WO1996018874A1 - Systeme de conduites, en particulier pour le transport de chaleur dans le chauffage a distance - Google Patents

Systeme de conduites, en particulier pour le transport de chaleur dans le chauffage a distance Download PDF

Info

Publication number
WO1996018874A1
WO1996018874A1 PCT/EP1995/004616 EP9504616W WO9618874A1 WO 1996018874 A1 WO1996018874 A1 WO 1996018874A1 EP 9504616 W EP9504616 W EP 9504616W WO 9618874 A1 WO9618874 A1 WO 9618874A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
location
pipe system
resistance
sensor line
Prior art date
Application number
PCT/EP1995/004616
Other languages
German (de)
English (en)
Inventor
Bernd Brandes
Fritz S. Kamkalow
Original Assignee
Bernd Brandes
Kamkalow Fritz S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1995121018 external-priority patent/DE19521018C2/de
Application filed by Bernd Brandes, Kamkalow Fritz S filed Critical Bernd Brandes
Priority to EP95942658A priority Critical patent/EP0797759A1/fr
Priority to AU43860/96A priority patent/AU4386096A/en
Publication of WO1996018874A1 publication Critical patent/WO1996018874A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/165Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means by means of cables or similar elongated devices, e.g. tapes

Definitions

  • Piping systems for the transmission of district heating or other liquid media are known. They usually contain an inner pipe that carries the medium, an outer pipe surrounding the inner pipe at a distance, and filler material in the space between the two pipes for thermal insulation. The filling material is there
  • a conductor consists of nickel chromium (NiCr) and is relatively high-resistance at 5.6 ohms / meter, so it has a high specific resistance.
  • the location of the leak is carried out according to the resistance measurement method by the ohmic resistance between this NiCr conductor and a mederohmigen second conductor, conductive pipe or earth measured and the location of the fault location is determined according to the principle of the unloaded voltage divider.
  • This method is advantageous for construction supervision, enables precise, early location and preferably indicates the source of the error. This known method is abbreviated below
  • the leak is located by measuring the transit time of a pulse that occurs at the
  • the two measurement methods described are based on different principles.
  • the first measuring method is more suitable for less moist fault controllers and has a limit of use in the direction of very damp fault points.
  • the second measuring method is particularly suitable for very moist defects and has a limit of use towards less moist defects. So far, both measuring methods have been used alternatively, depending on the user's requirements.
  • the sensors for the two measuring methods have to meet almost opposite conditions, namely one with low resistance and one with high resistance.
  • a piping system is known (DE 41 24 640 A1) with which the advantages of both measuring methods can be combined.
  • This piping system contains three conductors of different resistances and therefore piping materials.
  • NiCr is used for one conductor and the other two conductors bare copper or insulated copper. There is still no agreement on this system.
  • Runtime location can be useful, it is almost unsuitable for resistance location. But this measuring technique offers
  • the invention has for its object a pipe system with sensors from electrical lines in the space between
  • the invention consists in that an alloy is used as the material of the sensor line, which has such a low temperature coefficient (TK), which has a largely constant temperature coefficient (TK), and which has a resistance which is so small on the one hand that the runtime location can be carried out with the line and, on the other hand, is so large that the resistance location can be carried out.
  • TK low temperature coefficient
  • TK largely constant temperature coefficient
  • the design is selected so that transition resistances (R ⁇ ) have no influence. This is the case if R ⁇ ⁇ R sensor , based on a length of eg 10cm.
  • the invention is based on the knowledge that conductors with a comparatively low resistance value can then be used for the resistance detection if this conductor has a small and largely constant temperature coefficient. In a practical example, this is
  • Material of the sensor conductor is a copper-nickel alloy.
  • the conductor cross section was 1.0 mm 2 .
  • the resistance value for this conductor (CuNi10) was 0.15 Ohm per meter, i.e. about one
  • Resistance wire NiCr 8020 The temperature coefficient for this alloy is about 4x as large as for the resistance wire NiCr 8020 previously used for resistance detection, but is only a tenth of the value previously used for the
  • Runtime location used copper lines For the location of the resistance, this sensor conductor is preferably provided with perforated insulation, because this increases the resolution of the measured values. In the limit case, a bare sensor conductor can also be used.
  • the second wire, the return wire can consist of an insulated copper wire.
  • a return wire with a cross-section that is larger than that of the sensor line, for example 2.5 mm 2 has proven useful for solving the task of creating a system for both location methods. As a result, a favorable resistance proportion of the sensor to the return wire is achieved with respect to the location of the resistance, without assigning the sensor conductor a larger resistance that is desired per se.
  • the embodiment described so far can work with good results in terms of resistance location with line lengths of 1000 m.
