WO1996004550A1 - Elektrochemischer gassensor mit reduzierter querempfindlichkeit - Google Patents

Elektrochemischer gassensor mit reduzierter querempfindlichkeit Download PDF

Info

Publication number
WO1996004550A1
WO1996004550A1 PCT/CH1995/000166 CH9500166W WO9604550A1 WO 1996004550 A1 WO1996004550 A1 WO 1996004550A1 CH 9500166 W CH9500166 W CH 9500166W WO 9604550 A1 WO9604550 A1 WO 9604550A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
electrode
sensor according
measuring
membrane
Prior art date
Application number
PCT/CH1995/000166
Other languages
English (en)
French (fr)
Inventor
Christian Huggenberger
Original Assignee
Christian Huggenberger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Christian Huggenberger filed Critical Christian Huggenberger
Priority to EP95924150A priority Critical patent/EP0721583A1/de
Publication of WO1996004550A1 publication Critical patent/WO1996004550A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0014Sample conditioning by eliminating a gas

Definitions

  • the invention relates to an electrochemical gas sensor, in particular for carbon monoxide and hydrogen, with reduced cross sensitivity according to the preamble of patent claim 1.
  • electrochemical gas sensors have proven themselves for the detection of toxic or explosive gases, the mode of operation of which is based on direct electrochemical oxidation or reduction of the gas to be measured.
  • the cell current maintained by gas diffusion is a function of the gas concentration and, to a good approximation, proves to be linear within the measuring range limits.
  • Such gas measuring cells are, however, cross-sensitive to certain interfering gases, which can lead to a falsification of the measured value, cf. e.g. W.Pauli, Chemistry - Environmental Technology, 1988/89, 62.
  • electrochemical gas sensors are offered which are equipped with a filter unit, usually integrated in the sensor housing, for removing interfering gases, such as H 2 S, S0 2 , NO, N0 2 .
  • a filter unit usually integrated in the sensor housing, for removing interfering gases, such as H 2 S, S0 2 , NO, N0 2 .
  • Suitable filter materials remove unwanted gases by adsorption, absorption or chemisorption.
  • the disadvantage of such filter units is that their capacity and thus their effectiveness decrease over time with continuous exposure and higher concentrations of interfering gases, which directly limits the range of use of the gas sensor when the filter unit is integrated, cf. see for example City Technology Ltd., London, Great Britain, Product Data Handbook 1992, in particular pp. 40, 66 - 68.
  • the filter capacity depends on the type of interfering gas. In the case of H 2 S, the capacity is exhausted very easily at concentrations well above the MAK value. moreover interfering gases such as H 2 cannot be filtered out in this way.
  • the interference signal can be reduced or eliminated by means of compensation devices, cf. e.g. EP 126 623 A2 and EP 127 387 A2.
  • the electrochemical gas sensor consists of a 2-electrode arrangement, whereby gas access is also guaranteed for the counter electrode. If a gas reacts incompletely at the measuring electrode, it can reach the counter electrode via a partially gas-permeable separator and can also react there. This results in partial compensation of the measuring current. In contrast, gases that react completely with the measuring electrode give a full measuring signal.
  • the principle of operation of multi-electrode sensors with auxiliary and reference electrodes, which are described in connection with corresponding electronic compensation circuits, is based on a similar principle.
  • EP 84935 B1 describes a similar device for the separate detection of CO in addition to H 2 , the different response times of the two gases being used.
  • the object of the present invention is to provide a simply constructed electrochemical-based gas sensor with reduced cross-sensitivity, which should have a long service life.
  • the selective membrane contains a catalyst wetted with electrolyte, which is electro- is catalytically inactive as much as possible, but is electrocatalytically as active as possible with regard to disruptive gases, so that these are converted, at a positive level, into products which are no longer disruptive or less disruptive.
  • the at least one porous catalyst layer of the selective membrane preferably consists of at least one fine-grained noble metal and polytetrafluoroethylene (PTFE) powder. Palladium, gold, platinum, ruthenium, iridium, osmium and / or silver in pure form, alloy or mixture are possible as noble metals.
  • the porous catalyst layer is preferably applied to a porous PTFE membrane and permanently connected to it by pressing or by sintering at a temperature T> 320 ° C. to form the selective membrane according to the invention.
  • a porous, partially hydrophobic / hydrophilic intermediate layer is applied directly to the selective membrane with a measuring electrode, which allows a particularly compact structure of the gas sensor, which is particularly suitable for determining C0 and H 2 .
  • the chemical reactions in the integrated selective membrane can be formulated in the presence of the interfering gases H 2 S, S0 2 or N0 2 and in the presence of a noble metal catalyst, such as palladium or gold, which is active in relation to these gases:
  • the catalyst layer of the selective membrane wetted with the electrolyte can to a certain extent be an intimate combination of a similar working and counter electrode electrical discharges to the outside are understood, the electrons of the redox reactions being exchanged internally in the catalyst layer instead of via an external conductor.
  • H 2 S and S0 2 only H 2 S0 4 is formed in the reaction balance, for example the electrolyte itself.
  • N0 2 NO is formed.
  • a CO measuring electrode, based on a platinum catalyst, is less sensitive to this, and theoretically a measuring current would be expected which has the sign of a reducing gas.
  • a weak signal is sometimes measured with the opposite sign, which indicates that in addition to NO there is also a residual concentration of N0 2 , which also reacts at the measuring electrode.
  • the electrode reactions can be formulated as follows:
  • Measuring electrode CO + H 2 0> C0 2 + 2 H * + 2 e
  • the electrical current generated can be measured with an intermediate ammeter and is a function of the CO concentration.
  • 1 shows a longitudinal section of an electrochemical gas sensor with the electrocatalytically selective membrane according to the invention
  • 2 shows a longitudinal section of a combination of the selective membrane according to the invention with a measuring electrode to form a selective membrane electrode
  • 3 is a top view of a combined reference and counter electrode
  • FIG. 4 shows a longitudinal section of a gas sensor with a selective membrane electrode according to the invention.
  • FIG. 5 shows a longitudinal section of a gas sensor with a separate selective membrane according to the invention.
  • the selective membrane 5a contains at least one electrically conductive, finely divided catalyst 5b, which is preferably wetted by the electrolyte 19a of the measuring cell 7 itself.
  • the selective membrane 5a is preferably closed off by a gas-permeable, porous membrane 3, which represents a barrier for the electrolyte 19a of the measuring cell 7.
  • the selective membrane 5a is separated from the measuring electrode 11a by a thin gap 24 containing electrolyte 19a.
  • Measuring and counter electrodes 11a, 12 are connected to an ammeter 22 via inert contact wires.
