WO1996016436A1 - Method of making a chemical-mechanical polishing slurry and the polishing slurry - Google Patents

Method of making a chemical-mechanical polishing slurry and the polishing slurry Download PDF

Info

Publication number
WO1996016436A1
WO1996016436A1 PCT/US1995/013919 US9513919W WO9616436A1 WO 1996016436 A1 WO1996016436 A1 WO 1996016436A1 US 9513919 W US9513919 W US 9513919W WO 9616436 A1 WO9616436 A1 WO 9616436A1
Authority
WO
WIPO (PCT)
Prior art keywords
cmp
slurry
surfactant
abrasive particles
ferric salt
Prior art date
Application number
PCT/US1995/013919
Other languages
English (en)
French (fr)
Inventor
Steven C. Avanzino
Christy Mei-Chu Woo
Diana M. Schonauer
Peter Austin Burke
Original Assignee
Advanced Micro Devices, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices, Inc. filed Critical Advanced Micro Devices, Inc.
Priority to EP95938941A priority Critical patent/EP0792515A1/de
Publication of WO1996016436A1 publication Critical patent/WO1996016436A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment

Definitions

  • a polishing slurry composition and its method of making for planarization of silicon semiconductor wafers by mechanical polishing of the wafer More particularly,
  • composition for polishing a wafer having tungsten lines and vias through silicon dioxide dielectric layers where the slurry has a high removal rate selectivity for the tungsten in relation to the silicon dioxide removal rate.
  • Integrated circuit complexity has continued to evolve placing increasingly more demanding speci ications on the processes used in their manufacture.
  • the requirement for increasing the density of active devices on an individual chip has escalated, the requirement for greater flatness, over long distance and short distance, on the surfaces, top and bottom, of the wafer has also evolved.
  • a flat surface is desirable for several reasons. Flatness is a requirement for cooperation with the optical focusing characteristics of optical stepper devices. As the optical lens requirements for increased resolution has increased, the depth of field of the lens has decreased. Also, attachment of the interconnection metallization to their underlayer is improved if the metal is not required to pass over abrupt underlying steps. In addition, flatness improves ability to fill via holes and lines through apertures in the dielectric.
  • CMP chemical-mechanical polishing
  • CMP enhances the removal of surface material over large distances and short distances by simultaneously abrading the surface while a chemical etchant selectively attacks the surface.
  • CMP is becoming a preferred method of planarizing tungsten interconnects, vias and contacts.
  • CMP tungsten processing has shown significantly improved process windows and defect levels over standard tungsten dry etch-back processing.
  • One significant advantage of CMP tungsten processing is that it has a highly selective polish rate for tungsten as compared to the dielectric. This selectivity allows for over-polishing while still achieving a flat tungsten
  • a feature of this invention is that it provides a stable polish rate over a wide
  • FIG. 2 is a normalized plot of removal rate for various wt% of Fe(NO 3 ) 3 •
  • FIG. 3 is a chart depicting the average total defect count for slurries made by different mixing sequences.
  • FIG. 4 is a chart depicting the oxide removal rate and tungsten selectivity for different slurry batches.
  • FIG. 5 is chart of tungsten removal rate and uniformity for different ferric salt oxidizers.
  • FIG. 6 is a graph of the general shape of the change in defect count as a function of aging for the slurry of this invention.
  • Our slurry comprises abrasive particles of a selected diameter, a ferric salt oxidizer and a suspension agent. We have also discovered that it is beneficial to follow an order of adding and of mixing the slurry components for optimum results.
  • the suspension agent should be mixed thoroughly with the abrasive particle aqueous concentrate before adding diluted oxidizer up to the final volume.
  • planarization results can be still further improved if the completely mixed slurry is allowed to age for one day or more before being used in that scratch count is still further diminished. While one day of aging improves the scratch results, significant further improvement is obtained with longer aging of more than three days
  • the abrasive particles can be any of the commonly used abrasives such as alumina ( Al 2 O 3 ), silicon carbide (SiC), Ceria (CeO 2 ), silicon nitride (Si 3 N 4 ) and silicon dioxide (SiO 2 ).
  • alumina Al 2 O 3
  • SiC silicon carbide
  • CeO 2 Ceria
  • Si 3 N 4 silicon nitride
  • SiO 2 silicon dioxide
  • the median diameter of the prior art slurry particles are 0.400 microns, but for our slu ⁇ y we prefer a median particle size of less than 0.4 microns, preferably 0.220 microns.
  • the preferred distribution of particle size is much tighter than in the prior art also.
