WO2009046751A1 - Procédé pour déterminer la répartition de température le long d'un conducteur - Google Patents

Procédé pour déterminer la répartition de température le long d'un conducteur Download PDF

Info

Publication number
WO2009046751A1
WO2009046751A1 PCT/EP2007/060437 EP2007060437W WO2009046751A1 WO 2009046751 A1 WO2009046751 A1 WO 2009046751A1 EP 2007060437 W EP2007060437 W EP 2007060437W WO 2009046751 A1 WO2009046751 A1 WO 2009046751A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
pulse
temperature distribution
temperature
along
Prior art date
Application number
PCT/EP2007/060437
Other languages
German (de)
English (en)
Inventor
Ken Haffner
Original Assignee
Abb Research Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Research Ltd filed Critical Abb Research Ltd
Priority to PCT/EP2007/060437 priority Critical patent/WO2009046751A1/fr
Publication of WO2009046751A1 publication Critical patent/WO2009046751A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/145Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising elements for indicating or detecting the rope or cable status
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2301/00Controls
    • D07B2301/35System output signals
    • D07B2301/3516Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K2007/166Electrical time domain reflectometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2213/00Temperature mapping

Definitions

  • the invention relates to a method for determining the temperature distribution along a conductor according to the preamble of claim 1. Furthermore, the invention relates to a method for determining the temperature distribution in an electrical machine of electrical engineering according to claim 11, a method for determining the temperature distribution in a transformer according to claim 12 and a method for determining the temperature in a transmission cable in a power distribution network according to claim 13.
  • the temperature or temperature distribution along a glass fiber can be determined by means of Distributed Temperature Sensing (DTS) .
  • DTS Distributed Temperature Sensing
  • the process of temperature measurement along the glass fiber is based on the Raman scattering of a coupling device coupled into the glass fiber from a coupling unit If the temperature changes at a specific location along the optical fiber, the light pulse is scattered back here which can be measured by means of a measuring unit (a Raman reflectometer) and the response light pulse determine the location along the optical fiber at which the light pulse was scattered For example, from the response light pulse, the temperature at the location where scattering occurred can be determined.
  • DTS Distributed Temperature Sensing
  • the temperature distribution along the glass fiber can be determined in such a device.
  • a glass fiber can be incorporated parallel to the electrical conductors in a cable. Consequently, it is possible to determine the temperature along the glass fiber in a cable.
  • the object of the invention is to provide an alternative method for determining the temperature distribution along a conductor. This object is achieved according to the invention by means of the method according to claim 1.
  • an electrical pulse is coupled into the electrical conductor by means of a coupling unit and a measuring unit measures a response pulse caused by the pulse.
  • a measuring unit measures a response pulse caused by the pulse.
  • the temperature distribution along the conductor can also be determined in its immediate surroundings. This allows not only the temperature distribution of the Conductor but also of the material surrounding the conductor can be determined, in particular, the
  • FIG. 1 shows a first embodiment in which an electrical conductor is passed through an oven. At one end of the conductor is arranged an apparatus for coupling a signal into the conductor and for measuring the signal and the response signal caused thereby; FIG. 2 measurement results measured by means of the apparatus shown in FIG. 1; FIG.
  • FIG. 3 shows a partial region of the measurement results shown in FIG. 2, wherein the ordinate is shown enlarged by approximately a factor of 50;
  • Figure 4 is a graph of amplitude differences of measurements at 0 0 C, 40 0 C and 80 ° C for measurement at 20 0 C and an interpolated straight line which indicates the amplitude difference as a function of temperature.
  • Fig. 5 branches an electrical machine, in particular a generator in which by means of the inventive Process the temperature along the conductors Ll, L2, L3 is monitored.
  • FIG. 1 A first embodiment is shown in Fig. 1, which comprises an electrical conductor 10, a furnace 12 and a
  • Apparatus 14 shows.
  • the apparatus 14 has on the one hand
  • the coupling and / or decoupling can either be done directly in or on the conductor 10 or indirectly, for example via a coupling coil.
  • AI's conductor 10 arrives in the first embodiment
  • Coaxial cable for use. This points to the side to the
  • the conductor 10 has a substantially rectilinear first section 24 of about 3 m
  • This length corresponds to a first signal transit time of di / 2 in the conductor 10.
  • the second and third sections 26, 28 are not straight.
  • the measurement of the temperature distribution along the conductor 10 is performed as follows. All numerical data relate only to the values used for measurements in the first embodiment. During the measurements, the structure was not changed, in particular, the positioning of the conductor 10 was not changed. As a signal, the coupling-in unit 16 sends out a pulse 18. The pulse 18 rises rapidly to its maximum within 20 ps (pico-seconds). Such a signal is known as a step function or Heavysidefunktion. The rise of the pulse 18 can also be done a little faster or slower.
  • the pulse 18 will be at least partially at each local dispersion is scattered and / or reflected, whereby on the one hand the pulse 18 further propagating away in the direction of the coupling unit 16 is somewhat attenuated and, on the other hand, a scattered signal, a response pulse 20, is generated. How much the pulse 18 is scattered and / or reflected generally depends on various factors, such as changes in the geometry along the conductor 10 or transversely to the conductor 10, local changes in the dielectric constant, the ohmic resistance and / or the inductance of the conductor 10. Such changes are also caused by a change in temperature along the conductor 10 (temperature gradient along the conductor 10). The location where the pulse 18 was scattered may be determined by the duration of the pulse 18 and the response pulse 20 caused by the pulse 18.
  • the response pulses 20 generated due to individual local changes are superimposed on the response signal 20 '. Since the response pulse 20, which is scattered only once, is already very weak in comparison to the pulse 18, multiple-scattered pulses or response pulses will not be discussed further. Of course, multiple scatters occur. In the following, therefore, the signal running in the direction of the open end is referred to as the pulse 18 and the scattered signal, which runs to the coupling-in unit 16, as the response signal 20.
  • FIGS. 2 and 3 show the time profile of the measuring signals 30, 31, 32, 33 measured by the measuring unit 16 ', which is in each case a superimposition of the pulse 18 with the response signal 20'.