  • the catalyst 5b of the selective membrane 5a is designed in such a way that it is electrocatalytically inactive with regard to the gas to be detected (measurement gas), but is as active as possible with respect to other gases 18 that are interfering with one another.
  • the measuring gas 17 can pass through the porous, selective membrane 5a without undergoing an electrochemical reaction in order to reach the measuring electrode 11a via the gap 24.
  • the corresponding counter-reaction forms in the same selective membrane 5a with the internal exchange of electrons.
  • oxygen that is supplied from the environment is reduced to water at the same time.
  • oxygen is formed as a counter-reaction in the selective membrane 5a and is released into the environment. If the oxidation or reduction products of the interfering gases 18 are inert with respect to the catalyst of the measuring electrode 11a, the current measured between the measuring and counter electrodes 11a, 12 is generated solely by the measuring gas 17.
  • the electrocatalytically selective membrane 5a can be produced as follows: A porous PTFE (polytetrafluoroethylene) membrane 3 is preferably used as the base 3. A porous catalyst layer 5b, which consists of a mixture of finely divided noble metal catalyst and PTFE powder, can be applied to this. Fixation can be achieved by pressing or by sintering at T> 320 * C. Mixtures of several noble metal catalysts can also be used or the various catalysts can be applied in multiple layers.
  • a hydrophilic thin glass fiber filter 10 can be used as the gap material 24a for conveying the electrolyte 19a and for the spatial separation from the measuring electrode 11a. It is better to use a partially hydrophobic / hydrophilic membrane since this increases the diffusion flow of the measurement gas 17.
  • This can consist of a thin, porous and sintered membrane made of finely divided PTFE powder on the one hand and quartz powder or amorphous SiO 2 powder on the other hand.
  • the hydrophilic component eg fine quartz powder
  • PTFE forms paths for the sample gas 17.
  • Such a selective membrane electrode 5 can be produced as follows: A porous PTFE membrane 3 serves as a base. A porous catalyst layer 5b, consisting of a mixture of finely divided noble metal and PTFE powder, is applied to this. The layer 5b is covered with a porous intermediate layer 23, which consists of a mixture of finely divided PTFE powder and fine quartz powder or amorphous SiO 2 powder. Then the porous measuring electrode 11a, which consists of a mixture of finely divided noble metal and PTFE powder, is applied to the intermediate layer 23. For fixation, the layers can be pressed successively or simultaneously or sintered successively or simultaneously at T> 320 * C.
  • a gas sensor further comprises the following individual parts: fastening screws 1, acid-resistant plastic O-rings 4, unsintered PTFE strips 6, a central body 7a, preferably made of polycarbonate plastic, contact springs 8, made of a film, preferably of thickness Platinum tapes 9 cut 0.025 mm, tampons made of glass fiber filter material 10, an electrolyte chamber 19 partially filled with an electrolyte 19a with an opening 13 and a wick made of glass fiber filter material 10a for conveying the electrolyte to the electrodes 11a, 11, 12, a cover 14 , preferably made of polycarbonate plastic with a yoke for pressure compensation 20, bore 15 with thread for fastening screws 1, pressure compensation opening 20, preferably with a diameter of approx. 0.5 mm and a capillary length of approx. 5 mm.
  • a reference and counterelectrode 11, 12 according to FIG. 3 is produced as follows: a round glass fiber filter 10 is a catalyst layer separated by a gap 21, which contains a mixture of platinum black and PTFE powder, applied and then in the oven at T ⁇ 360 * C sintered.
  • the electrode is separated into a reference and a counter electrode 11, 12.
  • the sensor is mounted as shown in FIG. 4, and the housing parts
  • the electrolyte chamber 19 of the sensor is filled with 1.5 ml of aqueous sulfuric acid (30% by mass) and screwed to the cover 14.
  • a wick 10a made of glass fiber filter material lining the electrolyte chamber 19 is in contact through the opening 13 with the reference and counter electrodes 11, 12 for further transmission of the electrolyte to the tampon 10 and the electrodes 11, 12, 5.
  • the reference and counter electrodes 11, 12 are in intimate contact with a porous PTFE membrane 3, which always ensures the replenishment of atmospheric oxygen for the counter-reaction.
  • a conventional co-sensor is also produced for a comparison measurement of the cross-sensitivities: the measuring electrode is a conventional membrane electrode 16a.
  • the sensor is manufactured as described in the first example. In this sensor, too, the cross sensitivity to H 2 S, S0 2 and N0 2 is drastically reduced according to Table 1. The response time and sensitivity to CO is comparable to the first example. In contrast to the first example, a weakly positive signal is observed at N0 2 .
  • a selective sensor is produced, with the only difference that the selective membrane 5a contains platinum black instead of palladium black. Since platinum black has an electrocatalytic effect on CO, CO is already oxidized in the selective membrane. In contrast, according to Table 1, H 2 reacts incompletely in the selective membrane 5a, so that a relatively large part is perceived by the measuring electrode 11a.
  • a sensor according to example 3 can be used as an H 2 sensor.
  • a measuring gas 17 which is more difficult to oxidize can also be detected with a sensor according to Example 3.
  • the cross-sensitivity to the interference gases 18, which is normally increased by the bias voltage, can be drastically reduced in the presence of the selective membrane 5a.
  • a 2-electrode sensor is produced according to FIG. 5.
  • a thin glass fiber round filter 10 is used as a separator between the selective membrane 5a and the measuring electrode 16a.
  • 1.5 ml of sulfuric acid (30% by mass) are introduced as electrolyte 19a.
  • the measurement of CO and cross-sensitivities are carried out analogously to the 1st example.
  • the ammeter 22 is connected to the measuring and counter electrodes 11a, 12.
  • the cross sensitivity is drastically reduced in this embodiment.
  • the response time with regard to CO is significantly slower here.

Abstract

Mit einer selektiven Membran (5a) kann die Querempfindlichkeit von elektrochemischen Gassensoren (7) auf Störgase (18) auf elektrokatalytischem Weg beträchtlich und dauernd vermindert werden. Zur Eliminierung bestimmter Störgase (18) wird ein entsprechender Katalysator (5b) auf einer gasdurchlässigen Membran (8) derart ausgewählt, dass diese in Produkte umgewandelt werden, auf die die Messelektrode (11a) vermindert oder gar nicht mehr anspricht, wobei aber das zu detektierende Gas (17) möglichst keine Reaktion eingehen soll, so dass es im vollen Umfang an der Messelektrode (11a) reagieren kann. Solche selektiven Membranen (5a) können vorteilhaft mit Membranelektroden kombiniert werden. Im Gegensatz zu herkömmlichen Adsorptions- und chemischen Absorptionsfiltern wirken die katalytisch arbeitenden Membranen (5a) dauernd und ohne Erschöpfung der Kapazität auch in Bereichen weit über den MAK-Werten. Mit solchen selektiven Membranen (5a) ausgerüstete elektrochemische Gassensoren arbeiten mit herkömmlicher Auswerteelektronik (im einfachsten Fall mit einem an der Messelektrode (11a) und an einer Gegenelektrode (12a) angeschlossenen Amperemeter (22)) und benötigen keine aufwendige Kompensationselektronik.

