bias generated thereby, so that high-speed cleaning is possible.
- insulators such as a dielectric introduction window cannot use a means of applying a high-frequency voltage by external means and accelerating ions by self-bias, and the surface of the insulator facing the plasma has a flow rate substantially equal to the plasma potential. Since it becomes a tinting potential, ion acceleration cannot be expected. Therefore, in a plasma processing apparatus having a dielectric window or a dielectric wall (especially a CVD apparatus), cleaning of only the dielectric portion is not accelerated, and this is a problem for improving throughput. Was.
- the bias voltage applied to the substrate is not uniform, and Irradiation ions are often not uniform, resulting in non-uniform etching or sputtering distribution within the wafer.
- This is applied to the substrate
- the high-frequency plasma-side current path crosses the magnetic field lines applied vertically and reaches the grounded metal wall on the side wall, so that the impedance in the cross-field direction (direction crossing the magnetic field lines) is large, This is due to the difference in impedance in the path from the center of the wafer to the side wall, resulting in non-uniform bias voltage.
- the non-uniformity of the bias voltage causes charge-up damage to the LSI being processed, and also hinders the uniformity of the film forming and etching processes.
- the plasma processing apparatus having the dielectric window has a problem that the conventional technique cannot clean the dielectric window sufficiently quickly.
- the time required for cleaning may occupy more than half of the operation time in CVD, etc., and this high speed is very important to greatly improve the throughput of the equipment.
- non-uniform charge-up damage processing due to non-uniform high-frequency bias has been a problem.
- the present invention provides a plasma generating chamber into which an electromagnetic wave and a discharge gas are introduced, an electromagnetic wave introducing means for introducing the electromagnetic wave into the plasma generating chamber, a plasma generating chamber and the electromagnetic wave introducing means. And a substrate holder on which a sample to be processed is placed using plasma generated by the electromagnetic wave, wherein the electromagnetic wave is substantially uniformly applied to the entire surface in contact with the dielectric window. An electrode for transmitting light is provided, and the electrode is substantially at ground potential. A plasma generating chamber into which an electromagnetic wave and a discharge gas are introduced; an electromagnetic wave introducing means for introducing the electromagnetic wave into the plasma generating chamber; and a dielectric window separating the plasma generating chamber and the electromagnetic wave introducing means.
- a plasma processing apparatus for processing a sample using plasma generated by the electromagnetic wave, an electrode in contact with the dielectric window and transmitting the electromagnetic wave substantially uniformly over the entire surface, and a means for applying a high-frequency voltage to the electrode And a means for transmitting an electromagnetic wave and a high-frequency electric field to sandwich the electrode. Further, a plasma generation chamber into which an electromagnetic wave and a discharge gas are introduced, and an electromagnetic wave introduced into the plasma generation chamber Means, and a dielectric window separating the plasma generation chamber and the electromagnetic wave introducing means, wherein a plasma generated by the electromagnetic wave is used.
- the conductor When a high-frequency (100 kHz to 30 MHz) voltage is applied to a metal conductor exposed to the plasma, the conductor is DC-directed and has a negative potential with respect to the plasma due to an action generally called self-bias.
- the ions in the plasma are accelerated by the negative potential and collide with the conductor.
- This self-bias effect occurs even when a sufficiently thin insulating layer is provided on the surface of the metal conductor facing the plasma, and is therefore applied to sputtering devices and the like.
- the thickness of the insulator layer can be increased to about 3 ram when the high-frequency voltage is about 1 kV in peak-to-peak value and the frequency is 13.56 MHz.
- the width of the slit is sufficiently small, there is no extreme unevenness in the distribution of ions to be irradiated. In other words, even if a large number of slits are formed on the conductor, ion irradiation is performed uniformly.
- the condition for this to be satisfied is that the thickness of the ion sheath formed by the self-bias between the conductor and the plasma depends on the width of the slit. It is more than the same.
- the self-bias is 1 kV
- the sheath thickness is on the order of 10 to 2 m, so that if the slit width is 28 mm, the ion can be irradiated uniformly.
- Film deposited on the dielectric may generate plasma using a C 2 FNF 3, SF e fluorine-based gas such as, for cleaning at high speed by performing Riion irradiated by the self Baiasu simultaneously This is generally called an ion assist etching mechanism. Ion irradiation creates an atomic level disorder on the surface of the deposited film, where fluorine radicals created in the plasma are adsorbed and the reaction proceeds, causing etching.
- the direction of the electric field in the plane perpendicular to the direction of waveguiding is constant.
- the direction of the electric field of the microwave guided in the circular TE 11 mode is almost linear in the radial direction of the waveguide.
- Even if a strip-shaped conductor is placed perpendicular to the direction of the electric field no current flows through the strip-shaped conductor, so that the propagation of electromagnetic waves is not blocked.
- introduction of a metal conductor with many slit-shaped holes in contact with the dielectric window into which electromagnetic waves are introduced, and applying a high-frequency self-bias to it will hinder the introduction of electromagnetic waves. Cleaning can be accelerated by the ion assist etching mechanism.
- the cleaning speed is increased by increasing the temperature of the dielectric window. Can also be hastened. In this case, a chemical etching mechanism that etches only with fluorine radicals in the plasma instead of an ion assist etching mechanism is used. For example, if the operating gas is NF 3 and the operating pressure is about 0.8 Torr in the plasma generated by the microwave of 1 kW, if the temperature of the dielectric window is set to 250 ° C, the temperature becomes 100 ° C. The cleaning speed is four times faster than before.
- Dielectric window is typically made of Safuaiya (A l 2 ⁇ 3) or quartz (S i ⁇ 2) low-loss dielectric such as, extreme temperature rise caused It is devised not to be. It also has a thickness of 15 to 30 to withstand atmospheric pressure as a vacuum boundary.
- a relatively lossy dielectric material such as coring glass
- a part of the microwave power is injected here and only the part exposed to the plasma is controlled within a controlled temperature. If the temperature can be maintained, the efficiency of cleaning can be improved. Maintaining the plasma-facing surface at a high temperature also has the secondary effect of making it difficult for the deposited film to accumulate on the dielectric window, even when the thin film is being formed by CVD, other than during cleaning. Yes, it is more effective.
- the high-frequency current path in the plasma is represented by an equivalent circuit, where R and C are the resistance and capacitance of the sheath formed at the plasma boundary, and L is the current flowing through the plasma across the magnetic field line B.
- Inductance Electrons are light in plasma and cannot easily move around the lines of magnetic force. The ions are relatively heavy and are not affected by the magnetic field lines, and are responsible for electrical conduction. However, the inertial force causes a time delay (relative to voltage) in the current, which is equivalently expressed as inductance.
- jw L inductance component
- R is also about 100 ⁇ at a frequency of 400 kHz (C is small So it can be ignored), and will be almost the same value.
- a current path, 1 2 as Ninari inner periphery in current flowing through the sheath and the sheath voltage of the wafer (corresponding to acceleration energy and flux of ions) is inhomogeneous You can see that.
- the slit electrode 4 is introduced as shown in the figure, the current paths 1, and I 2 are bypassed and become like I 3 and I. Since the circuit impedance of the current path I 3 , 1 ⁇ is equal to the inner and outer circumferences of the wafer, the non-uniformity of ion irradiation is improved.
- FIG. 1 is a configuration diagram of a plasma processing apparatus according to a first embodiment of the present invention.
- FIG. 2 is a configuration diagram of a dielectric window according to a second embodiment of the present invention.
