WO1996012359A1 - Hybrides lichtwellenleiter- und koaxialteilnehmeranschlussnetz - Google Patents

Hybrides lichtwellenleiter- und koaxialteilnehmeranschlussnetz Download PDF

Info

Publication number
WO1996012359A1
WO1996012359A1 PCT/DE1995/001379 DE9501379W WO9612359A1 WO 1996012359 A1 WO1996012359 A1 WO 1996012359A1 DE 9501379 W DE9501379 W DE 9501379W WO 9612359 A1 WO9612359 A1 WO 9612359A1
Authority
WO
WIPO (PCT)
Prior art keywords
subscriber
coaxial line
network
signals
transmitted
Prior art date
Application number
PCT/DE1995/001379
Other languages
English (en)
French (fr)
Inventor
Karl Heinz MÖHRMANN
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to AT95933323T priority Critical patent/ATE223125T1/de
Priority to DE59510351T priority patent/DE59510351D1/de
Priority to EP95933323A priority patent/EP0786176B1/de
Publication of WO1996012359A1 publication Critical patent/WO1996012359A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • H04L49/3081ATM peripheral units, e.g. policing, insertion or extraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/22Adaptations for optical transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0478Provisions for broadband connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0028Local loop
    • H04J2203/003Medium of transmission, e.g. fibre, cable, radio
    • H04J2203/0032Fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0028Local loop
    • H04J2203/003Medium of transmission, e.g. fibre, cable, radio
    • H04J2203/0033Metallic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0028Local loop
    • H04J2203/0039Topology
    • H04J2203/0041Star, e.g. cross-connect, concentrator, subscriber group equipment, remote electronics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0064Admission Control
    • H04J2203/0067Resource management and allocation
    • H04J2203/0071Monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5603Access techniques
    • H04L2012/5604Medium of transmission, e.g. fibre, cable, radio
    • H04L2012/5605Fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5603Access techniques
    • H04L2012/5604Medium of transmission, e.g. fibre, cable, radio
    • H04L2012/5606Metallic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5603Access techniques
    • H04L2012/5609Topology
    • H04L2012/561Star, e.g. cross-connect, concentrator, subscriber group equipment, remote electronics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5638Services, e.g. multimedia, GOS, QOS