Description

ELEKTROCHEMISCHER GASSENSOR MIT REDUZIERTER QUEREMPFINDLICHKEIT
Die Erfindung betrifft einen elektrochemischen Gassensor, insbesondere für Kohlenmonoxid und Wasserstoff, mit reduzierter Querempfindlichkeit gemäss dem Oberbegriff des Patentanspruchs 1.
Zur Detektion von toxischen bzw. explosiven Gasen haben sich in vielen Anwendungen elektrochemische Gassensoren bewährt, deren Wirkungsweise auf einer direkten elektrochemischen Oxidation oder Reduktion des zu messenden Gases beruht. Der durch Gasdiffusion aufrechterhaltene Zellenstrom ist eine Funktion der Gaskonzentration und erweist sich innerhalb der Messbereichsgrenzen in guter Näherung als linear. Solche Gasmesszellen weisen aber in bezug auf bestimmte Störgase eine Querempfindlichkeit auf, was zu einer Verfälschung des Messwertes führen kann, vgl. z.B. W.Pauli, Chemie - Umwelt- Technik, 1988/89, 62.
Dem Stand der Technik entsprechend werden elektrochemische Gassensoren angeboten, die mit einer meist im Sensorgehäuse integrierten Filtereinheit zur Entfernung von Störgasen, wie H2S, S02, NO, N02, ausgerüstet sind. Geeignete Filtermaterialien entfernen unerwünschte Gase durch Adsorption, Absorption oder Chemisorption. Der Nachteil solcher Filtereinheiten besteht darin, dass bei Dauerbelastung und höheren Störgaskonzentrationen deren Kapazität und somit Wirksamkeit mit der Zeit abnimmt, was bei integrierter Filtereinheit direkt die Einsatzspanne des Gassensors begrenzt, vgl. hierzu z.B. City Technology Ltd., London, Großbritannien, Product Data Handbook 1992, insbesondere S. 40, 66 - 68.
Die Filterkapazität hängt von der Art des Störgases ab. Im Falle von H2S erschöpft sich die Kapazität bei Konzentrationen weit über dem MAK-Wert sehr leicht. Zudem können interferierende Gase wie H2 auf diesem Wege nicht ausgefiltert werden.
In speziellen Anwendungen, insbesondere bei Interferenz von H2, kann das Störsignal durch KompensationsVorrichtungen vermindert oder eliminiert werden, vgl. z.B. EP 126 623 A2 und EP 127 387 A2.
Im einfachsten Fall besteht der elektrochemische Gassensor in einer 2-Elektrodenanordnung, wobei der Gaszutritt auch für die Gegenelektrode gewährleistet ist. Reagiert ein Gas an der Messelektrode unvollständig, kann es über einen partiell gasdurchlässigen Separator zur Gegenelektrode gelangen und dort ebenfalls reagieren. Dadurch erfolgt eine partielle Kompensation des Messstromes. Gase, die vollständig mit der Messelektrode reagieren, ergeben hingegen ein volles Messignal. Auf ähnlichem Prinzip beruht die Wirkungsweise von Mehrelektrodensensoren mit Hilfs- und Referenzelektroden, die i Zusammenhang mit entsprechenden elektronischen Kompensationsschaltungen beschrieben werden. In EP 84935 Bl ist eine ähnliche Vorrichtung beschrieben zum getrennten Nachweis von CO neben H2, wobei die verschiedenen Ansprechzeiten der beiden Gase ausgenützt werden.
Aufgabe der vorliegenden Erfindung ist es, einen einfach aufgebauten Gassensor auf elektrochemischer Basis mit reduzierter Querempfindlichkeit zu schaffen, der über eine hohe Standzeit verfügen soll.
Die Aufgabe wird mit den Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.
Mit der erfindungsge ässen selektiven Membran kann die Querempfindlichkeit elektrochemischer Gassensoren gegenüber störenden Gasen erheblich und dauernd vermindert werden. Die selektive Membran enthält einen mit Elektrolyt benetzten Katalysator, der hinsichtlich des Messgases elektro- katalytisch möglichst inaktiv ist, jedoch hinsichtlich störender Gase elektrokatalytisch möglichst aktiv ist, so dass diese guantitativ in nicht mehr weiter störende oder weniger störende Produkte umgewandelt werden. Die mindestens eine poröse Katalysatorschicht der selektiven Membran besteht vorzugsweise aus mindestens einem feinkörnigen Edelmetall- sowie Polytetrafluorethen(PTFE)-Pulver. Als Edelmetalle kom¬ men Palladium, Gold, Platin, Ruthenium, Iridium, Osmium und/oder Silber in Reinform, Legierung oder Gemisch in Frage. Vorzugsweise wird die poröse Katalysatorschicht auf eine poröse PTFE- Membran aufgebracht und mit dieser durch Pressen bzw. durch Sinterung bei einer Temperatur T > 320"c dauerhaft zur erfindungsgeroässen selektiven Membran verbunden.
In einer besonders bevorzugten Ausführungsform wird auf der selektiven Membran direkt eine poröse, partiell hydro¬ phobe/hydrophile Zwischenschicht mit einer Messelektrode aufgebracht, was einen besonders kompakten Aufbau des Gassensors gestattet, der sich insbesondere zur Bestimmung von C0 und H2 eignet.
Die chemischen Reaktionen in der integrierten selektiven Membran können bei Anwesenheit der Störgase H2S, S02 bzw. N02 und in Gegenwart eines in bezug auf diese Gase aktiven Edelmetallkatalysators wie Palladium oder Gold folgen- dermassen formuliert werden:
H2S + 4 H20 > H2S04 + 8 H* + 8 e"