  • the ordinate indicates the real amplitude in volts.
  • the measurements for temperatures of 0 0 C, 20 0 C, 40 ° C and 80 ° C within the furnace are plotted on top of each other, the measurement signal 30 at 0 0 C (in Fig.
  • FIG. 3 shows an enlarged detail from FIG In addition to measuring the voltage as a function of time, it is also possible to measure the impedance or another suitable measured variable of the conductor as a function of time.
  • the measurement section between times t 2 and t 5 corresponds to the second conductor section 26 within the furnace 12.
  • the times ti, t 2 , t 3 , t 4 , t 5 and t ⁇ used in the following refer to in time consecutive times.
  • the measurement signal 31 for 20 0 C is briefly discussed.
  • the response pulse 20 caused by the plug 22 in the measurement signal 31 can be seen.
  • the end of the conductor 10 in the measuring signal 31 can be seen, since the pulse 18 is completely reflected at the open end of the conductor 10 formed as a coaxial cable.
  • FIG. 3 shows a detail of FIG. 2, in which the ordinate is enlarged by a factor of approximately 50. It can clearly be seen that between the time t 2 and the time t 5, the measuring signals 30, 31, 32, 33 for the temperatures 0 ° C, 20 ° C, 40 0 C and 80 ° C are not congruent. Compared to the measurement signal 31 at 20 0 C, the measurement signals 30, 32, 22 at 0 ° C, 40 ° C and 80 ° C only in the section between the time t 2 and the time ts on a different course of the amplitude.
  • the amplitude of the measurement signal 30 at 0 0 C has in the section between the times t 2 and t 5 in comparison with the measurement signal 31 at 20 ° C has a smaller amplitude.
  • the measurement at 0 0 C on average, to 0.002 V smaller amplitude than the measurement signal 31 at 20 0 C.
  • the measurement signal 32 at 40 ° C comprises Compared to the measurement signal 31 at 20 0 C on a larger amplitude.
  • the measurement signal 33 at 80 0 C a greater amplitude than the measurement signal 32 at 40 0 C, between times t 2 and t.
  • the measurement signal 32 at 40 ° C has an average of 0.0025 V greater amplitude and the measurement signal 33 at 80 0 C has an average of 0.0053 V greater amplitude than the amplitude of measured at 20 0 C measurement signal 31 in the measuring section.
  • Fig. 4 The differences of the average amplitudes of the measuring signals 30, 32, 33 at 0 ° C, 40 ° C and 80 ° C in comparison to the measuring signal 31 at 20 0 C in the measuring section are shown in Fig. 4 as a function of temperature. As Fig. 4 to can be seen, there is essentially a linear dependence between the amplitude of the measurement signal and the temperature.
  • the location of the measuring section on the conductor 10 can be determined on the basis of the signal propagation time in the conductor 10.
  • each location (point) along the conductor 10 can be uniquely identified with a time along the time axis of the measurement.
  • the temperature along the conductor 10 can be determined.
  • a ratio of the amplitude change of a measurement signal to the temperature change in degrees Celsius or another temperature scale is determined.
  • two reference measurements - a first reference measurement for temperature calibration and a second reference measurement for temperature calibration - measured at a known temperature distribution along the conductor 10, wherein the temperature between the first reference measurement and the second reference measurement at least in a region of the conductor 10, for example within the oven 12 - differs.
  • the first reference measurement is preferably carried out at a constant temperature along the entire conductor 10-for example, the measurement signal 31 at 20 ° C.
  • the second reference measurement By subtracting the second reference measurement from the first reference measurement (or conversely), one obtains a direct ratio of amplitude change to temperature change, it being assumed here that there is a linear relationship between the temperature and the amplitude of the measurement signal. Instead of a subtraction, a division can also be used. For the method described here, it is assumed that the amplitude change due to a temperature change along the entire conductor is substantially constant.
  • a reference measurement is subtracted.
  • This reference measurement is measured at a known temperature distribution along the conductor 10 and the same positioning of the conductor 10 as the measurement of the measurement signal to determine the unknown temperature distribution along the conductor 10.
  • the above-mentioned first reference measurement for temperature calibration can be used as such a reference measurement.
  • the reference measurement is subtracted from the measurement signal, whereby a temperature curve is obtained which indicates a relative temperature profile along the conductor 10.
  • the temperature can be determined in degrees Celsius ( 0 C) or another temperature scale. If after the calibration by means of the first reference measurement for temperature calibration and the second reference measurement for temperature calibration, the conductor 10 is moved or brought into another position, the reference measurement referred to in the previous paragraph must be re-measured; it is not possible to use the first reference measurement for temperature calibration. A new reference measurement for the method described in the previous paragraph must be measured after each movement of the conductor 10.
  • the time axis of the measurement curve is directly related to a location along the conductor 10 over the signal transit time. Consequently, the temperature distribution along the conductor 10 can be determined.
  • the transverse plane is the plane which is at a given point of the conductor 10 at right angles to the direction of the conductor 10 at this point. Since different frequencies of the frequency spectrum of the pulse 18 due to the skin effect have a spatial distribution in the radial direction to the conductor 10, due to the amplitude ratio of the frequency distribution on the temperature distribution within a transverse plane can be concluded.
  • a transmission cable in particular a medium voltage cable, high voltage cable or extra high voltage cable is used as a conductor 10, for example, an im
  • the inventive method for determining the temperature distribution along an electrical conductor for determining the temperature distribution along electrical conductors in electrical machines such as generators or motors is used.
  • generator bars are insulated from the stator or rotor by means of a dielectric such as a corona shielding tape.
  • a dielectric such as a corona shielding tape.
  • the temperature distribution along the electrical conductors in electrical machines can be determined, whereby likewise the temperature distribution of the insulating material surrounding the electrical conductors can be monitored.
  • the pulse 18 is coupled into one of the conductors L1, L2, L3 of an electrical machine.
  • a third embodiment (not shown) is used by means of the inventive method for determining the temperature distribution along a conductor for temperature determination in a transformer, in particular in a high voltage transformer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