- FIG. 3 is a configuration diagram of a dielectric window according to a third embodiment of the present invention.
- FIG. 4 is a configuration diagram of a dielectric window according to a fourth embodiment of the present invention.
- FIG. 5 is a configuration diagram of a dielectric window according to a fifth embodiment of the present invention.
- FIG. 6 is a configuration diagram of a dielectric window according to a sixth embodiment of the present invention.
- FIG. 7 is a view showing a slit electrode according to a seventh embodiment of the present invention.
- FIG. 8 is a view showing a slit electrode according to an eighth embodiment of the present invention.
- FIG. 9 is a configuration diagram of a plasma processing apparatus according to a ninth embodiment of the present invention.
- FIG. 10 is a configuration diagram of a plasma processing apparatus according to a tenth embodiment of the present invention.
- FIG. 11 is a block diagram of the apparatus according to the eleventh embodiment of the present invention.
- FIG. 12 is a block diagram of the apparatus according to the 12th embodiment of the present invention.
- FIG. 13 is a diagram showing a high-frequency current path in plasma by an equivalent circuit.
- FIG. 14 is a diagram showing an etching rate in the first embodiment.
- FIG. 15 is a diagram showing the transmission capability of the microphone mouth wave in the first embodiment.
- FIG. 16 is a diagram showing the distribution of the sputter rate in the 12th embodiment.
- the apparatus of the present embodiment is an apparatus for generating plasma by using 2.45 GHz microwaves.
- the microwave 2 emitted from the magnetron 1 is guided to the waveguide 3 and to the introduction window 4 made of quartz.
- the propagation mode of the microphone mouth wave in the waveguide is circular TE 11 mode.
- the introduction window has a sandwich structure in which a slit electrode 4a is sandwiched between two quartz plates 4b and 4c. Sapphire (alumina) may be used as 4b and 4c.
- the slit electrode 4 a is connected to the high-frequency power supply 5 (preferably 13.56 MHz), and the lead wire is insulated from the vacuum container 7.
- a self-bias is applied to the surface of the quartz plate 4 c (plasma side) via the slit electrode 4 a, and the ions 6 in the plasma 6 a are drawn and etching proceeds.
- the inside of 7 is evacuated by a turbo-molecular pump 8, and a substrate 10 is provided on a holder 9, and is provided with a coil 11 for creating a magnetic field in a plasma region.
- the slit electrode 4a is made of, for example, stainless steel and has a thickness of about 0.2 thigh. If the interval is about 0.2mm, parasitic plasma due to microphone mouth waves will not be generated at this interval, and stainless steel sales will be used to provide sufficient material strength even with a thickness of 0.2mm.
- the width of the slit electrode is, for example, about 2 watts, and the interval is 3MI. Like this This prevents unevenness in etching between the quartz plate 4c in contact with the electrode and the quartz plate 4c in the interval.
- the thickness of the quartz plate 4c shall be 1-3 marauders. This thickness is used to ensure the structural strength and to transmit the high-frequency voltage applied to the slit electrode 4a to the plasma-side surface of the quartz plate 4c.
- FIG. 2 shows a dielectric window according to a second embodiment of the present invention.
- the introduction window has a structure in which thin pyrex glass 4d is sandwiched between quartz plates 4b and 4c.
- the dielectric loss (lan d) of Pyrex glass 4 d is about 100 times larger than that of quartz, and the heat generated when microwaves pass through increases accordingly.
- the microwave was 1.5 kW
- the quartz plate diameter was 300 mm
- the thickness was 30 mra
- the temperature rise of the quartz plate was about 100 ° C.
- by appropriately selecting the thickness of Pyrex glass it is possible to maintain, for example, about 400 ° C.
- the etching rate can be reduced to 5 to 10 degrees. It can be increased 10 times.
- the etching mechanism in this case is chemical etching.
- NF is used, and it is preferable to use 1 Torr gas and high pressure microwave discharge.
- the surface of the quartz plate is part of microwave power. Is used to maintain a high temperature.Even during the original CVD film forming process other than the cleaning time, it is difficult for deposits to accumulate on the object maintained at a high temperature. It also has side effects.
- FIG. 3 shows a dielectric window according to a third embodiment of the present invention.
- This embodiment is an alternative to the slit electrode system shown in FIG.
- the method shown in Fig. 1 has the advantage of a simple structure, it has a free space in the slit section, and when the gas is evacuated from atmospheric pressure to vacuum, the exhaust processing of the free space portion and the gas pressure are increased to high pressure. (0.1 to 5 Torr) may cause a problem with abnormal discharge in the slit part.
- Fig. 3 shows the countermeasures taken.A groove is formed in the quartz plate 4c, the force to fit the slit electrode 4a separately formed in this groove, and A ⁇ etc. are vacuum-deposited in the groove. Make.
- FIG. 4 shows a dielectric window according to a fourth embodiment of the present invention, which has a structure in which a number of wires 4e are arranged between quartz plates 4b and 4c. If the distance between the wires 14e is set to 2 to 5 rows, it is possible to clean uniformly without etching unevenness.
- a configuration may be adopted in which a heater power supply is connected by using a heating wire such as a nichrome wire in addition to a normal conductor such as , ⁇ and SUS. In this way, the cleaning can be further accelerated by the synergistic effect of the high-speed cleaning effect due to the temperature rise of the quartz plate and the high-frequency bias application effect.
- FIG. 5 shows a dielectric window according to a fifth embodiment of the present invention.
- a very thin deposited film 4 f is sandwiched.
- Au, A ⁇ , or the like is used as the deposited film 4 f, and the thickness is about 50 to 200 °.
- a thin film of S n ⁇ may be applied. This allows the microwave to pass most of the power while heating the quartz plate 4c through the deposited film 4f. By applying a high frequency through the deposited film 4f, ion irradiation can be caused.
- FIG. 6 is a view showing a dielectric window according to a sixth embodiment of the present invention.
- Pyrex glass 4d or, instead of this, the above-mentioned vapor-deposited film 4f has a sandwich structure, and the quartz plate 4c has grooves. He or N 2 gas flows through these grooves, forming a cooling path. If there is Pyrex glass 4d, etc., the temperature may not be kept constant when the microwave power changes, and if it exceeds the allowable fluctuation range, the system may be damaged.
- the cooling by the grooves is provided for this purpose, and the temperature of the quartz plate is controlled within a certain range by controlling the gas flow rate.
- FIG. 5 shows a slit electrode according to a seventh embodiment of the present invention.
- This figure is an alternative to the parallel slit structure shown in Fig. 1. Since the electric field vector 4 g in TE 11 mode in the circular waveguide is not exactly parallel, it is not exactly orthogonal to the parallel slit in Fig. 1. For this reason, the slit electrode may generate heat.
- FIG. 7 shows the design of the slit electrode 4a so as to be strictly perpendicular to the electric field vector 4g in the TE11 mode.
- FIG. 8 shows a slit electrode according to an eighth embodiment of the present invention.
- the TE01 mode may be used instead of the TE11 mode.
- the electric field vector 4h is concentric, it is preferable to use a radial slit electrode 4a perpendicular to the electric field vector 4h.
- FIG. 9 shows a plasma processing apparatus according to a ninth embodiment of the present invention.
- This embodiment is an example in which the present invention is applied to a plasma processing apparatus using a transfer coupled plasma (TCP) method.
- TCP transfer coupled plasma
- a plasma 6a is electromagnetically induced by a spiral coil 14 connected to a high-frequency power supply 13 (13.56 MHz).
