WO1996023213A1 - Analyse de molecules biologiques - Google Patents
Analyse de molecules biologiques Download PDFInfo
- Publication number
- WO1996023213A1 WO1996023213A1 PCT/US1996/001613 US9601613W WO9623213A1 WO 1996023213 A1 WO1996023213 A1 WO 1996023213A1 US 9601613 W US9601613 W US 9601613W WO 9623213 A1 WO9623213 A1 WO 9623213A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- molecules
- labeled
- gel matrix
- light
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44756—Apparatus specially adapted therefor
- G01N27/44773—Multi-stage electrophoresis, e.g. two-dimensional electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44717—Arrangements for investigating the separated zones, e.g. localising zones
- G01N27/44721—Arrangements for investigating the separated zones, e.g. localising zones by optical means
Definitions
- the labeled-DNA fragments which are a product of either procedure are separated according to size by high resolution gel electrophoresis and a so-called "sequence ladder" is thus generated upon visualization of the gel by exposure to photographic film or other image storage means.
- Gel electrophoresis usually involves loading the labeled-DNA fragments onto one end of a polyacrylamide gel formed between two glass plates in such a way that, at one end, it contains slots or wells for the placement of samples.
- Patent No. 4,707,235 issued to Englert and Wheeler on November 17, 1987 describes a method and apparatus for determining the nucleotide sequence of labeled DNA fragments.
- samples containing radioactively-labeled DNA fragments are electrophoresed through a gel matrix.
- the labeled fragments migrate to the bottom of the gel, they pass the window of a detector.
- Ionizing radiation from the radiolabeled fragments of sufficient energy passes through the window, producing free electrons in the gaseous environment of the detector.
- the free electrons are accelerated towards an anode wire which, in response, produces electronic signals.
- the electronic signals so generated are ultimately stored and interpreted by means of a computer.
- the latter method of labeling utilizes labeled deoxynucleoside triphosphates e.g. deoxyadenosine triphosphate (dATP) , and is particularly advantageous in that it allows the use of unlabeled primer.
- dATP deoxyadenosine triphosphate
- fragment labeling with fluorescent dATP enables sequence information to be read beyond 1000 bases from a single lane or group of four lanes after electrophoresis of the labeled DNA fragments through a gel matrix.
- the increased amount of sequence data that can be obtained from a single gel is due, in part, to the increased efficiency of DNA fragment labeling disclosed in the Ansorge and Voss protocol.
- diode/amplifier-based detection systems have been incorporated into the design of a number of automated DNA sequencing systems, their utility has been limited by physical constraints. In such DNA sequencing machines, each lane on the gel must correspond to a discrete diode which is separately combined with a signal amplifier. In the discrete diode/amplifier detection systems, any increase in the number of lanes on the gel must be accompanied by a concomitant increase in the number of diodes. Recent innovations such as those which have allowed the integration of multiple amplifiers and diodes into a single unit have enabled diode/amplifier-array-based fluorescence detection systems to overcome some of the disadvantages associated with their use.
- the commercially available automated DNA sequencing machines can be divided into two types - those which use a scanning laser means to excite fluorescence and those which use fixed laser means to achieve this goal. Scanning Fluorescence Detection
- Another significant disadvantage of the apparatus described in the '218 patent involves the integration time for the information contained in the lanes of the gel which are scanned.
- a band on a gel containing a labeled fragment is examined for a shorter time in a laser scanning excitation system than in a static laser excitation system.
- This shorter scanning time results in a shorter detector integration time because the laser must not only scan each lane but also scan at different emission wavelengths to collect sufficient data points in order to make a base determination.
- the use of mechanical means for scanning causes a reduction in the system's overall reliability.
- the fixed detection system used in DNA sequencing machines is exemplified by the automated apparatus described by Ansorge et.al. (1986), cited above; and Ansorge et.al.. FRG Patent Application Nr. P36.18.605.B (1986).
