WO1996022870A1 - Verfahren zur herstellung von rotoren von schraubenverdichtern - Google Patents

Verfahren zur herstellung von rotoren von schraubenverdichtern Download PDF

Info

Publication number
WO1996022870A1
WO1996022870A1 PCT/EP1996/000175 EP9600175W WO9622870A1 WO 1996022870 A1 WO1996022870 A1 WO 1996022870A1 EP 9600175 W EP9600175 W EP 9600175W WO 9622870 A1 WO9622870 A1 WO 9622870A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotors
teeth
negative mold
blank
Prior art date
Application number
PCT/EP1996/000175
Other languages
English (en)
French (fr)
Inventor
Günter Kirsten
Original Assignee
Kirsten Guenter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirsten Guenter filed Critical Kirsten Guenter
Priority to JP8522595A priority Critical patent/JPH10512511A/ja
Priority to AU44381/96A priority patent/AU4438196A/en
Priority to US08/860,698 priority patent/US6098266A/en
Priority to AT96900590T priority patent/ATE192062T1/de
Priority to EP96900590A priority patent/EP0805743B1/de
Priority to DE59605051T priority patent/DE59605051D1/de
Priority to DK96900590T priority patent/DK0805743T3/da
Publication of WO1996022870A1 publication Critical patent/WO1996022870A1/de
Priority to GR20000401621T priority patent/GR3033936T3/el

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • B29C33/3878Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts used as masters for making successive impressions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • B29C33/3892Preparation of the model, e.g. by assembling parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making
    • Y10T29/49242Screw or gear type, e.g., Moineau type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting

Definitions

  • the invention relates to a method for producing rotors of screw compressors and rotors which can thus be produced.
  • primary molding processes are used to manufacture rotors of a screw compressor, in which the rotor is produced by filling a negative mold with a suitable rotor material.
  • master molding processes Processes in which a mold is created for the first time from loose material by generating the material context are referred to as master molding processes.
  • Casting in which a master mold is poured out with material, is an example of a master mold process.
  • a primary shaping process which is specially tailored to the manufacture of rotors is known from DE 40 35 534 A1.
  • rotors for screw compressors are made of fiber-reinforced plastic by fiber-reinforced plastic discs in a hollow mold. space of a negative form stacked on top of one another and connected to one another using heat and pressure.
  • the negative mold is also produced by a master molding process, in which the contour of a master rotor, which corresponds in shape to the rotor to be produced, is removed.
  • the shape of the rotor to be inserted into the screw compressor is determined by the master rotor.
  • the master rotor is usually machined.
  • the tools used in the manufacture of the master rotor for example shaping or grinding machines, which produce the three-dimensionally curved surfaces of the teeth, require free cuts for the infeed of the tools.
  • fillets When machining the tooth root areas, fillets have to be worked into the cylindrical jacket surfaces concentric to the rotor axis. The fillets are necessary in order to be able to feed the tool that processes the tooth flanks.
  • the object of the invention is the manufacture of rotors of complex geometry in a simple manufacturing process.
  • the geometry of the negative shape is imaged directly on rotors produced with it. It is therefore possible to determine the geometry of the later rotor by changing the geometry of the negative shape. If, for example, it is determined that a rotor has an unfavorable flow behavior, and if it is also determined how the geometry of the rotor has to be changed and the flow behavior is improved, changes in the geometry of the negative shape can be made to the geome ⁇ optimize the rotor. Correction processing of the negative form can therefore be used to produce rotors with a rotor geometry that has corrections compared to previous series.
  • the flow and sealing behavior is particularly determined by the design of the tooth root areas of the spiral teeth of the main rotor. Cylinder surface areas should be arranged in this area.
  • the secondary rotor which meshes with the main rotor, should accordingly have cylindrical jacket surfaces on its tooth tip area.
  • the new geometry of the main rotor makes it possible to use a secondary rotor with a small diameter, which has no roundings on the tooth tips. This firstly ensures that the housing area enclosing the secondary rotor can close the engagement area of the two rotors more closely, and secondly that when the two rotors are meshed, the blow hole is closed more quickly when the teeth come into engagement.
  • blow hole delimited by the housing and the rotors is replaced by the new geometries of main parts in terms of both time and space. and scaled down. Both reduce the backflow losses.
  • manufacture of rotors using a primary molding process makes it possible to reproduce the complex geometries with high precision and relatively little effort.
  • Another advantage is the improved sealing between the tooth heads of the secondary rotor and the housing section enclosing the secondary rotor.
  • the cylindrical outer surfaces of the tooth tips seal better than the rounded tips according to the prior art.
  • a method is made available in which improvements with regard to the geometry of rotors to be used in screw compression are already taken into account during the production of the negative mold.
  • a master rotor which depicts the shape of the twisted teeth is first produced by removing material from a master rotor blank.
  • this master rotor still has areas that do not have the geometry desired for the finished rotor and therefore require correction.
  • the corresponding correction processing could be carried out on the master rotor itself.
  • it takes place in that material is removed from the negative mold blank, so that depressions are formed in the negative mold which serve to generate the complementary correction areas.
  • the corrected negative shape is filled with a suitable material for a rotor, raised areas on the rotor corresponding to the depressions of the negative shape arise, which improve the properties of the rotor in accordance with the desired geometry.
  • the negative mold blank is preferably turned out to produce the desired rotor profile. As a result of this unscrewing, shaped areas are created which, when the positive rotor is manufactured, form cylindrical jacket surfaces which run continuously over the entire length of the rotor. The continuous course ensures a good seal between the main and the secondary runner.
  • FIG. 1 shows a rotor produced according to the method according to the invention, which forms a pair of rotors with a corresponding second rotor and is arranged in section in a compressor housing,
  • FIG. 3 shows the pair of rotors in FIG. 2 in a view from above and with a portion broken away along the line III-III in FIG. 2,
  • FIG. 7 shows a blow hole which is delimited by the rotors and the housing in FIG. 1,
  • FIG. 8 shows a blow hole which is delimited by the rotors and the housing in FIG. 2,
  • FIG. 10 shows a detail from FIG. 9 in an enlarged representation
  • FIG. 11 shows a master rotor for producing one of the two rotors in FIG. 1,
  • FIG. 13 shows a negative mold produced by unscrewing the negative mold blank in FIG. 12,
  • FIG. 14 shows a rotor manufactured with the negative mold in FIG. 13.
  • FIG. 1 shows a screw compressor 16 with a rotor 10 produced according to the invention, which is a main rotor and with a second rotor 12, which is a secondary rotor, is mounted in a common housing 14.
  • the two rotors 10, 12 mesh with one another in the housing 14, so that air is axially is promoted and condensed.
  • the main rotor 10 has five teeth 18, which are arranged uniformly distributed over its circumference and are screwed by approximately 240 ° over the length of the main rotor 10.
  • the secondary rotor 12 which meshes with the main rotor 10 has six teeth 20 which are screwed about 180 ° over the length of the secondary rotor 12.
  • the two rotors 10, 12 are surrounded in the housing 14 by a first or second housing section 22, 24 in such a way that tooth flanks 34, 36 of the teeth 18 of the main rotor 10 and tooth flanks of the teeth 20 of the secondary rotor 12 with the first or second housing section 22, 24 define displacement chambers 26a to 26h.
  • tooth flanks 34, 36 of the teeth 18 of the main rotor 10 and tooth flanks of the teeth 20 of the secondary rotor 12 define an ejection chamber 28 between them.
  • a suction chamber 30 is also defined in front of the inlet.
  • the efficiency of the screw compressor 16 shown essentially depends on the tightness of the displacement chambers 26a to 26h, the push-out chamber 28 and the suction chamber 30, the sealing behavior of the meshing teeth 18, 20 having a large effect on the efficiency of the screw compressor 16 Has influence.