- the spiral coil 1 4 generates electromagnetic waves It has a dielectric window 4 for guiding it into the vacuum vessel.
- one of the slit electrodes 4a described in the first to eighth embodiments is sandwiched, and is connected to another high-frequency power supply 5. Since the electric field vector in the TCP method is concentric as shown in FIG. 8, it is preferable to adopt a radial slit as shown in FIG.
- the spiral coil 14 may not only couple electromagnetically to the plasma in an inductive manner, but also couple to the plasma electrostatically, generating parasitic plasma near the quartz plate and the resulting plasma. Produces non-uniformity.
- this electrode By keeping the slit electrode 4a at the ground potential during the deposition time other than during cleaning, this electrode can be expected to operate as a Faraday shield. Can be obtained.
- FIG. 10 is a view showing a plasma process according to a tenth embodiment of the present invention.
- This embodiment is an example in which the present invention is applied to a plasma processing apparatus using a helicopter wave method.
- a plasma 6a is generated inductively by a helical coil 15 driven by a high frequency power supply 13 (13.56 MHz) in a magnetostatic field generated by a coil 11.
- Electromagnetic waves from the helical coil 15 are introduced through the dome-shaped dielectric window 4.
- the dielectric window 4 has a slit electrode 4 a connected to a high-frequency power supply 5 between two layers of quartz dome. Since the pattern of the electric field vector generated by the helical coil 15 is also concentric as shown in FIG. 8, the slit electrode shown in FIG. 10 is used as a slit electrode orthogonal to it. Also in this case, the slit electrode 4a also functions as a Faraday shield, as in the case of FIG.
- FIG. 11 shows a first embodiment in which the present invention is applied to an ICP (Inductively Coupled Plasma) type plasma processing apparatus.
- ICP Inductively Coupled Plasma
- the ICP method there is an induction coil 14a on the side of the plasma chamber, Combines with Zuma 6a.
- the slit electrode 4a has a structure perpendicular to the electric field vector. This also serves as a Faraday shield.
- FIG. 12 shows a plasma processing apparatus according to a 12th embodiment of the present invention.
- the description will be given again by taking the microwave system as shown in FIG. 1 as an example.
- the slit electrode 4a of this embodiment is not connected to the high-frequency power supply but is grounded. Instead, the high-frequency power supply 5 is connected to the holder 9, and the area of the holder 9 is almost the same as the area of the slit electrode 4a plus the area of the vacuum vessel inner wall 16 of the plasma chamber. (2 to 1 times).
- the ion irradiation by the high-frequency self-bias does not occur only on the electrode to which the high frequency is applied, but also on the grounded counter electrodes (4a and 16 in this case).
- the ratio of this ion irradiation rate is determined by the area ratio, and when both areas are equal, ion irradiation occurs evenly. In this embodiment, this principle is applied.
- the slit electrode is formed. 4a can be irradiated with ions to a degree sufficient for cleaning.
- the following processes can be made uniform. That is, there is an effect that the ion irradiation can be made uniform when the substrate 10 on the holder 9 is processed by CVD or etching.
- the surface facing the holder 9 is a dielectric window 4 for introducing a microphone mouth wave.
- high frequency is applied to the holder 9 to irradiate the substrate 10 with ions, but this may not be a uniform distribution.