- This apparatus consists of a laser, light from which passes through the entire width of a gel, inducing fluorescence from fluorophore-labeled DNA fragments migrating within the gel matrix, and a system for detecting and monitoring the emission of fluorescence from all four lanes.
- U.S. Patent No. 4,675,095 issued to Kambara et.al. on 23 June, 1987 describes an automated DNA sequencing apparatus consisting of a laser as a source of fluorescence-inducing electromagnetic radiation, a fluorescence detection system and a computerized data storage and interpretation system.
- the light from the laser is launched horizontally into the gel from the side, i.e. in a direction which is perpendicular to the migration of the DNA bands.
- the fluorescence detector consists of an imaging lens; a bandpass filter attached to the distal end of the imaging lens; a solid state imaging device such as a photodiode, CCD sensor or MOS linear image sensor in alignment with the optical axis of the imaging lens; and a Peltier device which provides cooling to the solid state imaging de-ice.
- the fluorescence detected from each lane on the gel is condensed onto an image intensifier.
- the amplified image is converted to an electrical signal by a photodiode array.
- the electrical signal produced in this manner is processed with the aid of a computer into readable DNA sequence data.
- the manner described by the '095 and '323 patents for launching light from the laser into the gel allows DNA sequence information to be generated using a low power laser. This therefore offers a significant cost saving in the manufacture of the machine.
- the use of a static laser excitation system results in a higher accuracy at faster separation speeds.
- the characteristic brightness of the SLA is given by the numerical aperture (NA) .
- the SLA can operate in two modes - a field or line scanning mode.
- the NA of the line scanning mode is always higher than that of the field scanning mode.
- the SLA When used with the CCD-based detector system, the SLA operates in a line scanning mode. Due to the small pixel size of the CCD, e.g. 50 urn, the detector "sees" only a line.
- the SLA when used in conjunction with the diode/amplifier array, it uses the field scanning mode. This, again, is a function of pixel size because the diode has a much larger pixel size than the CCD, e.g. 3 mm, the detector thus "sees" a greater area.
- GRIN lenses such as the SLA are typically composed of one or more rows of SELFOC graded-index micro lenses, each with equal dimensions and identical optical properties.
- the individual lenses which make up the SLA are aligned between two fiberglass-reinforced plastic plates.
- the interstices are filled with black silicone.
- black silicone not only protects the individual lenses, but also prevents flare or crosstalk between the lenses.
- a continuous 1:1 image is formed by overlapping the images from the adjacent lens elements in the SLA.
- One advantage of the SLA-CCD detector combination is the ability of the CCD to function efficiently without the inclusion of cooling means in the apparatus.
- the SLA allows for significantly increased amounts of light to be focused on the CCD, the signal to noise ratio of the CCD remains within acceptable limits without the need to provide cooling. Provision of cooling means leads to a further improvement in the signal to noise ratio. The fact that acceptable results can be obtained without the requirement for cooling affords reductions in the cost and complexity of manufacturing the DNA sequencing machine.
- the better quantitation of DNA in individual bands which is obtained from the combination can be used to provide data on the efficiency of the enzyme utilized in the sequencing reaction as well as data regarding the local structure of the DNA strand being sequenced.
- Such information can be employed by modern data analysis algorithms to further enhance the efficiency of methods used to decipher stretches of ambiguity in the base sequence as read from the electrophoresis of labeled DNA fragments through a gel matrix.
- Other areas where the data generated by the system of the present invention are invaluable are those involving allele analysis and fragment mapping, detection of heterozygotes and analysis of viral mutations and populations.
- the system therefore has numerous applications in a variety of areas including, but not limited to, paternity testing procedures, forensic medicine, clinical evaluation of disease and cancer-inducing mutations in genes, evaluation of anti ⁇ viral drug resistance-inducing mutations during treatment regimens, protein/DNA interaction analysis, and bacterial fingerprinting, in addition to de novo DNA sequencing.
- the CCD becomes the limiting aperture in the system (typically this is a function of the CCD pixel size which is of the order of 50 urn in the vertical dimension) .