Definitions

  • the signal transmission from the central device "downstream" to the decentralized devices can proceed in a TDM cell stream, from which each decentralized device only the cells intended for this decentralized device picks up, and the signal transmission from the decentralized devices "upstream" to the central device can proceed in a TDMA process, consequently a decentralized device each burst with the aid of a delay device set up individually by the central device transmits synchronized (EP-A-0 460 398).
  • broadband ISDN services such as interactive video on demand (VoD), teleshopping, information research, but also narrowband services such as (N-) ISDN or conventional telephony (POTS)
  • N- interactive video on demand
  • POTS conventional telephony
  • coaxial cable networks of the CATV providers In existing coaxial CATV networks, additional transmission of signals from interactive services is basically possible in such a way that the additional signals in the cable are transmitted in spectral ranges that are not already with TV or VHF radio .lignalen are occupied.
  • a range between 47 MHz and 450 MHz is used for the transmission of the analog TV and VHF sound signals, so in Germany the ranges I to III and the upper special channel range up to 300 MHz, possibly also hyperband / extended special channel range between 300 and 450 MHz; frequency allocation is similar in many other countries. There is no uniform standard. In some countries, broadband distribution networks are or are currently being set up.
  • the signal transmission in the downward direction to the subscriber above the CATV range the signal transmission upwards from the subscriber away below the CATV range (for example in the range between 5 and 47 MHz).
  • the signal transmission upwards from the subscriber away below the CATV range for example in the range between 5 and 47 MHz.
  • a universal upgrading of such networks up to interactive broadband services for a larger number of connected subscribers requires the transmission of considerable data rates in both directions (for example several 100 Mbit / s downwards, 155 Mbit / s upwards per coaxial subnet)
  • both transmission directions in the spectral range above 450 MHz for example the downward transmission between 450 and 750 MHz, the upward transmission between 750 MHz and 1 GHz.
  • a subscriber access network each with a plurality of coaxial line tree networks common to subscriber-side network termination units, and optical waveguides connecting these coaxial line tree networks with connecting devices can also be designed in such a way that the coaxial line tree networks each contain a waveguide via a converter device to an optical branching device Tree network for both bidirectional telecommunication services, preferably in wavelength separation mode, and unidirectional distribution communication services are connected (DE 4406509).
  • the coaxial cable as a transmission medium up to a frequency of approximately 1 GHz, as has already been tried out in practice for analog TV distribution in the USA; The technology for analog downward transmission up to 862 MHz is already available in Germany.
  • the use of this frequency range is also fraught with some problems:
  • the spectral utilization of the frequency range can be very high in the downward direction (towards the subscriber) by choosing complex modulation methods (e.g. multi-stage QAM), possibly with adaptive equalizers (for example to 4 bit / s / Hz). Due to their tree and branch structure (point-to-point), coaxial networks of this type are suitable for transmission in the upward direction (away from the subscriber).
  • Multipoint system In order to avoid inadmissible interference of the signals of several participants in the common headend for the interactive signals, suitable multiplexing and modulation methods must be used; the spectral efficiency strongly depends on the chosen transmission method: If a frequency channel is permanently assigned to each participant (FDM), the utilization in this channel can be increased very high. However, the method is very inflexible and in particular does not allow the subscriber-related transmission bit rate to be changed slightly. In principle, more flexible transmission methods such as CDMA and TDMA, on the other hand, only allow lower spectral efficiency with reasonable technical effort. The attenuation of a coaxial cable increases with the root of the frequency. Equalizing amplifiers are therefore required which compensate for this damping response and the associated phase response.
  • the invention relates to a bidirectionally operable subscriber access network with one or more each
  • this subscriber line network is characterized in that this (s) coaxial line tree network (s) for the transmission of digital signals of bidirectional interactive telecommunication services is supplemented in this way by an optical waveguide network starting from or leading to a higher-level connection device that the optical waveguides are connected bidirectionally behind the coaxial line amplifier closest to the subscriber with the branches of the coaxial conductor network leading from here to the subscribers.
  • the invention enables a very economical supply of a large number of subscribers both with distribution communication services and with interactive switched telecommunication services.
  • the existing coaxial TV distribution network will continue to be used for the distribution of the analog TV signals. Additional optical fiber feeders do not have to be provided for the analog signals, unless optical transmission is used for other reasons, e.g. to increase profitability in higher network levels.
  • the optical overlay network is only installed for the digital signals. This optical network allows the transport of the Signals to / from the location of the last active amplifier close to the subscriber (C amplifier). Since the digital signals are considerably less sensitive to noise and non-linearities than the analog TV signals, the necessary electro-optical and opto-electrical converters can be implemented inexpensively.
  • optical overlay network for the digital signals of the additional interactive services can be used very efficiently, for example using optical ones
  • Wavelength division multiplex for directional separation on a fiber can be realized.
  • the network structure described also allows greater flexibility, since the headend for the analog CATV signals, which are transmitted over the entire coaxial network, and the headend for the digital interactive signals, which are optically transmitted to the amplifiers closest to the subscriber , can now be in different locations.
  • the coaxial line branches at the location of the respective coaxial line amplifier can each be provided with a passive coupling / decoupling device, preferably in the form of a frequency-selective switching circuit, and the optical waveguides can be provided at the location of the respective one Coaxial line amplifiers are each completed with a signal converter device for optoelectrical conversion of the downstream signals transmitted to the subscribers or for electro-optical conversion of the upstream signals transmitted by the subscribers, which on the other hand are those at the location of the respective coaxial line -The provided coupling / decoupling devices is connected; a modulation or demodulation of the electrical downstream or upstream signals and / or their frequency conversion can also be associated with the signal conversion.
  • a particularly favorable solution results if the additional digital signals in the coaxial network are not transmitted from / to the subscribers in the CATV channel grid (6, 7 or 8 MHz channel width), but as a time-division multiplex signal in one wider frequency band, since then only a relatively small amount of modulation / demodulation and filtering is required.
  • the bidirectional or interactive telecommunication services can be carried out by means of digital signals transmitted in the form of ATM signals.
  • digital signals transmitted in the form of ATM signals can be carried out by means of digital signals transmitted in the form of ATM signals.
  • the use of the ATM format for the digital signals enables a very flexible mix of signals from different services.
  • FIG. 1 shows schematically a section of a conventional, active coaxial conductor tree network CN with amplifiers W, V and branches Z, into which TV distribution signals are fed in from a headend (CATV headend).
  • Coaxial conductor tree networks of this type have already been laid many times and do not require any further explanations here.
  • FIG. 2 shows schematically and again a section of an exemplary embodiment of a coaxial conductor tree network which is used for the transmission of digital signals of bidirectional interactive telecommunication services by means of an optical waveguide network OB originating in or leading from a higher-level connection unit (CU) Is added that the Optical waveguides OB are connected bidirectionally behind the subscriber nearest coaxial line amplifier V to the branches of the coaxial line network CN leading from here to the subscribers NT / A.
  • CU connection unit
  • the coaxial conductors are each terminated with a network termination device NT / A, which may convert the receive and transmit signals in such a way that the connection of common terminal devices is possible; a network termination device NT / A has connections for distribution television or video on demand, for conventional telephony (POTS) and / or. Narrowband ISDN or for any broadband ISDN service.
  • FIG. 2 indicates that a television receiver and a telephone are connected to the network termination device NT / A; the connection of further terminals is possible without this being shown in the drawing.
  • the coaxial line branches CN are each provided with a passive coupling / decoupling device K; these coupling / decoupling devices K can expediently be formed with frequency-selective switches.
  • the optical waveguides OB are at the location of the respective coaxial line amplifier V each with a signal converter device U for opto-electrical conversion of the downstream signals transmitted to the subscribers (NT / A) or for electro-optical conversion of the subscribers (NT / A) forth transmitted upstream signals completed, with a modulation or de odulation of the electrical downstream or upstream signals and / or their frequency conversion is expediently connected to the signal conversion.
  • the signal converter devices U are connected to the coupling / decoupling devices K provided at the location of the respective coaxial line amplifier V.
  • analog TV distribution signals are in turn fed from a headend (CATV headend) into the coaxial conductor tree network CN and sent to all transferred to closed participants.
  • These television signals can be received by the subscriber in the usual way from a television receiver connected to its network termination device NT / A and designated TV in the drawing.
  • digital signals in addition to the analog TV signals, digital signals, in particular in ATM or STM format, may be transmitted from the connection unit CU in the telecommunications system outlined in FIG. 2 to the subscribers (NT / A).
  • Such signals can e.g. digital video signals of a video-on-demand service (including an ATM return channel for the program selection by the TV subscriber) or also broadband interactive data signals, the digital video signals using a corresponding one, not shown separately in the drawing illustrated additional device (set-top box) can also be received by the television receiver TV.
  • narrowband ATM voice and possibly also data signals can be transmitted in both directions in the system shown in FIG. 2, which is indicated in the drawing by a telephone connected to the network termination device NT / A.
  • the digital signals are expediently not transmitted from / to the subscribers in the CATV channel grid (6, 7 or 8 MHz channel width), but rather as a time-of-day signal in a wider frequency band, since then only a relatively low modulation / demodulation - And filter effort is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