  • FIGS. 2 to 5 and 8 a screw compressor 116 according to the prior art is shown in FIGS. 2 to 5 and 8.
  • the screw compressor 116 according to the prior art differs from the screw compressor 16 with the rotor 10 according to the invention in essential details of the rotor design.
  • elements of the screw compressor 116, to which elements of the screw compressor 16 correspond are provided with reference numerals, the number of which is increased by 100 compared to those in FIG. 1.
  • the displacement chambers 126a to 126h are defined by tooth flanks 134, 136 of the teeth 118, 120 of the main rotor 110 or of the secondary rotor 120 in cooperation with the respective housing section 122, 124. They have a helically winding course and extend in part over the entire length of the rotors 110, 112.
  • the opposite rotation of the rotors 110, 112 permanently changes the volume of the individual chambers, the tooth flanks 134, 136 alternatingly delimiting displacement chambers 126a to 126h, extension chambers 128 and suction chambers 130.
  • Two displacement chambers are combined in succession to form an ejection chamber in order to open again after the compressed gas has been ejected and to form a suction chamber.
  • the tooth flanks then define two separate displacement chambers.
  • the displacement chambers 126d and 126h unite to form an ejection chamber.
  • the volume of the existing ejection chamber 128 is reduced, so that the gas enclosed in the ejection chamber 128 is ejected with increased pressure.
  • this increases the volume of the suction chamber 130, which extends up to Suction side of the screw compressor 116 extends. The gas to be compressed is sucked in.
  • the main rotor 110 shown in FIG. 2 is machined and therefore has fillets 132 in the tooth root area.
  • the fillets 132 are necessary in order to be able to machine the tooth flanks 134, 136 with the machining tools.
  • the secondary rotor 112 has a rounded tip 138 on each of its teeth 120, which engages in the respective rounding 132 of the main rotor 110 when the two rotors 110, 112 are meshed.
  • the fillets of the main rotor lie inside the rolling circle 140 of the main rotor 110. Accordingly, the crests 138 of the secondary rotor 112 are located outside the rolling circle 142 of the secondary rotor 112.
  • the teeth 118 of the main rotor 110 run along an apex line 144 delimiting the tooth flanks 134, 136 along a cylinder surface 146 of the first housing section 122.
  • the tips 138 of the teeth 120 of the secondary rotor 112 run along a second cylinder surface 148 of the second housing section 124.
  • the crests 138 and the apex lines 144 form with their respective cylinders linder surfaces 146,148 seals.
  • the displacement chambers 126d, 146h and the ejection chamber 128 are separated from one another (FIGS. 4a, 5a).
  • the main rotor 10 according to the invention (FIG. 1) has first cylindrical jacket surfaces 50, which are arranged on the pitch circle 40 of the main rotor 10, instead of fillets. Accordingly, the secondary rotor 12 has second cylinder jacket surfaces 52, which are arranged on the pitch circle 42 of the secondary rotor 12.
  • FIGS. 6a-6c The flow and sealing conditions which result when the rotor according to the invention is used are shown in FIGS. 6a-6c.
  • the teeth 18 of the main rotor rotor 10 form first seals with a cylinder surface 46 of the housing 14, while the second cylinder jacket surfaces 52 of the teeth 20 of the secondary rotor 12 with a second cylindrical surface 54 of the housing 14 second seals form.
  • the housing edge 56 defined by the cylinder surfaces 46 and 54 is closer to the point at which the teeth 18, 20 of the two rotors 10 , 12 come into engagement as the corresponding edge 158 in the prior art (Fig. 6b). This reduces the size of the blow hole.
  • the teeth 20 of the secondary rotor 12 engage the teeth 18 of the main rotor 10 without delay, since the secondary rotor 20 does not have rounding of a tip on the tooth tip (FIG. 6c). Therefore, the blow hole that opens briefly in each cut when combing is closed again considerably earlier than in the prior art.
  • FIG. 7 shows the blow hole 92 which is set with a rotor according to the invention.
  • FIG. 8 shows the blow hole 192 which opens in the case of rotors according to the prior art. Since the size of the blow hole is decisive for the backflow losses that occur, this comparison clearly shows that considerable improvements in the efficiency of a screw compressor are possible with the rotor design.
  • Figures 9 and 10 show the rotors in Figure 1 in a further rotational position. It can be clearly seen that the first and second cylinder jacket surfaces 50, 52 also form a reliable seal when the two rotors engage one another. Both Cylinder jacket surfaces 50, 52 run continuously, so that the gap between them when rolling in adjacent cuts has a constant width. With the tooth flank 36, the continuous cylindrical surface 50 defines a helix 56, which represents a sharp edge, by means of which flow losses are reduced.
  • FIGS. 11 to 14 serve to explain the method for producing a negative mold for the rotor shown in FIG. 1 and to explain the manufacture of a rotor with such a negative mold.
  • FIG. 11 shows a master rotor 200 which has five helical teeth 218 corresponding to the main rotor to be produced with it.
  • the tooth flanks 234, 236 have a contour which has the same contour in the region between a apex line 244 formed by the tooth flanks 234, 236 and the pitch circle 240 of the master rotor 200 as the teeth of the main rotor 10 according to the invention and the main rotor 110 according to the state of the art Technology. Since the master rotor 200, like the main rotor 110 according to the prior art, is machined from a master rotor blank, it has rounded portions 232 below the pitch circle 240.
  • a master rotor produced in this way is first placed in a molding box and the cavity lying between the molding box and the master rotor is filled with a suitable molding material, which is then hardened. In the hardened state, the molding material forms the negative molding blank 260. After the molding material has hardened, the master rotor is removed from the negative molding blank 260, so that a cavity 262 remains.
  • the contour 264 of the cavity 262 has recesses 266 which are wound in a helical shape and whose geometry is complementary to the geometry of the teeth of a main rotor. Between the recessed areas 266, helically wound projection areas 268 are arranged.
  • the negative mold blank 260 is clamped in a lathe, in which shaped crests 270 of the projection regions 268, which represent elevations, are removed by unscrewing. This machining results in a negative mold 280 which has hollow, screw-like, continuous cylindrical surfaces 282.
  • the main rotor 290 shown in FIG. 14 can be produced, the geometry of which corresponds to that of the main rotor 10 in FIG. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Rotoren (10) von Schraubenverdichtern (16) und damit herstellbare Rotore (10). Um die Herstellung von Rotoren (10) komplexer Geometrie in einem einfachen Herstellungsverfahren zu ermöglichen, wird ein Verfahren vorgeschlagen, bei dem beim Herstellen der Negativform zur Herstellung von Korrekturbereichen eines Rotors (10) von einem Negativform-Rohling Material abgetragen wird.