L'invention concerne un procédé pour déterminer la répartition de température le long d'un conducteur électrique. Une impulsion électrique (18) est injectée dans le conducteur (10) au moyen d'une unité d'injection (16) destinée à injecter une telle impulsion (18). Un signal de réponse (20') est généré sur la base de l'impulsion. Au moyen d'une unité de mesure, on mesure l'allure dans le temps de l'impulsion et du signal de réponse. A partir de la mesure de l'impulsion et du signal de réponse, on peut déterminer la répartition de température le long du conducteur (10).
PCT/EP2007/060437 2007-10-02 2007-10-02 Procédé pour déterminer la répartition de température le long d'un conducteur WO2009046751A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/060437 WO2009046751A1 (fr) 2007-10-02 2007-10-02 Procédé pour déterminer la répartition de température le long d'un conducteur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/060437 WO2009046751A1 (fr) 2007-10-02 2007-10-02 Procédé pour déterminer la répartition de température le long d'un conducteur

Publications (1)

Publication Number Publication Date
WO2009046751A1 true WO2009046751A1 (fr) 2009-04-16

Family

ID=39496103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/060437 WO2009046751A1 (fr) 2007-10-02 2007-10-02 Procédé pour déterminer la répartition de température le long d'un conducteur

Country Status (1)