  • Our preferred distribution is a one sigma deviation of 0.050 microns or less. We have determined through experimentation that both of these dimensions are important to
  • the particle sizes used in prior CMP slurries were in the range of 0.4 to 0.7 micron diameter or larger with little attention to the tightness of the distribution.
  • the preferred oxidizer is a ferric salt, selected from the group consisting of Fe(NO 3 ) 3 • 9H,O, FeCl 3 • 6H 2 O, Fej(SO 4 ) 3 • 5H 2 O, and FeNH 4 (SO 4 ) 2 • 12H 2 O.
  • the suspension agent is preferably an aqueous based surfactant to improve the colloidal behavior of the abrasive particles in the H 2 O system. For the purposes of this
  • the suspension agent can also be formulated from the following classes: 1 ) glycols such as ethylene glycol, propylene glycol and glycerol;
  • polyethcrs such as polyethylene glycol
  • the oxidizer component has other members of the class. Representative
  • Fe (III) compounds such as the following: Ferric chloride hexahydrate, FeCl, • 6H,O
  • Dummy Wafers Tungsten Dummy wafers identical to test monitors described above, except for the W thickness pre- measurement. Oxide dummv wafers coated with 2500 A
  • Metrology tool Prometrix RS-55. Pre and post polish measurements taken on 49 sites across each wafer with 9mm edge exclusion. Slurry agitation: Constant agitation during testing. PROCESS PARAMETERS
  • Process Cycle variable time, 5 psi, 25 rpm carrier, 100 rpm table, 150 ml/min slu ⁇ y flow.
  • Loading Sequence For each of seven slurry mixture text compositions selected, perform polish test on 8 tungsten dummy wafers for 220 sec and 4 tungsten Test Monitor wafers for 60 seconds.
  • Test Compositions Al 2 O 3 -- 1 wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt%, 6 wt% and 7 wt%.
  • the Fe(NO 3 ) 3 • 9H 2 O is fixed at 5 wt% for all slurries used in Experiment 1. This experiment, as shown in FIG. 1, has a nearly constant W removal rate of 450 ⁇ A/min — 490 ⁇ A/min from 2-6 wt% of abrasion particles of Al,O 3 . Below 2 wt%
  • the removal rate is substantially reduced.
  • the removal rate is essentially independent of the alumina concentration. This suggests that the removal rate depends more on the oxidation rate of the elemental tungsten near the surface and that at these wt% of particles the tungsten oxide is being removed about as fast as its being formed. It is not understood why the curve shows a removal rate drop-off at the percentages above 6 wt%.
  • the prior CMP tungsten polishing publications teach that the polishing rate is linearly proportional to the concentration of the alumina particles in the concentration range of 3 to 7 wt. percent. However, our experiment shows that the lower
  • FIG. 2 for Experiment 2 shows the results of W removal rate plotted normalized against removal rate for 5 wt% Fe(NO 3 ) 3 • 9H 2 O.
  • the results show a strong W removal rate dependence on concentration of Fe 3+ between 3 wt% to 5 wt% ferric nitrate.
  • the removal rate is nearly constant for a fixed 2.8 wt% alumina concentration.
  • surfactant used was a commercially available aqueous mixture of propylene glycol and methyl paraben from Universal Photonics Inc., sold under trade name EVERFLO.
  • the order of mixing the slurry components also had an unexpected effect on the results.
  • Batch A Surfactant was added to container holding alumina and ferric nitrate, previously diluted to near the final volume.
  • Batch B Surfactant was added to alumina concentrate. After brief stirring to homogenize the mixture, diluted ferric nitrate was added up to the final volume.
  • Batch C Surfactant added to alumina concentrate and mixed by a magnetically driven stirrer for 2 hours, then the diluted oxidizer, ferric nitride, was added to make up the final batch volume.
  • B Slu ⁇ y Composition
  • Polishing in Strasbaugh carried out at 5 psi spindle down force, 25 rpm spindle rotation, 100 rpm table rotation.
  • a polishing pad was wet-idled overnight. The pad was pre-
  • FIG. 3 shows that when performing CMP using no surfactant that
  • the suspension agent allows the suspension agent to engage and completely coat each alumina panicle by nature of the organic surfactant molecules making the particle surface non-polar. It is believed that this precludes the particle from acquiring a charge from the oxidizer. thereby preventing agglomeration. Accordingly, when the
  • the oxide removal rate As seen in FIG. 4, the oxide removal rate
  • the scratch count decreases dramatically over the six-day aging period.
  • the decrease defect count is decreased to less than 10% from the one-day defect count value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
PCT/US1995/013919 1994-11-18 1995-10-23 Method of making a chemical-mechanical polishing slurry and the polishing slurry WO1996016436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95938941A EP0792515A1 (de) 1994-11-18 1995-10-23 Verfahren zum herstellen einer chemisch-mechanischen polieraufschlämmung und die polieraufschlämmung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34232694A 1994-11-18 1994-11-18
US08/342,326 1994-11-18