Ein jeweils einer Mehrzahl von teilnehmerseitigen Netzabschlußeinheiten (NT/A) gemeinsames, mit Verstärkern versehenes aktives CATV-Koaxialleitungs-Baumnetz (CN), in das von einer CATV-Kopfstelle her TV-Verteilsignale eingespeist werden, ist zu einem bidirektional betreibbaren Teilnehmeranschlußnetz zur Übertragung von Digitalsignalen bidirektionaler interaktiver Telekommunikationsdienste in der Weise durch ein von einer übergeordneten Verbindungseinrichtung (CU) ausgehendes bzw. dorthin führendes Lichtwellenleiternetz (OB) ergänzt, daß die Lichtwellenleiter (OB) jeweils hinter dem teilnehmernächsten Koaxialleitungs-Verstärker (V) mit den von hier zu den Teilnehmern (NT/A) führenden Zweigen des Koaxialleitungsnetzes (CN) bidirektional verbunden sind.

Description

Hybrides Uchtwellenle.ter- und Koax.a.te.lnehmeranschlussnetz
Teilnehmeranschlußnetz 5
Neuere Entwicklungen der Fernmeldetechnik führen in der Ebene der Teilnehmeranschlußleitungen zu passiven optischen Tele¬ kommunikationssystemen, in denen jeweils eine Mehrzahl von dezentralen Einrichtungen (Teilnehmerstellen oder jeweils 0 eine Mehrzahl von Teilnehmerstellen zusammenfassende sog. Distant Units) jeweils über eine eigene Lichtwellenleiter- Anschlußleitung mit einem optischen Verzweiger verbunden ist, der direkt oder über wenigstens einen weiteren optischen Ver¬ zweiger mit einem gemeinsamen Lichtwellenleiteranschluß einer 5 - insbesondere durch eine Vermittlungsstelle gegebenen - zentralen Einrichtung über einen Lichtwellenleiter-Bus verbunden ist (EP-A-0 171 080; ISSLS '88, Conf. Papers 9. .1...5; BR Telecom Technol. J. 17(1989)2, 10U...113).
0 In einem solchen passiven optischen Telekommunikationsnetz kann die Signalübertragung von der zentralen Einrichtung aus "downstream" zu den dezentralen Einrichtungen hin in einem TDM-Zellenstrom vor sich gehen, aus dem jede dezentrale Ein¬ richtung nur die für ebendiese dezentrale Einrichtung be- 5 stimmten Zellen aufnimmt, und die Signalübertragung von den dezentralen Einrichtungen aus "upstream" zur zentralen Ein¬ richtung hin kann in einem TDMA-Verfahren vor sich gehen, demzufolge eine dezentrale Einrichtung einen jeden Burst mit Hilfe einer von der zentralen Einrichtung her einrichtungs- 0 individuell eingestellten Verzögerungseinrichtung synchro¬ nisiert aussendet (EP-A-0 460 398) .
Die Einführung neuer Breitbandkommunikationsdienste hangt ganz allgemein ab von Art und Umfang der bereits vorhandenen $5 Fernmeldeinfrastrukturen mit den darin bereitgestellten Tele¬ kommunikationsdiensten und von der Nachfrage nach Breitband- telekommunikationsmöglichkeiten. Dabei wird im Bereich der 2 Privathaushalte das potentiell grösste Anschlußvolumen gese¬ hen; dieses Anschlußpotential konkretisiert sich indessen zu einer effektiven Anschlußnachfrage nicht ohne entsprechend niedrige Kosten eines Breitband-Teilnehmeranschlusses.
Um einem Teilnehmer die Nutzung von Breitband-ISDN-Diensten (genannt werden z.B. interaktiver Videoabruf Video on Demand (VoD) , Teleshopping, Informationsrecherche, aber auch Schmal- banddienste wie (N-)ISDN oder herkömmliche Telefonie (POTS) ) zu ermöglichen, werden z.Zt. verschiedene Anschlußmöglichkei¬ ten diskutiert. Besonders attraktiv sind Lösungen, bei denen bereits vorhandene Infrastruktur verwendet werden kann. Ein entsprechendes Medium stellen z.B. die Koaxialkabelnetze der CATV-Anbieter dar: In bestehenden koaxialen CATV-Netzen ist eine zusätzliche Übertragung von Signalen interaktiver Dien¬ ste grundsätzlich in der Form möglich, daß die zusätzlichen Signale im Kabel in spektralen Bereichen übertragen werden, welche nicht bereits mit TV- bzw. UKW-Rundfunk-.lignalen be¬ legt sind. Vielerorts wird für die Übertragung der analogen TV- und UKW-Ton-Signale beispielsweise ein Bereich zwischen 47 MHz und 450 MHz benutzt, so in Deutschland die Bereiche I bis III und Oberer Sonderkanalbereich bis 300 MHz, ggf. zu¬ sätzlich Hyperband / Erweiterter Sonderkanalbereich zwischen 300 und 450 MHz; in vielen anderen Ländern ist die Frequenz- belegung ähnlich. Es gibt keinen einheitlichen Standard. In manchen Ländern sind oder werden derzeit bereits breiterban- dige Verteilnetze eingerichtet.