Country Link
WO (1) WO2009046751A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120793A1 (fr) * 2010-03-30 2011-10-06 Robert Bosch Gmbh Surveillance de la modification de température d'un câble de charge
WO2015091552A1 (fr) 2013-12-20 2015-06-25 Leoni Kabel Holding Gmbh Agencement de mesure et procédé de mesure de température, ainsi que câble de détection destiné audit agencement de mesure
EP3156775A1 (fr) * 2015-10-16 2017-04-19 Kidde Technologies, Inc. Appareil et procédé permettant de tester des sondes thermiques linéaires
DE102017001054A1 (de) 2017-02-03 2018-08-09 Hannes Nordmann Messanordnung und Verfahren für ortsaufgelöste Mehrfach-Temperaturmessung entlang eines Pfades.
DE102018130261A1 (de) 2018-11-29 2020-06-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur faseroptischen Temperaturmessung in einem als Hohlfaser ausgebildeten Lichtwellenleiter, Temperatursensor, Kühlsystem und Ladesystem
WO2020126126A1 (fr) * 2018-12-21 2020-06-25 Ebm-Papst Mulfingen Gmbh & Co. Kg Procédé de surveillance de la température d'un enroulement de moteur
WO2021116155A1 (fr) * 2019-12-11 2021-06-17 Leoni Kabel Gmbh Dispositif et procédé de détermination d'une répartition de température d'une ligne de capteur

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530444A1 (de) * 1974-07-10 1976-01-29 Shell Int Research Verfahren und vorrichtungen zum nachweisen von temperaturabweichungen
US3938385A (en) * 1974-05-24 1976-02-17 The United States Of America As Represented By The Secretary Of The Navy Distributed temperature sensor
US4914394A (en) * 1986-07-31 1990-04-03 Electromagnetic Techology, Inc. Pocket-size time domain reflectometer
US5185594A (en) * 1991-05-20 1993-02-09 Furon Company Temperature sensing cable device and method of making same
US5648724A (en) * 1996-02-08 1997-07-15 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Metallic time-domain reflectometry roof moisture sensor
US6285195B1 (en) * 1998-03-16 2001-09-04 David Needle Time domain reflectometry apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938385A (en) * 1974-05-24 1976-02-17 The United States Of America As Represented By The Secretary Of The Navy Distributed temperature sensor
DE2530444A1 (de) * 1974-07-10 1976-01-29 Shell Int Research Verfahren und vorrichtungen zum nachweisen von temperaturabweichungen
US4023412A (en) * 1974-07-10 1977-05-17 Shell Oil Company Method and apparatus for detecting temperature variation utilizing the Curie point of a ferromagnetic material
US4914394A (en) * 1986-07-31 1990-04-03 Electromagnetic Techology, Inc. Pocket-size time domain reflectometer
US5185594A (en) * 1991-05-20 1993-02-09 Furon Company Temperature sensing cable device and method of making same
US5648724A (en) * 1996-02-08 1997-07-15 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Metallic time-domain reflectometry roof moisture sensor
US6285195B1 (en) * 1998-03-16 2001-09-04 David Needle Time domain reflectometry apparatus and method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120793A1 (fr) * 2010-03-30 2011-10-06 Robert Bosch Gmbh Surveillance de la modification de température d'un câble de charge
CN102811882A (zh) * 2010-03-30 2012-12-05 罗伯特·博世有限公司 对充电电缆上温度变化的监控
US10488273B2 (en) 2013-12-20 2019-11-26 Leoni Kabel Holding Gmbh Measuring arrangement and temperature-measuring method, and sensor cable for such a measuring arrangement
DE102013227051A1 (de) * 2013-12-20 2015-06-25 Leoni Kabel Holding Gmbh Messanordnung und Verfahren zur Temperaturmessung sowie Sensorkabel für eine derartige Messanordnung
DE102013227051B4 (de) 2013-12-20 2017-03-30 Leoni Kabel Holding Gmbh Messanordnung und Verfahren zur Temperaturmessung sowie Sensorkabel für eine derartige Messanordnung
WO2015091552A1 (fr) 2013-12-20 2015-06-25 Leoni Kabel Holding Gmbh Agencement de mesure et procédé de mesure de température, ainsi que câble de détection destiné audit agencement de mesure
EP3156775A1 (fr) * 2015-10-16 2017-04-19 Kidde Technologies, Inc. Appareil et procédé permettant de tester des sondes thermiques linéaires
CN107036735A (zh) * 2015-10-16 2017-08-11 基德科技公司 用于测试线性热传感器的设备和方法
US9976925B2 (en) 2015-10-16 2018-05-22 Kidde Technologies, Inc. Apparatus and method for testing linear thermal sensors
DE102017001054A1 (de) 2017-02-03 2018-08-09 Hannes Nordmann Messanordnung und Verfahren für ortsaufgelöste Mehrfach-Temperaturmessung entlang eines Pfades.
DE102018130261A1 (de) 2018-11-29 2020-06-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur faseroptischen Temperaturmessung in einem als Hohlfaser ausgebildeten Lichtwellenleiter, Temperatursensor, Kühlsystem und Ladesystem
WO2020126126A1 (fr) * 2018-12-21 2020-06-25 Ebm-Papst Mulfingen Gmbh & Co. Kg Procédé de surveillance de la température d'un enroulement de moteur
CN113167661A (zh) * 2018-12-21 2021-07-23 依必安派特穆尔芬根有限两合公司 监测电动机绕组温度的方法
WO2021116155A1 (fr) * 2019-12-11 2021-06-17 Leoni Kabel Gmbh Dispositif et procédé de détermination d'une répartition de température d'une ligne de capteur