Description

Verfahren zur Herstellung von Rotoren von Schraubenverdichtem
Die Erfindung betrifft ein Verfahren zur Herstellung von Rotoren von Schraubenverdichtem und damit her¬ stellbare Rotore.
Zur Herstellung von Rotoren eines Schraubenverdichters werden neben spanenden Herstellungsverfahren Urformver¬ fahren angewendet, bei denen der Rotor durch Ausfüllen einer Negativform mit einem geeigneten Rotormaterial hergestellt wird. Als Urformverfahren oder Urformen werden Verfahren bezeichnet, bei denen eine Form erst¬ malig aus losem Material durch Erzeugung des Material¬ zusammenhangs geschaffen wird. Als Beispiel für ein Urformverfahren sei das Gießen genannt, bei dem eine Urform mit Material ausgegossen wird. Ein speziell auf die Herstellung von Rotoren abgestimmtes Urformver¬ fahren ist aus der DE 40 35 534 AI bekannt. Nach diesem Verfahren werden Rotore für Schraubenverdichter aus faserverstärktem Kunststoff dadurch hergestellt, daß faserverstärkte Kunststoffscheiben in einem Formhohl- räum einer Negativform übereinandergestapelt und unter Anwendung von Wärme und Druck miteinander verbunden werden.
Auch die Herstellung der Negativform erfolgt durch ein Urformverfahren, bei dem von einem Meisterrotor, der in seiner Form dem herzustellenden Rotor entspricht, des¬ sen Kontur abgenommen wird.
Wegen der zweimaligen Verwendung eines Urformverfahrens wird die Form des in den Schraubenverdichter einzu¬ setzenden Rotors von dem Meisterrotor bestimmt. Der Meisterrotor wird üblicherweise spanend hergestellt. Die bei der Herstellung des Meisterrotors verwendeten Werkzeuge, zum Beispiel Stoß- oder Schleifmaschinen, die die dreidimensional gekrümmten Flächen der Zähne erzeugen, erfordern jedoch Freischnitte für das Zustel¬ len der Werkzeuge. Bei der Bearbeitung der Zahnfußbe¬ reiche müssen bisher mit dem Werkzeug in zur Rotorachse konzentrische Zylindermantelflächen Ausrundungen ein¬ gearbeitet werden. Die Ausrundungen sind erforderlich, um das die Zahnflanken bearbeitende Werkzeug zustellen zu können.
Wenn ein Rotor mit solchen Ausrundungen mit einem zweiten Rotor in einen Schraubenverdichter eingesetzt werden soll, muß der zweite Rotor an seinen Zahnköpfen Kuppen aufweisen, die beim Kämmen in die Ausrundungen eingreifen. Andererseits kann zwischen den Rotoren eine ausreichende Abdichtung nicht erreicht werden. Die Kup¬ pen des zweiten Rotors vergrößern jedoch dessen Durch¬ messer und damit den des den zweiten Rotor um¬ schließenden Gehäuseabschnitts. Die Vergrößerung des Durchmessers des Gehäuseabschnitts und die Rundungen der Kuppen verschlechtern das Dichtverhalten im Ein¬ griffsbereich der beiden Rotore. Bevor die Zähne der Rotore während des Abwälzens in dem jeweiligen Schnitt aneinander in Anlage kommen, liegt zwischen ihnen ein sogenanntes Blasloch, durch das verdichtete Gase zur Niederdruckseite zurückströmen.
Die fertigungsbedingte Geometrie der Rotore hat somit Rückstromverluste zur Folge, die bei den bekannten Schraubenverdichtern zu einem niedrigen Wirkungsgrad führen.
Aufgabe der Erfindung ist die Herstellung von Rotoren komplexer Geometrie in einem einfachen Herstellungsver¬ fahren.
Die Lösung dieser Aufgabe erfolgt erfindungsgemäß mit den Merkmalen der Ansprüche 1,4 bzw. 5.
Um einen Schraubenverdichter mit höherem Wirkungsgrad zur Verfügung stellen zu können, ist es erforderlich, die Rotore hinsichtlich ihres Strömungs- und Abdicht- Verhaltens zu optimieren. Dies kann jedoch nur dann gelingen, wenn die optimierte Geometrie der Rotore auch herstellbar ist. Die Lösung der der Erfindung zugrunde liegenden Aufgabe beruht einerseits auf der Konzeption einer verbesserten Geometrie für die Rotore und ande¬ rerseits auf der Bereitstellung eines Herstellungsver¬ fahrens, das die Serienproduktion solcher Rotore er¬ laubt. Das Herstellungsverfahren und die entsprechenden Rotore sind dabei zwei unterschiedliche Ausprägungen des der Erfindung zugrundeliegenden formgestalterischen Konzepts. Die unter Verwendung einer Urform hergestellten Rotore weisen eine Geometrie auf, die von der Geometrie der Negativform bestimmt wird. Die Geometrie der Negativ¬ form wird unmittelbar auf damit hergestellte Rotore abgebildet. Daher ist es möglich, durch Veränderungen der Geometrie der Negativform die Geometrie des späte¬ ren Rotors zu bestimmen. Wenn z.B. festgestellt wird, daß ein Rotor ein ungünstiges Strömungsverhalten zeigt, und wenn ferner festgestellt wird, wie die Geometrie des Rotors geändert werden muß, und das Strömungsver¬ halten zu verbessern, können Veränderungen der Geome¬ trie der Negativform vorgenommen werden, um die Geome¬ trie des Rotors zu optimieren. Durch eine Korrekturbe¬ arbeitung der Negativform lassen sich also Rotoren mit einer gegenüber Vorläuferserien Korrekturen auf¬ weisenden Rotorgeometrie herstellen.
Das Strömungs- und Dichtverhalten wird besonders durch die Gestaltung der Zahnfußbereiche der gewundenen Zähne des Hauptläufers bestimmt. In diesem Bereich sollen Zylindermantelflächen angeordnet sein. Der mit Haupt- läufer kämmende Nebenläufer soll entsprechend an seinem Zahnkopfbereich Zylindermantelflächen aufweisen. Durch die neue Geometrie des Hauptläufers ist es möglich, einen Nebenläufer mit geringem Durchmesser zu ver¬ wenden, der keine Abrundungen an den Zahnköpfen auf¬ weist. Dadurch wird erstens erreicht, daß der den Nebenrotor umschließende Gehäusebereich den Eingriff- bereich der beiden Rotore enger abschließen kann und zweitens daß beim Kämmen der beiden Rotore das Blasloch beim Ineingriffkommen der Zähne schneller geschlossen wird. Das von dem Gehäuse und den Rotoren begrenzte Blasloch wird sowohl in zeitlicher als auch in räum¬ licher Hinsicht durch die neuen Geometrien von Haupt- und Nebenläufer verkleinert. Beides verringert die Rückströmverluste. Durch die Herstellung von Rotoren mit einem Urformverfahren ist es möglich, die komplexen Geometrien mit hoher Präzision und verhältnismäßig ge¬ ringem Aufwand zu reproduzieren.