Für die Übertragung der Signale zusätzlicher interaktiver Dienste sind dann mehrere Möglichkeiten gegeben. So könnte beispielsweise die Signalübertragung in Abwärtsrichtung zum Teilnehmer hin oberhalb des CATV-Bereiches, die Signalüber¬ tragung aufwärts vom Teilnehmer weg unterhalb des CATV-Berei¬ ches (beispielsweise im Bereich zwischen 5 und 47 MHz) vor sich gehen. Da eine universelle Aufwertung solcher Netze bis hin zu interaktiven Breitbanddiensten für eine größere Zahl angeschlossener Teilnehmer die Übertragung erheblicher Daten¬ raten in beiden Richtungen erfordert (beispielsweise mehrere 100 Mbit/s abwärts, 155 Mbit/s aufwärts pro koaxialem Teil¬ netz) , gibt es Vorschläge, beide Übertragungsrichtungen im spektralen Bereich oberhalb 450 MHz zu implementieren, bei¬ spielsweise die Abwärtsübertragung zwischen 450 und 750 MHz, die Aufwärtsübertragung zwischen 750 MHz und 1 GHz.
Die Nutzung kann dabei entsprechend dem in vorhandenen CATV- Systemen festgelegten Kanalraster erfolgen (in Deutschland 7 MHz bzw. im UHF-Bereich 8 MHz; in USA beispielsweise 6 MHz) oder in breiteren Frequenzbändern. ' In den USA wird von einigen Cable-TV-Gesellschaften ein Teil¬ bereich des bislang freien Bereichs für sog. Cablephone ver¬ wendet. Andere Betreiber denken an ein umfassenderes System, das einen Großteil der oben genannten Dienste im Rahmen eines Access-Networks z.B. auf ATM-Basis bietet, wobei in der Regel den koaxialen Teilnetzen wegen der begrenzten Reichweite eine optische Zubringerleitung (Fiber Feeder) vorgeschaltet sein kann (TELEPHONY, 01.11.93, 48 ... 53).
Man hat auch schon neben einem passiven optischen Netz (PON) mit Erweiterung durch ein Koaxialleitungs-Baumnetz für uni- direktionale Verteilkommunikation (TV) ein weiteres passives optisches Netz (PON) für bidirektionale interaktive vermit¬ telte Telekommunikation eingesetzt (Der Fernmeldeingenieur 46(1992)10, Bild 11.2 - System OPAL 4).
Ein Teilnehmeranschlußnetz mit jeweils einer Mehrzahl von teilnehmerseitigen Netzabschlußeinheiten gemeinsamen Koaxial¬ leitungs-Baumnetzen und diese Koaxial1ei ungs-Baumnetze mit Verbindungseinrichtungen verbindenden Lichtwellenleitern kann auch in der Weise ausgebildet sein, daß die Koaxialleitungs- Baumnetze jeweils über eine Konvertereinrichtung an ein opti¬ sche Verzweiger enthaltendes Lichtwellenleiter-Baumnetz für sowohl bidirektionale Telekommunikationsdienste, vorzugsweise im Wellenlängengetrenntlagebetrieb, als auch unidirektionale Verteilkom unikationsdienste angeschlossen sind (DE 4406509) . Generell erscheint eine Nutzung des koaxialen Kabels als Übertragungsmedium bis zu einer Frequenz von ca. 1 GHz als möglich, wie dies für analoge TV-Verteilung in USA bereits praktisch erprobt wurde; auch in Deutschland stf»ht die Tech- nik für die analoge Abwärts-Übertragung bis 862 MHz bereits bereit.
Die an sich wünschenswerte Nutzung dieses Frequenzbereichs ist indessen auch mit einigen Problemen behaftet: Die spektrale Ausnutzung des Frequenzbereiches kann in Abwärtsrichtung (zum Teilnehmer hin) durch Wahl komplexer Modulationsverfahren (z.B. Vielstufen-QAM) , ggf. mit adap- tiven Entzerrern, sehr hoch getrieben werden (beispielsweise auf 4 Bit/s/Hz) . Für eine Übertragung in Aufwärtsrichtung (vom Teilnehmer weg) eignen sich derartige Koaxialnetze aufgrund ihrer Baum- und Abzweigstruktur (Punkt-zu-
Multipunkt-System) indessen nur bedingt. Um ein unzulässiges Interferieren der Signale mehrerer Teilnehmer in der gemeinsamen Kopfstelle für die interaktiven Signale zu vermeiden, müssen geeignete Multiplex- und Modulations- verfahren eingesetzt werden; die spektrale Effizienz hängt stark vom gewählten Übertragungsverfahren ab: Wird jedem Teilnehmer ein Frequenzkanal fest zugeteilt (FDM) , so kann die Ausnutzung in diesem Kanal sehr hoch getrieben werden. Das Verfahren ist aber sehr inflexibel und erlaubt insbeson- dere nicht eine leichte Änderung der teilnehmerbezogenen Übertragungs-Bitrate. Prinzipiell flexiblere Übertragungs¬ verfahren wie CDMA und TDMA erlauben dagegen bei vertretbarem technischem Aufwand nur eine geringere spektrale Effizienz. Die Dämpfung eines Koaxialkabels steigt mit der Wurzel aus der Frequenz. Daher sind entzerrende Verstärker erforderlich, welche diesen Dämpfungsgang und den damit verbundenen Phasen¬ gang ausgleichen. Diese Verstärker werden um so aufwendiger, je breiter das zu verarbeitende Spektrum ist; bei Ausnutzung des Koaxialnetzes auch durch interaktive Dienst-; sind Zwei- wegverstärker vorzusehen, welche in den für die beiden Über¬ tragungsrichtungen gewählten Frequenzbereichen in unter¬ schiedlichen Richtungen arbeiten. Der Netzbetreiber ist indessen daran interessiert, für die Einrichtung zusätzlicher neuer Dienste möglichst geringe zusätzliche Investitionen in seinem Netz tätigen zu müs- sen,und die Erfindung zeigt nun einen Weg zu einer vorteil¬ haften Gestaltung eines Teilnehmeranschlußnetzes, welche dieser Forderung weitgehend entgegenkommt.
