WO1996005280A1 - Handwash laundry detergent compositions - Google Patents

Handwash laundry detergent compositions Download PDF

Info

Publication number
WO1996005280A1
WO1996005280A1 PCT/US1995/009586 US9509586W WO9605280A1 WO 1996005280 A1 WO1996005280 A1 WO 1996005280A1 US 9509586 W US9509586 W US 9509586W WO 9605280 A1 WO9605280 A1 WO 9605280A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
alkyl
detergent composition
laundry detergent
composition according
Prior art date
Application number
PCT/US1995/009586
Other languages
English (en)
French (fr)
Inventor
Anju Deepali Massey Brooker
Suzanne Powell
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP95928195A priority Critical patent/EP0775190A4/en
Priority to MX9701081A priority patent/MX9701081A/es
Priority to BR9508535A priority patent/BR9508535A/pt
Priority to JP8507362A priority patent/JPH10504056A/ja
Publication of WO1996005280A1 publication Critical patent/WO1996005280A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/86Mixtures of anionic, cationic, and non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/10Amino carboxylic acids; Imino carboxylic acids; Fatty acid condensates thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/16Sulfonic acids or sulfuric acid esters; Salts thereof derived from divalent or polyvalent alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/525Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines

Definitions

  • the present invention is directed to a handwash laundry detergent composition.
  • the laundry detergent composition comprises a surfactant system comprising anionic, nonionic and cationic surfactants which provide improved cleaning and high sudsing and skin mildness benefits.
  • Detergent compositions in the form of synthetic detergent granules, liquids and bars are used in many areas throughout the world for the purpose of laundering soiled clothes. In areas where mechanical washing machines are not prevalent, laundering soiled clothes and fabrics generally entails a handwashing method of laundering.
  • Detergent compositions formulated for the handwash laundering of fabrics are required to provide a number of consumer relevant performance benefits particularly with respect to cleaning, skin mildness and sudsing which are required to be applicable over a wide range of wash conditions and habits.
  • current handwash laundry detergent compositions frequently comprise high levels of surfactants.
  • formulators of detergent compositions used for hand laundering operations incorporate high levels of anionic surfactants, especially linear alkylbenzene sulphonate and alkyl sulphate surfactants.
  • the linear alkylbenzene sulphonate surfactants have been frequently utilised due to their ability to provide excellent cleaning of grease and oil stains.
  • Alkyl sulphate surfactants are desirable because they provide excellent paniculate soil removal performance. Furthermore both of these surfactants are effective in both hot and cold wash water conditions.
  • the wash solution is often repeatedly used for a number of laundering operations. This results in a decrease in the amount of detergent actives present and an increase in the amount of soils present in the wash liquor.
  • the detergent composition provides the wash liquor with excellent soil suspension properties. This is particularly important for the effective laundering of highly soiled fabrics.
  • US Application 08/078494 discloses a detergent composition comprising polyhydroxy fatty acid amide and anionic surfactants at certain ratios.
  • U.S. Patent Nos. 2,982,737; 3,312,627; and 5,254,281 disclose laundry detergent or toilet bars including various surfactants.
  • the present invention is a handwash laundry detergent composition
  • a surfactant system comprising anionic, nonionic and cationic surfactants, characterised in that said nonionic surfactant comprises a polyhydroxy fatty acid amide and the ratio of said anionic surfactant to said cationic surfactant is from 3:1 to 15:1 and the ratio of said cationic surfactant to said nonionic surfactant is from 2:1 to 1:10.
  • the present invention also relates to a method of laundering soiled fabrics, whereby said fabrics are manually contacted with an effective amount of a laundering detergent composition according to the present invention, in an aqueous solution.
  • the present invention is a handwash laundry detergent composition
  • a handwash laundry detergent composition comprising from 15% to 35%, preferably from 18% to 30%, more preferably from 18% to 25% of a surfactant system.
  • Said system comprises anionic, nonionic and cationic surfactants.
  • the ratio of said anionic surfactant to said cationic surfactant is from 3:1 to 15:1, preferably from 5:1 to 15:1, most preferably from 7:1 to 15:1.
  • the ratio of said cationic surfactant to said nonionic surfactant is from 2:1 to 1:10, preferably from 2:1 to 1:7, more preferably from 2:1 to 1:5. Said system has been found to deliver improved cleaning performance and skin mildness for handwash detergent compositions
  • the detergent composition comprises as an essential feature an anionic surfactant.
  • the anionic surfactant may be essentially any anionic surfactant, including anionic sulphate, sulphonate or carboxylate surfactant.
  • the detergent composition may comprise from 8% to 25%, preferably from 10% to 20%, more preferably from 12% to 20% of said anionic surfactant.
  • Anionic sulphate surfactant preferably from 10% to 20%, more preferably from 12% to 20% of said anionic surfactant.
  • the anionic sulphate surfactant may be any organic sulphate surfactant. It is preferably selected from the group consisting of Cjo-Cl6 alkyl sulphate which has been ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per molecule, C9-C17 acyl-N-(C ⁇ -C4 alkyl) glucamine sulphate, C9**Ci7-N-(C2-C4 hydroxyalkyi) glucamine sulphate, and mixtures thereof, wherein the C9-C17 acyl group is derived from coconut or palm kernel oil, as described in US patent 2 717 894.
  • the anionic sulphate surfactant is a C10-C16 alkyl sulphate which has been ethoxylated with from about 0.5 to about 20, preferably from about 0.5 to about 12, moles of ethylene oxide per molecule.
  • Alkyl ethoxy sulphate surfactants comprises a primary alkyl ethoxy sulphate derived from the condensation product of a C10-C16 alcohol with an average of from about 0.5 to about 20, preferably from about 0.5 to about 12, ethylene oxide groups.
  • the alcohol itself is commercially available.
  • C12-C14 alkyl sulphate which has been ethoxylated with from about 3 to about 10 moles of ethylene oxide per molecule is preferred.
  • Blends can be made of material having different degrees of ethoxylation and/or different ethoxylate distributions arising from the specific ethoxylation techniques employed and subsequent processing steps such as distillation.
  • the counterion for the anionic sulphate surfactant component is preferably selected from calcium, sodium, potassium, magnesium, ammonium, or alkanol-ammonium, and mixtures thereof, with calcium and magnesium being preferred for cleaning and sudsing, respectively.
  • Anionic sulphonate surfactants suitable for use herein include, for example, the salts (e.g. alkali metal salts) of C9-C20 linear alkylbenzene sulphonates, C8-C22 primary or secondary alkane sulphonates, C8-C24 olefm sulphonates, sulphonated polycarboxylic acids, alkyl glycerol sulphonates, fatty acyl glycerol sulphonates, fatty oleyl glycerol sulphonates, paraffin sulphonates, and any mixtures thereof.
  • the salts e.g. alkali metal salts
  • C9-C20 linear alkylbenzene sulphonates C8-C22 primary or secondary alkane sulphonates
  • C8-C24 olefm sulphonates C8-C24 olefm sulphonates
  • Anionic alkyl ethoxy carboxylate surfactant Anionic alkyl ethoxy carboxylate surfactant
  • Alkyl ethoxy carboxylates suitable for use herein include those with the formula RO(CH2CH2 ⁇ )x CH2COO-M+ wherein R is a C12 to Ci6 alkyl group, x ranges from 0 to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20%, preferably less than 15%, most preferably less than 10%, and the amount of material where x is greater than 7, is less than 25%, preferably less than 15%, most preferably less than 10%, the average x is from 2 to 4 when the average R is C13 or less, and the average x is from 3 to 6 when the average R is greater than C13, and M is a cation, preferably chosen from alkali metal, alkaline earth metal, ammonium > mono., di-, and tri-ethanol-ammonium, most preferably from sodium, potassium, ammonium and mixtures thereof with magnesium ions.
  • Alkyl polyethoxy polycarboxylate surfactants suitable for use herein include those having the formula:
  • R is a C6 to Cis alkyl group
  • x is from 1 to 25
  • R ⁇ and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, wherein at least one R ⁇ or R2 is a succinic acid radical or hydroxysuccinic acid radical
  • R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