- the laser must be precisely aligned to the detector by, for example, the use of an actuated mirror at the entrance to the gel.
- An alignment error signal can be derived either from pixels at each end of the CCD or through diodes dedicated for this purpose.
- the tendency of the laser to wander is a major factor in determining whether alignment must be an ongoing process during electrophoretic separation of the labeled DNA fragments.
- Laser wandering can be a function of gel composition and/or the laser/dye combination. When using lasers at the red end of the spectrum, for example, an initial adjustment at the beginning of the electrophoresis separation is all that is required.
- light from two or more laser light excitation sources 19' , 19' ' , 19 • ' ' can be combined in a beam combining element 47, so that the combined beam strikes the gel electrolyte layer 16 situated between two electrophoresis plates 17' , 17' ' at a single predetermined linear irradiation region 48.
- Fluorescent light emitted by the excited fluorophore-labeled DNA fragments 23 is collected and focused by a light collection and focusing lens array 24 and is focused through a multiple notch light filter 52 and then onto a single CCD element 26.
- the CCD element can be cooled by Peltier device 33 and associated heat-sink 34.
- the light collection and focusing lens array 24 consists of an array of gradient index lenses composed of individual SELFOC graded-index micro lenses 28 of substantially equal dimension and substantially identical optical properties.
- the individual lenses 28 are aligned between two fiberglass- reinforced plastic plates 29, 30.
- the interstices 31 are filled with black silicone.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96905389A EP0805974A1 (fr) | 1995-01-23 | 1996-01-23 | Analyse de molecules biologiques |
JP8523084A JPH10513553A (ja) | 1995-01-23 | 1996-01-23 | 生物学的分子の分析 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37685395A | 1995-01-23 | 1995-01-23 | |
US08/376,853 | 1995-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996023213A1 true WO1996023213A1 (fr) | 1996-08-01 |
Family
ID=23486777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/001613 WO1996023213A1 (fr) | 1995-01-23 | 1996-01-23 | Analyse de molecules biologiques |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0805974A1 (fr) |
JP (1) | JPH10513553A (fr) |
WO (1) | WO1996023213A1 (fr) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0840115A2 (fr) * | 1996-11-05 | 1998-05-06 | Hitachi Electronics Engineering Co., Ltd. | Séquenceur de bases d'ADN |
EP0911630A1 (fr) * | 1997-08-07 | 1999-04-28 | Hitachi Electronics Engineering Co., Ltd. | Détecteur de fluorescence |
WO1999058963A1 (fr) * | 1998-05-14 | 1999-11-18 | Zeptosens Ag | Unite de detection equipee d'un guidage de lumiere de detection separe |
WO2000065325A2 (fr) * | 1999-04-27 | 2000-11-02 | Carl Zeiss Jena Gmbh | Dispositif pour l'evaluation optique d'un ensemble d'objets |
WO2001007150A2 (fr) * | 1999-07-26 | 2001-02-01 | Kahl Johan Valentin | Procedes et dispositifs de separation electrophoretique de particules, en particulier de macromolecules |
WO2001025779A2 (fr) * | 1999-10-07 | 2001-04-12 | Europäisches Laboratorium für Molekularbiologie (EMBL) | Dispositif d'electrophorese pour l'analyse de molecules marquees, en particulier de molecules biologiques |
EP1186886A2 (fr) * | 2000-09-04 | 2002-03-13 | Fuji Photo Film Co., Ltd. | Méthode d'analyse biochimique et appareil pour utiliser cette méthode |