  • runtime location it can be used for monitoring for any length.
  • localization is possible for the range from 1000 to 300 meters and fine localization is possible for the range from 300 to 0 meters.
  • Fine localization with runtime localization was previously also provided for a test point every 250 m.
  • the soldering agent required for soldering can be integrated into the stranded material and at the same time used as a soldering and sealing agent.
  • 1 shows the cross section of a district heating pipe with an inner tube, outer tube and sensor
  • Fig. 2 is a resistance measuring bridge with a tube and two sensor lines
  • FIG. 2 shows an insulation measurement for FIG. 2
  • Fig. 4 is a transit time measuring device with a tube and two sensor lines
  • a piping system is shown with the cross section of a district heating line R, the inner tube 1, a
  • Filling filling material 3 that is as dry as possible, e.g. one
  • the sensor 4 is arranged in the filling material 3 and consists of a Cu-Ni alloy with an essentially constant and small temperature coefficient and a resistance value of about 0.15 ohm / m, which is a value that just allows the run time measurement and for the resistance measurement is sufficiently large.
  • Fig. 2 shows a measuring method with location by a
  • a voltage source 5 is connected between the start A of the sensor line 4 and the end E of the return wire 6, both of which are at the end 7 of the source remote
  • a voltage measuring device 8 is connected between the start A of the sensor line 4 and the start of the inner tube 1. In the event of a leak F, a fault resistance RF between sensor line 4 and
  • Inner tube 1 effective. So that the location of the fault resistor can be located precisely, the sensor cable must always be able to be contacted by the moisture, that is to say bare or provided with perforated insulation.
  • the location of the fault can be determined from the resistance values Rl, R2 of the partial lines, the total resistance Rges of the sensor line 4.
  • FIG. 3 shows how the insulation between inner tube 1 and sensor line 4 can be checked by switching the measuring device 8 differently. This does not require a return wire 6.
  • the insulation resistance changes from, for example, 10 MOhm to 10 kOhm, and the voltage indicated by the measuring device 8 changes from 0 volt to 24 volt.
  • a location is shown by a run time measurement. Between the beginning of the inner tube 1 and the beginning A a pulse generator 10 is connected to the sensor line 4.
  • a sensor line 4 suitable for both measuring methods must therefore meet two contradictory requirements.
  • a material is selected with which the requirement profile for the resistance location procedure on the one hand and the requirement profile of the running time procedure on the other hand are satisfactorily fulfilled.
  • This is the case for a sensor conductor made of CuNi10.
  • a conductor made of this alloy has a high-frequency resistance which is sufficiently low for the transit time measurement, in spite of a DC resistance which is higher than that of copper. This is important because in the two measuring methods a distinction must be made between the electrical direct current resistance RDC measured during the resistance location and the effective alternating current resistance RAC, which must be taken into account during the runtime location.
  • the AC resistance RAC is only about one eighth of the corresponding value of a resistance wire.
  • the resistance RAC is reduced to a value which is only slightly above the corresponding value of copper. At least one material can therefore be used which is suitable for the compatible use of the same sensor conductor for both measuring methods.
  • the following table shows the for different materials Resistance values RDC and RAC, whereby on the one hand a solid conductor and on the other hand a strand 30 ⁇ 0.25 was used for the alloy CuNi10. The solid lines had a diameter of 1.5 mm2 for this measurement.
  • the temperature coefficients are for
  • the electrical resistance values for the individual conductors are:
  • CuNi10 has a significantly lower specific resistance than the material NiCr8020 that has been customary for resistance location, this resistance is still sufficiently large against the undesired influence of connection points, supply lines and the like. Possibly. Undesired influences that still remain can be further reduced by appropriate selection of the cross sections.
  • the temperature coefficient of CuNi10 is larger than that of NiCr ⁇ 020, but is still in the same order of magnitude.
  • CuNi10 and alloys with similar electrical data in the form of solid wires or strands are suitable as sensor conductors for compatible use in both measuring methods.
  • Sensors with stranded conductors should be soaked with a suitable material to achieve long-term water tightness.
  • the material can be a solder that is required anyway.
  • Insulation should be temperature resistant (e.g. PTFE).
  • sensors can be provided with pores and / or closed conductive insulation (e.g. carbon doped).
  • one type of conductor can be used for all types of measuring methods with sensor conductors.
  • the measurement can be selected according to the respective degree of moisture of the possible error and the accuracy of the location can be improved. This also includes the use of both measuring methods for one fault location in order to minimize the costs of a possible repair. Damage is generally more expensive than the cost of the materials to be replaced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