  • Secondary soap surfactants (aka “alkyl carboxyl surfactants”) useful herein are those which contain a carboxyl unit connected to a secondary carbon. It is to be understood herein that the secondary carbon can be in a ring structure, e.g. as in p-octyl benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates.
  • the secondary soap surfactants should contain no ether linkages, no ester linkages and no hydroxyl groups. There should be no nitrogen atoms in the head-group (amphiphilic portion).
  • the secondary soap surfactants usually contain 11-15 total carbon atoms, although slightly more (e.g., up to 16) can be tolerated, e.g. p-octyl benzoic acid.
  • a highly preferred class of secondary soaps useful herein comprises the secondary carboxyl materials of the formula R ⁇ CH(R4)COOM, wherein R-3 is CH3(CH2)x and R4 is CH3(CH2)y, wherein y can be 0 or an integer from 1 to 4, x is an integer from 4 to 10 and the sum of (x + y) is 6-14, preferably 7-13, most preferably 12.
  • Another class of secondary soaps useful herein comprises those carboxyl compounds wherein the carboxyl substituent is on a ring hydrocarbyl unit, i.e., secondary soaps of the formula R-5-R6-COOM, wherein R-5 is C 7 -C 10 , preferably C 8 -C 9 , alkyl or alkenyl and R 6 is a ring structure, such as benzene, cyclopentane and cyclohexane. (Note: R5 can be in the ortho, meta or para position relative to the carboxyl on the ring.)
  • Still another class of secondary soaps comprises secondary carboxyl compounds of the formula CH3(CHR)k-(CH2) m -(CHR) n - CH(COOM)(CHR) 0 -(CH2)p-(CHR) q -CH3, wherein each R is C1-C4 alkyl, wherein k, n, 0, q are integers in the range of 0-8, provided that the total number of carbon atoms (including the carboxylate) is in the range of 10 to 18.
  • the species M can be any suitable, especially water-solubilizing, counterion, e.g., H, alkali metal, alkaline earth metal, ammonium, alkanolammonium, di- and tri- alkanolammonium, and C1-C5 alkyl substituted ammonium.
  • Sodium is convenient, as is diethanolammonium.
  • Preferred secondary soap surfactants for use herein are water- soluble members selected from the group consisting of the water-soluble salts of 2-methyl-l-undecanoic acid, 2-ethyl-l-decanoic acid, 2-propyl-l- nonanoic acid, 2-butyl-l-octanoic acid, 2-pentyl-l-heptanoic acid and isopentadecanoic acid.
  • anionic surfactants useful for detersive purposes can also be included in the compositions hereof. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, fatty oleyl glycerol sulphates, alkyl phenol ethylene oxide ether sulphates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates, N-acyl sarcosinates, branched primary alkyl sulphates, alkyl polyethoxy carboxylates such as those of the formula RO(CH 2 CH 2 0) k CH 2 COO-M + wherein R is a Cg- C 2 2 alkyl, k is an integer from 0 to 10, and M is a soluble salt-forming cation, and fatty
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23.
  • Nonionic surfactant are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23.
  • the detergent composition comprises as an essential feature from 1 % to 10%, preferably from 2% to 8%, more preferably from 3% to 7.5% of nonionic surfactant, comprising a polyhydroxy fatty acid amide.
  • Nonionic polyhydroxy fatty acid amide surfactant Nonionic polyhydroxy fatty acid amide surfactant
  • Fatty acid amide surfactants suitable for use herein are those having the formula:
  • Ri is H or a C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl and R2 is a C5-C31 hydrocarbyl and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxy groups directly connected to the chain or an alkoxylated derivative thereof.
  • Ri is a methyl
  • R2 is a straight chain Cll- C15 alkyl or alkenyl such as coconut alkyl or mixtures thereof
  • Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose in a reductive amination reaction
  • polyhydroxy fatty acid amides suitable for use herein are gemini polyhydroxy fatty acid amides having the formula:
  • X is a bridging group having from about 2 to about 200 atoms
  • Z and Z' are the same or different alcohol-containing moieties having two or more hydroxyl groups (e.g., glycerol, and units derived from reducing sugars such as glucose, maltose and the like), or either one (but not both) of Z or Z' is hydrogen
  • R and R' are the same or different hydrocarbyl moieties having from about 1 to about 21 carbon atoms and can be saturated, branched or unsaturated (e.g., oleoyl) and mixtures thereof.
  • Preferred X groups are selected from substituted or unsubstituted, branched or linear alkyl, ether alkyl, amino alkyl, or amido alkyl moieties having from about 2 to about 15 carbon atoms.
  • Preferred alkyl moieties are unsubstituted, linear alkyl moieties having the formula -(CH2)n- > wherein n is an integer from 2 to about 15, preferably from 2 to about 10, and most preferably from 2 to about 6; and also unsubstituted, branched alkyl moieties having from 3 to about 15 carbon atoms, preferably from 3 to about 10 carbon atoms, and most preferably from 3 to about 6 carbon atoms.
  • ethylene and propylene (branched or linear) alkyl moieties are also preferred.
  • unsubstituted, branched or linear ether alkyl moieties having the formula -R2-(0-R2) m -, wherein each R ⁇ is independently selected from C2-C8 branched or linear alkyl and/or aryl moieties (preferably ethyl, propyl or combinations thereof) and m is an integer from 1 to about 5.
  • X may also be unsubstituted, branched or linear amino and/or amido alkyl moieties having the formula -R2-(N(R3)-R2) m -, wherein each R ⁇ is independently selected from C2-C8 branched or linear alkyl and/or aryl moieties (preferably ethyl, propyl or combinations thereof), m is an integer from 1 to about 5, and R ⁇ is selected from hydrogen, C1-C5 alkyl, and -C(0)R 4 -, wherein R 4 is C1-C21 alkyl, including -C(0)R.
  • the X moiety may be derived from commercially available amine compounds such as, for example, Jeffamines- ⁇ (supplied by Texaco) such as JED600, JEDR148, JEDR192, JED230, JED2000, J-D230 and J-D400.
  • Preferred X moieties therefore include: -(CH2)2", -(CH2)3-, - (CH )4-, -(CH 2 )5-, -(CH 2 )6-, -CH 2 CH(CH3)(CH 2 )3-, -(CH 2 )2-0-(CH 2 )2- , -(CH 2 )3-0-(CH 2 )3-, -(CH 2 )2-0-(CH 2 )2-0-(CH2)2-, -(CH 2 )3-0-(CH 2 )2-0-(CH 2 )3-, -(CH2)2-0-(CH 2 )3-0-(CH 2 )2-0-(CH 2 )3-, -(CH2)2-0-(CH 2 )3-0-(CH 2 )2-, -(CH 2 )2- NH-(CH 2 )2-, -(CH 2 )3-NH-(CH 2 )3-, -(CH 2 )2-NH-(CH 2 )3",
  • Z and Z' groups are independently selected from polyhydroxyhydrocarbyl moieties having a linear hydrocarbyl chain with at least 2 hydroxyls (in the case of glycerol) or at least 3 hydroxyls ( in the case of other sugars) directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
  • Z and Z' preferably will be derived from a reducing sugar, more preferably Z and/or Z' is a glycityl moiety.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose, as well as glyceraldehyde.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z and Z'. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z and/or Z' preferably will be selected from the group consisting of -CH2-(CHOH)-p-CH2 ⁇ H, - CH(CH2 ⁇ H)-(CHOH) p _ ⁇ -CH2 ⁇ H, -CH2-(CHOH)2(CHORl)(CHOH)- CH2OH, where p is an integer from 1 to 5, inclusive, and Rl is H or a cyclic mono- or polysaccharide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein p is 4, particularly -CH2-(CHOH)4- CH 2 OH.
  • R and R 1 groups are independently selected from C3-C21 hydrocarbyl moieties, preferably straight or branched chain C3-C13 alkyl or alkenyl, more preferably straight chain C5-C11 alkyl or alkenyl, most preferably straight chain C5-C9 alkyl or alkenyl, or mixtures thereof.
  • R- CO-N ⁇ and/or R'-CO-N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, etc.
  • Examples of such compounds therefore include, but are not limited to: CH3(CH2)6C(0)N[CH2(CHOH) 4 CH2 ⁇ H]-(CH2)2-
  • the nonionic surfactant may comprise, in addition to the polyhydroxy fatty acid amide, other nonionic surfactants, particularly alkoxylated nonionic surfactants.
  • polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use herein.
  • the polyethylene oxide condensates are preferred.
  • These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 12 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide.
  • Nonionic ethoxylated alcohol surfactant Nonionic ethoxylated alcohol surfactant
  • the alkyl ethoxylate condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use herein.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
  • Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
  • Most preferred are the condensation products of alcohols having an alkyl group containing from 8 to 14 carbon atoms with from about 3 to about 9 moles of ethylene oxide per mole of alcohol.
  • nonionic surfactants of this type include Tergito.TM 15-S-9 (the condensation product of C11-C15 linear alcohol with 9 moles ethylene oxide), TergitolTM 24-L-6 NMW (the condensation product of C12-C14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; Neodo.
  • NeodolTM 23-6.5 the condensation product of C12-C13 linear alcohol with 6.54 moles of ethylene oxide