Publications (1)

Publication Number Publication Date
WO1996016436A1 true WO1996016436A1 (en) 1996-05-30

Family

ID=23341343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/013919 WO1996016436A1 (en) 1994-11-18 1995-10-23 Method of making a chemical-mechanical polishing slurry and the polishing slurry

Country Status (2)

Country Link
EP (1) EP0792515A1 (de)
WO (1) WO1996016436A1 (de)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005066A2 (en) * 1996-07-26 1998-02-05 Speedfam Corporation Methods and apparatus for the in-process detection and measurement of thin film layers
EP0831136A2 (de) * 1996-09-24 1998-03-25 Cabot Corporation Polieraufschlämmung mit verschiedenen Oxidierern zum mechanisch-chemischen Polieren
WO1998018159A1 (en) * 1996-10-18 1998-04-30 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
EP0845512A1 (de) * 1996-12-02 1998-06-03 Fujimi Incorporated Politurzusammensetzung
WO1998023697A1 (en) * 1996-11-26 1998-06-04 Cabot Corporation Composition and method for polishing rigid disks
EP0846742A2 (de) * 1996-12-09 1998-06-10 Cabot Corporation Suspension zum chemisch-mechanischen Polieren von Kupfersubstraten
EP0860488A1 (de) * 1997-02-21 1998-08-26 Siemens Aktiengesellschaft Schleifmittel und Verfahren zum Polieren von Lichtwellen-leiter-Endflächen
WO1998042790A1 (en) * 1997-03-26 1998-10-01 Advanced Micro Devices, Inc. Chemical-mechanical polishing slurry formulation and method for tungsten and titanium thin films
WO1998044061A1 (en) * 1997-04-02 1998-10-08 Advanced Chemical Systems International, Inc. Planarization composition for removing metal films
US5872633A (en) * 1996-07-26 1999-02-16 Speedfam Corporation Methods and apparatus for detecting removal of thin film layers during planarization
EP0931118A1 (de) * 1997-07-08 1999-07-28 Rodel Holdings Inc. Zusammensetzung und verfahren zum polieren eines titanenthaltenden verbundstoffes
EP0930978A1 (de) * 1996-09-27 1999-07-28 Rodel, Inc. Zusammensetzung und methode zum polieren eines komposits
US5958288A (en) * 1996-11-26 1999-09-28 Cabot Corporation Composition and slurry useful for metal CMP
US5997620A (en) * 1997-01-21 1999-12-07 Fujimi Incorporated Polishing composition
US6033596A (en) * 1996-09-24 2000-03-07 Cabot Corporation Multi-oxidizer slurry for chemical mechanical polishing
US6068787A (en) * 1996-11-26 2000-05-30 Cabot Corporation Composition and slurry useful for metal CMP
US6171352B1 (en) * 1998-07-23 2001-01-09 Eternal Chemical Co., Ltd. Chemical mechanical abrasive composition for use in semiconductor processing
US6206756B1 (en) 1998-11-10 2001-03-27 Micron Technology, Inc. Tungsten chemical-mechanical polishing process using a fixed abrasive polishing pad and a tungsten layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6217410B1 (en) 1996-07-26 2001-04-17 Speedfam-Ipec Corporation Apparatus for cleaning workpiece surfaces and monitoring probes during workpiece processing
US6220934B1 (en) 1998-07-23 2001-04-24 Micron Technology, Inc. Method for controlling pH during planarization and cleaning of microelectronic substrates
US6276996B1 (en) 1998-11-10 2001-08-21 Micron Technology, Inc. Copper chemical-mechanical polishing process using a fixed abrasive polishing pad and a copper layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6303049B1 (en) 1999-09-01 2001-10-16 Eternal Chemical Co., Ltd. Chemical mechanical abrasive composition for use in semiconductor processing