Ein weiterer Vorteil besteht in der verbesserten Ab¬ dichtung zwischen den Zahnköpfen des Nebenläufers und dem den Nebenläufer umschließenden Gehäuseabschnitt. Die Zylindermantelflächen der Zahnköpfe dichten besser als die abgerundeten Kuppen nach dem Stand der Technik.
Gemäß der Erfindung wird ein Verfahren zur Verfügung gestellt, bei dem Verbesserungen hinsichtlich der Geo¬ metrie von in Schraubenverdichte einzusetzenden Rotoren schon bei der Herstellung der Negativform be¬ rücksichtigt werden. Dazu wird zunächst ein die Form der gewundenen Zähne abbildender Meisterrotor durch Materialabtrag von einem Meisterrotor-Rohling herge¬ stellt. Dieser Meisterrotor weist jedoch noch Bereiche auf, die nicht die für den fertigen Rotor gewünschte Geometrie aufweisen und daher eine Korrektur erfordern. Die entsprechende Korrekturbearbeitung könnte an dem Meisterrotor selbst durchgeführt werden. Gemäß dem er¬ findungsgemäßen Verfahren erfolgt sie jedoch dadurch, daß von dem Negativform-Rohling Material abgetragen wird, so daß in der Negativform Vertiefungen gebildet werden, die zur Erzeugung der komplementären Korrektur- bereiche dienen. Wenn die korrigierte Negativform mit geeignetem Material für einen Rotor ausgefüllt wird, entstehen an dem Rotor entsprechend den Vertiefungen der Negativform erhabene Bereiche, die entsprechend der gewünschten Geometrie die Eigenschaften des Rotors ver¬ bessern. Vorzugsweise wird der Negativform-Rohling zur Erzeugung des gewünschten Rotorprofils ausgedreht. Durch dieses Ausdrehen werden Formbereiche erzeugt, die bei der Her¬ stellung des positiven Rotors Zylindermantelflächen bilden, die über die gesamte Länge des Rotors stetig verlaufen. Der stetige Verlauf stellt eine gute Abdich¬ tung zwischen dem Haupt- und dem Nebenläufer sicher.
Nachfolgend wird die Erfindung anhand von Aus¬ führungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert. Es zeigen:
Fig. 1 einen gemäß dem erfindungsgemäßen Verfahren hergestellten Rotor, der mit einem ent¬ sprechenden zweiten Rotor ein Rotorpaar bildet und in einem Verdichtergehäuse angeordnet ist im Schnitt,
Fig. 2 ein Rotorpaar gemäß dem Stand der Technik in einer Figur 1 entsprechenden Darstellung,
Fig. 3 das Rotorpaar in Figur 2 in einer Ansicht von oben und mit einem weggebrochenen Bereich gemäß der Linie III-III in Fig. 2,
Fig. 4a) bis c) einen Ausschnitt aus Figur 2 in vergrößerter Darstellung, wobei die Rotore ver¬ schiedene Rotationsstellungen einnehmen,
Fig. 5a) bis 5c) Schnitte in den Figuren 4a) bis c) in schematischer Darstellung, Fig. 6a) bis c) einen Ausschnitt aus Figur 1 in vergrößerter Darstellung, wobei die Rotore ver¬ schiedene Rotationsstellungen einnehmen,
Fig. 7 ein Blasloch, das von den Rotoren und dem Ge¬ häuse in Figur 1 begrenzt wird,
Fig. 8 ein Blasloch, das von den Rotoren und dem Ge¬ häuse in Figur 2 begrenzt wird,
Fig. 9 das Rotorpaar in Figur 1 in einer weiteren Ein¬ griffsstellung der Rotore im Schnitt,
Fig. 10 einen Ausschnitt aus Figur 9 in vergrößerter Darstellung,
Fig. 11 einen Meisterrotor zur Herstellung eines der beiden Rotore in Figur 1,
Fig. 12 einen Negativform-Rohling mit einer von dem Meisterrotor in Fig. 11 abgenommenen Geometrie,
Fig. 13 eine durch Ausdrehen des Negativfor -Rohlings in Fig. 12 hergestellte Negativform, und
Fig. 14 einen mit der Negativform in Figur 13 herge¬ stellten Rotor.
Figur l zeigt einen Schraubenverdichter 16 mit einen gemäß der Erfindung hergestellten Rotor 10, der ein Hauptläufer-Rotor ist und mit einem zweiten Rotor 12, der ein Nebenläufer-Rotor ist, in einem gemeinsamen Gehäuse 14 gelagert ist. Die beiden Rotore 10,12 kämmen in dem Gehäuse 14 miteinander, so daß Luft axial ge- fördert und verdichtet wird. Der Hauptläufer 10 weist fünf Zähne 18 auf, die an seinem Umfang gleichmäßig verteilt angeordnet sind und über die Länge des Haupt- läufers 10 um etwa 240° verschraubt sind. Der mit dem Hauptläufer 10 kämmende Nebenläufer 12 besitzt sechs Zähne 20, die etwa um 180° über die Länge des Neben¬ läufers 12 verschraubt sind.
Die beiden Rotore 10,12 werden in dem Gehäuse 14 von einem ersten bzw. zweiten Gehäuseabschnitt 22,24 derart umgeben, daß Zahnflanken 34,36 der Zähne 18 des Haupt¬ läufers 10 und Zahnflanken der Zähne 20 des Neben¬ läufers 12 mit dem ersten bzw. zweiten Gehäuseabschnitt 22,24 Verdrängungskammern 26a bis 26h definieren. Im Bereich vor dem Druckauslaß des Schraubenverdichters 16 definieren Zahnflanken 34,36 der Zähne 18 des Hauptläufers 10 und Zahnflanken der Zähne 20 des Neben¬ läufers 12 zwischen sich eine Ausschubkammer 28. Vor dem Einlaß ist ferner eine Ansaugkammer 30 definiert.
Der Wirkungsgrad des gezeigten Schraubenverdichters 16 hängt wesentlich von der Dichtigkeit der Verdränungs- kammern 26a bis 26h, der AusSchubkammer 28 und der An¬ saugkammer 30 ab, wobei das Dichtverhalten der mitein¬ ander kämmenden Zähne 18,20 auf dem Wirkungsgrad des Schraubenverdichter 16 einen großen Einfluß hat.
Zur Verdeutlichung der Dicht- und Strömungsverhältnisse ist in den Figuren 2 bis 5 und 8 ein Schraubenver¬ dichter 116 gemäß dem Stand der Technik dargestellt. Der Schraubenverdichter 116 gemäß dem Stand der Technik unterscheidet sich von dem Schraubenverdichter 16 mit dem erfindungsgemäßen Rotor 10 durch wesentliche Details der Rotorgestaltung. Zum leichteren Verständnis sind Elemente des Schraubenverdichters 116, denen Ele¬ mente des Schraubenverdichters 16 entsprechen, mit Be¬ zugszeichen versehen, deren Zahl gegenüber denen in Figur 1 um 100 erhöht ist.