Die Erfindung betrifft ein bidirektional betreibbares Teil- nehmeranschlußnetz mit einem oder mehreren jeweils einer
Mehrzahl von teilnehmerseitigen Netzabschlußeinheiten gemein¬ samen, mit Verstärkern versehenen aktiven CATV-Koaxialleiter- Baumnetz(en) , in das (die) von einer CATV-Kopfstelle her TV- Verteilsignale eingespeist werden; dieses Teilnehmeranschluß- netz ist erfindungsgemäß dadurch gekennzeichnet, daß diese(s) Koaxialleitungs-Baumnetz(e) zur Übertragung von Digitalsigna¬ len bidirektionaler interaktiver Telekommunikationsdienste in der Weise durch ein von einer übergeordneten Verbindungsein¬ richtung ausgehendes bzw. dorthin führendes Lichtwellenlei- ternetz ergänzt ist, daß die Lichtwellenleiter jeweils hinter dem teilnehmernächsten Koaxialleitungs-Verstärker mit den von hier zu den Teilnehmern führenden Zweigen des Koaxialleiter¬ netzes bidirektional verbunden sind.
Die Erfindung ermöglicht mit einer nur minimalen Veränderung eines vorhandenen Koaxialleitungsnetzes eine sehr wirtschaft¬ liche Versorgung einer großen Anzahl von Teilnehmern sowohl mit Verteilkommunikationsdiensten als auch mit interaktiven vermittelten Telekommunikationsdiensten. Das bestehende koaxiale TV-Verteilnetz wird für die Vertei¬ lung der analogen TV-Signale weiterverwendet. Zusätzliche Glasfaser-Feeder brauchen für die analogen Signale nicht vor¬ gesehen zu werden, sofern optische Übertragung nicht aus anderen Gründen eingesetzt wird, z.B. zur Erhöhung der Wirt- schaftlichkeit in höheren Netzebenen.
Das optische Overlay-Netz wird nur für die digitalen Signale installiert. Dieses optische Netz erlaubt den Transport der Signale an die / von der Stelle des letzten aktiven Verstär¬ kers in Teilnehmernahe (C-Verstärker) . Da die digitalen Signale erheblich unempfindlicher gegen Rauschen und Nicht- linearitäten sind als die analogen TV-Signale, sind die notwendigen elektrooptischen und optoelektrischen Wandler kostengünstig realisierbar.
Damit ist nur eine minimale Veränderung des vorhandenen Koax- Netzes erforderlich. Das optische Overlaynetz für die digita¬ len Signale der zusätzlichen interaktiven Dienste kann sehr effizient beispielsweise unter Verwendung von optischem
Wellenlängenmultiplex zur Richtungstrennung auf einer Faser realisiert werden.
Die beschriebene Netzstruktur erlaubt zudem eine vergrößerte Flexibilität, da sich die Kopfstelle für die analogen CATV- Signale, welche über das ganze koaxiale Netz hinweg übertra¬ gen werden, und die Kopfstelle für die.digitalen interaktiven Signale, welche optisch zu den teilnehmernächsten Verstärkern übertragen werden, nun an unterschiedlichen Orten befinden können.
In weiterer Ausgestaltung der Erfindung können die Koaxial- leitungs-Zweige am Ort des jeweiligen Koaxialleitungs-Ver- stärkers jeweils mit einer passiven Ein-/Auskopplungsein¬ richtung vorzugsweise in Form einer frequenzselektiven Wei- chenschaltung versehen sein, und die Lichtwellenleiter können am Ort des jeweiligen Koaxialleitungs-Verstärkers jeweils mit einer Signalumsetzereinrichtung zur optoelektrischen Wandlung der zu den Teilnehmern hin übertragenen Downstream-Signale bzw. zur elektrooptischen Wandlung der von den Teilnehmern her übertragenen Upstream-Signale abgeschlossen sein, die auf der anderen Seite mit den am Ort des jeweiligen Koaxiallei¬ tungs-Verstärkers vorgesehenen Ein-/Auskopplungseinrichtungen verbunden ist; dabei kann mit der Signalumsetzung auch eine Modulation bzw. Demodulation der elektrischen Downstrea - bzw. Upstream-Signale und/oder deren Frequenzumsetzung ver¬ bunden sein. Eine besonders günstige Lösung ergibt sich, wenn die zusätz¬ lichen digitalen Signale im koaxialen Netz von / zu den Teil¬ nehmern nicht im CATV-Kanalraster (6, 7 oder 8 MHz Kanalbrei¬ te) übertragen werden, sondern als Zeitmultiplexsignal in ei- nem breiteren Frequenzband, da dann nur ein relativ geringer Modulations-/Demodulations- und Filteraufwand erforderlich ist.
Die bidirektionalen bzw. interaktiven Telekommunikationsdien- ste können in weiterer Ausgestaltung der Erfindung mittels in Form von ATM-Signalen übertragener Digitalsignale durchge¬ führt werden. Der Einsatz des ATM-Formats für die digitalen Signale ermöglicht eine sehr flexible Mischung der Signale unterschiedlicher Dienste.
Weitere Besonderheiten der Erfindung werden aus der nachfol¬ genden Erläuterung eines Ausführungsbeispiels für ein Tele¬ kommunikationssystem gemäß der Erfindung anhand der Zeichnun¬ gen ersichtlich.