2 02 + 8 H* + 8 e" > 4 H20
S02 + 2 H20 > H2S04 + 2 H* + 2 e"
1/2 02 + 2 H* + 2 e" > H20
N02 + 2 H* + 2 e" > NO + H20
H20 > 1/2 02 + 2 H* + 2 e"
Die mit dem Elektrolyten benetzte Katalysatorschicht der selektiven Membran kann gewissermassen als inniger Verbund einer gleichartigen Arbeits- und Gegenelektrode ohne elektrische Ableitungen nach aussen aufgefasst werden, wobei die Elektronen der Redox-Reaktionen anstatt über einen externen Leiter, intern in der Katalysatorschicht ausge¬ tauscht werden. Im Falle von H2S und S02 entsteht in der Reaktionsbilanz lediglich H2S04, also beispielsweise der Elektrolyt selber. Im Falle von N02 entsteht NO. Auf dieses ist eine CO-Messelektrode, basierend auf einem Platin¬ katalysator, weniger empfindlich, und es würde theoretisch ein Messstrom erwartet werden, der das Vorzeichen eines reduzierenden Gases aufweist. Gemessen wird ein schwaches Signal manchmal mit umgekehrtem Vorzeichen, was darauf hinweist, dass neben NO noch eine Restkonzentration von N02, das ebenfalls an der Messelektrode reagiert, vorhanden ist.
Falls Palladium oder Gold als Katalysator in der selektiven Membran eingesetzt wird, wirkt dieses nicht in bezug auf CO, so dass das Messgas CO, ohne eine chemische Reaktion einzugehen, penetriert und zur Messelektrode gelangt, wo dessen Oxidation stattfindet. Bei niederohmig verbundener Mess- und Referenzelektrode lassen sich die Elektrodenreaktionen wie folgt formulieren:
Messelektrode: CO + H20 > C02 + 2 H* + 2 e"
Referenzelektrode: 1/2 02 + 2 H* + 2 e" > H20
Der erzeugte elektrische Strom kann mit einem zwischen¬ geschalteten Amperemeter gemessen werden und ist eine Funktion der CO-Konzentration.
Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert.
Es zeigt:
Fig. 1 einen Längsschnitt eines elektrochemischen Gassen¬ sors mit der erfindungsgemässen elektrokatalytisch selektiven Membran; Fig. 2 einen Längsschnitt einer Kombination der erfin- dungsgemässen selektiven Membran mit einer Messelektrode zu einer selektiven Membrane1ektrode;
Fig. 3 eine Draufsicht einer kombinierten Referenz- und Gegen-Elektrode;
Fig. 4 einen Längsschnitt eines Gassensors mit einer er- findungsgemässen selektiven Membranelektrode; und
Fig. 5 einen Längsschnitt eines Gassensors mit einer erfindungsgemässen separaten selektiven Membran.
Fig. 1 zeigt schematisch die selektive Membran 5a und deren Anordnung in einer amperometrisch betriebenen elektrochemi¬ schen Messzelle 7, die zur Erläuterung des Prinzips der Einfachheit halber als 2-Elektroden-Zelle dargestellt ist. Die selektive Membran 5a enthält mindestens einen elektrisch leitenden, feinteiligen Katalysator 5b, der vorzugsweise vom Elektrolyt 19a der Messzelle 7 selber benetzt wird. Gasseitig ist die selektive Membran 5a vorzugsweise durch eine gasdurchlässige, poröse Membran 3 abgeschlossen, die eine Sperre für den Elektrolyt 19a der Messzelle 7 dar¬ stellt. Die selektive Membran 5a ist gegen die Messelektrode 11a durch einen dünnen, Elektrolyt 19a enthaltenden Spalt 24 getrennt. Mess- und Gegenelektrode 11a, 12 sind über inerte Kontaktdrähte mit einem Amperemeter 22 verbunden. Der Katalysator 5b der selektiven Membran 5a ist derart beschaffen, dass er hinsichtlich des zu detektierenden Gases (Messgases) elektrokatalytisch inaktiv ist, hingegen hinsichtlich störender anderer Gase 18 möglichst aktiv ist. In diesem Fall kann das Messgas 17 die poröse, selektive Membran 5a, ohne dort eine elektrochemische Reaktion einzugehen, passieren, um über den Spalt 24 zur Messelek¬ trode 11a zu gelangen. Andererseits können andere Gaskom¬ ponenten 18, die in Abwesenheit der selektiven Membran 5a elektrokatalytisch an der Messelektrode 11a reagieren würden und so einen Beitrag zum Messstrom ergeben würden, bereits vollständig in der selektiven Membran 5a abreagieren unter Bildung von Produkten, die von der Messelektrode 11a nicht mehr oder in reduziertem Umfang wahrgenommen werden. Je nachdem, ob ein Gas oxidiert oder reduziert wird, bildet sich in der selben selektiven Membran 5a in Balance die entsprechende Gegenreaktion aus unter internem Austausch von Elektronen. Im Falle einer Oxidation wird gleichzeitig Sauerstoff, der aus der Umgebung nachgeliefert wird, zu Wasser reduziert. Im Falle einer Reduktion eines Störgases 18 wird als Gegenreaktion in der selektiven Membran 5a Sauerstoff gebildet, der an die Umgebung abgegeben wird. Falls die Oxidations- bzw. Reduktionsprodukte der Störgase 18 hinsichtlich des Katalysators der Messelektrode 11a inert sind, wird der zwischen Mess- und Gegenelektrode 11a, 12 gemessene Strom allein durch das Messgas 17 erzeugt.