Similar Documents

Publication Publication Date Title
DE102013227051B4 (de) Messanordnung und Verfahren zur Temperaturmessung sowie Sensorkabel für eine derartige Messanordnung
DE2404223C3 (de) Verfahren zur Messung der elektrischen Ladung von Teilentladungen und zur Ortung von Fehlerstellen in der Isolierung von isolierten Leitern
EP2623999B1 (fr) Procédé de localisation d'une faute dans un câble de test et dispositif correspondant
WO2009046751A1 (fr) Procédé pour déterminer la répartition de température le long d'un conducteur
EP2930522B1 (fr) Procédé et dispositif de diagnostic à résolution spatiale
DE19819219C1 (de) Verfahren und Vorrichtung zur Überwachung einer Elektrodenleitung einer bipolaren Hochstpannungs-Gleichstrom-Übertragungs-Anlage
EP3599472B1 (fr) Procédé et dispositif de détection des paramètres d'isolation
WO2018046465A1 (fr) Procédé et dispositif de mesure pour vérifier un harnais de câbles
EP3472586B1 (fr) Dispositif, conduite d'alimentation pour un tel dispositif, câble de détecteur et procédé de torsiométrie
EP0810445B1 (fr) Procédé pour la détermination de l'efficacité du blindage d'une portion de cable blindé
WO2018196926A1 (fr) Dispositif de contrôle et procédé de mesure d'impédance à résolution spatiale de câbles de données pour un véhicule
DE102017108954A1 (de) Prüfvorrichtung und verfahren zur impedanzmessung von datenkabeln für ein fahrzeug
DE19521018A1 (de) Rohrleitungssystem, insbesondere für die Übertragung von Fernwärme
DE60131368T2 (de) Verfahren und vorrichtung zur überwachung eines telekommunikationskabels
EP3462195A1 (fr) Dispositif de vérification et procédé de vérification destinés à vérifier un câble de données pour un véhicule automobile à l'aide d'une source de courant constant
DE102019134029B4 (de) Vorrichtung und Verfahren zum Ermitteln einer Temperaturverteilung einer Sensorleitung
DE3237895A1 (de) Kabelfehler-ortungsverfahren fuer unterbrechungen mit feuchtigkeitskompensation
EP1001270B1 (fr) Procédé pour tester une connexion à la terre
DE102010013103B4 (de) Vorrichtung und Verfahren zur Diagnose von Messobjekten unter Verwendung einer Messspannung
DE102009015280A1 (de) Vorrichtung zur Diagnose von Messobjekten unter Verwendung einer Messspannung
DE19515068A1 (de) Anordnung zur TE-Detektion in Hochspannungskabeln und in deren Verbindungselementen
DE4425551A1 (de) Meßgerät zum Messen des Verlaufs der charakteristischen Impedanz entlang einem Kabel
DE102017212476B4 (de) Kabel mit Mantelanordnung zur Biegungserkennung, Anordnung zur Messung einer Biegung eines Kabels und Verfahren zur Messung einer Biegung eines Kabels
EP4369008A1 (fr) Procédé et agencement de circuit électrique pour déterminer sélectivement par branche des variables résistives et capacitives d'isolation dans un système d'alimentation électrique ramifié et sans mise à la terre
EP0797759A1 (fr) Systeme de conduites, en particulier pour le transport de chaleur dans le chauffage a distance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07820819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07820819

Country of ref document: EP

Kind code of ref document: A1