US6347978B1 (en) 1999-10-22 2002-02-19 Cabot Microelectronics Corporation Composition and method for polishing rigid disks
US6383065B1 (en) 2001-01-22 2002-05-07 Cabot Microelectronics Corporation Catalytic reactive pad for metal CMP
US6508952B1 (en) 1999-06-16 2003-01-21 Eternal Chemical Co., Ltd. Chemical mechanical abrasive composition for use in semiconductor processing
US6514301B1 (en) 1998-06-02 2003-02-04 Peripheral Products Inc. Foam semiconductor polishing belts and pads
EP1283250A1 (de) * 2001-08-09 2003-02-12 Fujimi Incorporated Polierzusammensetzung und Polierverfahren unter deren Verwendung
SG94338A1 (en) * 1999-09-20 2003-02-18 Eternal Chemical Co Ltd Chemical mechanical abrasive composition for use in semiconductor processing
US6569350B2 (en) 1996-12-09 2003-05-27 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
US6593239B2 (en) 1996-12-09 2003-07-15 Cabot Microelectronics Corp. Chemical mechanical polishing method useful for copper substrates
US6734110B1 (en) 1999-10-14 2004-05-11 Taiwan Semiconductor Manufacturing Company Damascene method employing composite etch stop layer
US6736714B2 (en) 1997-07-30 2004-05-18 Praxair S.T. Technology, Inc. Polishing silicon wafers
WO2004104122A2 (en) * 2003-05-26 2004-12-02 Showa Denko K.K. Polishing composition for magnetic disks comprising a surface cleaning agent and polishing method
JP2008277848A (ja) * 1996-07-26 2008-11-13 Ekc Technol Inc 化学機械研磨組成物及び化学機械研磨方法
US7718102B2 (en) 1998-06-02 2010-05-18 Praxair S.T. Technology, Inc. Froth and method of producing froth

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817727A (en) * 1972-03-17 1974-06-18 Union Carbide Corp Abrasive polishing suspensions and method for making same
US3922393A (en) * 1974-07-02 1975-11-25 Du Pont Process for polishing silicon and germanium semiconductor materials
EP0561132A1 (de) * 1992-02-26 1993-09-22 International Business Machines Corporation Mit feuerfestem Metall aus PVD und CVD bedeckte Metalleiterbahnen und Durchgangsleitungen niedrigen Widerstandes
US5340370A (en) * 1993-11-03 1994-08-23 Intel Corporation Slurries for chemical mechanical polishing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817727A (en) * 1972-03-17 1974-06-18 Union Carbide Corp Abrasive polishing suspensions and method for making same
US3922393A (en) * 1974-07-02 1975-11-25 Du Pont Process for polishing silicon and germanium semiconductor materials
EP0561132A1 (de) * 1992-02-26 1993-09-22 International Business Machines Corporation Mit feuerfestem Metall aus PVD und CVD bedeckte Metalleiterbahnen und Durchgangsleitungen niedrigen Widerstandes
US5340370A (en) * 1993-11-03 1994-08-23 Intel Corporation Slurries for chemical mechanical polishing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAIRATH R ET AL: "Consumables for the chemical mechanical polishing (CMP) of dielectrics and conductors", ADVANCED METALLIZATION FOR DEVICES AND CIRCUITS - SCIENCE, TECHNOLOGY AND MANUFACTURABILITY SYMPOSIUM, ADVANCED METALLIZATION FOR DEVICES AND CIRCUITS - SCIENCE, TECHNOLOGY AND MANUFACTURABILITY, SAN FRANCISCO, CA, USA, 4-8 APRIL 1994, 1994, PITTSBURGH, PA, USA, MATER. RES. SOC, USA, pages 121 - 131, XP002000076 *
KAUFMAN F B: "CHEMICAL-MECHANICAL POLISHING FOR FABRICATING PATTERNED W METAL FEATURES AS CHIP INTERCONNECTS", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 138, no. 11, 1 November 1991 (1991-11-01), pages 3460 - 3465, XP000248109 *