  • NeodolTM 45-7 the condensation product of C14-C15 linear alcohol with 7 moles of ethylene oxide
  • Neodo.TM 45.4 me condensation product of C14-C15 linear alcohol with 4 moles of ethylene oxide
  • condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein.
  • examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
  • condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein.
  • this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
  • Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
  • Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
  • the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.
  • the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • the preferred alkylpolyglycosides have the formula
  • R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyi, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3, x is from 0 to 10 preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 and t is from 0 to 10.
  • the glycosyl is preferably derived from glucose.
  • compositions of the present invention are a cationic surfactant.
  • the detergent compositions of the present invention comprise from 0.1 % to 10%, preferably from 0.5% to 5%, most preferably from 0.5% to 3% of a cationic surfactant.
  • Cationic surfactants suitable for use herein are according to the formula
  • each Rl is an organic group containing a straight or branched alkyl or alkenyl group optionally substiuted with up to three phenyl or hydroxy groups and optionally interrupted by up to four structures selected from the following group:
  • the Rl groups may additionally contain up to 12 ethoxy groups, m is a number from 1 to 3. No more than one Rl group in a molecule can have 16 or more carbon atoms when m is 2 or no more than 12 carbon atoms when m is 3.
  • Each R ⁇ group is an alkyl or a hydroxy alkyl group containing from 1 to 4 carbon atoms or a benzyl group with no more than one R2 group in a molecule being benzyl, and x is a number from 0 to 11, preferably from 0 to 6. The remainder of any carbon atom positions on the Y group are filled by hydrogens.
  • Y is selected from the group consisting of:
  • L is 1 or 2, with theY groups being separated by a moiety selected from Rl and R ⁇ analogues (preferably alkylene or alkenylene) having from 1 to 22 carbon atoms and two free carbon single bonds when L is 2.
  • Z is a water soluble anion such as a halide, sulphate, methyl sulphate, hydroxide or nitrate anion, particularly preferred being chloride, bromide, iodide, sulphate or methyl sulphate anions in a number to give electrical neutrality of the cationic component.
  • cationic surfactants include the ammonium surfactants such as alkyldimethylammonium halogenides and surfactants having the formula:
  • R2 is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain
  • each R3 is selected from the group consisting of CH2CH2-, -CH2CH(CH3)-, -CH2CH(CH2 ⁇ H)-, - CH2CH2CH2-, and mixtures thereof
  • each R 4 is selected from the group consisting of C1-C4 alkyl, C1-C4 hydroxyalkyi, benzyl ring structures formed by joining the two R 4 groups, -CH2CHOH- CHOHCOR 6 CHOHCH2 ⁇ H wherein R 6 is any hexose or hexose polymer having a molecular weight less than about 1000 and hydrogen when y is not 0
  • R-5 is the same as R 4 or is an alkyl chain wherein the total number of carbon atoms of R ⁇ plus R ⁇ is not more than about 18
  • each y is from about 0 to about 10 and the sum of the y
  • Preferred cationic surfactants are the water soluble quaternary ammonium compounds useful in the present composition have the formula:
  • R1R2R3R4N+X- wherein Ri is a C8-C16 alkyl, each of R2.
  • R3 and R4 is independently C1-C4 alkyl, C1-C4 hydroxy alkyl, benzyl and (C2H4 ⁇ ) x H where x has a value of from 1 to 5 and X is an anion. Not more than one of the R2, R3 or R4 should be benzyl.
  • the preferred alkyl chain length for Ri is from C12-C15, particularly where the alkyl group is a mixture of chain lengths derived from coconut or palm kernel fat or is derived from synthetically by olefm build up or OXO alcohols synthesis.
  • Preferred groups for the R2R3 and R4 are methyl and hydroxyethyl groups and the anion X may be selected from halide, methosulphate, acetate and phosphate ions.
  • Suitable quaternary ammonium compounds for use herein are: coconut trimethyl ammonium chloride or bromide; coconut methyl dihydroxyethyl ammonium chloride or bromide; decyl trimethyl ammomum chloride; decyl dimethyl hydroxyethyl ammonium chloride or bromide; C12-C15 dimethyl hydroxyethyl ammonium chloride or bromide; coconut dimethyl hydroxyethyl ammonium chloride or bromide; myristyl trimethyl ammonium methyl sulphate; lauryl dimethyl benzyl ammonium chloride or bromide; lauryl dimethyl (ethoxy)4 ammonium chloride or bromide and choline esters.
  • Other cationic surfactants useful herein are also described in U.S. patent 4 228 044.
  • the surfactant system of the detergent composition of the present invention may further comprise from 0.1 % to 10%, preferably from 0.5% to 3% of amphoteric or zwitterionic surfactants and mixtures thereof.
  • Suitable amphoteric surfactants for use herein include the alkyl amphocarboxylic acids of the formula:
  • R is a CS-CJS alkyl group
  • Rj is of the general formula
  • Rl Rl wherein R 1 is a (CH2) x COOM or CH2CH2OH, and x is 1 or 2 and M is preferably chosen from alkali metal, alkaline earth metal, ammonium, mono, di-, and tri-ethanolammonium, most preferably from sodium, potassium, ammonium and mixtures thereof with magnesium ions.
  • the preferred R alkyl chain length is a Cjo to Ci4 alkyl group.
  • a preferred amphocarboxylic acid is produced from fatty imidazolines wherein the dicarboxylic acid functionality of the amphodicarboxylic acid is diacetic acid and/or dipropionic acid.
  • the detergent compositions additionally comprise zwitterionic surfactants, such as betaines and sultaines.
  • Suitable betaines are those compounds having the formula R(R 1 )2N + R 2 COO- wherein R is a C6-C18 hydrocarbyl group, preferably a C10-C16 alkyl group or C10-I6 acylamido alkyl group, each Rl is typically C1-C3 alkyl, preferably methyl, and R 2 is a C1-C5 hydrocarbyl group, preferably a C1-C3 alkylene group, more preferably a C1-C2 alkylene group.
  • betaines examples include coconut acylamidopropyldimethyl betaine; hexadecyl dimethyl betaine; C 12-14 acylamidopropylbetaine; C8-14 acylamidohexyldiethyl betaine; 4[Ci4_i6 acy lmethy lamidodiethy lammonio] - 1 -carboxybutane ; C 16- 18 acylamidodimethylbetaine; C12-I6 acylamidopentanediethyl-betaine; [C12-I6 acylmethylamidodimethylbetaine.
  • Preferred betaines are C12-I8 dimethyl-ammonio hexanoate and the CiO-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines.
  • the complex betaines for use herein have the formula
  • R is a hydrocarbon group having from 7 to 22 carbon atoms
  • A is the group (C(O))
  • n is 0 or 1
  • Ri is hydrogen or a lower alkyl group
  • x is 2 or 3
  • y is an integer of 0 to 4
  • Q is the group -R2COOM wherein R2 is an alkylene group having from 1 to 6 carbon atoms and M is hydrogen or an ion from the groups alkali metals, alkaline earth metals, ammonium and substituted ammonium and B is hydrogen or a group Q as defined.
  • the sultaines useful in the present invention are those compounds having the formula (R(R 1 )2N+R 2 S03 _ wherein R is a C6-C18 hydrocarbyl group, preferably a C 0-C16 alkyl group, more preferably a C12-C13 alkyl group, each Rl is typically C1-C3 alkyl, preferably methyl, and R 2 is a Ci-C ⁇ hydrocarbyl group, preferably a C1-C3 alkylene or, preferably, hydroxyalkylene group.
  • Suitable sultaines include C12-C14 dimethylammonio-2-hydroxypropyl sulfonate, C-12-14 amido propyl ammonio-2-hydroxypropyl sultaine, C 12-14 dihydroxyethylammonio propane sulfonate, and C 6_i8 dimethylammonio hexane sulfonate, with C 12-14 amido propyl ammonio-2-hydroxypropyl sultaine being preferred.
  • compositions of the present invention may further comprise as an optional ingredient an amine oxide.
  • Amine oxides useful in the present invention include those compounds having the formula :
  • R3(OR 4 ) X N(R5) 2 wherein R3 is selected from an alkyl, hydroxyalkyi, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms, preferably 8 to 16 carbon atoms; R 4 is an alkylene or hydroxy alkylene group containing from 2 to 3 carbon atoms, preferably 2 carbon atoms, or mixtures thereof; x is from 0 to 3, preferably 0; and each R-5 is an alkyl or hydyroxyalkyl group containing from 1 to 3, preferably from 1 to 2 carbon atoms, or a polyethylene oxide group containing from 1 to 3, preferable 1, ethylene oxide groups.
  • the R-5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • amine oxide surfactants in particular include C10-C18 alkyl dimethyl amine oxides and C8-C12 alkoxy ethyl dihydroxyethyl amine oxides.
  • examples of such materials include dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dimethyldodecylamine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dodecylamidopropyl dimethylamine oxide and dimethyl-2-hydroxyoctadecylamine oxide.