Die räumliche Gestaltung der Verdrängungskämmern 126a bis 126h wird in Figur 3 verdeutlicht. Die Verdränungs- kammern 126a bis 126h werden von Zahnflanken 134,136 der Zähne 118,120 des Hauptläufers 110 bzw. des Neben¬ läufers 120 im Zusammenwirken mit dem jeweiligen Ge¬ häuseabschnitt 122,124 definiert. Sie haben einen schraubenförmig gewundenen Verlauf und erstrecken sich zum Teil über die gesamte Länge der Rotore 110,112. Im Betrieb verändert sich durch die gegenläufige Rotation der Rotore 110,112 permanent das Volumen der einzelnen Kammern, wobei die Zahnflanken 134,136 im zyklischen Wechsel nacheinander Verdränungskammern 126a bis 126h, Ausschubkammern 128 und Ansaugkammern 130 begrenzen. Nacheinander werden jeweils zwei Verdränungskammern zu einer Ausschubkammer vereinigt, um nach dem Ausschieben des Druckgases sich erneut zu öffnen und eine Ansaug¬ kammer zu bilden. Anschließend definieren die Zahn¬ flanken zwei getrennte Verdrängungskammern.
Wenn zum Beispiel die Rotore 110,112 in Figur 2 gemäß den durch die Pfeile A und B angegebenen Drehrichtungen einige Winkelgrade verdreht werden, vereinigen sich die Verdrängungskammern 126d und 126h zu einer Ausschubkam¬ mer. Dabei wird gleichzeitig das Volumen der be¬ stehenden Ausschubkammer 128 verringert, so daß das in der Ausschubkammer 128 eingeschlossene Gas mit erhöhtem Druck ausgeschoben wird. Gleichzeitig damit vergrößert sich das Volumen der Ansaugkammer 130, die sich bis zur Saugseite des Schraubenverdichterε 116 erstreckt. Dabei wird zu verdichtendes Gas angesaugt.
Der in Figur 2 gezeigte Hauptläufer 110 ist spanend gefertigt und weist daher jeweils im Zahnfußbereich Ausrundungen 132 auf. Die Ausrundungen 132 sind er¬ forderlich, um mit den Bearbeitungswerkzeugen die Zahn¬ flanken 134,136 bearbeiten zu können. Damit beim Kämmen Hauptläufer 110 und Nebenläufer 112 abdichtend anein¬ ander abwälzen weist der Nebenläufer 112 an jedem seiner Zähne 120 eine abgerundete Kuppe 138 auf, die beim Kämmen der beiden Rotore 110,112 in die jeweilige Ausrundung 132 des Hauptläufers 110 eingreift.
Die Ausrundungen des Hauptläufers liegen im Innern des Wälzkreises 140 des Hauptläufers 110. Dementsprechend befinden sich die Kuppen 138 des Nebenläuferε 112 außerhalb des Wälzkreises 142 des Nebenläufers 112.
Die sich beim Kämmen der beiden Rotore 110,112 einstel¬ lenden Strömungsverhältnisse im Eingriffsbereich (Einzelheit IV in Figur 2) sind in Figur 4a bis 4c ge¬ zeigt, wobei die sich ergebenden Dicht- und Strömungs¬ verhältnisse in den Figuren 5a bis 5c dargestellt sind.
Während der Rotationsbewegung der beiden Rotoren 110,112 laufen die Zähne 118 des Hauptläufers 110 mit einer die Zahnflanken 134,136 begrenzenden Scheitel¬ linie 144 an einer Zylinderfläche 146 des ersten Ge¬ häuseabschnitts 122 entlang. In entsprechender Weise laufen die Kuppen 138 der Zähne 120 des Nebenläufers 112 an einer zweiten Zylinderfläche 148 des zweiten Gehäuseabschnittε 124 entlang. Die Kuppen 138 und die Scheitellinien 144 bilden mit ihren jeweiligen Zy- linderflächen 146,148 Abdichtungen. Dadurch sind die Verdrängungskammern 126d,146h und die Ausschubkammer 128 voneinander getrennt (Fign. 4a,5a). Wenn die Rotore jedoch weiter gedreht werden, stellt sich der in Figur 4b gezeigte Zustand ein, bei dem die Scheitellinie 144 des Zahns 118 des Hauptläufers 110 mit der Zylinder¬ fläche 146 keine Abdichtung mehr bildet. Druckgas kann in dieser Rotationsstellung aus der Ausschubkammer 128 in die Verdrängungskammer 126 zurückströmen. Das Zu¬ rückströmen ist in Fig. 5b durch einen Pfeil darge¬ stellt. Erst wenn die Rotore 110,112 bis in die in Figur 4c gezeigte Lage verdreht sind und der Zahn 120 des Nebenläufers 112 an dem Zahn 118 des Hauptläufers 110 zur Anlage gekommen ist, ist die aus den Ver¬ drängungskammern gebildeste neue Ausschubkammer 128 abgedichtet.
Im Gegensatz zum Stand der Technik weist der Haupt- läufer 10 gemäß der Erfindung (Figur 1) anstelle von Ausrundungen erste Zylindermantelflächen 50 auf, die auf dem Wälzkreis 40 des Hauptläufers 10 angeordnet sind. Dementsprechend weist der Nebenläufer 12 zweite Zylindermantelflächen 52 auf, die auf dem Wälzkreis 42 des Nebenläufers 12 angeordnet sind.
Die Strömungs- und Dichtverhältnisse, die sich bei Ver¬ wendung des erfindungsgemäßen Rotors ergeben, sind in den Figuren 6a-6c dargestellt. Um eine Abdichtung zwischen den Rotoren 10,12 und dem Gehäuse 14 zu er¬ reichen, bilden die Zähne 18 des Hauptläufer-Rotors 10 mit einer Zylinderfläche 46 des Gehäuses 14 erste Ab¬ dichtungen, während die zweiten Zylindermantelflächen 52 der Zähne 20 des Nebenläufers 12 mit einer zweiten Zylinderfläche 54 des Gehäuses 14 zweite Abdichtungen bilden. Da der Nebenläufer 12 bei ansonsten unverän¬ derten Wälzverhältnissen einen geringeren Durchmesser aufweist als der Nebenläufer 112 gemäß dem Stand der Technik liegt die von den Zylinderflächen 46 und 54 definierte Gehäusekante 56 näher an dem Punkt, an dem die Zähne 18,20 der beiden Rotore 10,12 in Eingriff kommen als die entsprechende Kante 158 beim Stand der Technik (Fig. 6b). Dies verringert die Größe des Blas¬ loches.
Darüber hinaus kommen die Zähne 20 des Nebenläufers 12 ohne Verzögerung an den Zähnen 18 des Hauptläufers 10 in Eingriff, da der Nebenläufer 20 am Zahnkopf Abrun- dungen einer Kuppe nicht aufweist (Fig. 6c). Daher wird das sich beim Kämmen in jedem Schnitt kurzzeitig öff¬ nende Blasloch erheblich früher wieder geschlossen als beim Stand der Technik.
Zum Vergleich der Größe der Blaεlöcher können die Fi¬ guren 7 und 8 herangezogen werden. Figur 7 zeigt das Blasloch 92, das sich mit einem erfindungsgemäßen Rotor einstellt. Figur 8 zeigt das Blasloch 192, das sich bei Rotoren gemäß dem Stand der Technik öffnet. Da die Größe des Blaslochs maßgeblich ist für die sich ein¬ stellenden Rückströmverluste, läßt diese Gegenüberstel¬ lung deutlich erkennen, daß mit der Rotorgestaltung erhebliche Wirkungsgradverbesserungen eines Schrauben¬ verdichters möglich sind.
Die Figuren 9 und 10 zeigen die Rotore in Figur 1 in einer weiteren Verdrehstellung. Es ist deutlich erkenn¬ bar, daß die erste und zweite Zylindermantelfläche 50,52 auch beim Eingriff der beiden Rotore unterein¬ ander eine zuverlässige Abdichtung bilden. Beide Zylindermantelflächen 50,52 verlaufen stetig, so daß der zwischen Ihnen sich beim Abwälzen in benachbarten Schnitten bildende Spalt eine gleichbleibende Breite aufweist. Die stetige Zylindermantelfläche 50 definiert mit der Zahnflanke 36 eine Schraubenlinie 56, die eine scharfe Kante darstellt, durch die Strömungsverluste verringert werden.