Die elektrokatalytisch selektive Membran 5a kann folgendermassen hergestellt werden: Als Unterlage dient vorzugsweise eine poröse PTFE-(Polytetrafluorethylen)-Membran 3. Auf diese kann eine poröse Katalysatorschicht 5b, die aus einem Gemisch von feinverteiltem Edelmetallkatalysator und PTFE-Pulver besteht, aufgebracht werden. Eine Fixierung kann durch Pressen oder durch Sinterung bei T > 320*C bewirkt werden. Es können auch Gemische von mehreren Edel¬ metallkatalysatoren eingesetzt werden oder die verschiedenen Katalysatoren mehrschichtig aufgebracht werden.
Als Spaltmaterial 24a zur Vermittlung des Elektrolyten 19a und zur räumlichen Abtrennung von der Messelektrode 11a kann ein hydrophiles dünnes Glasfaserfilter 10 verwendet werden. Besser ist es, eine partiell hydrophobe/hydrophile Membran einzusetzen, da hierdurch der Diffusionsfluss des Messgases 17 erhöht wird. Diese kann aus einer dünnen, porösen und ge¬ sinterten Membran aus feinverteiltem PTFE-Pulver einerseits und Quarzfeinst ehl oder amorphem Si02-Pulver andererseits bestehen. Die hydrophile Komponente (z.B. Quarzfeinstmehl) bildet Pfade für den wässrigen Elektrolyt 19a, während die hydrophobe Komponente (PTFE) Pfade für das Messgas 17 bildet.
Für eine Vereinfachung der Sensormontage ist es zweckmässig, gemäss Fig. 2 die elektrokatalytisch selektive Membran 5a mit der Messelektrode zu kombinieren.
Eine solche selektive Membranelektrode 5 kann folgendermassen hergestellt werden: Als Unterlage dient eine poröse PTFE Membran 3. Auf diese wird eine poröse Katalysatorschicht 5b, bestehend aus einem Gemisch von feinverteiltem Edelmetall und PTFE-Pulver, aufgebracht. Die Schicht 5b wird mit einer porösen Zwischenschicht 23 bedeckt, die aus einem Gemisch von feinverteiltem PTFE-Pulver und Quarzfeinstmehl oder amorphem Si02-Pulver besteht. Dann wird auf der Zwischenschicht 23 die poröse Messelektrode 11a aufgebracht, die aus einem Gemisch von feinverteiltem Edelmetall- und PTFE-Pulver besteht. Zur Fixierung können die Schichten nacheinander oder gleichzeitig gepresst werden bzw. nacheinander oder gleichzeitig bei T > 320*C gesintert werden.
Ein erfindungsge ässer Gassensor umfasst weiterhin folgende Einzelteile: Befestigungsschrauben 1, säurebeständige Kunst¬ stoff-O-Ringe 4, ungesinterte PTFE-Bänder 6, einen vorzugs¬ weise aus Polycarbonat-Kunststoff gefertigten Zentralkörper 7a, Kontaktfedern 8, aus einer Folie, vorzugsweise der Stärke 0,025 mm geschnittene Platinbänder 9, Tampons aus Glasfaser- Filter-Material 10, eine teilweise mit einem Elektrolyten 19a gefüllte Elektrolytkammer 19 mit einer Öffnung 13 und einem Docht aus Glasfaserfiltermaterial 10a zur Vermittlung des Elektrolyten zu den Elektroden 11a, 11, 12, einen Deckel 14, vorzugsweise aus Polycarbonat-Kunststoff mit einem ioch für den Druckausgleich 20, Bohrung 15 mit Gewinde für Befestigungsschrauben 1, Druckausgleichsöffnung 20, vor¬ zugsweise mit einem Durchmesser von ca. 0,5 mm und einer Kapillarlänge von ca. 5 mm.
Die Anwendungsbreite der erfindungsge ässen selektiven Mem¬ bran 5a wird nachstehend anhand einiger Ausführungsbeispiele demonstriert.
1. AUSFÜHRUNGSBEISPIEL: CO-SENSOR
Eine Membranelektrode 5 mit integrierter selektiver Membran 5a gemäss Fig. 2 wird folgendermassen hergestellt: Auf eine poröse PTFE-Membran 3 wird zunächst eine Katalysatorschicht 5b, die ein Gemisch von feinkörnigem Palladiumschwarz und PTFE-Pulver enthält, aufgebracht. Diese Schicht 5b wird voll¬ ständig bedeckt mit einer Zwischenschicht 23 aus Quarzfeinstmehl und PTFE-Pulver. Darüber wird eine weitere Schicht 11a, die eigentliche Mesεelektrode, aufgebracht, die aus einem Gemisch von feinkörnigem Platinschwarz und PTFE- Pulver besteht. Anschliessend wird die selektive Membranelektrode 5a in einem Ofen bei T = 360βC gesintert.
Eine Referenz- und Gegenelektrode 11, 12 gemäss Fig. 3 wird folgendermassen hergestellt: Auf einen Glasfaserrundfilter 10 wird eine durch einen Spalt 21 getrennte Katalysatorschicht, die eine Gemisch von Platinschwarz und PTFE-Pulver enthält, aufgebracht und anschliessend im Ofen bei T ≥ 360*C gesintert.
Durch den Spalt 21 wird die Elektrode in eine Referenz- und eine Gegenelektrode 11, 12 separiert.
Der Sensor wird gemäss Fig. 4 montiert, und die Gehäuseteile
2, 7a werden mit 6 Schrauben 1 fest verschraubt. Rückseitig wird die Elektrolytkammer 19 des Sensors mit 1,5 ml wässriger Schwefelsäure (30 Massen-%) befüllt und mit dem Deckel 14 verschraubt. Ein die Elektrolytkammer 19 auskleidender Docht 10a aus Glasfaserfiltermaterial steht durch- die Öffnung 13 mit der Referenz- und Gegenelektrode 11, 12 in Kontakt zur WeiterVermittlung des Elektrolyten an den Tampon 10 und die Elektroden 11, 12, 5. Die Referenz- und Gegenelektrode 11, 12 stehen in innigem Kontakt mit einer porösen PTFE-Membran 3, die stets für den Nachschub von Luftsauerstoff für die Gegenreaktion sorgt. Für eine Vergleichsmessung der Querempfindlichkeiten wird zusätzlich ein konventioneller co-Sensor hergestellt: Die Messelektrode ist eine konventionelle Membranelektrode 16a. Auf eine poröse PTFE-Membran 3 wird eine Schicht, die ein Gemisch von feinteiligem Platinschwarz und PTFE-Pulver enthält, aufgebracht und anschliessend im Ofen bei T = 360*C gesintert. Alle übrigen Vorgehensschritte sind die gleichen wie oben beschrieben.