  • Preferred are C10- C 8 alkyl dimethylamine oxide, and CiO-18 acylamido alkyl dimethylamine oxide.
  • compositions according to the present invention may comprise as optional ingredients detergent adjuncts selected from bleaching agents, bleach activators, enzymes, polymeric anti-redeposition agents, polymeric dispersants, polymeric soil release agents, chelants, builders, dye transfer inhibitors and mixtures thereof.
  • detergent adjuncts selected from bleaching agents, bleach activators, enzymes, polymeric anti-redeposition agents, polymeric dispersants, polymeric soil release agents, chelants, builders, dye transfer inhibitors and mixtures thereof.
  • Enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration.
  • the enzymes to be incorporated include proteases, amylases, Upases, cellulases, and peroxidases, as well as mixtures thereof.
  • Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from about 0.001 % to about 5%, preferably 0.01 %-l % by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • AU Anson units
  • proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1 ,243,784 of Novo.
  • protealytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the tradenames ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio- Synthetics, Inc. (The Netherlands).
  • proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, Bott et al, published January 9, 1985).
  • Amylases include, for example, ⁇ -amylases described in British Patent Specification No. 1,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL and BAN, Novo Industries.
  • the cellulase usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5.
  • Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander). Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. CAREZYME (Novo) is especially useful.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P. " Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var..
  • lipolyticum NRRLB 3673 commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • the LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo is a preferred lipase for use herein.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
  • Peroxidase- containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A/S.
  • Patent 3,600,319 issued August 17, 1971 to Gedge, et al, and European Patent Application Publication No. 0 199 405, Application No. 86200586.5, published October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. Patent 3,519,570.
  • the enzymes employed herein are stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes.
  • Calcium ions are generally somewhat more effective than magnesium ions and are preferred herein if only one type of cation is being used.
  • Additional stability can be provided by the presence of various other art-disclosed stabilizers, especially borate species: see Severson, U.S. 4,537,706.
  • Typical detergents, especially liquids will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 5 to about 15, and most preferably from about 8 to about 12, millimoles of calcium ion per liter of finished composition.
  • the level of calcium or magnesium ions should be selected so that there is always some minimum level available for the enzyme, after allowing for complexation with builders, fatty acids, etc., in the composition.
  • Any water-soluble calcium or magnesium salt can be used as the source of calcium or magnesium ions, including, but not limited to, calcium chloride, calcium sulfate, calcium malate, calcium maleate, calcium hydroxide, calcium formate, and calcium acetate, and the corresponding magnesium salts.
  • a small amount of calcium ion generally from about 0.05 to about 0.4 millimoles per liter, is often also present in the composition due to calcium in the enzyme slurry and formula water.
  • the formulation may include a sufficient quantity of a water-soluble calcium ion source to provide such amounts in the laundry liquor. In the alternative, natural water hardness may suffice.
  • compositions herein will typically comprise from about 0.05% to about 2% by weight of a water-soluble source of calcium or magnesium ions, or both.
  • the amount can vary, of course, with the amount and type of enzyme employed in the composition.
  • compositions herein may also optionally, but preferably, contain various additional stabilizers, especially borate-type stabilizers.
  • additional stabilizers especially borate-type stabilizers.
  • such stabilizers will be used at levels in the compositions from about 0.25% to about 10%, preferably from about 0.5% to about 5%, more preferably from about 0.75% to about 3%, by weight of boric acid or other borate compound capable of forming boric acid in the composition (calculated on the basis of boric acid).
  • Boric acid is preferred, although other compounds such as boric oxide, borax and other alkali metal borates (e.g., sodium ortho-, meta- and pyroborate, and sodium pentaborate) are suitable.
  • Substituted boric acids e.g., phenylboronic acid, butane boronic acid, and p-bromo phenylboronic acid
  • the detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators.
  • bleaching agents will typically be at levels of from about 1 % to about 30%, more typically from about 5% to about 20%, of the detergent composition.
  • the amount of bleach activators will typically be from about 0.1 % to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
  • the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
  • Preferred oxygen bleaches are perhydrates such as percarbonate and perborate, e.g., sodium perborate in mono- or tetra-hydrate form.
  • bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1, 1983.
  • Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al.
  • Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate” bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
  • a preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers.
  • the percarbonate can be coated with silicate, borate or water- soluble surfactants.
  • Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka. Mixtures of bleaching agents can also be used.
  • Peroxygen bleaching agents, the perborates, the percarbonates, etc. are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator.
  • bleach activators Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED tetraacetyl ethylene diamine
  • RlN(R5)C(0)R 2 C(0)L or RlC(0)N(R5)R 2 C(0)L wherein Rl is an alkyl group containing from about 6 to about 12 carbon atoms, R 2 is an alkylene containing from 1 to about 6 carbon atoms, R5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group.
  • a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
  • a preferred leaving group is phenyl sulfonate.
  • bleach activators of the above formulae include (6-octanamido-caproy l)oxybenzenesulfonate , (6-nonanamido- caproy l)oxy benzenesulfonate , (6-decanamido- caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, incorporated herein by reference.
  • Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference.
  • a highly preferred activator of the benzoxazin-type is:
  • Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
  • R6 is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms.
  • Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5- trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium per
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
  • the bleaching compounds can be catalysed by means of a manganese compound. Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat.
  • metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611.
  • the use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; 5,227,084;
  • Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils.
  • the level of builder can vary widely depending upon the end use of the composition and its desired physical form.
  • the compositions will typically comprise at least about 1 % builder.
  • Liquid formulations typically comprise from about 5% to about 50%, more typically about 5% to about 30%, by weight, of detergent builder.
  • Granular formulations typically comprise from about 10% to about 80%, more typically from about 15% to about 50% by weight, of the detergent builder.
  • Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
  • non-phosphate builders are required in some locales.
  • compositions herein function surprisingly well even in the presence of the so-called “weak” builders (as compared with phosphates) such as citrate, or in the so-called “underbuilt” situation that may occur with zeolite or layered silicate builders.
  • silicate builders are the alkali metal silicates, particularly those having a Si ⁇ 2:Na2 ⁇ ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
  • NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
  • Hoechst commonly abbreviated herein as "SKS-6”
  • the Na SKS-6 silicate builder does not contain aluminum.
  • NaSKS-6 has the delta-Na2S-2 ⁇ 5 morphology form of layered silicate.
  • SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x ⁇ 2 x -(- l*yH2 ⁇ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
  • Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms.
  • delta-Na2S-2 ⁇ 5 (NaSKS-6 form) is most preferred for use herein.
  • Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilising agent for oxygen bleaches, and as a component of suds control systems.
  • carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:
  • z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
  • aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:
  • This material is known as Zeolite A.
  • the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralised salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • polycarboxylate builders include a variety of categories of useful materials.
  • One important category of polycarboxylate builders encompasses the ether poly carboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987.
  • Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
  • ether hydroxypoly carboxylates include the ether hydroxypoly carboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, poly maleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, poly maleic
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
  • succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is dodecenylsuccinic acid.
  • succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2- dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like.
  • Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
  • Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322.
  • Fatty acids e.g., C12-C 8 monocarboxylic acids
  • the aforesaid builders especially citrate and/or the succinate builders, to provide additional builder activity.
  • Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
  • the various alkali metal phosphates such as the well-known sodium tnpolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane- 1 -hydroxy- 1,1- diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137) can also be used.
  • Polymeric soil release agents are characterised by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
  • the polymeric soil release agents useful herein especially include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerisation of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units wherein said mixture contains a sufficient amount of oxyethylene units such that the hydrophile component has hydrophilicity great enough to increase the hydrophilicity of conventional polyester synthetic fibre surfaces upon deposit of the soil release agent on such surface, said hydrophile segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such components having about 20 to 30 oxypropylene units, at least about 50% oxyethylene units; or
  • the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from about 200, although higher levels can be used, preferably from 3 to about 150, more preferably from 6 to about 100.
  • Suitable oxy C4-C6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as M ⁇ 3S(CH2) n OCH2CH2 ⁇ -, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink.
  • Polymeric soil release agents useful in the present invention also include cellulosic derivatives such as hydroxyether cellulosic polymers, copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C1-C4 alkyl and C4 hydroxyalkyi cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al.
  • Soil release agents characterised by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., Ci-C ⁇ vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones.
  • poly(vinyl ester) e.g., Ci-C ⁇ vinyl esters
  • poly(vinyl acetate) grafted onto polyalkylene oxide backbones such as polyethylene oxide backbones.
  • Commercially available soil release agents of this kind include the SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (West Germany).
  • One type of preferred soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate.
  • the molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1975.
  • Another preferred polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units contains 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000.
  • this polymer include the commercially available material ZELCON 5126 (from Dupont) and MILEASE T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
  • Another preferred polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone.
  • These soil release agents are described fully in U.S. Patent 4,968,451, issued November 6, 1990 to J.J. Scheibel and E.P. Gosselink.
  • Other suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,711 ,730, issued December 8, 1987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
  • Preferred polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al, which discloses anionic, especially sulfoarolyl, end-capped terephthalate esters.
  • soil release agents will generally comprise from about 0.01 % to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1 % to about 5%, preferably from about 0.2% to about 3.0%.
  • Still another preferred soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy-l ,2-propylene units.
  • the repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end- caps.
  • a particularly preferred soil release agent of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-l,2-propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two end-cap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate.
  • Said soil release agent also comprises from about 0.5% to about 20%, by weight of the oligomer, of a crystalline-reducing stabilizer, preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
  • a crystalline-reducing stabilizer preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
  • compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
  • the detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents.
  • chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, poly functionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
  • Amino carboxylates useful as optional chelating agents include ethy lenediaminetetracetates , N-hydroxyethy lethy lene diaminetriacetates , nitrilotriacetates, ethylenediamine tetraproprionates, triethy lenetetraaminehexacetates , diethylenetriaminepentaacetates , and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at lease low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
  • Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as l,2-dihydroxy-3,5-disulfobenzene.
  • EDDS ethylenediamine disuccinate
  • [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
  • these chelating agents will generally comprise from about 0.1 % to about 10% by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1 % to about 3.0% by weight of such compositions.
  • compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and antire- deposition properties.
  • Granular detergent compositions which contain these compounds typically contain from about 0.01 % to about 10.0% by weight of the water-soluble ethoxylates amines; liquid detergent compositions typically contain about 0.01 % to about 5%.
  • the most preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine. Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986.
  • Another group of preferred clay soil removal-antiredeposition agents are the cationic compounds disclosed in European Patent Application 111,965, Oh and Gosselink, published June 27, 1984.
  • Other clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 111 ,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S.
  • CMC carboxy methyl cellulose
  • Polymeric dispersing agents can advantageously be utilized at levels from about 0.1 % to about 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders.
  • Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, paniculate soil release peptization, and anti-redeposition.
  • Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form.
  • Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • the presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.
  • Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued march 7, 1967.
  • Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
  • Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
  • the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000.
  • the ratio of acrylate to maleate segments in such copolymers will generally range from about 30: 1 to about 1 :1 , more preferably from about 10:1 to 2:1.
  • Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
  • Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate.
  • Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol terpolymers.
  • Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.
  • PEG polyethylene glycol
  • PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent.
  • Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1 ,000 to about 50,000, more preferably from about 1 ,500 to about 10,000.
  • Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders.
  • Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.
  • compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process.