EP1223421A2 (fr) * | 2001-01-10 | 2002-07-17 | Yokogawa Electric Corporation | Lecteur de biopuce |
WO2003048749A1 (fr) * | 2001-11-29 | 2003-06-12 | Amersham Biosciences Uk Limited | Emetteurs detecteurs de rayonnement electromagnetique, en particulier de substances marquees par un fluorophore |
EP1432966A1 (fr) * | 2001-08-28 | 2004-06-30 | The Baylor College Of Medicine | Excitation a lignes multiples par impulsions pour detection par fluorescence non chromatisee |
US8361298B2 (en) | 2008-10-08 | 2013-01-29 | Sage Science, Inc. | Multichannel preparative electrophoresis system |
US8361299B2 (en) | 2008-10-08 | 2013-01-29 | Sage Science, Inc. | Multichannel preparative electrophoresis system |
US10131901B2 (en) | 2014-10-15 | 2018-11-20 | Sage Science, Inc. | Apparatuses, methods and systems for automated processing of nucleic acids and electrophoretic sample preparation |
US10175172B2 (en) | 2015-02-03 | 2019-01-08 | Hitachi High-Technologies Corporation | Multicolor detection device |
US10473619B2 (en) | 2012-10-12 | 2019-11-12 | Sage Science, Inc. | Side-eluting molecular fractionator |
US10908083B2 (en) | 2015-02-02 | 2021-02-02 | Hitachi High-Tech Corporation | Multicolor fluorescence analysis device |
WO2021221665A1 (fr) * | 2020-04-30 | 2021-11-04 | Promega Corporation | Techniques d'éclairage laser pour électrophorèse capillaire |
US11542495B2 (en) | 2015-11-20 | 2023-01-03 | Sage Science, Inc. | Preparative electrophoretic method for targeted purification of genomic DNA fragments |
US11867661B2 (en) | 2017-04-07 | 2024-01-09 | Sage Science, Inc. | Systems and methods for detection of genetic structural variation using integrated electrophoretic DNA purification |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7329658B2 (ja) * | 2020-10-07 | 2023-08-18 | 株式会社日立ハイテク | 発光検出装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987007719A1 (fr) * | 1986-06-03 | 1987-12-17 | Europäisches Laboratorium Für Molekularbiologie (E | Appareil pour detecter les substances pouvant etre excitees en vue d'une emission photonique |
US4971677A (en) * | 1988-02-24 | 1990-11-20 | Hitachi, Ltd. | Fluorescence detection type electrophoresis apparatus |
EP0645622A2 (fr) * | 1993-09-28 | 1995-03-29 | Hitachi Electronics Engineering Co., Ltd. | Analyseur des bases de l'ADN |
-
1996
- 1996-01-23 WO PCT/US1996/001613 patent/WO1996023213A1/fr not_active Application Discontinuation
- 1996-01-23 JP JP8523084A patent/JPH10513553A/ja active Pending
- 1996-01-23 EP EP96905389A patent/EP0805974A1/fr not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987007719A1 (fr) * | 1986-06-03 | 1987-12-17 | Europäisches Laboratorium Für Molekularbiologie (E | Appareil pour detecter les substances pouvant etre excitees en vue d'une emission photonique |
US4971677A (en) * | 1988-02-24 | 1990-11-20 | Hitachi, Ltd. | Fluorescence detection type electrophoresis apparatus |
EP0645622A2 (fr) * | 1993-09-28 | 1995-03-29 | Hitachi Electronics Engineering Co., Ltd. | Analyseur des bases de l'ADN |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0840115A3 (fr) * | 1996-11-05 | 1999-08-25 | Hitachi Electronics Engineering Co., Ltd. | Séquenceur de bases d'ADN |
EP0840115A2 (fr) * | 1996-11-05 | 1998-05-06 | Hitachi Electronics Engineering Co., Ltd. | Séquenceur de bases d'ADN |
EP0911630A1 (fr) * | 1997-08-07 | 1999-04-28 | Hitachi Electronics Engineering Co., Ltd. | Détecteur de fluorescence |