- the electric circuit for high frequency is a circuit that goes from the substrate 10 to the center of the plasma 6a via the sheath directly above the substrate, and then goes horizontally from there to the grounded metal conductor on the side wall. Horizontal circuit path This is because it is difficult for electricity to flow, and a voltage drop occurs, and the energy of the irradiated ions differs between the outer peripheral portion and the central portion of the substrate 10. Since electrons are bound by the lines of magnetic force, no electron current flows in the horizontal circuit path, and current flows due to relatively loosely bound ions. On the other hand, the electron conduction is possible in the vertical direction (the direction of the line of magnetic force), so the impedance for ions and electrons is extremely close. As shown in Fig. 12, the slit electrode is grounded
- a quartz liner 17 may be placed on the inner wall 16 of the vacuum vessel.
- the current path in the direction of the inner wall (I1, 12 in FIG. 13) is cut off, and the effect of uniform processing on the substrate is further enhanced.
- An S i N film formation process using S i H and N z gases is included.
- the present invention is also applied to cleaning of an etching process.
- C, F the process of etching the S i oxide film (S i 0 2) using Furuorokabon based gas etc., adhered film Furuorokabon system inside the plasma chamber, comprising a cleaning step is important .
- the click leaning gas Furuorokabon based gas (C, F e, etc.), NF a, and the Target SF e, etc.
- the dielectric window can be cleaned at high speed, and the throughput of the entire apparatus can be improved. Further, according to the present invention, it is possible to eliminate in-plane non-uniformity of the energy of ions irradiated to the substrate.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
Description
明 細 書
プラズマ処理装置 技術分野
本発明は、 マイク口波あるいは誘導結合の高周波を用いてプラズマを 発生させ、 そのプラズマによリ基板に表面処理を行うプラズマ処理装置 に係わり、 特に基板への表面処理と、 その後の反応室壁面へのクリ一二 ングをマイクロ波あるいは高周波を用いて、 く り返し行うセルフクリー ニング方式のプラズマ処理装置に関する。 背景技術
マイクロ波や高周波など電磁波を用いるプラズマ処理装置にて、 CVD (Chemical Vapar Depos i t ion) を行う場合、 基板への成膜処理に伴って、 それと同量程度の成膜速度で反応室に堆積物が蓄積し、 それが、 はがれ て落下浮遊することがあるために、 ク リーニング処理が必要となる。 同 様に、 C V D以外にエッチング処理を行う場合、 たとえばフルォロカー ボン系のガスを用いてシリコン酸化物をエッチングしょうとするときは、 フルォロカーボン系のガスが堆積性のガスであるために反応室壁面に堆 積物が付着するので、 ク リーニング処理が必要となる。 このク リーニン グには、 フッ素系のガス (N F a, C 2 F S, S F eなど) を用い、 成膜時 と同様に電磁波によってプラズマを生成してクリーニングするセルフク リーニング方式が通常採用される。 またプラズマイオン源を備えるミ リ ングゃスパッタ装置にても、 プラズマ室のクリーニングが重要である。 このセルフクリーニングの速度が装置全体のスルーブッ 卜を支配してお リクリーニングの高速化が極めて重要な技術課題である。
プラズマの生成には、 低圧でも高密度プラズマが容易に得られるマイ
クロ波方式, 誘導結合高周波方式, ヘリコン方式が近年多用されるよう になった力^ これらはいずれも共通の特徴として、 石英あるいはアルミ ナなどの誘電物でできた電磁波導入のための導入窓を備えている。
一般に、 ク リーニングは、 ( 1 ) プラズマ中のガス分解でできた反応 性に富むフリーラジカルの供給と、 ( 2 ) プラズマ中のイオンがクリー ニング対象物に高速 ( 1 0 0〜 1 O O O e V ) で衝突することによる相 乗効果で高速化が可能となる。 この現象は一般にイオンアシス 卜エッチ ング反応と して知られている。 反応室内は、 基板ホルダーと、 金属壁と、 誘電体導入窓で主として構成されている。 このうちで金属壁は、 一般に 基板ホルダーあるいは電気的に対接地絶縁を施した金属壁に別途高周波 (これは導入窓を通じて導入する前記電磁波と異なる 4 0 0 k H z〜 1 3 M H zの静電結合による高周波) を印加することにより、 プラズマ と静電結合させ、 それによつて生じる自己バイアスによってイオンを加 速して衝突させることができるため、 高速クリーニングは可能である。
ところが、 誘電体導入窓等の絶縁物は、 外部手段によって高周波電圧 をかけ自己バイアスによってイオンを加速するという手段をとることが できず、 プラズマに面する絶縁物表面はプラズマ電位とほぼ等しいフロ 一ティ ング電位になるため、 イオン加速を期待することはできない。 し たがって、 誘電体窓や誘電体壁を有するプラズマ処理装置 (特に C V D 装置) においては、 誘電体の部分のみクリーニングが高速化されず、 こ れがスループッ 卜を向上するための問題になっていた。
また、 上記したようなマイクロ波導入窓を有し、 基板には高周波バイ ァスをかける E C R (Electron Cyclotron Resonance) 方式のプラズマ 処理装置においては、 基板にかかるバイアス電圧が均等でなく、 基板へ の照射イオン量が均等でなくなって、 エッチングあるいはスパッタ リン グのウェハ内分布が不均一になることがよくある。 これは基板に印加さ
れた高周波のプラズマ側の電流パスが、 垂直方向に印加された磁力線を 横切って側壁の接地金属壁に至るようになつているため、 クロスフィー ルド方向 (磁力線を横切る方向) のインピーダンスが大きく、 ウェハ中 心部から側壁に至る経路でィンピーダンスに差が生じ、 バイァス電圧が 不均一になってしまうことに由来する。 このバイァス電圧の不均一は処 理中の L S Iへのチャージアップダメージの原因になるとともに、 成膜 やエッチング処理の均一性向上のための障害となっていた。
以上説明したように、 誘電体窓を有するプラズマ処理装置においては、 従来の技術で誘電体窓を十分に速くクリーニングできないという問題が あった。 クリーニングに要する時間は、 C V Dなどにおいては、 運転時 間のうちの半分以上を占めることもあり、 この高速化は装置のスループ ッ 卜を大きく向上させる上で、 非常に重要である。 また、 高周波バイァ スの不均一に基づくチャージアップダメ一ジゃ処理の不均一が問題とな つていた。
本発明の目的は、 ( 1 ) 電磁波の通る誘電体窓のクリーニング速度の 向上、 ( 2 ) バイアス均一化によるダメージ低減と処理の均一化を実現 するプラズマ処理装置を提供することにある。 発明の開示
上記目的を達成するために、 本発明は、 電磁波と放電ガスが導入され るプラズマ発生室と、 前記プラズマ発生室内に前記電磁波を導入する電 磁波導入手段と、 前記プラズマ発生室と前記電磁波導入手段とを仕切る 誘電体窓と、 前記電磁波により生成したプラズマを用いて処理すべき試 料を載せる基板ホルダーとを備えるプラズマ処理装置において、 前記誘- 電体窓に接して全面にわたってほぼ均一に電磁波を透過させる電極を備 え、 該電極を実質的にアース電位にしたものである。