In der Zeichnung FIG 1 ist schematisch ein Ausschnitt eines konventionellen, aktiven Koaxialleiter-Baumnetzes CN mit Ver¬ stärkern W, V und Verzweigungen Z dargestellt, in das von einer Kopfstelle (CATV Headend) her TV-Verteilsignale einge- speist werden. Derartige Koaxialleiter-Baumnetze sind bereits vielfach verlegt und bedürfen hier keiner weiteren Erläute¬ rungen.
Ein solches Koaxialleiter-Baumnetz wird nun zu einem bidirek¬ tional betreibbaren Teilnehmeranschlußnetz erweitert:
In der Zeichnung FIG 2 ist schematisch und wiederum aus¬ schnittsweise ein Ausführungsbeispiel eines Koaxialleiter- Baumnetzes dargestellt, das zur Übertragung von Digitalsigna¬ len bidirektionaler interaktiver Telekommunikationsdienste durch ein von einer übergeordneten Verbindungseinrichtung (Connection Unit) CU ausgehendes bzw. dorthin führendes Lichtwellenleitemetz OB in der Weise ergänzt ist, daß die Lichtwellenleiter OB jeweils hinter dem teilnehmernächsten Koaxialleitungs-Verstärker V mit den von hier zu den Teilneh¬ mern NT/A führenden Zweigen des Koaxialleitungsnetzes CN bidirektional verbunden sind. Teilnehmerseitig sind die Koaxialleiter jeweils mit einer Netzabschlußeinrichtung NT/A abgeschlossen, welche die Empfangs- und Sendesignale jeweils derart konvertieren möge, daß der Anschluß gängiger Endgerate möglich ist; eine Netzabschlußeinrichtung NT/A weist z.B. Anschlüsse für Verteilfernsehen bzw. Video on Demand, für herkömmliche Telefonie (POTS) u./o. Schmalband-ISDN oder auch für einen beliebigen Breitband-ISDN-Dienst auf. In FIG 2 ist dazu angedeutet, daß an die Netzabschlußeinrichtung NT/A je¬ weils ein Fernsehempfänger und ein Telefon angeschlossen ist; der Anschluß weiterer Endgeräte ist möglich, ohne daß dies in der Zeichnung noch dargestellt werden üsste.
Am Ort des jeweils teilnehmernächsten Koaxialleitungs-Ver¬ stärkers V sind die Koaxialleitungs-Zweige CN jeweils mit einer passiven Ein-/Auskopplungseinrichtung K versehen; diese Ein-/Auskopplungseinrichtungen K können zweckmäßigerweise mit frequenzselektiven Weichen gebildet sein. Die Lichtwellen¬ leiter OB sind am Ort des jeweiligen Koaxialleitungs-Verstär¬ kers V jeweils mit einer Signalumsetzereinrichtung U zur optoelektrischen Wandlung der zu den Teilnehmern (NT/A) hin übertragenen Downstream-Signale bzw. zur elektrooptischen Wandlung der von den Teilnehmern (NT/A) her übertragenen Upstream-Signale abgeschlossen, wobei zweckmäßigerweise mit der Signalumsetzung auch eine Modulation bzw. De odulation der elektrischen Downstream- bzw. Upstream-Signale und/oder deren Frequenzumsetzung verbunden ist. Auf der anderen Seite sind die Signalumsetzereinrichtungen U mit den am Ort des jeweiligen Koaxialleitungs-Verstärkers V vorgesehenen Ein- /Auskopplungseinrichtungen K verbunden.
In dem in FIG 2 skizzierten System werden wiederum analoge TV-Verteilsignale von einer Kopfstelle (CATV Headend) her in das Koaxialleiter-Baumnetz CN eingespeist und zu allen ange- schlossenen Teilnehmern hin übertragen. Diese Fernsehsignale können beim Teilnehmer von einem an dessen Netzabschlußein¬ richtung NT/A angeschlossenen, in der Zeichnung mit TV bezeichneten Fernsehempfänger in üblicher Weise empfangen werden.
Neben den analogen TV-Signalen mögen in dem in FIG 2 skiz¬ zierten TelekommunikationsSystem zu den Teilnehmern (NT/A) hin digitale Signale, insbesondere im ATM- oder auch STM- Format, von der Verbindungseinrichtung (Connection Unit) CU her übertragen werden. Solche Signale können z.B. digitale Videosignale eines (auch einen ATM-Rückkanal für die Pro¬ grammwahl durch den TV-Teilnehmer einschliessenden) Video-on- Demand-Dienstes oder auch breitbandige interaktive Datensi- gnale sein, wobei die digitalen Videosignale mittels eines entsprechenden, in der Zeichnung nicht gesondert dargestel¬ lten Zusatzgerätes (Set-Top-Box) ebenfalls vom Fernsehemp¬ fänger TV empfangen werden. Des weiteren können in dem in FIG 2 skizzierten System in beiden Richtungen schmalbandige ATM-Sprach- und ggf. auch Datensignale übertragen werden, was in der Zeichnung durch ein an die Netzabschlußeinrichtung NT/A angeschlossenes Telefon angedeutet wird. Weitere Dienste, welche den Anschluß weiterer Endgeräte an die jeweilige Netzabschlußeinrichtung NT/A erfordern können, sind möglich, ohne daß dies in der Zeichnung noch dargestellt werden müsste. Die digitalen Signale werden im koaxialen Netz von/zu den Teilnehmern zweckmäßigerweise nicht im CATV-Kanalraster (6, 7 oder 8 MHz Kanalbreite) übertragen, sondern als Zeit ulti- plexsignal in einem breiteren Frequenzband, da dann nur ein relativ geringer Modulations-/Demodulations- und Filter¬ aufwand erforderlich ist.