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005066A3 (en) * 1996-07-26 1998-03-05 Speedfam Corp Methods and apparatus for the in-process detection and measurement of thin film layers
WO1998005066A2 (en) * 1996-07-26 1998-02-05 Speedfam Corporation Methods and apparatus for the in-process detection and measurement of thin film layers
US6217410B1 (en) 1996-07-26 2001-04-17 Speedfam-Ipec Corporation Apparatus for cleaning workpiece surfaces and monitoring probes during workpiece processing
JP2008277848A (ja) * 1996-07-26 2008-11-13 Ekc Technol Inc 化学機械研磨組成物及び化学機械研磨方法
US5872633A (en) * 1996-07-26 1999-02-16 Speedfam Corporation Methods and apparatus for detecting removal of thin film layers during planarization
EP0831136A3 (de) * 1996-09-24 1998-10-21 Cabot Corporation Polieraufschlämmung mit verschiedenen Oxidierern zum mechanisch-chemischen Polieren
EP0831136A2 (de) * 1996-09-24 1998-03-25 Cabot Corporation Polieraufschlämmung mit verschiedenen Oxidierern zum mechanisch-chemischen Polieren
US6316366B1 (en) 1996-09-24 2001-11-13 Cabot Microelectronics Corporation Method of polishing using multi-oxidizer slurry
US6039891A (en) * 1996-09-24 2000-03-21 Cabot Corporation Multi-oxidizer precursor for chemical mechanical polishing
US6033596A (en) * 1996-09-24 2000-03-07 Cabot Corporation Multi-oxidizer slurry for chemical mechanical polishing
EP0930978A4 (de) * 1996-09-27 2001-05-02 Rodel Inc Zusammensetzung und methode zum polieren eines komposits
EP0930978A1 (de) * 1996-09-27 1999-07-28 Rodel, Inc. Zusammensetzung und methode zum polieren eines komposits
KR100489458B1 (ko) * 1996-10-18 2005-05-16 마이크론 테크놀로지 인코포레이티드 기판의 기계-화학적 평탄화 방법
US5972792A (en) * 1996-10-18 1999-10-26 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
WO1998018159A1 (en) * 1996-10-18 1998-04-30 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
US6015506A (en) * 1996-11-26 2000-01-18 Cabot Corporation Composition and method for polishing rigid disks
US6068787A (en) * 1996-11-26 2000-05-30 Cabot Corporation Composition and slurry useful for metal CMP
US5958288A (en) * 1996-11-26 1999-09-28 Cabot Corporation Composition and slurry useful for metal CMP
US5980775A (en) * 1996-11-26 1999-11-09 Cabot Corporation Composition and slurry useful for metal CMP
WO1998023697A1 (en) * 1996-11-26 1998-06-04 Cabot Corporation Composition and method for polishing rigid disks
EP0845512A1 (de) * 1996-12-02 1998-06-03 Fujimi Incorporated Politurzusammensetzung
US6569350B2 (en) 1996-12-09 2003-05-27 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
EP0846742A2 (de) * 1996-12-09 1998-06-10 Cabot Corporation Suspension zum chemisch-mechanischen Polieren von Kupfersubstraten
EP1559762A3 (de) * 1996-12-09 2006-06-07 Cabot Microelectronics Corporation Suspension zum chemisch-mechanischen Polieren von Kupfersubstraten
US6593239B2 (en) 1996-12-09 2003-07-15 Cabot Microelectronics Corp. Chemical mechanical polishing method useful for copper substrates
EP0846742A3 (de) * 1996-12-09 1998-10-28 Cabot Corporation Suspension zum chemisch-mechanischen Polieren von Kupfersubstraten
US6309560B1 (en) 1996-12-09 2001-10-30 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
US5997620A (en) * 1997-01-21 1999-12-07 Fujimi Incorporated Polishing composition
EP0860488A1 (de) * 1997-02-21 1998-08-26 Siemens Aktiengesellschaft Schleifmittel und Verfahren zum Polieren von Lichtwellen-leiter-Endflächen
US5916855A (en) * 1997-03-26 1999-06-29 Advanced Micro Devices, Inc. Chemical-mechanical polishing slurry formulation and method for tungsten and titanium thin films
WO1998042790A1 (en) * 1997-03-26 1998-10-01 Advanced Micro Devices, Inc. Chemical-mechanical polishing slurry formulation and method for tungsten and titanium thin films
WO1998042791A1 (en) * 1997-03-26 1998-10-01 Advanced Micro Devices, Inc. Chemical-mechanical polishing slurry formulation and method for tungsten and titanium thin films