  • dye transfer inhibiting agents include poly vinyl pyrrolidone polymers, polyamine N- oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from about 0.01 % to about 10% by weight of the composition, preferably from about 0.01 % to about 5%, and more preferably from about 0.05% to about 2%.
  • Preferred polyamine N- oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • the N-0 group can be represented by the following general structures:
  • Rj , R2, R3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1 ; and the nitrogen of the N-0 group can be attached or form part of any of the aforementioned groups.
  • the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferred pKa ⁇ 6.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are poly vinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
  • These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide.
  • the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1 ,000,000.
  • the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation.
  • the polyamine oxides can be obtained in almost any degree of polymerization Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO".
  • the most preferred polyamine N-oxide useful in the detergent compositions herein is poly(4-vinyl ⁇ yridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1:4.
  • Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred for use herein.
  • the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis. Vol 113.
  • the PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N- vinylpyrrolidone from 1:1 to 0.2:1, more preferably from 0.8:1 to 0.3:1, most preferably from 0.6:1 to 0.4:1. These copolymers can be either linear or branched.
  • compositions also may employ a polyvinylpyrrolidone (“PVP”) having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 200,000, and more preferably from about 5,000 to about 50,000.
  • PVP's are known to persons skilled in the detergent field; see, for example, EP- A-262,897 and EP-A-256,696, incorporated herein by reference.
  • Compositions containing PVP can also contain polyethylene glycol (“PEG”) having an average molecular weight from about 500 to about 100,000, preferably from about 1,000 to about 10,000.
  • PEG polyethylene glycol
  • the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50:1 , and more preferably from about 3:1 to about 10:1.
  • the detergent compositions herein may also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from about 0.01 % to 1 % by weight of such optical brighteners.
  • the hydrophilic optical brighteners useful in the present invention are those having the structural formula:
  • Ri is selected from anilino, N-2-bis-hydroxyethyl and NH-2- hydroxy ethyl
  • R2 is selected from N-2-bis-hydroxy ethyl, N-2- hydroxy ethyl-N-methylamino, morphilino, chloro and amino
  • M is a salt-forming cation such as sodium or potassium.
  • the brightener is 4,4',- bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'- stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNPA- GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • the brightener is 4,4'- bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2- yl)amino]2, 2' -stilbenedisulfonic acid disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
  • the brightener is 4,4'-bis[(4-anilino-6-morphilino- s-triazine-2-yl)amino]2, 2' -stilbenedisulfonic acid, sodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
  • the specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents herein before described.
  • the combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics.
  • the extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient".
  • the exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor. Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
  • the detergent compositions of the present invention may be in any form and include granules, particulates, liquids, gels and bars.
  • a wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, such as carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations and solid fillers for bar compositions.
  • Suds boosters such as the C10-C16 alkanolamides can be incorporated into the compositions, typically at 1 %-10% levels.
  • the C10-C14 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
  • soluble magnesium salts such as MgCl2, MgS ⁇ 4, and the like, can be added at levels of, typically, 0.1 %-2%, to provide additional suds and to enhance grease removal performance.
  • Various detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating.
  • the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate.
  • the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
  • a porous hydrophobic silica (trademark SIPERNAT D10, DeGussa) is admixed with a proteolytic enzyme solution containing 3% -5% of C 13.15 ethoxylated alcohol (EO 7) nonionic surfactant.
  • EO 7 ethoxylated alcohol
  • the enzyme/surfactant solution is 2.5 X the weight of silica.
  • the resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used).
  • silicone oil various silicone oil viscosities in the range of 500-12,500 can be used.
  • the resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix.
  • ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected” for use in detergents, including liquid laundry detergent compositions.
  • Liquid detergent compositions can contain water and other solvents as carriers.
  • Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable.
  • Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1 ,2-propanediol) can also be used.
  • the compositions may contain from 5% to 90%, typically 10% to 50% of such carriers.
  • the detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of from 8.5 to 11 , preferably between 9 and 11, most preferably pH 9 to 10.
  • Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art. Methods of washing
  • the detergent compositions may be used for any handwash laundry process.
  • handwash as used herein includes any process whereby the laundering process is not fully automated and thus includes use in high sudsing washing machines such as 'twin tub' types.
  • the detergent compositions are used in laundry process which involve manual agitation.
  • soiled fabrics are contacted with an effective amount, of the composition of the present invention.
  • the actual amount of detergent composition used will be based on the judgement of user, and will depend upon factors such as the particular product formulation of the composition, the concentration of the composition, the number of garments to be cleaned, the degree of soiling of the garments, the amount of sudsing and the process used by the consumer.
  • the process by which the garments are contacted with the effective amount of the composition of the invention may be essentially any of the processes for handwashing commonly known and encompasses the dilute solution in bowl process, and the direct application process.
  • the detergent composition is combined with from 1,000 ml. to 15,000 ml., more typically from 3,000 ml. to 10,000 ml. of water in a bowl or sink.
  • the water may be at ambient temperature or may be heated.
  • the soiled garments are immersed in the bowl containing the detergent composition and water, where they are cleaned by manual agitation of the water and garment for a given time period varying from 1 to 5 minutes to 20 to 30 minutes, although the actual time will vary with each application and user.
  • the garments may be left in the wash solution for a period of time ranging from 30 minutes to 12 hours to aid the removal of the soils prior to manual agitation.
  • the wash solution is then replaced by water in which the garment is rinsed to remove the detergent composition. This may be repeated a number of times.
  • the direct application process will typically comprise as a first step combining an amount of the detergent composition with sufficient water to form a paste.
  • the soiled garments are then scrubbed with the paste for a period of time until the consumer is satisfied that the soils have been removed from the garment.
  • the garment is then rinsed in water to remove the detergent composition.
  • the effect of the detergent composition with respect to mildness to the hands of the consumer can be evaluated by controlled tests evaluated by a dermatologist.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
PCT/US1995/009586 1994-08-11 1995-07-28 Handwash laundry detergent compositions WO1996005280A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP95928195A EP0775190A4 (en) 1994-08-11 1995-07-28 DETERGENTS FOR HANDWASHING
MX9701081A MX9701081A (es) 1994-08-11 1995-07-28 Composiciones detergentes para lavado de ropa a mano.
BR9508535A BR9508535A (pt) 1994-08-11 1995-07-28 Composições detergentes para lavagem manual de roupas
JP8507362A JPH10504056A (ja) 1994-08-11 1995-07-28 手洗い洗濯洗剤組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9416224.5 1994-08-11
GB9416224A GB2292155A (en) 1994-08-11 1994-08-11 Handwash laundry detergent composition comprising three surfactants