US6039925A (en) * | 1997-08-07 | 2000-03-21 | Hitachi Electronics Engineering Co., Ltd. | Fluorescence detector |
US6437345B1 (en) | 1998-05-14 | 2002-08-20 | Zeptosens Ag | Sensing unit provided with separated detection light guiding |
WO1999058963A1 (fr) * | 1998-05-14 | 1999-11-18 | Zeptosens Ag | Unite de detection equipee d'un guidage de lumiere de detection separe |
WO2000065325A2 (fr) * | 1999-04-27 | 2000-11-02 | Carl Zeiss Jena Gmbh | Dispositif pour l'evaluation optique d'un ensemble d'objets |
US7812944B1 (en) | 1999-04-27 | 2010-10-12 | Carl Zeiss Jena Gmbh | Array for optical evaluation of an object array |
WO2000065325A3 (fr) * | 1999-04-27 | 2001-04-26 | Zeiss Carl Jena Gmbh | Dispositif pour l'evaluation optique d'un ensemble d'objets |
WO2001007150A2 (fr) * | 1999-07-26 | 2001-02-01 | Kahl Johan Valentin | Procedes et dispositifs de separation electrophoretique de particules, en particulier de macromolecules |
WO2001007150A3 (fr) * | 1999-07-26 | 2001-07-26 | Kahl Johan Valentin | Procedes et dispositifs de separation electrophoretique de particules, en particulier de macromolecules |
US7204922B1 (en) | 1999-07-26 | 2007-04-17 | Johan-Valentin Kahl | Method and device for the electrophoretic separation of particles, especially of macromolecules, by electrophoresis |
WO2001025779A3 (fr) * | 1999-10-07 | 2002-02-28 | Europ Lab Molekularbiolog | Dispositif d'electrophorese pour l'analyse de molecules marquees, en particulier de molecules biologiques |
WO2001025779A2 (fr) * | 1999-10-07 | 2001-04-12 | Europäisches Laboratorium für Molekularbiologie (EMBL) | Dispositif d'electrophorese pour l'analyse de molecules marquees, en particulier de molecules biologiques |
EP1186886A3 (fr) * | 2000-09-04 | 2004-01-07 | Fuji Photo Film Co., Ltd. | Méthode d'analyse biochimique et appareil pour utiliser cette méthode |
EP1186886A2 (fr) * | 2000-09-04 | 2002-03-13 | Fuji Photo Film Co., Ltd. | Méthode d'analyse biochimique et appareil pour utiliser cette méthode |
EP1223421A3 (fr) * | 2001-01-10 | 2002-07-24 | Yokogawa Electric Corporation | Lecteur de biopuce |
EP1223421A2 (fr) * | 2001-01-10 | 2002-07-17 | Yokogawa Electric Corporation | Lecteur de biopuce |
US8089628B2 (en) | 2001-08-28 | 2012-01-03 | Baylor College Of Medicine | Pulsed-multiline excitation for color-blind fluorescence detection |
EP1432966A1 (fr) * | 2001-08-28 | 2004-06-30 | The Baylor College Of Medicine | Excitation a lignes multiples par impulsions pour detection par fluorescence non chromatisee |
EP1432966A4 (fr) * | 2001-08-28 | 2011-05-04 | Baylor College Medicine | Excitation a lignes multiples par impulsions pour detection par fluorescence non chromatisee |
US6992303B2 (en) | 2001-11-29 | 2006-01-31 | Amersham Biosciences Uk Limited | Detecting emitters of electromagnetic radiation, in particular fluorophore labeled substances |
WO2003048749A1 (fr) * | 2001-11-29 | 2003-06-12 | Amersham Biosciences Uk Limited | Emetteurs detecteurs de rayonnement electromagnetique, en particulier de substances marquees par un fluorophore |
US8361298B2 (en) | 2008-10-08 | 2013-01-29 | Sage Science, Inc. | Multichannel preparative electrophoresis system |
US8361299B2 (en) | 2008-10-08 | 2013-01-29 | Sage Science, Inc. | Multichannel preparative electrophoresis system |
US9719961B2 (en) | 2008-10-08 | 2017-08-01 | Sage Science, Inc. | Multichannel preparative electrophoresis system |
US10473619B2 (en) | 2012-10-12 | 2019-11-12 | Sage Science, Inc. | Side-eluting molecular fractionator |