2. AUSFÜHRUNGSBEISPIEL: CO-SENSOR
Hierfür wird eine Membranelektrode 5 mit integrierter selektiver Membran 5a gemäss Fig. 2 folgendermassen hergestellt: Auf eine poröse PTFE-Membran 3 wird eine Schicht 5b, die ein Gemisch von feinverteiltem Gold-Pulver und PTFE- Pulver enthält, aufgebracht. Zur Fixierung wird die Schicht 5b mit einer Handpresse verpresst. Auf eine poröse hydrophobe/hydrophile Membran 23, die aus einem gesinterten Gemisch von Quarzfeinstmehl und PTFE-Pulver gebildet wird, wird eine Schicht 11a, die eigentliche Messelektrode, aufgebracht, die aus einem Gemisch von feinverteiltem Platinschwarz und PTFE-Pulver besteht, und anschliessend bei T = 360*C gesintert. Darauf wird die Membran 11a mit einer Handpresse auf die oben beschriebene poröse PTFE-Membran 3 mit Schicht 5b verpresst.
Der Sensor wird, wie im 1. Beispiel beschrieben, hergestellt. Auch bei diesem Sensor wird gemäss Tab. 1 die Quer¬ empfindlichkeit gegenüber H2S, S02 und N02 drastisch reduziert. Die Ansprechzeit und Ansprechempfindlichkeit gegenüber CO ist vergleichbar mit dem 1. Beispiel. Bei N02 wird im Gegensatz zum 1. Beispiel jedoch ein schwach positives Signal beobachtet.
3. AUSFÜHRUNGSBEISPIEL: H2-SENSOR
Auf eine analoge Weise, wie im 1. Beispiel beschrieben, wird ein selektiver Sensor hergestellt, mit dem einzigen Unter¬ schied, dass die selektive Membran 5a Platinschwarz anstatt Palladiumschwarz enthält. Da Platinschwarz in bezug auf CO elektrokatalytisch wirksam ist, wird CO bereits in der selektiven Membran oxidiert. Hingegen reagiert H2 gemäss Tab. 1 in der selektiven Membran 5a unvollständig, so dass ein relativ grosser Teil von der Messelektrode 11a wahrgenommen wird. Ein Sensor nach Beispiel 3 kann als H2-Sensor eingesetzt werden.
Durch Anlegen einer entsprechenden Bias-Spannung zwischen Mess- und Referenzelektrode 11a, 11 kann mit einem Sensor nach Beispiel 3 auch ein schwerer oxidierbares Messgas 17 detektiert werden. Die durch die Bias-Spannung normalerweise angehobene Querempfindlichkeit hinsichtlich der Störgase 18 kann bei Vorhandensein der selektiven Membran 5a drastisch reduziert werden.
4. AUSFÜHRUNGSBEISPIEL: CO-SENSOR
Hierfür wird eine separate selektive Membran 5a folgendermassen hergestellt: Auf eine poröse PTFE-Membran 3 wird eine Schicht 5b, die ein Gemisch von feinverteiltem Palladiumschwarz und PTFE-Pulver enthält, aufgebracht und anschliessend in einem Ofen bei T = 360"C gesintert.
Die Messelektrode 16a wird folgendermassen hergestellt: Auf eine poröse PTFE-Membran 3 wird eine Schicht 5b, die ein Gemisch von feinverteiltem Platinschwarz und PTFE-Pulver enhält, aufgebracht und anschliessend im Ofen bei T = 360*C gesintert. Die Gegenelektrode 12 wird folgendermassen herge¬ stellt: Auf einen Glasfaserrundfilter 10 wird eine Schicht 5b, die ein Gemisch von feinverteiltem Platinschwarz und PTFE-Pulver enthält, aufgebracht und anschliessend im Ofen bei T = 360*C gesintert.
Mit der separaten selektiven Membran 5a und der Mess- und Gegenelektrode 16a, 12 wird gemäss Fig. 5 ein 2-Elektro- densensor hergestellt. Als Separator zwischen der selektiven Membran 5a und der Messelektrode 16a wird ein dünner Glasfaserrundfilter 10 eingesetzt. Als Elektrolyt 19a wird 1,5 ml Schwefelsäure (30 Massen-%) eingefüllt.
Die Messung von CO und der Querempfindlichkeiten werden analog zum 1. Beispiel durchgeführt. Das Amperemeter 22 ist mit der Mess- und Gegenelektrode 11a, 12 verbunden. Wie Tab. 1 zu entnehmen ist, wird auch in diesem Ausführungsbeispiel die Querempfindlichkeit drastisch reduziert. Gegenüber dem 1. und 2. Beispiel ist aber hier die Ansprechzeit bezüglich CO deutlich langsamer.
Tab. 1: QUEREMPFINDLICHKEIT DER ERFINDUNGSGEMASSEN
GASSENSOREN
GASSENSOREN MESS- bZW. STÖRGAS [Konzentration]
Messstrom CO H2S S02 N02 H2 [MA] 200 ppm 200 pp 200 ppm =70 ppm 200 ppm konventione1- 1er CO-Sensor 5,1 8,2 2,1 -0,8 2,2 (nach 1. Bei¬ spiel)
CO-Sensor 3,9 0,1 0,3 -0,1 1,3 (1.Beispiel)
CO-Sensor 3,9 0,1 0,0 0,1 3,7 (2.Beispiel)
H2-Sensor 0,4 0,0 0,0 0,0 0,8 (3.Beispiel)
CO-Sensor 3,7 0,0 0,3 0,1 3,4 (4.Beispiel) Gemäss Tab. 1 wird die Querempfindlichkeit der erfindungsgemässen Gassensoren mit integrierter selektiver Membran 5a gegenüber H2S, S02 und N02 im Vergleich zum konventionellen CO-Sensor erheblich reduziert. Auch nach stundenlangem Begasen bleiben die Werte unverändert. Die An¬ sprechzeit und Ansprechempfindlichkeit gegenüber CO sind im übrigen vergleichbar mit denjenigen eines gebräuchlichen CO- Sensors.