Claims

Patentansprüche
1. Bidirektional betreibbares Teilnehmeranschlußnetz mit einem oder mehreren jeweils einer Mehrzahl von teilnehmer- seitigen Netzabschlußeinheiten (NT/A) gemeinsamen, mit Ver¬ stärkern versehenen aktiven CATV-Koaxialleitungs-Baumnetz(en) (CN) , in das (die) von einer CATV-Kopfstelle her TV-Verteil¬ signale eingespeist werden, d a d u r c h g e k e n n z e i c h n e t , daß diese(s) Koaxialleitungs-Baumnetz(e) (CN) zur Übertragung von Digitalsignalen bidirektionaler interaktiver Telekommuni¬ kationsdienste in der Weise durch ein von einer übergeordne¬ ten Verbindungseinrichtung (CU) ausgehendes bzw. dorthin füh- rendes Lichtwellenleitemetz (OB) ergänzt ist, daß die Licht¬ wellenleiter (OB) jeweils hinter dem teilnehmernächsten Koaxialleitungs-Verstärker (V) mit den von hier zu den Teil¬ nehmern (NT/A) führenden Zweigen des Koaxialleitungsnetzes (CN) bidirektional verbunden sind.
2. Teilnehmeranschlußnetz nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Koaxialleitungs-Zweige (CN) am Ort des jeweiligen Koaxialleitungs-Verstärkers (V) jeweils mit einer passiven Ein-/Auskopplungseinrichtung (K) versehen sind und daß die Lichtwellenleiter (OB) am Ort des jeweiligen Koaxial¬ leitungs-Verstärkers (V) jeweils mit einer Signalumsetzerein¬ richtung (U) zur optoelektrischen Wandlung der zu den Teil¬ nehmern (NT/A) hin übertragenen Downstream-Signale bzw. zur elektrooptischen Wandlung der von den Teilnehmern (NT/A) her übertragenen Upstream-Signale abgeschlossen sind, die auf der anderen Seite mit den am Ort des jeweiligen Koaxialleitungs- Verstärkers (V) vorgesehenen Ein-/Auskopplungseinrichtungen (K) verbunden ist.
3. Teilnehmer anschlußnetz nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß die Ein-/Auskopplungseinrichtungen (K) mit frequenz¬ selektiven Weichen gebildet sind.
4. Teilnehmeranschlußnetz nach Anspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , daß mit der Signalumsetzung auch eine Modulation bzw. Demo- dulation der elektrischen Downstream- bzw. Upstream-Signale und/oder deren Frequenzumsetzung verbunden ist.
5. Teilnehmeranschlußnetz nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß die bidirektionalen Telekommunikationsdienste mittels in Form von ATM-Signalen übertragener Digitalsignale durchge¬ führt werden.
6. Teilnehmeranschlußnetz nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß die bidirektionalen Telekommunikationsdienste mittels in Form von STM-Signalen übertragener Digitalsignale durchge¬ führt werden.
7. Teilnehmeranschlußnetz nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß die Digitalsignale in den teilnehmerseitigen Zweigen des Koaxialleitungsnetzes (CN) als Zeitmultiplexsignale übertra¬ gen werden.
8. Teilnehmeranschlußnetz nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß die Digitalsignale im Koaxialleitungsnetz (CN) von/zu den Teilnehmern (NT/A) als Zeitmultiplexsignal in einem im Ver¬ gleich zu einer dem CATV-Kanalraster entsprechenden Kanal- breite breiteren Frequenzband übertragen werden.
PCT/DE1995/001379 1994-10-14 1995-10-09 Hybrides lichtwellenleiter- und koaxialteilnehmeranschlussnetz WO1996012359A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT95933323T ATE223125T1 (de) 1994-10-14 1995-10-09 Hybrides lichtwellenleiter- und koaxialleitungs- teilnehmeranschlussnetz
DE59510351T DE59510351D1 (de) 1994-10-14 1995-10-09 Hybrides lichtwellenleiter- und koaxialleitungs- teilnehmeranschlussnetz
EP95933323A EP0786176B1 (de) 1994-10-14 1995-10-09 Hybrides lichtwellenleiter- und koaxialleitungs- teilnehmeranschlussnetz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4436818.6 1994-10-14
DE4436818A DE4436818C1 (de) 1994-10-14 1994-10-14 Teilnehmeranschlußnetz

Publications (1)

Publication Number Publication Date
WO1996012359A1 true WO1996012359A1 (de) 1996-04-25

Family

ID=6530815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001379 WO1996012359A1 (de) 1994-10-14 1995-10-09 Hybrides lichtwellenleiter- und koaxialteilnehmeranschlussnetz

Country Status (4)