Publications (1)

Publication Number Publication Date
WO1996005280A1 true WO1996005280A1 (en) 1996-02-22

Family

ID=10759727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/009586 WO1996005280A1 (en) 1994-08-11 1995-07-28 Handwash laundry detergent compositions

Country Status (13)

Country Link
EP (1) EP0775190A4 (xx)
JP (1) JPH10504056A (xx)
CN (1) CN1159824A (xx)
BR (1) BR9508535A (xx)
EG (1) EG20780A (xx)
GB (2) GB2292155A (xx)
IL (1) IL114824A (xx)
MA (1) MA23645A1 (xx)
MX (1) MX9701081A (xx)
PE (1) PE13696A1 (xx)
TR (1) TR199500995A2 (xx)
WO (1) WO1996005280A1 (xx)
ZA (1) ZA956663B (xx)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998001521A1 (en) * 1996-07-08 1998-01-15 The Procter & Gamble Company Hand wash laundry detergent compositions containing a combination of surfactants
WO2000008129A1 (en) * 1998-08-07 2000-02-17 Unilever Plc Mild particulate laundry detergent compositions for washing textile fabrics by hand
WO2001059051A1 (en) * 2000-02-07 2001-08-16 Unilever Plc Detergent compositions
WO2001060964A1 (en) * 2000-02-14 2001-08-23 The Procter & Gamble Company Methods for making laundry detergent compositions with an emulsified composition containing a skin conditioning oil and a polyamine emulsifier
US6555513B2 (en) 2000-02-07 2003-04-29 Unilever Home & Personal Care Usa Division Of Conopco Inc. Detergent compositions
EP1418226A1 (en) * 2002-11-07 2004-05-12 Unilever N.V. Detergent composition
WO2013148639A1 (en) * 2012-03-26 2013-10-03 The Procter & Gamble Company Cleaning compositions comprising ph-switchable amine surfactants
EP3284809A1 (en) * 2016-08-17 2018-02-21 The Procter & Gamble Company Cleaning composition
EP3530723A1 (en) * 2018-02-21 2019-08-28 The Procter & Gamble Company Automatic dishwashing composition

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317390A (en) * 1996-05-17 1998-03-25 Procter & Gamble Detergent compositions
WO1997045513A1 (en) * 1996-05-31 1997-12-04 The Procter & Gamble Company Detergent composition
GB2315765A (en) * 1996-08-01 1998-02-11 Procter & Gamble Detergent compositions for laundering clothes with low levels of sulphate and silicates
GB2318799A (en) * 1996-10-31 1998-05-06 Procter & Gamble Detergent compositions
GB2319038A (en) * 1996-11-06 1998-05-13 Procter & Gamble Detergent particle
BR9711535A (pt) * 1996-09-24 1999-08-24 Procter & Gamble Composi-{es detergentes
GB2317391A (en) * 1996-09-24 1998-03-25 Procter & Gamble Detergent compositions
GB2317392A (en) * 1996-09-24 1998-03-25 Procter & Gamble Detergent compositions
WO1998017759A1 (en) * 1996-10-18 1998-04-30 The Procter & Gamble Company Detergent compositions comprising a mixture of quaternary ammonium cationic surfactant and alkyl sulfate anionic surfactant
DE19715836C1 (de) * 1997-04-16 1998-07-23 Henkel Kgaa Flüssige Feinwaschmittel in Mikroemulsionsform
CN1261398A (zh) * 1997-06-23 2000-07-26 普罗格特-甘布尔公司 含有一种最佳表面活性剂体系的用于冷温洗涤的颗粒洗涤剂组合物
CA2309702A1 (en) * 1997-11-18 1999-05-27 Unilever Plc Detergent powder compositions with glucamide-like bleach enhancers
DE19948670A1 (de) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Waschmittel
US7015180B2 (en) 2000-02-29 2006-03-21 Clariant S.A. Hair treatment compositions comprising an anionic surfactant and a C8-C22 alkyl dimethyl hydroxyethyl ammonium chloride
DE60025561T2 (de) * 2000-09-21 2006-08-10 Clariant S.A. Verwendung von kosmetischen Zubereitungen enthaltend anionische und kationische Tenside zur Haarbehandlung
GB2364961B (en) 2001-08-10 2002-06-26 Tecan Components Ltd Stencil for use with stencil mounting frame
US8029772B2 (en) 2001-12-21 2011-10-04 Rhodia Inc. Stable surfactant compositions for suspending components
ES2298438T3 (es) * 2001-12-21 2008-05-16 Rhodia Inc. Composiciones estables combinadas de tensioactivos cationicos y anionicos.
CN100566068C (zh) 2006-04-13 2009-12-02 艾默生网络能源系统有限公司 一种硬件过压脱离电路
KR20090125105A (ko) 2007-03-23 2009-12-03 로디아 인코포레이티드 구조체화 계면활성제 조성물
US20110166370A1 (en) 2010-01-12 2011-07-07 Charles Winston Saunders Scattered Branched-Chain Fatty Acids And Biological Production Thereof
EP2678410B1 (en) 2011-02-17 2017-09-13 The Procter and Gamble Company Composiitons comprising mixtures of c10-c13 alkylphenyl sulfonates
RU2013136501A (ru) 2011-02-17 2015-03-27 Дзе Проктер Энд Гэмбл Компани Линейные алкилфенилсульфонаты на основе биологического сырья
BR112015021683A2 (pt) 2013-03-05 2017-07-18 Procter & Gamble composições de açúcar misturadas
CN104629943A (zh) * 2013-11-14 2015-05-20 青岛锦涟鑫商贸有限公司 一种改进的浓缩清洗剂
PL3109305T3 (pl) * 2015-06-26 2019-10-31 Clariant Int Ltd Kompozycje detergentowe do automatycznego zmywania zawierające N-acyloglukaminę
WO2022162062A1 (en) * 2021-02-01 2022-08-04 Unilever Ip Holdings B.V. Detergent composition
US20220380701A1 (en) * 2021-05-27 2022-12-01 The Procter & Gamble Company Cleaning compositions comprising renewable components

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223179A (en) * 1992-03-26 1993-06-29 The Procter & Gamble Company Cleaning compositions with glycerol amides
US5254281A (en) * 1991-01-29 1993-10-19 The Procter & Gamble Company Soap bars with polyhydroxy fatty acid amides
US5283009A (en) * 1992-03-10 1994-02-01 The Procter & Gamble Co. Process for preparing polyhydroxy fatty acid amide compositions
US5298636A (en) * 1992-09-23 1994-03-29 The Procter & Gamble Company Process for reducing the levels of unreacted amino polyol contaminants in polyhydroxy fatty acid amide surfactants
US5318728A (en) * 1992-11-30 1994-06-07 The Procter & Gamble Company Low sudsing polyhydroxy fatty acid amide detergents
US5332528A (en) * 1990-09-28 1994-07-26 The Procter & Gamble Company Polyhydroxy fatty acid amides in soil release agent-containing detergent compositions
US5409640A (en) * 1990-10-12 1995-04-25 The Procter & Gamble Company Cleansing compositions
US5415801A (en) * 1993-08-27 1995-05-16 The Procter & Gamble Company Concentrated light duty liquid or gel dishwashing detergent compositions containing sugar