Die Figuren 11 bis 14 dienen der Erläuterung des Ver¬ fahrens zur Herstellung einer Negativform für den in Figur 1 gezeigten Rotors und der Erläuterung der Her¬ stellung eines Rotors mit einer solchen Negativform.
Figur 11 zeigt einen Meisterrotor 200, der entsprechend dem mit ihm herzustellenden Hauptläufer fünf schrauben¬ förmig gewundene Zähne 218 aufweist. Die Zahnflanken 234,236 weisen eine Kontur auf, die im Bereich zwischen einer von den Zahnflanken 234,236 gebildeten Scheitel¬ linie 244 und dem Wälzkreis 240 des Meisterrotors 200 die gleiche Kontur aufweist wie die Zähne des er¬ findungsgemäßen Hauptläufers 10 und des Hauptläufers 110 gemäß dem Stand der Technik. Da der Meisterrotor 200 wie der Hauptläufer 110 gemäß dem Stand der Technik aus einem Meisterrotor-Rohling spanend hergestellt ist, weist er unterhalb des Wälzkreis 240 Ausrundungen 232 auf.
Ein so hergestellter Meisterrotor wird zunächst in einen Formkasten eingelegt und der zwischen dem Form¬ kasten und dem Meisterrotor liegende Hohlraum wird einem geeigneten Formmaterial ausgefüllt, das an¬ schließend ausgehärtet wird. Im ausgehärteten Zustand bildet das Formmaterial den Negativform-Rohling 260. Nach dem Aushärten des Formmaterials wird der Meister¬ rotor aus dem Negativform-Rohling 260 herausgenommen, so daß ein Hohlraum 262 verbleibt. Die Kontur 264 des Hohlraums 262 weist schraubenförmig gewundene Ver¬ tiefungsbereiche 266 auf, deren Geometrie komplementär zur Geometrie der Zähne eines Hauptläufers ist. Zwischen den Vertiefungsbereichen 266 sind schrauben¬ förmig gewundene Vorsprungsbereiche 268 angeordnet.
Der Negativform-Rohling 260 wird zur weiteren Bear¬ beitung in eine Drehbank eingespannt, in der Erhebungen darstellende Formkuppen 270 der Vorsprungsbereiche 268 durch Ausdrehen entfernt werden. Durch diese Bear¬ beitung erhält man eine Negativform 280, die hohlge¬ formte, schraubenförmig gewundene stetige Zylinder¬ flächen 282 aufweist.
Durch Ausfüllen der in Figur 13 gezeigten Negativform mit einem geeigneten Rotormaterial und durch Aushärten desselben kann der in Figur 14 gezeigte Hauptläufer 290 hergestellt werden, dessen Geometrie mit der des Haupt¬ läufers 10 in Figur 1 übereinstimmt.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Herstellung von Rotoren von Schraubenverdichte in einem Urformverfahren mit folgenden Schritten:
a) Herstellung eines die Form der gewundenen Zähne abbildenden Meisterrotors durch Materialabtrag von einem Meiβterrotor-Rohling,
b) Herstellung eines Negativform-Rohlings durch Abnehmen der Form des Meisterrotors,
c) Herstellung einer Negativform durch Abtrag von Material von dem Negativform-Rohling zur Bildung von Vertiefungen zur Erzeugung von Korrektur¬ bereichen,
d) Abnehmen der Kontur der Negativform durch Aus¬ füllen desselben mit losem Rotormaterial und Aushärten desselben, und
e) Ausformen des Rotors.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei der Herstellung des Meisterrotors erzeugte Ausrundungen im Zahnfußbereich dadurch korrigiert werden, daß im Negativform-Rohling Erhebungen, die durch die Ausrundungen entstanden sind, abgetragen werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß zur Korrektur des Profils des Negativform-Roh¬ lings der Negativform-Rohling ausgedreht wird.
4. Verfahren zur Herstellung einer Negativform eines in einem Schraubenverdichter einzusetzenden Rotors, der mehrere schraubenförmig gewundene Zähne auf¬ weist, mit folgenden Schritten:
a) Herstellung eines die Form der gewundenen Zähne abbildenden Meisterrotors durch Materialabtrag von einem Meisterrotor-Rohling,
b) Herstellung eines Negativform-Rohlings durch Abnehmen der Form des Meisterrotors, und
c) Abtrag von Material von dem Negativfor -Rohling zur Bildung von Vertiefungen zur Erzeugung von Korrekturbereichen.
5. Rotor für einen Schraubenverdichter (16) mit einem urformend hergestellten Schraubenkörper, der mehrere schraubenförmig gewundene Zähne (18) auf¬ weist, dadurch gekennzeichnet, daß im Zahnfußbe¬ reich zwischen den Zähnen (18) stetige Zylinder¬ mantelflächen (50) angeordnet sind, die jeweils mit mindestens einer Zahnflanke (34,36) mindestens eine Schraubenlinie (56) definieren.
6. Rotor nach Anspruch 5, dadurch gekennzeichnet, daß die stetigen Zylindermantelflächen (50) auf dem Wälzkreis (40) des Rotors (10) liegen. Rotor nach Anspruch 5 oder 6, dadurch gekenn¬ zeichnet, daß die Zähne (18) im Querschnitt zwei konvexe Zahnflanken (34,36) aufweisen, die sich entlang einer schraubenförmigen Scheitellinie (44) berühren.
PCT/EP1996/000175 1995-01-26 1996-01-17 Verfahren zur herstellung von rotoren von schraubenverdichtern WO1996022870A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP8522595A JPH10512511A (ja) 1995-01-26 1996-01-17 スクリュー型コンプレッサのためのロータの製造方法
AU44381/96A AU4438196A (en) 1995-01-26 1996-01-17 Process for producing rotors for worm compressors
US08/860,698 US6098266A (en) 1995-01-26 1996-01-17 Method for the production of rotors for screw-type compressors
AT96900590T ATE192062T1 (de) 1995-01-26 1996-01-17 Verfahren zur herstellung von rotoren von schraubenverdichtern
EP96900590A EP0805743B1 (de) 1995-01-26 1996-01-17 Verfahren zur herstellung von rotoren von schraubenverdichtern
DE59605051T DE59605051D1 (de) 1995-01-26 1996-01-17 Verfahren zur herstellung von rotoren von schraubenverdichtern
DK96900590T DK0805743T3 (da) 1995-01-26 1996-01-17 Fremgangsmåde til fremstilling af rotorer til skruekompressorer
GR20000401621T GR3033936T3 (en) 1995-01-26 2000-07-12 Process for producing rotors for worm compressors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19502323.4 1995-01-26
DE19502323A DE19502323C2 (de) 1995-01-26 1995-01-26 Verfahren zur Herstellung von Rotoren von Schraubenverdichtern