Country Link
EP (1) EP0786176B1 (de)
AT (1) ATE223125T1 (de)
DE (2) DE4436818C1 (de)
WO (1) WO1996012359A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19526172C1 (de) * 1995-07-18 1997-01-30 Siemens Ag Verfahren zur Übertragung von ATM-Digitalsignalen einer Programmeinheit, insbesondere von digitalen datenkomprimierten Video-Verteilsignalen
DE19600961A1 (de) * 1996-01-12 1997-07-17 Siemens Ag Kabel-Fernseh-Verteilnetz mit wenigstens einem Koaxialkabelabschnitt und wenigstens einem Glasfaserkabelabschnitt und zusätzlichem Anschluß von Endgeräten eines Fernmeldenetzes
US5760822A (en) * 1996-01-30 1998-06-02 Lucent Technologies Inc. Central node converter for local network having single coaxial cable
DE19643872A1 (de) * 1996-10-31 1998-05-07 Alsthom Cge Alcatel Optische Netzabschlußeinheit eines hybriden Glasfaser-Koaxialkabel-Zugangsnetzes
DE19651638A1 (de) * 1996-12-12 1998-06-18 Deutsche Telekom Ag Diensteintegrierendes Kommunikationsnetzwerk im Zugangsbereich
GB2321578B (en) * 1996-12-27 2001-10-31 Lg Electronics Inc Adaptive random access protocol and dynamic search tree expansion resolution for multiple station networks
DE19727670C1 (de) * 1997-06-30 1998-10-15 Bosch Gmbh Robert Einrichtung zur Verteilung von Breitbandsignalen
DE19747447A1 (de) * 1997-10-28 1999-04-29 Cit Alcatel Vorrichtung zum Zusammenführen und Verstärken von zwei breitbandigen Signalen
NL1007849C2 (nl) * 1997-12-19 1999-06-24 Tratec Telecom B V Communicatiesysteem voor CATV met geïntegreerd datakanaal.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558674A1 (fr) * 1984-01-19 1985-07-26 Telecommunications Sa Reseau de distribution de videocommunication
DE3836224A1 (de) * 1988-10-25 1990-05-03 Licentia Gmbh System mit verbindungen zwischen lichtwellenleiter-bussen und koaxialkabel-bussen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE60478T1 (de) * 1984-08-10 1991-02-15 Siemens Ag Diensteintegrierendes telekommunikationssystem fuer schmalband-dienste.
LU87840A1 (fr) * 1990-05-04 1991-05-07 Siemens Ag Passives optisches telekommunikationssystem

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558674A1 (fr) * 1984-01-19 1985-07-26 Telecommunications Sa Reseau de distribution de videocommunication
DE3836224A1 (de) * 1988-10-25 1990-05-03 Licentia Gmbh System mit verbindungen zwischen lichtwellenleiter-bussen und koaxialkabel-bussen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"AM SYSTEMS BRING FIBER TO CABLE TELEVISION", LASER FOCUS WORLD, vol. 26, no. 2, 1 February 1990 (1990-02-01), pages 129/130, 132 - 137, XP000100667 *
CHAPURAN T E ET AL: "FIBER-IN-THE-LOOP VIDEO UPGRADES WITH BOTH ANALOG AND DIGITAL TRANSMISSION OVER FIBER AND COAXIAL CABLE", PROCEEDINGS OF THE GLOBAL TELECOMMUNICATIONS CONFERENCE (GLOBECOM), HOUSTON, NOV. 29 - DEC. 2, 1993, vol. 1 OF 4, 29 November 1993 (1993-11-29), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 239 - 243, XP000428061 *

Also Published As

Publication number Publication date
EP0786176A1 (de) 1997-07-30
ATE223125T1 (de) 2002-09-15
EP0786176B1 (de) 2002-08-28
DE4436818C1 (de) 1995-10-26
DE59510351D1 (de) 2002-10-02

Similar Documents

Publication Publication Date Title
EP0673166B1 (de) Verfahren zur empfangsseitigen Taktversorgung für digital mittels ATM übertragene Videosignale in Faser-/Koaxial-Teilnehmeranschlussnetzen
DE69017135T2 (de) Hybrides Netzwerk.
EP0151454B1 (de) Breitbandiges integriertes Teilnehmeranschlusssystem
EP0727889A2 (de) Optisches Übertragungssystem für Kabelfernsehsignale und Video- und Telekommunikationssignale
DE19841775A1 (de) Teilnehmernetz mit optischer Faser
EP0020878A1 (de) Dienstintegriertes Nachrichtenübertragungs- und Vermittlungssystem für Ton, Bild und Daten
EP0380945A2 (de) Optisches Breitband-Nachrichtenübertragungssystem,insbesondere für den Teilnehmeranschlussbereich
DE69819723T2 (de) Verarbeitung von zwischen elementen eines telekommunikationsnetzwerks übertragenen telekommunikationssignalen
EP0786176B1 (de) Hybrides lichtwellenleiter- und koaxialleitungs- teilnehmeranschlussnetz
EP0024618A1 (de) Breitband-Fernmeldesystem
DE3632047C2 (de) Optisches Nachrichtenübertragungssystem für Schmalband- und Breitband-Nachrichtensignale
DE3403206A1 (de) Lichtwellenleiter-verteilnetz fuer fernseh- und tonprogramme
DE19719425A1 (de) System zur optischen Übertragung von Informationen
DE4436642A1 (de) Telekommunikationsnetz
DE4406509C2 (de) Teilnehmeranschlußnetz
DE10344753B4 (de) Verfahren zum bidirektionalen Übertragen von elektronischen Daten in einem Fernsehdaten-Kabelnetzwerk
DE3129752A1 (de) Breitbandkommunikationssystem
EP0071232B1 (de) Breitbandkommunikationssystem
EP0710024A2 (de) Hausnetz zur Anbindung von Teilnehmern an ein öffentliches Verteilnetz für Video- und/oder Audiosignale
DE4434730C2 (de) Telekommunikationsnetz
EP0701384B1 (de) System, Teilnehmereinrichtung, Zentrale und Verfahren für Video-on-Demand-Dienst
DE4405460C1 (de) Anschlußleitungsnetz
EP0905993B1 (de) Verfahren zum leitungslosen Übermitteln von Datenströmen in Breitbandnetzen
DE4435767A1 (de) Breitbandinformationssystem für Verteildienste und interaktive Dienste
EP0703709B1 (de) Breitbandinformationssystem für interaktive Dienste

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995933323

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 817354

Date of ref document: 19970411

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1995933323

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995933323

Country of ref document: EP