La présente invention concerne un système de conduites comportant un tuyau intérieur (1) transportant un fluide, un tuyau extérieur (2) entourant le tuyau intérieur à une certaine distance ainsi qu'une matière de remplissage située dans l'espace compris entre les deux tuyaux, aux fins d'isolation thermique, et comportant aussi un système pourvu d'un câble capteur (4) pour détecter et localiser les fuites. La matière constituant le câble capteur est un alliage dont, d'une part, le coefficient de température est faible et sensiblement constant et dont la résistance est suffisamment faible pour que le câble capteur permette de procéder à une localisation de fuites par mesure du temps de passage et qui, d'autre part, a une résistance suffisamment élevée pour qu'un procédé de localisation de fuites par la résistance puisse être appliqué. Pour réaliser le câble capteur, la matière préférentielle est un alliage de cuivre et de nickel du type CuNi10.
PCT/EP1995/004616 1994-12-13 1995-11-28 Systeme de conduites, en particulier pour le transport de chaleur dans le chauffage a distance WO1996018874A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95942658A EP0797759A1 (fr) 1994-12-13 1995-11-28 Systeme de conduites, en particulier pour le transport de chaleur dans le chauffage a distance
AU43860/96A AU4386096A (en) 1994-12-13 1995-11-28 Pipeline system, in particular for conveying remote heat

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DEP4444332.3 1994-12-13
DE4444332 1994-12-13
DE19501941.5 1995-01-24
DE19501941 1995-01-24
DE19505898 1995-02-21
DE19505898.4 1995-02-21
DE1995121018 DE19521018C2 (de) 1995-06-12 1995-06-12 Rohrleitungssystem, insbesondere für die Übertragung von Fernwärme
DE19521018.2 1995-06-12

Publications (1)

Publication Number Publication Date
WO1996018874A1 true WO1996018874A1 (fr) 1996-06-20

Family

ID=27436110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/004616 WO1996018874A1 (fr) 1994-12-13 1995-11-28 Systeme de conduites, en particulier pour le transport de chaleur dans le chauffage a distance

Country Status (3)

Country Link
EP (1) EP0797759A1 (fr)
AU (1) AU4386096A (fr)
WO (1) WO1996018874A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041581A1 (fr) * 1998-02-16 1999-08-19 Inso Von Jeinsen Dispositif pour la surveillance de tuyaux de conduite de fluides
EP2112491A1 (fr) 2008-04-26 2009-10-28 JR-ISOTRONIC GmbH Dispositif, système et procédé de détection et d'orientation d'inétanchéités
CN106123109A (zh) * 2016-08-05 2016-11-16 倪晨钧 一种管道监测系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0060552A2 (fr) * 1981-03-16 1982-09-22 G + H MONTAGE GmbH Dispositif de contrôle d'un système de canalisation, en particulier canalisation isolée de chauffage à grande distance
DE3626999A1 (de) * 1986-08-08 1988-02-11 Kabelmetal Electro Gmbh Vorrichtung zur laufenden ueberwachung einer fernwaermeleitung
EP0257575A1 (fr) * 1986-08-21 1988-03-02 Röro Gesellschaft für Isolier-und Fernheiztechnik mbH Système de tuyauterie et tuyaux isolées thermiquement, par exemple pour tuyauteries du chauffage à distance
DE4124640A1 (de) * 1991-07-25 1993-01-28 Bernd Brandes Rohrleitungssystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0060552A2 (fr) * 1981-03-16 1982-09-22 G + H MONTAGE GmbH Dispositif de contrôle d'un système de canalisation, en particulier canalisation isolée de chauffage à grande distance
DE3626999A1 (de) * 1986-08-08 1988-02-11 Kabelmetal Electro Gmbh Vorrichtung zur laufenden ueberwachung einer fernwaermeleitung
EP0257575A1 (fr) * 1986-08-21 1988-03-02 Röro Gesellschaft für Isolier-und Fernheiztechnik mbH Système de tuyauterie et tuyaux isolées thermiquement, par exemple pour tuyauteries du chauffage à distance
DE4124640A1 (de) * 1991-07-25 1993-01-28 Bernd Brandes Rohrleitungssystem