Claims

Patentansprüche
1. Gassensor auf elektrochemischer Basis mit reduzierter Querempfindlichkeit, der mindestens eine Mess- (11a) und eine Gegenelektrode (12) in einer mit einem Elektrolyten (19a) gefüllten Messzelle (7), die zur Messprobe hin mit einer für das Messgas (17) permeablen Membran (3) abge¬ schlossen ist, sowie zwischen der Membran (3) und der Messelektrode (11a) mindestens eine für das Messgas (17) permeable selektive Membran (5a) u fasst, die mit dem Elektrolyten (19a) in Kontakt steht und gegenüber dem Messgas (17) elektrokatalytisch möglichst inaktiv, ge¬ genüber etwaigen Störgasen (18) jedoch elektrokata¬ lytisch möglichst aktiv ist, dadurch gekennzeichnet, dass die selektive Membran (5a) mindestens eine poröse Kataly¬ satorschicht (5b), worin mindestens ein feinverteiltes, vom Elektrolyten (19a) benetztes Edelmetall enthalten ist, umfasst.
2. Gassensor nach Anspruch 1, dadurch gekennzeichnet, dass die Katalysatorschicht (5b) aus einem Gemisch mindestens eines feinteiligen, pulverförmigen Edelmetalls mit Polytetrafluor-ethylen-(PTFE)-Pulver besteht.
3. Gassensor nach einem der Ansprüche 1 - 2, dadurch gekennzeichnet, dass für die Katalysatorschicht (5b) Palladium, Gold, Platin, Ruthenium, Iridium, Osmium und/oder Silber in Reinform, Legierung oder Gemisch verwendet wird.
4. Gassensor nach Anspruch 2 und 3, dadurch gekennzeichnet, dass die mindestens eine Katalysatorschicht (5b) auf eine poröse Polytetrafluorethylen-Membran (3) aufgebracht und mit dieser durch Pressen bzw. durch Sinterung bei T > 320°C dauerhaft zur selektiven Membran (5a) verbunden wird.
5. Gassensor nach einem der Ansprüche 1 - 4, dadurch gekenn¬ zeichnet, dass die Messelektrode (11a) und/oder die Gegenelektrode (12) und/oder eine zusätzliche Referenz¬ elektrode (11) mindestens eine poröse, durch Pressung oder Sinterung verfestigte Katalysatorschicht, bestehend aus mindestens einem feinteiligem Edelmetall- sowie PTFE- Pulver, umfasst.
6. Gassensor nach Anspruch 5, dadurch gekennzeichnet, dass als Edelmetall-Pulver Platinschwarz eingesetzt wird.
7. Gassensor nach einem der Ansprüche 1 - 6, dadurch gekenn¬ zeichnet, dass als Spaltmaterial (24a) im Spalt (24) zwi¬ schen der selektiven Membran (5a) und der Messelektrode (11a) ein hydrophiler Glasfaserfilter (10) zur Vermitt¬ lung des Elektrolyten (19a) verwendet wird.
8. Gassensor nach einem der Ansprüche 1 - 6, dadurch gekenn¬ zeichnet, dass als Spaltmaterial (24a) eine poröse, par¬ tiell hydrophobe/hydrophile Zwischenschicht (23) einge¬ setzt wird.
9. Gassensor nach Anspruch 8, dadurch gekennzeichnet, dass die partiell hydrophobe/hydrophile Zwischenschicht (23) aus feinteiligem PTFE-Pulver und Quarzfeinstmehl oder amorphem Siθ2-Pulver besteht.
10. Gassensor nach einem der Ansprüche 1 - 9, dadurch gekenn¬ zeichnet, dass die selektive Membran (5a) direkt mit der Zwischenschicht (23) bedeckt ist, wobei diese mit einer porösen Messelektrode (11a), die aus einem Gemisch von feinteiligem Edelmetall- und PTFE-Pulver besteht, zwecks Ausbildung einer selektiven Membranelektrode (5) versehen ist.
11. Gassensor nach Anspruch 10, dadurch gekennzeichnet, dass die Schichten (5a, 23, 11a) der selektiven Membran¬ elektrode (5) zwecks Fixierung gleichzeitig oder nach¬ einander gepresst bzw. gleichzeitig oder nacheinander bei T > 320"C gesintert werden.
12. Gassensor nach einem der Ansprüche 1 - 11, dadurch ge¬ kennzeichnet, dass eine kombinierte Referenz- und Gegen¬ elektrode (11, 12) vorgesehen ist, die durch Aufbringen eines durch einen Spalt (21) getrennten Gemisches aus feinkörnigem Platinschwarz und PTFE-Pulver auf ein Glas¬ faserfilter (10) und anschliessendes Sintern bei T > 320°C hergestellt wird.
13. Gassensor nach einem der Ansprüche 1 - 12, dadurch ge¬ kennzeichnet, dass er als 2-Elektrodensensor ausgebildet ist, der eine separate selektive Membran (5a), sowie eine Mess- und Gegenelektrode (11a, 12) umfasst, wobei die se¬ lektive Membran (5a) durch Aufbringen eines Gemisches aus feinverteiltem Palladiumschwarz sowie PTFE-Pulver auf eine poröse PTFE-Membran (3) und anschliessendes Sintern in einem Ofen bei T > 320°C hergestellt wird; wobei die Messelektrode (11a) durch Aufbringen.eines Gemisches aus feinverteiltem Platinschwarz und PTFE-Pulver auf eine po¬ röse PTFE-Membran (3) und anschliessendes Sintern in einem Ofen bei T > 320βC verfertigt wird; und wobei die Gegen¬ elektrode (12) durch Aufbringen einer ein Gemisch von feinverteiltem Platinschwarz und PTFE-Pulver enthaltenden Schicht (5b) auf ein Glasfaserrundfilter (10) und an¬ schliessendes Sintern bei T > 320°C hergestellt wird.
14. Gassensor nach einem der Ansprüche 1 - 13, dadurch ge¬ kennzeichnet, dass die Messzelle (7) gasseitig von einem Deckel (2) mit einer durchlässigen Membran (3), radial von einem zylindrischen Zentralkörper (7a) sowie rücksei¬ tig von einem mit einer Druckausgleichsöffnung (20) ver¬ sehenen Deckel (14) begrenzt ist; dass Kontaktfedern (8), Platinbänder (9) und mit Elektrolyt (19a) getränkte Tam¬ pons aus Glasfaserfilter (10) sowie Dochte aus Glasfaser¬ material (10a) in der Öffnung (13) der Elektrolytkammer (19) zwecks Kontaktierung der Elektroden (5, 16a, 11, 11a, 12) und dass O-Ringe (4) und Schrauben (1) für entspre-chende Gewindebohrungen (15) zwecks Verschliesεung der Messzelle (7) sowie Abschnitte aus ungesintertem PTFE-Band (6) zwecks Abdichtung der Messzelle (7) vorgesehen sind.
15. Gassensor nach einem der Ansprüche 1 - 14, dadurch ge¬ kennzeichnet, dass als Elektrolyt (19a) Schwefelsäure verwendet wird.
16. Gassensor nach einem der Ansprüche 1 - 15, dadurch ge¬ kennzeichnet, dass als Elektrolyt (19a) 30 massen-%ige Schwefelsäure eingesetzt wird.
PCT/CH1995/000166 1994-08-02 1995-07-19 Elektrochemischer gassensor mit reduzierter querempfindlichkeit WO1996004550A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95924150A EP0721583A1 (de) 1994-08-02 1995-07-19 Elektrochemischer gassensor mit reduzierter querempfindlichkeit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2416/94-0 1994-08-02
CH241694 1994-08-02

Publications (1)

Publication Number Publication Date
WO1996004550A1 true WO1996004550A1 (de) 1996-02-15

Family

ID=4233301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1995/000166 WO1996004550A1 (de) 1994-08-02 1995-07-19 Elektrochemischer gassensor mit reduzierter querempfindlichkeit

Country Status (2)