また、 電磁波と放電ガスが導入されるプラズマ発生室と, 前記プラズ マ発生室内に前記電磁波を導入する電磁波導入手段と, 前記プラズマ発 生室と前記電磁波導入手段とを仕切る誘電体窓とを備え、 前記電磁波に より生成したプラズマを用いて試料を処理するプラズマ処理装置におい て、 前記誘電体窓に接して全面にわたってほぼ均一に電磁波を透過させ る電極と、 該電極に高周波電圧を印加する手段と、 電磁波及び高周波電 界を透過させ前記電極を挟み込む手段とを備えるようにしたものである, また、 電磁波と放電ガスが導入されるプラズマ発生室と, 前記プラズ マ発生室内に電磁波を導入する手段と, 前記プラズマ発生室と前記電磁 波導入手段とを仕切る誘電体窓とを備え、 前記電磁波によリ生成したプ ラズマを利用するプラズマ処理装置において、 前記誘電体窓に接して全 面にわたってほぼ均一に電磁波を透過させる手段と、 該手段を昇温させ る手段とを備えたものである
プラズマにさらされている金属導体に高周波 ( 1 0 0 k H z〜 3 0 M H z ) の電圧を印加すると、 一般に自己バイアスと呼ばれる作用によ り導体は直流的にプラズマに対して負の電位に帯電し、 プラズマ中のィ オンはその負電位に引きよせられて加速され導体に衝突する。 この自己 バイアス作用は、 金属導体のプラズマに面する表面に充分に薄い絶縁物 層を設けても生じるため、 スパッタ リング装置などに応用されている。 絶縁物層の厚さは、 高周波電圧が peak— to— peak値で 1 k V程度, 周波 数が 1 3 . 5 6 M H z の場合、 3 ram程度まで厚くすることができる。 こ のような金属導体は、 スリッ ト状の開口部があっても、 そのスリッ トの 幅が充分に狭ければ照射するイオンの分布に極端なムラは生じない。 す なわち、 導体上に多数のスリッ トがあつたとしても、 イオン照射は均一 に行われる。 これが成立するための条件は、 導体とプラズマとの間に自 己バイァスによって形成されるイオンシースの厚さが、 スリツ 卜の幅と
同程度以上であることである。 通常自己バイアスが 1 k Vでは、 シース 厚さは 1 0— 2 mのオーダーであるので、 スリッ ト幅が 2 8 mmであれば ィォンを均一に照射できる。
CVDなどによって誘電体上に付着した膜は、 C2 F N F3, S Fe などフッ素系のガスを用いてプラズマを生成し、 同時に自己バイァスに よリイオン照射を行うことにより高速にクリーニングすることができる, これは一般にイオンアシス 卜エッチング機構と呼ばれている。 イオン照 射によリ付着膜表面に原子レベルの乱れを作り、 そこへプラズマ中で作 られたフッ素ラジカルが吸着して反応が進み、 エッチングが起る。 たと えば、 C2 Fsガスを用いて S i 〇2 膜をエッチングする場合、 3 mTorr のガス圧条件下で 2.4 5 GH z のマイク口波で生成したプラズマを用 いると、 約 1 k Vの高周波バイァスがあれば S i 02 膜は 5 0 0 0 8 0 0 0 A/min の高速でエッチングされるのに対し、 高周波バイアス なしでは 5 0 0 1 0 0 0 AZmin 程度の低速でしかエッチングされな い。
導波管や誘導コイルによって導波されるマイクロ波や 1 3. 5 6 MHz の電磁波は、 導波方向に直交する面における電界の方向は一定である。 たとえば円形 T E 1 1モー ドで導波されるマイクロ波の電界の方向は、 導波管の径方向にほぼ直線状に揃っている。 この電界の方向に直交して ス 卜リッブ状の導体を置いても、 ストリップ状導体には電流が流れない ので、 電磁波の伝播をさまたげない。 以上の検討から、 電磁波を導入す る誘電体窓に接してスリッ 卜状の穴を多数あけた金属導体を設置し、 そ こに高周波自己バイアスを印加するようにすれば、 電磁波の導入を妨げ ることなしに、 イオンアシス卜エッチング機構によりクリーニングを早 めることができる。
また、 クリーニング速度は誘電体窓の温度を上昇させることによって
も早めることができる。 この場合は、 イオンアシス トエッチング機構で はなく、 プラズマ中のフッ素ラジカルのみでエッチングする化学エッチ ング機構による。 たとえば、 1 kWのマイクロ波で生成したプラズマに て、 動作ガス N F3, 動作圧力 0.8Torr程度の場合、 誘電体窓の温度を 2 5 0 °Cにすれば、 温度が 1 0 0°Cのときと比べて 4倍のク リ一二ング 速度となる。 (この温度依存性はァレニウス則に従っている。 ) 誘電体 窓は、 通常サフアイャ (A l 2〇3) や石英(S i 〇2) などの低損失誘電 体で作られ、 極端な温度上昇が起らないように工夫されている。 また真 空バウンダリ一として大気圧に耐えるため、 1 5〜 3 0隨の厚みを持つ ている。 しかし、 あえて比較的損失の大きい誘電体材料 (コ一二ングガ ラス等) を用いて、 マイクロ波パワーの一部をここに投入しプラズマに さらされる側の部分のみを、 制御された温度以内で高温に維持すること ができれば、 ク リーニングの能率を高めることができる。 このプラズマ 対向面を高温に維持することは、 ク リーニング時以外に、 CVDで薄膜 を形成しているときにおいても、 誘電体窓に付着膜が推積しにく くなる という副次的効果も有しており、 一層有効である。
次に、 基板へ高周波バイァスを印加する場合のイオン照射の不均一性 について第 1 3図を用いて説明する。 同図はプラズマ中の高周波電流パ スを等価回路で表したもので、 Rと Cはプラズマ境界にできるシースに よる抵抗と容量、 Lは磁力線 Bを横切ってプラズマ中に電流が流れると きのインダクタンスである。 プラズマ中では電子は軽く、 磁力線に巻き ついていて容易に移動できない。 イオンは比較的重いので磁力線の影響 は受けにく く電気伝導を担っているが、 慣性力のために電流に (電圧に 対する) 時間的遅れが生じ、 これが等価的にインダクタンスとして表さ れる。 理論的な計算によれば周波数 4 0 0 k H zにて j w L (インダク タンス成分) は」 1 00 Ω程度、 Rも 1 00 Ω程度となり (Cは小さい
ので無視できる) 、 ほぼ同等な値となる。 スリッ ト電極がない場合は、 電流路は , 1 2のようになリ、 ウェハの内外周でシース部に流れる電 流やシース電圧 (イオンの加速エネルギーとフラックスに対応) が不均 一となることがわかる。 ここで、 図の如くスリッ ト電極 4 を導入すれば, 電流路 1 ,, I 2はバイパスされて I 3, I ,のようになる。 電流路 I 3, 1 <の回路ィンピーダンスはウェハ内外周とも同等なので、 イオン照射 の不均一性は改善される。 図面の簡単な説明
第 1 図は本発明の第 1の実施例に係わるプラズマ処理装置の構成図で ある。
第 2図は本発明の第 2の実施例に係わる誘電体窓の構成図である。
第 3図は本発明の第 3の実施例に係わる誘電体窓の構成図である。
第 4図は本発明の第 4の実施例に係わる誘電体窓の構成図である。
第 5図は本発明の第 5の実施例に係わる誘電体窓の構成図である。
第 6図は本発明の第 6の実施例に係わる誘電体窓の構成図である。
第 7図は本発明の第 7の実施例に係わるスリッ 卜電極を示す図である。 第 8図は本発明の第 8の実施例に係わるスリッ 卜電極を示す図である。 第 9図は本発明の第 9の実施例に係わるプラズマ処理装置の構成図で ある。
第 1 0図は本発明の第 1 0の実施例に係わるプラズマ処理装置の構成 図である。
第 1 1図は本発明の第 1 1の実施例に係わる装置構成図である。
第 1 2図は本発明の第 1 2の実施例に係わる装置構成図である。
第 1 3図はプラズマ中の高周波電流パスを等価回路で表した図である。 第 1 4図は第 1の実施例におけるエッチング速度を示す図である。
第 1 5図は第 1の実施例におけるマイク口波の透過能力を示す図であ る。
第 1 6図は第 1 2の実施例におけるスパッタレートの分布を示す図で ある。 発明を実施するための最良の形態
本発明の第 1の実施例に係わるプラズマ処理装置を第 1図に従って説 明する。 本実施例の装置は 2.4 5 G H z マイクロ波によりプラズマ を生成する装置の場合である。 マグネ 卜ロン 1から出たマイクロ波 2は 導波管 3に導かれ、 石英製の導入窓 4に導かれる。 通常一般によく用い られるように、 マイク口波の導波管中の伝播モードは円形 T E 1 1モー ドである。 導入窓はスリッ ト電極 4 aが二枚の石英板 4 b, 4 cではさ まれたサンドイッチ構造となっている。 4 b, 4 cとしてはサファイア (アルミナ) を用いてもよい。 スリッ ト電極 4 aは、 高周波電源 5 (好 ましくは 1 3.5 6 MH z)に接続されていると同時に、 引き出し線は真 空容器 7 と絶縁されている。 こうすることにより、 スリッ ト電極 4 aを 介した石英板 4 c (プラズマ側) の表面には自己バイアスがかかり、 プ ラズマ 6 a中のイオン 6が引きよせられてエッチングが進行する、 真空 容器 7内はターボ分子ポンプ 8で排気され、 またホルダー 9の上には基 板 1 0があり、 プラズマ領域に磁場を作るためのコイル 1 1 を備えてい る。