Publications (1)

Publication Number Publication Date
WO1996022870A1 true WO1996022870A1 (de) 1996-08-01

Family

ID=7752332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000175 WO1996022870A1 (de) 1995-01-26 1996-01-17 Verfahren zur herstellung von rotoren von schraubenverdichtern

Country Status (13)

Country Link
US (1) US6098266A (de)
EP (1) EP0805743B1 (de)
JP (1) JPH10512511A (de)
CN (1) CN1070105C (de)
AT (1) ATE192062T1 (de)
AU (1) AU4438196A (de)
DE (2) DE19502323C2 (de)
DK (1) DK0805743T3 (de)
ES (1) ES2148724T3 (de)
GR (1) GR3033936T3 (de)
PT (1) PT805743E (de)
RU (1) RU2160182C2 (de)
WO (1) WO1996022870A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772418A (en) * 1995-04-07 1998-06-30 Tochigi Fuji Sangyo Kabushiki Kaisha Screw type compressor rotor, rotor casting core and method of manufacturing the rotor
DE19924616C2 (de) * 1999-05-28 2001-04-19 Bornemann J H Gmbh Verfahren zur Herstellung von Rotoren
US7530217B2 (en) 2005-12-16 2009-05-12 General Electric Company Axial flow positive displacement gas generator with combustion extending into an expansion section
US7726115B2 (en) 2006-02-02 2010-06-01 General Electric Company Axial flow positive displacement worm compressor
US8708643B2 (en) 2007-08-14 2014-04-29 General Electric Company Counter-rotatable fan gas turbine engine with axial flow positive displacement worm gas generator
US7854111B2 (en) 2008-03-07 2010-12-21 General Electric Company Axial flow positive displacement turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1704236A1 (de) * 1967-04-04 1971-05-06 Ondal Gmbh Verfahren fuer die Oberflaechenbearbeitung von Matrizen fuer Handpraegezangen
DE3448025A1 (de) * 1984-06-30 1986-05-28 GTS Gesellschaft für Turbo- und Schraubenverdichtertechnik Kirsten KG, 5090 Leverkusen Verfahren zur herstellung von rotoren fuer schraubenverdichter
DE3506475A1 (de) * 1985-02-23 1986-08-28 Gts Ges Fuer Turbo Und Schraub Verfahren zur herstellung von rotoren fuer schraubenverdichter
DE3903067A1 (de) * 1989-02-02 1990-08-09 Gvm Ges Fuer Schraubenverdicht Rotor fuer verdraengermaschinen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792576A (fr) * 1972-05-24 1973-03-30 Gardner Denver Co Rotor helicoidal de compresseur a vis
DE2234777C3 (de) * 1972-07-14 1980-10-30 Linde Ag, 6200 Wiesbaden Verdichter
US4583927A (en) * 1983-03-16 1986-04-22 Kabushiki Kaisha Kobe Seiko Sho Screw rotor mechanism
DE8434596U1 (de) * 1983-12-14 1985-02-21 Boge Kompressoren Otto Boge Gmbh & Co Kg, 4800 Bielefeld Drehkolbenverdichter
GB8413619D0 (en) * 1984-05-29 1984-07-04 Compair Ind Ltd Screw rotor machines
JPH03271587A (ja) * 1990-03-20 1991-12-03 Honda Motor Co Ltd ねじ式ポンプロータ
DE4035534C2 (de) * 1990-11-08 1996-08-14 Gvm Ges Fuer Schraubenverdicht Verfahren zur Herstellung eines Rotors für Rotationskolbenmaschinen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1704236A1 (de) * 1967-04-04 1971-05-06 Ondal Gmbh Verfahren fuer die Oberflaechenbearbeitung von Matrizen fuer Handpraegezangen
DE3448025A1 (de) * 1984-06-30 1986-05-28 GTS Gesellschaft für Turbo- und Schraubenverdichtertechnik Kirsten KG, 5090 Leverkusen Verfahren zur herstellung von rotoren fuer schraubenverdichter
DE3506475A1 (de) * 1985-02-23 1986-08-28 Gts Ges Fuer Turbo Und Schraub Verfahren zur herstellung von rotoren fuer schraubenverdichter
DE3903067A1 (de) * 1989-02-02 1990-08-09 Gvm Ges Fuer Schraubenverdicht Rotor fuer verdraengermaschinen

Also Published As

Publication number Publication date
EP0805743B1 (de) 2000-04-26
PT805743E (pt) 2000-10-31
AU4438196A (en) 1996-08-14
DE19502323C2 (de) 1997-09-18
EP0805743A1 (de) 1997-11-12
JPH10512511A (ja) 1998-12-02
US6098266A (en) 2000-08-08
RU2160182C2 (ru) 2000-12-10
CN1169126A (zh) 1997-12-31
DK0805743T3 (da) 2000-09-25
DE19502323A1 (de) 1996-08-01
DE59605051D1 (de) 2000-05-31
GR3033936T3 (en) 2000-11-30
CN1070105C (zh) 2001-08-29
ES2148724T3 (es) 2000-10-16
ATE192062T1 (de) 2000-05-15

Similar Documents

Publication Publication Date Title
EP1864740B1 (de) Verfahren und Vorrichtung zur Erzeugung eines Gewindes in wenigstens zwei Arbeitsschritten
DE10101589C1 (de) Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
EP2066468B1 (de) Verfahren und vorrichtung zur oberflächenverdichtung eines sinterteils
EP0721389B1 (de) Verfahren zum fräsen eines entlang einer hauptachse gestreckten turbinenschaufelprofils
EP1340913B1 (de) Zahnradmaschine
EP2750857A1 (de) Extruderschnecke, extruder und verfahren zum herstellen einer extruderschnecke
WO1995014851A1 (de) Einstückige hohle nockenwelle und verfahren zu ihrer herstellung
EP1469959A1 (de) Verfahren und vorrichtung zum herstellen einer zahnstange
WO1996022870A1 (de) Verfahren zur herstellung von rotoren von schraubenverdichtern
DE102008030100B4 (de) Gewindefräser
EP1355758A1 (de) Profilkontur einer schraubenspindelpumpe
DE102016200341A1 (de) Verfahren zur Herstellung einer Balligkeit auf einem Sinterbauteil
EP2530359A1 (de) Exzentrisch zykloide einrastung von zahnprofilen (verschiedene ausführungsformen)
AT509588B1 (de) Verdichtungswerkzeug
DE2234777C3 (de) Verdichter
DD297091A5 (de) Verfahren zum herstellen von profilierten werkstuecken
DE60208520T2 (de) Zahnradpumpe mit Splinefunktion erzeugtem Zahnradprofil
DE102007035493A1 (de) Verfahren zur Herstellung eines Kegelrades mittels Taumelpressens
DE102006028380B4 (de) Werkzeug und Verfahren zur Erzeugung oder Nachbearbeitung eines Gewindes mit Furchflächenaufteilung
WO2021013834A1 (de) Verfahren zum herstellen eines zerspanwerkzeugs aus einem rohling und schleifschnecke zum herstellen eines zerspanwerkzeugs
DE102007015222A1 (de) Bearbeitung von Werkstücken zur Verbesserung der Materialeigenschaften
EP1321202B1 (de) Fertigungsverfahren und Innenhochdruckumformwerkzeug zur Durchführung des Fertigungsverfahrens
DE19740322C1 (de) Verfahren zum Herstellen von Nockenwellen mit Nocken für die Ventilsteuerung von Verbrennungskraftmaschinen, insbesondere Kraftfahrzeugmotoren, sowie entsprechend hergestellte Nockenwelle
WO2019158656A1 (de) Dünnwandige hohlräder mit innen- und aussenverzahnung sowie vorrichtung und verfahren zu deren herstellung
DE2659733A1 (de) Verzahnung mit zylindrischer waelzflaeche

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191593.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CN CZ JP KR PL RO RU US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996900590

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08860698

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1996 522595

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970705079

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996900590

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970705079

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996900590

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970705079

Country of ref document: KR