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041581A1 (fr) * 1998-02-16 1999-08-19 Inso Von Jeinsen Dispositif pour la surveillance de tuyaux de conduite de fluides
EP2112491A1 (fr) 2008-04-26 2009-10-28 JR-ISOTRONIC GmbH Dispositif, système et procédé de détection et d'orientation d'inétanchéités
CN106123109A (zh) * 2016-08-05 2016-11-16 倪晨钧 一种管道监测系统
CN106123109B (zh) * 2016-08-05 2022-02-15 倪晨钧 一种管道监测系统

Also Published As

Publication number Publication date
EP0797759A1 (fr) 1997-10-01
AU4386096A (en) 1996-07-03

Similar Documents

Publication Publication Date Title
AT501758B1 (de) Verfahren zur ortung von leckagen in rohren
DE3535918C2 (fr)
DE2413345C2 (de) Isoliertes Rohrleitungssystem, insbesondere ein unterirdisches Rohrleitungssystem für Fernheizung
EP0533960B1 (fr) Dispositif et procédé pour la détection des fuites dans les canalisations doubles mures pour des milieux fluides
DE3327762A1 (de) Verfahren und vorrichtung fuer die inspektion von ferromagnetischen elementen
DE3930530C2 (fr)
DE19521018C2 (de) Rohrleitungssystem, insbesondere für die Übertragung von Fernwärme
AT504212B1 (de) Verfahren zur ortung von rohrleitungsleckagen
DE19519650C2 (de) Verfahren zur Ortung undichter Stellen in Rohrleitungen und Rohrleitungssystem, insbesondere für die Übertragung von Fernwärme
WO2009046751A1 (fr) Procédé pour déterminer la répartition de température le long d'un conducteur
EP2112491B1 (fr) Dispositif, système et procédé de détection et de localisation d'étanchéïtés
DE4124640C2 (de) Rohrleitungssystem
EP0357631B1 (fr) Dispositif pour detecter et localiser des fuites dans une canalisation vehiculant un milieu humide
WO1996018874A1 (fr) Systeme de conduites, en particulier pour le transport de chaleur dans le chauffage a distance
DE19527972B4 (de) Messschaltung unter Verwendung eines Messfühlers zum Erfassen und Orten von Wassereinbrüchen
DE8332021U1 (de) Messsonde zum induktiven messen der durchlfussgeschwindigkeit von leitenden fluessigkeiten in rohren oder gerinnen
DE1814857A1 (de) Anordnung zur Signalisierung von Leckstellen in einer Rohrleitung zum Fluessigkeitstransport
DE102016014815A1 (de) Zählereinrichtung, Zählersystem und Verfahren zum Betrieb einer Zählereinrichtung
DE2453215A1 (de) Digital-elektrisches leckmelde- und leckortungssystem
WO2021116155A1 (fr) Dispositif et procédé de détermination d'une répartition de température d'une ligne de capteur
EP0257575A1 (fr) Système de tuyauterie et tuyaux isolées thermiquement, par exemple pour tuyauteries du chauffage à distance
DE102019006730A1 (de) Messanordnung zur Leckagedetektion an einem von einem Fluid durchströmbaren Rohr und Verfahren zur Leckagedetektion
DE19515068A1 (de) Anordnung zur TE-Detektion in Hochspannungskabeln und in deren Verbindungselementen
DE102018132600A1 (de) Magnetisch-induktive Durchflussmesssonde, Messaufbau und Verfahren zur Ermittlung eines Durchflusses und/oder eines Einbauwinkels
DE10257330A1 (de) Messverfahren zur Früherkennung von eingedrungener Flüssigkeit in lang gestreckten Betriebsmitteln

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995942658

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995942658

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1995942658

Country of ref document: EP