スリッ 卜電極 4 aは、 たとえばステンレス銷を用い、 厚さを 0.2腿 程度とする。 これは、 0.2mm 程度の間隔であれば、 この間隔にマイク 口波による寄生プラズマが立つことがないし、 0.2 mm の厚さでも充分 な材料強度を持たせるためにステンレス銷を用いる。 スリッ 卜電極の幅 は例えば 2醒程度とし、 その間隔を 3MIずつ離した構成とする。 こうす
ることによって電極に接する部分の石英板 4 cと、 間隔部分の石英板 4 cとでエッチングむらが生じることを防いでいる。 石英板 4 cの厚さ は 1〜 3匪とする。 構造的な強度確保とともに、 スリッ 卜電極 4 aにか かる高周波電圧を、 石英板 4 cのプラズマ側表面に伝えるために、 この 厚さとする。 高周波として 1 3. 5 6 MH z を用い、 スリツ 卜電極 4 a にかける電圧の波高値として 1 . 5 k V , 動作ガス圧として 3 mTorr, ガスを C2 Feとした場合、 石英窓上に付着した S i 02 膜のエッチング レー 卜は約 8 0 0 0 AZmin であった。 これは、 電圧を印加しないとき (従来技術) の値に比べて 5〜 1 0倍である (第 1 4図) 。 また、 マイ クロ波の透過能力は、 伝送路上でモニターした反射電力およびプラズマ の発光強度で評価し、 スリッ ト電極 4 aのない場合に比べて、 殆んど差 異がなかった (第 1 5図) 。 マイクロ波の照射分布も、 ホルダー 9に相 当する位置に置いたマイクロ波吸収材の温度上昇測定によリ、 若干中心 に集中するものの、 大きな変化はないことを確認している。
本発明の第 2の実施例に係わる誘電体窓を第 2図に示す。 この例では 前記導入窓として、 薄いパイ レックスガラス 4 dを、 石英板 4 b , 4 c でサンドィツチした構造とする。 パイレックスガラス 4 dの誘電損 (lan d ) は、 石英のそれと比べて約 1 0 0倍大きく、 マイクロ波が透過 するときの発熱がその分上昇する。 パイレックスガラスなしでは、 マイ クロ波 1 . 5 kW , 石英板口径 3 0 0 mm, 厚さ 3 0 mraで、 石英板の温度 上昇は 1 0 0 °C程度である。 これに対し、 パイレックスガラスの厚さを 適切に選ぶことによリ、 石英板 4 c表面上で例えば 4 0 0 °C程度に維持 することが可能であり、 これによりエッチングレートを従来の 5〜 1 0 倍に上昇させることができる。 但し、 この場合のエッチング機構は化学 エッチングであり、 例えば N F, を用い、 ガス 1 Torrと高気圧マイクロ 波放電とするのがよい。 本方式は、 石英板表面をマイクロ波電力の一部
を使って高温度に維持するものであり、 クリ一ニング時間以外の本来の C V D成膜処理時においても、 高温に維持された物体上には付着物が推 積しにくい性質を持っており、 副次的効果も備えている。
第 3図は、 本発明の第 3の実施例に係わる誘電体窓を示すものである, 本実施例は第 1 図に示したスリ ッ ト電極方式の代替案である。 第 1 図に 示した方式は構造がシンプルである利点を有するが、 スリッ 卜部に自由 空間を有しており、 大気圧から真空に排気するときの自由空間部分の排 気処理, ガス圧を高気圧( 0 . 1〜 5 Torr) にしたときのスリ ッ ト部での 異常放電等の点で問題になる可能性もある。 第 3図は、 その対策を施し たもので、 石英板 4 cに溝を堀り、 この溝に別途作ったスリッ 卜電極 4 a をはめ合わせる力、、 ミゾ部に A β等を真空蒸着して作る。
第 4図は本発明の第 4の実施例に係わる誘電体窓を示すもので、 石英 板 4 b, 4 cの間に多数本のワイヤー 4 e を配した構造を採る。 ワイヤ 一 4 eの間隔を 2〜 5讓とすれば、 エッチングむらなく均一にク リ一二 ングすることができる。 ワイヤー 4 e としては、 Α β, S U S等の通常 導体の他に、 ニクロム線等の熱線を用い、 ヒーター電源を接続する構成 をとつてもよい。 こうすれば石英板の温度上昇によるク リーニング高速 化効果と、 高周波バイアス印加効果との相乗効果で、 ク リーニングを一 層早めることができる。
第 5図は、 本発明の第 5の実施例に係わる誘電体窓を示すものである。 第 5図では非常に薄い蒸着膜 4 f をサン ドイッチする。 蒸着膜 4 f とし ては、 A uあるいは A β等を用い、 これを 5 0〜 2 0 0 Α程度とする。 あるいは、 S n〇, 膜をうすく塗布してもよい。 これによりマイクロ波 はそのパワーの大部分を通過させると同時に、 蒸着膜 4 f を通じて石英 板 4 cを加熱する。 また、 この蒸着膜 4 f を通じて高周波を印加するこ とにより、 イオン照射を生起させることができる。
第 6図は、 本発明の第 6の実施例に係わる誘電体窓を示す図である。 パイ レックスガラス 4 dあるいは、 これの代わりに前述した蒸着膜 4 f をサン ドイッチ構造とし、 かつ石英板 4 cには、 ミゾが切ってある。 こ のミゾには H eあるいは N 2 ガスが流れるようになつており、 冷却路を 構成している。 パイ レックスガラス 4 d等があると、 マイクロ波パワー が変化すると温度が一定に保てない可能性があり、 それが許容変動範囲 を越えてしまうと系の破損に至る。 ミゾによる冷却はこのために設けた ものであり、 ガス流量をコン トロールすることにより、 石英板の温度を 一定範囲に制御する。
第 Ί図は本発明の第 7の実施例に係わるスリッ 卜電極を示すものであ る。 この図は第 1 図に示した平行スリツ 卜構造に対する代替案である。 円形導波管内の T E 1 1モー ドの電界べク 卜ル 4 gは厳密には平行では ないので、 第 1 図の平行スリッ トとは厳密には直交していない。 このた め、 スリッ 卜電極が発熱する可能性がある。 第 7図は、 T E 1 1モー ド の電界べク トル 4 gに厳密に直交させるようにスリッ 卜電極 4 aを設計 したものである。
第 8図は本発明の第 8の実施例に係わるスリ ッ ト電極である。 マイク 口波処理装置においては、 T E 1 1モー ドの代わりに T E 0 1 モー ドを 用いることがある。 このときには第 8図に示したように、 電界ベク トル 4 hは同心円状であるので、 これに直交するようにスリッ 卜電極 4 aと して放射状のものを用いることが好ましい。
第 9図は本発明の第 9の実施例に係わるプラズマ処理装置を示すもの である。 本実施例は、 本発明を T C P (Transferrer coupled plasma) 方式によるプラズマ処理装置に応用した例である。 本装置では、 高周波 電源 1 3 ( 1 3 . 5 6 M H z ) に接続されたうず巻きコイル 1 4によって、 電磁誘導的にプラズマ 6 aを発生する。 うず巻きコイル 1 4は電磁波を
真空容器内に導くために誘電体窓 4 を有している。 誘電体窓 4は、 実施 例 1 〜 8にて述べた何れかのスリツ 卜電極 4 aがサン ドイ ッチされ、 別 の高周波電源 5につながっている。 T C P方式における電界べク トルは 第 8図に示したのと同じく同心円状となるので、 スリ ツ ト形状も第 8図 の放射状のものを採用することが好ましい。 T C P方式においては、 う ず巻きコイル 1 4が電磁誘導的にプラズマと結合する以外に、 静電的に プラズマと結合することがあり、 石英板近傍での寄生プラズマ発生とそ れに由来するプラズマ不均一を生じる。 ク リ一二ング時以外の成膜時間 中は、 スリ ッ ト電極 4 aをアース電位に落しておくことにより、 この電 極はファラデーシールドとして動作することが期待できるので、 静電結 合プラズマを抑えるという副次的効果を得ることができる。
第 1 0図は本発明の第 1 0の実施例に係わるプラズマ処理を示す図で ある。 本実施例は、 本発明をへリコン波方式によるプラズマ処理装置に 応用した例である。 ヘリコン波方式では、 コイル 1 1で発生された静磁 場中に高周波電源 1 3 ( 1 3 . 5 6 M H z ) によって駆動されたヘリカル コイル 1 5により誘導的にプラズマ 6 a を発生させる。 ヘリカルコイル 1 5からの電磁波は、 ドーム状の誘電体窓 4 を介して導入される。 誘電 体窓 4は、 二層の石英ドームの間に高周波電源 5に接続されたスリッ 卜 電極 4 a を有している。 ヘリカルコイル 1 5の発生する電界べク トルの パターンも第 8図に示したのと同じく同心円状なので、 それに直交する スリッ 卜電極として第 1 0図に示したものを用いる。 この場合も、 スリ ッ 卜電極 4 aがファラデーシールドの役目を兼ねていることは第 8図の 場合と同じである。
第 1 1 図は、 本発明を I C P ( Inductively Coupled Plasma) 方式の プラズマ処理装置に応用した第 1 1 の実施例である。 I C P方式では、 プラズマ室の側面に誘導コイル 1 4 aがあり、 誘電体窓 4 を通じてブラ