Country Link
EP (1) EP0721583A1 (de)
WO (1) WO1996004550A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053314A1 (en) * 1998-04-14 1999-10-21 Ge Syprotec Inc. Method and apparatus for monitoring gas(es) in a dielectric fluid
WO2005085824A1 (en) * 2004-03-03 2005-09-15 Zellweger Analytics Ag Liquid electrolyte gas sensor comprising rigid porous electrode support
US7179355B2 (en) 2002-02-19 2007-02-20 Alphasense Limited Electrochemical cell
CN102621205A (zh) * 2012-03-28 2012-08-01 华瑞科学仪器(上海)有限公司 硫化氢电化学传感器
CN113324896A (zh) * 2021-05-27 2021-08-31 国网陕西省电力公司西安供电公司 一种用于高压电缆阻水缓冲层电化学腐蚀研究的实验装置
CN113933357A (zh) * 2021-11-18 2022-01-14 北京化工大学 聚四氟乙烯膜在气体传感器中的应用、气体传感器用金属管帽、二氧化氮传感器
US11378569B2 (en) 2020-08-31 2022-07-05 Simple Labs, Inc. Smoke taint sensing device
CN115950922A (zh) * 2023-01-17 2023-04-11 湖南元芯传感科技有限责任公司 有源过滤器、半导体气体传感器及有源过滤器的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2374419B (en) * 2001-03-09 2004-12-29 Zellweger Analytics Ltd Electrochemical gas sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470071A (en) * 1966-07-11 1969-09-30 Leesona Corp Method and apparatus for detecting gas
EP0064337A1 (de) * 1981-04-30 1982-11-10 National Research Development Corporation Kohlendioxidmessung
EP0126623A2 (de) * 1983-05-19 1984-11-28 City Technology Limited Gassensor
DE3519435A1 (de) * 1985-05-30 1986-12-11 Siemens AG, 1000 Berlin und 8000 München Sensor fuer gasanalyse
EP0299779A2 (de) * 1987-07-15 1989-01-18 Sri International Mikrosensoren für Gase und Dämpfe mit schneller Antwortzeit
US5296196A (en) * 1991-02-04 1994-03-22 Toyota Jidosha Kabushiki Kaisha Semiconductor hydrocarbon sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470071A (en) * 1966-07-11 1969-09-30 Leesona Corp Method and apparatus for detecting gas
EP0064337A1 (de) * 1981-04-30 1982-11-10 National Research Development Corporation Kohlendioxidmessung
EP0126623A2 (de) * 1983-05-19 1984-11-28 City Technology Limited Gassensor
DE3519435A1 (de) * 1985-05-30 1986-12-11 Siemens AG, 1000 Berlin und 8000 München Sensor fuer gasanalyse
EP0299779A2 (de) * 1987-07-15 1989-01-18 Sri International Mikrosensoren für Gase und Dämpfe mit schneller Antwortzeit
US5296196A (en) * 1991-02-04 1994-03-22 Toyota Jidosha Kabushiki Kaisha Semiconductor hydrocarbon sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053314A1 (en) * 1998-04-14 1999-10-21 Ge Syprotec Inc. Method and apparatus for monitoring gas(es) in a dielectric fluid
US7179355B2 (en) 2002-02-19 2007-02-20 Alphasense Limited Electrochemical cell
WO2005085824A1 (en) * 2004-03-03 2005-09-15 Zellweger Analytics Ag Liquid electrolyte gas sensor comprising rigid porous electrode support
US8303788B2 (en) 2004-03-03 2012-11-06 Honeywell Analytics Ag Liquid electrolyte gas sensor comprising rigid porous electrode support
CN102621205A (zh) * 2012-03-28 2012-08-01 华瑞科学仪器(上海)有限公司 硫化氢电化学传感器
US11378569B2 (en) 2020-08-31 2022-07-05 Simple Labs, Inc. Smoke taint sensing device
CN113324896A (zh) * 2021-05-27 2021-08-31 国网陕西省电力公司西安供电公司 一种用于高压电缆阻水缓冲层电化学腐蚀研究的实验装置
CN113933357A (zh) * 2021-11-18 2022-01-14 北京化工大学 聚四氟乙烯膜在气体传感器中的应用、气体传感器用金属管帽、二氧化氮传感器
CN115950922A (zh) * 2023-01-17 2023-04-11 湖南元芯传感科技有限责任公司 有源过滤器、半导体气体传感器及有源过滤器的制备方法

Also Published As

Publication number Publication date
EP0721583A1 (de) 1996-07-17

Similar Documents

Publication Publication Date Title
EP0823049B1 (de) Verfahren und vorrichtung zum fortlaufenden nachweis wenigstens einer substanz in einem gasförmigen oder flüssigen gemisch mittels einer sensorelektrode
DE2906459C2 (de) Vorrichtung zur Messung der Sauerstoffkonzentration in einem Fluid
DE19939011C1 (de) Elektrochemischer Gassensor mit diamantartigen Kohlenstoffelektroden
DE69829129T2 (de) Gassensor
DE60130288T2 (de) NOx Sensor
DE4407328B4 (de) Elektrochemischer Sensor für toxische Gase
EP0946867B1 (de) Elektrochemischer sensor
DE19827927C2 (de) Gassensor
DE10359173B4 (de) Messvorrichtung mit mehreren auf einem Substrat angeordneten potentiometrischen Elektrodenpaaren
DE10247144A1 (de) Gasdetektorelement und diese enthaltendes Gasdetektorgerät
EP1600768B1 (de) Ammoniaksensor
DE19882506B4 (de) Elektrochemischer Sensor zum Nachweis von Cyanwasserstoff und Verfahren zur Verwendung des elektrochemischen Sensors
DE60301801T2 (de) Elektrochemischer Sensor zum Nachweis von Kohlenmonoxid
DE60026703T2 (de) Vorrichtung zur Messung und Detektion von Acetylen gelöst in einem Fluid
EP1738159B1 (de) Fet-basierter gassensor
DE4021929C2 (de) Sensor
WO1996004550A1 (de) Elektrochemischer gassensor mit reduzierter querempfindlichkeit
DE102004008233B4 (de) Verfahren zur Steuerung des Betriebs eines Gassensorelements
DE19681487B3 (de) Elektrochemischer Sensor zum Aufspüren von Stickstoffdioxid
EP0395927B1 (de) Elektrochemische Messzelle zur Bestimmung des Ammoniak oder Hydrazin in einer Messprobe
EP0282441B1 (de) Verfahren zur Bestimmung des chemischen Sauerstoffbedarfs von Wasser
DE2851447A1 (de) Elektroanalytische zelle und amperometrisches messverfahren
DE19847706A1 (de) Elektrochemischer Gas-Sensor
EP0693180B1 (de) Ammoniaksensor
DE10240918A1 (de) Gassensor und Verfahren zum Ermitteln einer Gaskonzentration

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995924150

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 624378

Date of ref document: 19960402

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995924150

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1995924150

Country of ref document: EP