US10131901B2 (en) | 2014-10-15 | 2018-11-20 | Sage Science, Inc. | Apparatuses, methods and systems for automated processing of nucleic acids and electrophoretic sample preparation |
US10738298B2 (en) | 2014-10-15 | 2020-08-11 | Sage Science, Inc. | Apparatuses, methods and systems for automated processing of nucleic acids and electrophoretic sample preparation |
US10908083B2 (en) | 2015-02-02 | 2021-02-02 | Hitachi High-Tech Corporation | Multicolor fluorescence analysis device |
US10175172B2 (en) | 2015-02-03 | 2019-01-08 | Hitachi High-Technologies Corporation | Multicolor detection device |
US10753873B2 (en) | 2015-02-03 | 2020-08-25 | Hitachi High-Tech Corporation | Multicolor detection device |
US11542495B2 (en) | 2015-11-20 | 2023-01-03 | Sage Science, Inc. | Preparative electrophoretic method for targeted purification of genomic DNA fragments |
US11867661B2 (en) | 2017-04-07 | 2024-01-09 | Sage Science, Inc. | Systems and methods for detection of genetic structural variation using integrated electrophoretic DNA purification |
WO2021221665A1 (fr) * | 2020-04-30 | 2021-11-04 | Promega Corporation | Techniques d'éclairage laser pour électrophorèse capillaire |
US12019046B2 (en) | 2020-04-30 | 2024-06-25 | Promega Corporation | Laser illumination techniques for capillary electrophoresis |
Also Published As
Publication number | Publication date |
---|---|
JPH10513553A (ja) | 1998-12-22 |
EP0805974A1 (fr) | 1997-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996023213A1 (fr) | Analyse de molecules biologiques | |
US5516409A (en) | DNA detector and DNA detection method | |
US6224733B1 (en) | DNA detector and DNA detection method | |
JP3626956B2 (ja) | 多毛管蛍光検出システム | |
JP3641619B2 (ja) | 生体試料検査装置 | |
Ueno et al. | Simultaneous monitoring of DNA fragments separated by electrophoresis in a multiplexed array of 100 capillaries | |
JP4988023B2 (ja) | カラーブラインド蛍光のためのパルスマルチライン励起法 | |
US7090758B2 (en) | Capillary array electrophoresis scanner | |
JP3467995B2 (ja) | キャピラリー電気泳動装置 | |
Scherer et al. | Ultra‐high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis | |
EP1669752A1 (fr) | Procédé de préparation d'un capillaire pour l'électrophorèse capillaire | |
WO1998008085A1 (fr) | Dispositif automatique de determination de sequence/genotype presentyant une reponse spectrale etendue | |
US10408790B2 (en) | Bundled fiber optic capillary electrophoresis detection system | |
KR102271870B1 (ko) | 반도체-기반 검출을 사용하는 고-처리율 서열분석용 시스템 및 디바이스 | |
US20060176481A1 (en) | End-column fluorescence detection for capillary array electrophoresis | |
DE102006058575A1 (de) | Multiplex-CE-Fluoreszenzsystem | |
CN1318847C (zh) | 电泳设备 | |
US6613212B1 (en) | Multiple capillary electrophoresis systems | |
US6207421B1 (en) | DNA sequencing and DNA terminators | |
JP4179169B2 (ja) | 分析装置 | |
DE10085034B4 (de) | Verfahren zum gleichzeitigen Analysieren mehrerer Proben durch Nachweis der Absorption und Systeme für die Verwendung in einem solchen Verfahren | |
WO2002059273A2 (fr) | Dispositif de calibrage de particules et sequenceur d'adn | |
KR20120101396A (ko) | 복수의 이산 형광 신호들을 모니터링하기 위한 디바이스 | |
JP2702920B2 (ja) | 電気泳動分離検出方法及び装置 | |
US20050130317A1 (en) | Method and device for parallel analysis of bio molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1996905389 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1996 523084 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1996905389 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1996905389 Country of ref document: EP |