WO1998044061A1 (en) * 1997-04-02 1998-10-08 Advanced Chemical Systems International, Inc. Planarization composition for removing metal films
EP0931118A4 (de) * 1997-07-08 2001-05-09 Rodel Inc Zusammensetzung und verfahren zum polieren eines titanenthaltenden verbundstoffes
EP0931118A1 (de) * 1997-07-08 1999-07-28 Rodel Holdings Inc. Zusammensetzung und verfahren zum polieren eines titanenthaltenden verbundstoffes
US6971950B2 (en) 1997-07-30 2005-12-06 Praxair Technology, Inc. Polishing silicon wafers
US6736714B2 (en) 1997-07-30 2004-05-18 Praxair S.T. Technology, Inc. Polishing silicon wafers
US6514301B1 (en) 1998-06-02 2003-02-04 Peripheral Products Inc. Foam semiconductor polishing belts and pads
US7718102B2 (en) 1998-06-02 2010-05-18 Praxair S.T. Technology, Inc. Froth and method of producing froth
US6368194B1 (en) 1998-07-23 2002-04-09 Micron Technology, Inc. Apparatus for controlling PH during planarization and cleaning of microelectronic substrates
US6171352B1 (en) * 1998-07-23 2001-01-09 Eternal Chemical Co., Ltd. Chemical mechanical abrasive composition for use in semiconductor processing
US6716089B2 (en) 1998-07-23 2004-04-06 Micron Technology, Inc. Method for controlling pH during planarization and cleaning of microelectronic substrates
US6220934B1 (en) 1998-07-23 2001-04-24 Micron Technology, Inc. Method for controlling pH during planarization and cleaning of microelectronic substrates
US6913523B2 (en) 1998-07-23 2005-07-05 Micron Technology, Inc. Method for controlling pH during planarization and cleaning of microelectronic substrates
US6206756B1 (en) 1998-11-10 2001-03-27 Micron Technology, Inc. Tungsten chemical-mechanical polishing process using a fixed abrasive polishing pad and a tungsten layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6273786B1 (en) 1998-11-10 2001-08-14 Micron Technology, Inc. Tungsten chemical-mechanical polishing process using a fixed abrasive polishing pad and a tungsten layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6276996B1 (en) 1998-11-10 2001-08-21 Micron Technology, Inc. Copper chemical-mechanical polishing process using a fixed abrasive polishing pad and a copper layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6676484B2 (en) 1998-11-10 2004-01-13 Micron Technology, Inc. Copper chemical-mechanical polishing process using a fixed abrasive polishing pad and a copper layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6508952B1 (en) 1999-06-16 2003-01-21 Eternal Chemical Co., Ltd. Chemical mechanical abrasive composition for use in semiconductor processing
US6303049B1 (en) 1999-09-01 2001-10-16 Eternal Chemical Co., Ltd. Chemical mechanical abrasive composition for use in semiconductor processing
SG94338A1 (en) * 1999-09-20 2003-02-18 Eternal Chemical Co Ltd Chemical mechanical abrasive composition for use in semiconductor processing
US6734110B1 (en) 1999-10-14 2004-05-11 Taiwan Semiconductor Manufacturing Company Damascene method employing composite etch stop layer
US6347978B1 (en) 1999-10-22 2002-02-19 Cabot Microelectronics Corporation Composition and method for polishing rigid disks
US6383065B1 (en) 2001-01-22 2002-05-07 Cabot Microelectronics Corporation Catalytic reactive pad for metal CMP
US6814766B2 (en) 2001-08-09 2004-11-09 Fujimi Incorporated Polishing composition and polishing method employing it
EP1283250A1 (de) * 2001-08-09 2003-02-12 Fujimi Incorporated Polierzusammensetzung und Polierverfahren unter deren Verwendung
WO2004104122A3 (en) * 2003-05-26 2005-02-24 Showa Denko Kk Polishing composition for magnetic disks comprising a surface cleaning agent and polishing method
WO2004104122A2 (en) * 2003-05-26 2004-12-02 Showa Denko K.K. Polishing composition for magnetic disks comprising a surface cleaning agent and polishing method