ズマ 6 a と結合する。 スリ ッ 卜電極 4 a としては、 電界べク トルに直交 するような構造とする。 これもファラデーシールドを兼ねている。
第 1 2図は、 本発明の第 1 2の実施例に係わるプラズマ処理装置であ る。 再び第 1 図のようなマイクロ波方式を例にとって説明する。 本実施 例のスリッ ト電極 4 aは、 高周波電源に接続されておらず、 接地されて いる。 代わりに高周波電源 5はホルダー 9に接続されており、 かつホル ダー 9の面積が、 スリッ 卜電極 4 aの面積にプラズマ室の真空容器内壁 1 6の面積を加えたものと同程度 ( 1ノ 2〜 1倍) となるようにしてあ る。 高周波による自己バイァスによるイオン照射は高周波が印加されて いる電極にのみ起るものではなく、 接地されている対向電極 (この場合 は 4 a と 1 6 ) にもイオン照射が起る。 このイオン照射率の割合は面積 比によって定まり、 両者の面積が等しいときイオン照射は均等に起る。 本実施例はこの原理を応用したもので、 高周波が印加されるホルダ一 9 のプラズマ側の面積を、 対向面 (4 a , 1 6 ) に比べて比較的大きくす ることにより、 スリッ ト電極 4 aへのイオン照射をクリーニングに十分 な程度に行うことができる。
なお、 本実施例では次のような処理 (スパッタ リング, エッチング) の均一化が可能となる。 すなわち、 C V Dやエッチングなどのホルダー 9上の基板 1 0を処理するときにイオン照射を均等にできる効果がある。 一般に第 1 2図のようなマイクロ波プラズマ処理装置では、 ホルダー 9 に対向する面はマイク口波導入へのための誘電体窓 4 となっている。 ま た、 S i 0 , の C V Dやエッチングでは、 ホルダー 9に高周波を印加し 基板 1 0にイオンを照射するが、 これが均一な分布にならないことがあ る。 この原因は、 高周波に対する電気回路が、 基板 1 0から基板直上の シースを経てプラズマ 6 aの中心部に向かい、 そこから水平方向に向か つて側壁の接地金属導体に至る回路となっており、 水平方向の回路パス
が電気を流しにくいため電圧降下が起り、 基板 1 0の外周部と中央部と で、 照射イオンのエネルギーが異なるためである。 磁力線によって電子 が束縛されているため水平方向の回路パスに電子電流は流れず、 比較的 束縛のゆるいイオンによって電流が流れる。 これに対して、 垂直方向 (磁力線方向) は電子電導が可能なため、 イオン及び電子に対するイ ン ピーダンスは極端に近い。 第 1 2図の如く、 接地されたスリ ッ 卜電極
4 aを設けることにより、 水平方向 (クロスフィールド方向) の電流パ スはバイパスされ、 ホルダー 9への印加電圧は基板 1 0の内周外周を問 わず均等にかかるようになる。 この結果、 第 1 6図の実験結果例に示す ように、 基板 1 0の中央からエッジにかけてほぼ均一のスパッタ レ一卜 を得ることができる。
なお、 第 1 2図において、 真空容器内壁 1 6に石英のライナー 1 7 を かぶせるようにしてもよい。 これによつて内壁方向の電流パス (第 1 3 図の I 1 , 1 2 ) が遮断され、 基板上の処理の均一化効果が一層高まる。 以上、 主として CVD向け装置のク リーニングに本発明を適用した例 について説明した。 CVD装置としては、 S i H, と 0, ガスを用いる
5 i 〇2成膜プロセス, S i ガスを用いる a— S i成膜プロセス、
S i H,と Nzガスを用いる S i N成膜プロセスが含まれる。 また、 本発 明は、 エッチングプロセスのクリーニングに対しても適用される。 とく に、 C, F,等のフルォロカーボン系のガスを用いて S i酸化膜( S i 02) をエッチングするプロセスは、 プラズマ室内部にフルォロカーボン系の 膜が付着し、 クリーニング工程が重要となる。 また、 ク リーニングガス としては、 フルォロカーボン系ガス (C, Fe等) , N Fa, S Fe等を対 象とし、 添加ガスとして 0,, A rを使うことも可能である。 産業上の利用可能性
以上説明した如く、 本発明によれば、 誘電体窓を高速にクリーニング することが可能となり、 装置全体のスループッ トを向上できる。 また本 発明によれば、 基板に照射するイオンのエネルギーの面内不均一をなく すことができる。
Claims
1 . 電磁波と放電ガスが導入されるプラズマ発生室と, 前記プラズマ発 生室内に前記電磁波を導入する電磁波導入手段と, 前記プラズマ発生室 と前記電磁波導入手段とを仕切る誘電体窓と, 前記電磁波により生成し たプラズマを用いて処理すべき試料を載せる基板ホルダ一とを備えるプ ラズマ処理装置において、 前記誘電体窓に接して全面にわたってほぼ均 一に電磁波を透過させる電極を備え、 該電極を実質的にアース電位にし たことを特徴とするプラズマ処理装置。
2 . 電磁波と放電ガスが導入されるプラズマ発生室と, 前記プラズマ発 生室内に前記電磁波を導入する電磁波導入手段と, 前記プラズマ発生室 と前記電磁波導入手段とを仕切る誘電体窓とを備え、 前記電磁波によリ 生成したプラズマを用いて試料を処理するプラズマ処理装置において、 前記誘電体窓に接して全面にわたってほぼ均一に電磁波を透過させる電 極と、 該電極に高周波電圧を印加する手段と, 電磁波及び高周波電界を 透過させ前記電極を挟み込む手段とを備えることを特徴とするプラズマ 処理装置。
3 . 電磁波と放電ガスが導入されるプラズマ発生室と, 前記プラズマ発 生室内に電磁波を導入する手段と, 前記プラズマ発生室と前記電磁波導 入手段とを仕切る誘電体窓とを備え、 前記電磁波により生成したプラズ マを利用するプラズマ処理装置において、 前記誘電体窓に接して全面に わたってほぼ均一に電磁波を透過させる手段と, 該手段を昇温させる手 段とを備えることを特徴とするプラズマ処理装置。
4 . 請求項 1又は 2において、 前記電極は、 スリ ッ ト状あるいは薄膜状 であることを特徴とするプラズマ処理装置。
5 . 請求項 4において、 前記電極は複数のスリ ッ トを有する金属平板で、 該スリツ 卜の長辺方向が前記電磁波の電界の主方向と直交あるいはほぼ
直交する方向であることを特徴とするプラズマ処理装置。
6 . 請求項 4において、 前記電極は平行に設けられた複数の金属ワイヤ 一であり、 該ワイヤーの方向が前記電磁波の電界の主方向と直交する方 向であることを特徴とするプラズマ処理装置。
7 . 請求項 4において、 前記電極は、 石英板上あるいはアルミナ板上に アルミニウムまたは金をス トライプ状に蒸着し、 そのス トライプの方向 が前記電磁波の電界の主方向と直交する方向であることを特徴とするプ ラズマ処理装置。
8 . 請求項 4において、 前記電極は、 石英板上あるいはアルミナ板上に 5 0〜 5 0 0 Aのアルミニウム又は金を一様に蒸着したことを特徴とす るプラズマ処理装置。
9 . 請求項 1 において、 前記電磁波及び高周波電界を透過させ、 前記電 極を挟み込む手段を有することを特徴とするプラズマ処理装置。
1 0 . 請求項 1 において、 前記基板ホルダーとほぼ同サイズの誘電体窓 表面の領域以外に、 高周波電圧がかからないよう遮蔽する手段を有する ことを特徴とするプラズマ処理装置。
1 1 . 請求項 2において、 前記電極をアース電位か前記高周波電圧の電 位に切換える手段を備えたことを特徴とするプラズマ処理装置。
1 2 . 請求項 6において、 前記ワイヤーはニクロム線等の抵抗体で、 該 ワイヤーの両端に直流あるいは交流電流を流し、 該ワイヤーを加熱する 手段を有することを特徴とするプラズマ処理装置。
1 3 . 請求項 3において、 前記昇温手段としてパイ レックスガラスを用 いたことを特徴とするプラズマ処理装置。
1 4 . 請求項 3において、 前記昇温手段として石英板上に S n〇, 薄膜 を塗布したことを特徴とするプラズマ処理装置。
1 5 . 請求項 3において、 前記電磁波透過手段を冷却し、 該手段の温度
を調整する手段を有することを特徴とするプラズマ処理装置。
1 6. 請求項 4において、 前記電磁波として 2.4 5 GH z のマイクロ 波を用い、 該マイクロ波を円形 T E 1 1モー ドあるいは方形 T E 0 1モ 一ドにて前記誘電体窓に導入し、 前記電極は導体部とスリ ッ ト部が平行 に交互に並ぶ短冊状であることを特徴とするプラズマ処理装置。
1 7. 請求項 4において、 前記電磁波として 2.4 5 G H z のマイクロ 波を用い、 該マイクロ波を円形 T E 1 1モー ドにて前記誘電体窓に導入 し、 前記電極は曲線状スリッ トを有し、 この曲線スリ ッ トの任意の位置 における接線方向が該位置における円形 T E 1 1モー ドの電界の方向と ほぼ直交するように、 該曲線スリツ 卜の形状を定めたことを特徴とする プラズマ処理装置。
1 8. 請求項 4において、 前記電磁波として 2.4 5 GH z のマイクロ 波を用い、 該マイクロ波を円形 T E 0 1モー ドにて前記誘電体窓に導入 し、 前記電極は複数のスリッ 卜を放射状に設けたことを特徴とするブラ ズマ処理装置。