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8724899D0 (en) * 1987-10-23 1987-11-25 Unilever Plc Detergent bleach compositions
DK0551410T3 (da) * 1990-09-28 1996-02-05 Procter & Gamble Detergentsammensætninger indeholdende anioniske tensider, polyhydroxyfedtsyreamider og magnesium
GB9116852D0 (en) * 1991-08-05 1991-09-18 Unilever Plc Detergent composition
CZ50194A3 (en) * 1991-09-06 1995-01-18 Procter & Gamble Detergents containing calcium and amide of polyhydroxyfatty acid and method of washing dishes with such detergents
GB9216410D0 (en) * 1992-08-01 1992-09-16 Procter & Gamble Detergent compositions
WO1995033038A1 (en) * 1994-06-01 1995-12-07 The Procter & Gamble Company Sarcosinate with clay softeners in laundry compositions
CN1082998C (zh) * 1994-06-17 2002-04-17 普罗格特-甘布尔公司 手洗衣用组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332528A (en) * 1990-09-28 1994-07-26 The Procter & Gamble Company Polyhydroxy fatty acid amides in soil release agent-containing detergent compositions
US5409640A (en) * 1990-10-12 1995-04-25 The Procter & Gamble Company Cleansing compositions
US5254281A (en) * 1991-01-29 1993-10-19 The Procter & Gamble Company Soap bars with polyhydroxy fatty acid amides
US5283009A (en) * 1992-03-10 1994-02-01 The Procter & Gamble Co. Process for preparing polyhydroxy fatty acid amide compositions
US5223179A (en) * 1992-03-26 1993-06-29 The Procter & Gamble Company Cleaning compositions with glycerol amides
US5338491A (en) * 1992-03-26 1994-08-16 The Proctor & Gamble Co. Cleaning compositions with glycerol amides
US5298636A (en) * 1992-09-23 1994-03-29 The Procter & Gamble Company Process for reducing the levels of unreacted amino polyol contaminants in polyhydroxy fatty acid amide surfactants
US5318728A (en) * 1992-11-30 1994-06-07 The Procter & Gamble Company Low sudsing polyhydroxy fatty acid amide detergents
US5415801A (en) * 1993-08-27 1995-05-16 The Procter & Gamble Company Concentrated light duty liquid or gel dishwashing detergent compositions containing sugar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0775190A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998001521A1 (en) * 1996-07-08 1998-01-15 The Procter & Gamble Company Hand wash laundry detergent compositions containing a combination of surfactants
US6165967A (en) * 1996-07-08 2000-12-26 The Procter & Gamble Company Hand wash laundry detergent compositions containing a combination of surfactants
WO2000008129A1 (en) * 1998-08-07 2000-02-17 Unilever Plc Mild particulate laundry detergent compositions for washing textile fabrics by hand
US6608016B2 (en) 2000-02-07 2003-08-19 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Detergent compositions
US6555513B2 (en) 2000-02-07 2003-04-29 Unilever Home & Personal Care Usa Division Of Conopco Inc. Detergent compositions
WO2001059051A1 (en) * 2000-02-07 2001-08-16 Unilever Plc Detergent compositions
WO2001060964A1 (en) * 2000-02-14 2001-08-23 The Procter & Gamble Company Methods for making laundry detergent compositions with an emulsified composition containing a skin conditioning oil and a polyamine emulsifier
EP1418226A1 (en) * 2002-11-07 2004-05-12 Unilever N.V. Detergent composition
WO2013148639A1 (en) * 2012-03-26 2013-10-03 The Procter & Gamble Company Cleaning compositions comprising ph-switchable amine surfactants
US8877696B2 (en) 2012-03-26 2014-11-04 The Procter & Gamble Company Cleaning compositions comprising pH-switchable amine surfactants
JP2015519414A (ja) * 2012-03-26 2015-07-09 ザ プロクター アンド ギャンブルカンパニー pH切り替え可能なアミン界面活性剤を含む洗浄組成物
EP3284809A1 (en) * 2016-08-17 2018-02-21 The Procter & Gamble Company Cleaning composition
WO2018035191A1 (en) * 2016-08-17 2018-02-22 The Procter & Gamble Company Cleaning composition
EP3530723A1 (en) * 2018-02-21 2019-08-28 The Procter & Gamble Company Automatic dishwashing composition
US11149232B2 (en) 2018-02-21 2021-10-19 The Procter & Gamble Company Automatic dishwashing composition

Also Published As

Publication number Publication date
PE13696A1 (es) 1996-05-07
EG20780A (en) 2000-02-29
MX9701081A (es) 1997-05-31
CN1159824A (zh) 1997-09-17
EP0775190A4 (en) 1999-06-30
JPH10504056A (ja) 1998-04-14
GB2292155A (en) 1996-02-14
GB9416224D0 (en) 1994-10-05
IL114824A0 (en) 1995-12-08
BR9508535A (pt) 1997-10-28
GB2292564A (en) 1996-02-28
TR199500995A2 (tr) 1996-06-21
MA23645A1 (fr) 1996-04-01
GB9511601D0 (en) 1995-08-02
EP0775190A1 (en) 1997-05-28
ZA956663B (en) 1996-03-22
IL114824A (en) 1999-10-28

Similar Documents

Publication Publication Date Title
WO1996005280A1 (en) Handwash laundry detergent compositions
US5500153A (en) Handwash laundry detergent composition having improved mildness and cleaning performance
AU663851B2 (en) Polyhydroxy fatty acid amide surfactants to enhance enzyme performance
AU664159B2 (en) Detergent containing alkyl sulfate and polyhydroxy fatty acid amide surfactants
CA2148101C (en) High sudsing detergent compositions with specially selected soaps
EP0550606B1 (en) Nonionic surfactant systems containing polyhydroxy fatty acid amides and one or more additional nonionic surfactants
EP0550644B1 (en) Detergent compositions containing polyhydroxy fatty acid amide and alkyl alkoxylated sulfate
NZ240025A (en) Detergent comprising polyhydroxy fatty acid amide and alkyl ester sulphonate surfactant in a weight ratio of 1:10 to 10:1
NZ240026A (en) Detergent containing a polyhydroxy fatty acid amide and a non-borate, non-borate-forming bleaching agent
NZ240028A (en) Detergent containing anionic surfactant, a soil-release agent, and a polyhydroxy fatty acid amide
IE65301B1 (en) Polyhydroxy fatty acid amides in zeolite/layered silicate built detergents
WO1994020599A1 (en) Detergent compositions containing ethylenediamine-n,n'-diglutaric acid or 2-hydroxypropylenediamine-n,n'-disuccinic acid
NZ240030A (en) Detergent comprising polyhydroxy fatty acid amide and polymeric dispersing agent selected from polycarboxylate and polyethylene glycol polymers
WO1995023840A1 (en) Polyhydroxy amides to provide dye transfer inhibition benefits during fabric laundering
EP0775191B1 (en) Detergent composition
EP0591397B1 (en) Laundry detergent containing a polyhydroxy fatty amide and insoluble ethoxylated alcohol
CA2198094C (en) Detergent compositions comprising lipolytic enzymes
CA2189751C (en) Detergent compositions having suds suppressing properties
US5750485A (en) Laundry detergent containing a polyhydroxy fatty amide and insoluble ethoxylated alcohol
EP0830445A1 (en) Detergent compositions
GB2288185A (en) Detergent compositions
IE913420A1 (en) Nonionic surfactant systems containing polyhydroxy fatty¹acid amides and one or more additional nonionic surfactants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95195446.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP MX US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995928195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/001081

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 1995928195

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995928195

Country of ref document: EP