Also Published As

Publication number Publication date
EP0792515A1 (de) 1997-09-03

Similar Documents

Publication Publication Date Title
EP0792515A1 (de) Verfahren zum herstellen einer chemisch-mechanischen polieraufschlämmung und die polieraufschlämmung
EP0970156B1 (de) Chemische-mechanische aufschlämmungsformulierung zum polieren und verfahren für dünne wolfram- und titanfilme
KR100690470B1 (ko) 구리기판의 기계화학적 연마
US6325705B2 (en) Chemical-mechanical polishing slurry that reduces wafer defects and polishing system
RU2573672C2 (ru) Водная полирующая композиция и способ химико-механического полирования подложек, содержащих пленки диэлектрика оксида кремния и поликремния
CN101191036B (zh) 一种用于化学机械抛光的淤浆组合物及其前体组合物
EP2614123B1 (de) Wässrige polierzusammensetzung und verfahren zum chemisch-mechanisch polieren von substratmaterialien für elektrische, mechanische und optische vorrichtungen
KR101134590B1 (ko) 분산 안정성이 우수한 연마 슬러리의 제조방법
WO2006028759A2 (en) Aqueous slurry containing metallate-modified silica particles
WO1993022103A1 (en) Compositions and methods for polishing and planarizing surfaces
EP1416025A1 (de) Wässrige Dispersion zum chemisch-mechanischen Polieren, chemisch-mechanisches Polierverfahren, Herstellungsverfahren von Halbleitervorrichtungen und Material zur Herstellung einer wässrigen Dispersion
EP1190006A1 (de) Aufschlämmungszusammensetzung und verfahren zum chemisch-mechanischen polieren
TW201229163A (en) Process for chemically mechanically polishing substrates containing silicon oxide dielectric films and polysilicon and/or silicon nitride films
SG188459A1 (en) Aqueous polishing compositions containing n-substituted diazenium dioxidesand/or n'-hydroxy-diazenium oxide salts
EP2892967B1 (de) Polierzusammengesetzung und -verfahren mit polypyrrolidon
EP3692107B1 (de) Oberflächenbehandelte schleifpartikel für wolframpolieranwendungen
TWI625372B (zh) 低介電基板之研磨方法
EP4189027A1 (de) Cmp-zusammensetzung mit anionischen und kationischen inhibitoren
KR102654509B1 (ko) 연마 시 질화물 제거에 선택적인 수성의 실리카 슬러리 및 아민 카복실산 조성물, 및 이의 사용 방법
JP4878728B2 (ja) Cmp研磨剤および基板の研磨方法
KR100366304B1 (ko) 반도체 웨이퍼 절연층의 화학적 기계적 연마용 조성물
KR100599855B1 (ko) 연마용 조성물
KR20210132204A (ko) Cmp 슬러리에 대한 입자 분산을 개선하는 첨가제

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995938941

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995938941

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1995938941

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995938941

Country of ref document: EP