1 9. 請求項 4において、 前記電磁波として 1 3.5 6 MH z のものを 用い、 これを前記プラズマ発生室の外部に設けたコイルにて、 プラズマ と誘導結合することにより導波する手段を有することを特徴とするブラ ズマ処理装置。
2 0. 請求項 1 9において、 前記電極は複数のスリッ 卜を放射状に設け たことを特徴とするプラズマ処理装置。
2 1. 請求項 1 0において、 前記遮蔽手段は、 前記誘電体窓の中央部が 薄く、 該中央部の周辺部が厚い石英板であることを特徴とするプラズマ 処理装置。
2 2. 請求項 1 0において、 前記遮蔽手段は、 前記プラズマ処理を行う 金属製の反応室の側壁に設けた石英製のカバーであることを特徴とする
プラズマ処理装置,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1995/000227 WO1996025834A1 (fr) | 1995-02-17 | 1995-02-17 | Appareil de traitement du plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1995/000227 WO1996025834A1 (fr) | 1995-02-17 | 1995-02-17 | Appareil de traitement du plasma |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996025834A1 true WO1996025834A1 (fr) | 1996-08-22 |
Family
ID=14125644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/000227 WO1996025834A1 (fr) | 1995-02-17 | 1995-02-17 | Appareil de traitement du plasma |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1996025834A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003003449A3 (en) * | 2001-06-28 | 2003-12-24 | Lam Res Corp | Ceramic electrostatic chuck and method of fabricating same |
JP2004500703A (ja) * | 1999-07-12 | 2004-01-08 | アプライド マテリアルズ インコーポレイテッド | アンテナと誘電体ウインドとの間にシールド電極が置かれた誘導結合型プラスマプロセスチャンバ |
JP2007294190A (ja) * | 2006-04-24 | 2007-11-08 | Vacuum Products Kk | 真空処理装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63263725A (ja) * | 1987-04-22 | 1988-10-31 | Hitachi Ltd | プラズマ処理装置 |
JPH0364025A (ja) * | 1989-08-02 | 1991-03-19 | Oki Electric Ind Co Ltd | プラズマ処理方法 |
JPH04192325A (ja) * | 1990-11-24 | 1992-07-10 | Hitachi Ltd | マイクロ波プラズマ処理装置およびマイクロ波導入窓のクリーニング方法 |
JPH06232081A (ja) * | 1993-02-08 | 1994-08-19 | Yasuhiro Horiike | Icpプラズマ処理装置 |
-
1995
- 1995-02-17 WO PCT/JP1995/000227 patent/WO1996025834A1/ja active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63263725A (ja) * | 1987-04-22 | 1988-10-31 | Hitachi Ltd | プラズマ処理装置 |
JPH0364025A (ja) * | 1989-08-02 | 1991-03-19 | Oki Electric Ind Co Ltd | プラズマ処理方法 |
JPH04192325A (ja) * | 1990-11-24 | 1992-07-10 | Hitachi Ltd | マイクロ波プラズマ処理装置およびマイクロ波導入窓のクリーニング方法 |
JPH06232081A (ja) * | 1993-02-08 | 1994-08-19 | Yasuhiro Horiike | Icpプラズマ処理装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004500703A (ja) * | 1999-07-12 | 2004-01-08 | アプライド マテリアルズ インコーポレイテッド | アンテナと誘電体ウインドとの間にシールド電極が置かれた誘導結合型プラスマプロセスチャンバ |
WO2003003449A3 (en) * | 2001-06-28 | 2003-12-24 | Lam Res Corp | Ceramic electrostatic chuck and method of fabricating same |
JP2007294190A (ja) * | 2006-04-24 | 2007-11-08 | Vacuum Products Kk | 真空処理装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102060223B1 (ko) | 높은 종횡비 피쳐들을 에칭하기 위한 다중 주파수 전력 변조 | |
US6758948B2 (en) | Method and apparatus for depositing films | |
US6034346A (en) | Method and apparatus for plasma processing apparatus | |
JP5309179B2 (ja) | 均一なプロセス速度を生成するためのプラズマ処理装置及び結合窓構成 | |
US5800688A (en) | Apparatus for ionized sputtering | |
US20100101727A1 (en) | Capacitively coupled remote plasma source with large operating pressure range | |
US6084356A (en) | Plasma processing apparatus with a dielectric body in the waveguide | |
JPH1012396A (ja) | プラズマ発生装置及びこのプラズマ発生装置を使用した表面処理装置 | |
WO2001086697A2 (en) | Inductive plasma loop enhancing magnetron sputtering | |
JPH11135438A (ja) | 半導体プラズマ処理装置 | |
JP3175672B2 (ja) | プラズマ処理装置 | |
KR100800396B1 (ko) | Icp 안테나 및 이를 이용한 플라즈마 발생장치 | |
JP2928577B2 (ja) | プラズマ処理方法およびその装置 | |
JPH1074600A (ja) | プラズマ処理装置 | |
JPH10134995A (ja) | プラズマ処理装置及びプラズマ処理方法 | |
JP3973283B2 (ja) | プラズマ処理装置及びプラズマ処理方法 | |
KR102498944B1 (ko) | 유기 재료들의 자가 제한 에칭을 수행하기 위한 프로세스 | |
JPH03191074A (ja) | マイクロ波プラズマ処理装置 | |
WO1996025834A1 (fr) | Appareil de traitement du plasma | |
KR100785960B1 (ko) | 플라즈마 처리 장치 | |
JPH01184922A (ja) | エッチング、アッシング及び成膜等に有用なプラズマ処理装置 | |
KR100592241B1 (ko) | 유도결합형 플라즈마 처리장치 | |
JPH08316205A (ja) | プラズマ処理方法及びプラズマ処理装置 | |
US6413359B1 (en) | Plasma reactor with high selectivity and reduced damage | |
JPH04257224A (ja) | 絶縁膜の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |