WO1996004369A1 - Polypeptide having cold-resistant pyruvate phosphate dikinase activity, dna coding for the polypeptide, recombinant vector containing the dna, and transformed plant - Google Patents

Polypeptide having cold-resistant pyruvate phosphate dikinase activity, dna coding for the polypeptide, recombinant vector containing the dna, and transformed plant Download PDF

Info

Publication number
WO1996004369A1
WO1996004369A1 PCT/JP1995/001040 JP9501040W WO9604369A1 WO 1996004369 A1 WO1996004369 A1 WO 1996004369A1 JP 9501040 W JP9501040 W JP 9501040W WO 9604369 A1 WO9604369 A1 WO 9604369A1
Authority
WO
WIPO (PCT)
Prior art keywords
ala
gly
glu
leu
val
Prior art date
Application number
PCT/JP1995/001040
Other languages
French (fr)
Japanese (ja)
Inventor
Shozo Ohta
Satoru Usami
Nigel James Burnell
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP1994/002022 external-priority patent/WO1995015385A1/en
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to RO96-00667A priority Critical patent/RO118451B1/en
Priority to HU9600790A priority patent/HU222186B1/en
Priority to RU96108242A priority patent/RU2136748C1/en
Priority to BR9506291A priority patent/BR9506291A/en
Priority to UA96031191A priority patent/UA28003C2/en
Publication of WO1996004369A1 publication Critical patent/WO1996004369A1/en
Priority to MXPA/A/1996/001212A priority patent/MXPA96001212A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1294Phosphotransferases with paired acceptors (2.7.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Definitions

  • Polypeptide having cold-tolerant pyruvate phosphate dikinase activity DNA encoding the same, and recombinant vectors and transformed plants containing the DNA
  • the present invention relates to a polypeptide having a novel cold-tolerant pyruvate phosphate dikinase (hereinafter sometimes referred to as “PPDK”) activity as a means for imparting cold-tolerance to plants, and a clone encoding the same.
  • PPDK pyruvate phosphate dikinase
  • the present invention relates to a DNA and a recombinant vector containing the DNA. Furthermore, the present invention relates to a plant transformed with the DNA of the present invention.
  • PPDK (EC 2.7.9.1, which catalyzes the reaction of ATP, pyruvate and orthophosphate to generate AMP, phosphophenolpyruvate and pyrophosphate) is one of the key enzymes in the pathway but its activity in leaf tissue It is not enough compared to the rate of photosynthesis, and is one of the enzymes that regulates carbon fixation in photosynthesis. It was pointed out at the same time that PPDK was a cold-sensitive enzyme.
  • PPDK In the case of corn PPDK, there is an inflection point of the enzyme activity at 11.7 ° C, which is consistent with the critical temperature for corn growth. From these facts, it is thought that P PDK is one of the factors that lowers the photosynthetic rate of C 4 plants at low temperatures.By improving the low-temperature sensitivity of P PDK, P PDK lowers the growth limit temperature of C 4 plants, maize. May be able to reduce it.
  • Flaveria browniij Flaveria browniij reticulata
  • C A is classified as intermediate type, and its PDK is known to be hardly inactivated even at 0 ° C low temperature treatment (Burnell JN: A comparative study of The cold-sensitivity of pyruvate, Pi dikinase in Flaveria species. Plant Cell Physiol. 31, 295-297 (1990)).
  • an object of the present invention is to provide a novel cold-tolerant polypeptide having PPDK activity, a cloned DNA encoding the same, and a recombinant vector containing the DNA, as a means for imparting cold-resistance to plants.
  • the purpose is to provide a doctor.
  • Still another object of the present invention is to provide a plant transformed with the DNA of the present invention.
  • the present inventors have succeeded in cloning the complete P PDK gene of Flavelia bronyii and determining its nucleotide sequence and the amino acid sequence encoded thereby. Among them, the inventors succeeded in identifying a region imparting low-temperature resistance, and completed the present invention.
  • the present invention relates to any one of the following (1) and (2), wherein at least one or more amino acid residues in the range from the C-terminus of the amino acid sequence to one sixth of the entire length are replaced with other amino acid residues.
  • a polypeptide having a substituted amino acid sequence and having a low-temperature-resistant pyruvate phosphate dikinase activity is provided.
  • the present invention also provides a cloned DNA encoding a polypeptide having the cold-resistant PPDK activity of the present invention. Further, the present invention provides a recombinant vector comprising the DNA of the present invention and capable of expressing a polypeptide having a cold-resistant PPDK in a host. Further, the present invention provides a plant transformed with the DNA of the present invention.
  • a PDKK gene having low temperature resistance was cloned and its base sequence was determined.
  • the region conferring low-temperature tolerance in the gene was determined. Therefore, by transforming a plant having a cold-sensitive PPDK with the gene of the present invention, the cold-sensitive PPDK can be changed to cold-tolerant.
  • the low-temperature-sensitive PPDK can be changed to low-temperature-resistance by incorporating the low-temperature-resistant region into the homologous portion of the low-temperature-sensitive PPDK. As a result, Since then, it is possible to grow the plant even in cold regions where the plant could not be grown. Therefore, the present invention is expected to greatly contribute to agriculture.
  • FIG. 1 is a schematic diagram showing a method for constructing an expression vector containing one example of the PPDK gene of the present invention.
  • FIG. 2 is a diagram showing the time course of the enzyme activity when P.sup.PPDK of Flavelaria 'Brownii, Flavelaria' Paidentis and maize expressed in E. coli was maintained at 0 ° C.
  • FIG. 3 is a schematic diagram showing a method for constructing a chimeric gene of corn PPDK and Flavelonia brawnii PPDK.
  • the P. plavens of Flavelonia brawnii which has low temperature resistance, was cloned, and its nucleotide sequence and the predicted amino acid sequence encoded thereby were determined.
  • the nucleotide sequence and the amino acid sequence are shown in SEQ ID NO: 5 in the sequence listing.
  • this sequence is obtained by extracting total RNA from green leaves of Flavelaria 'Brownii, preparing a cDNA library based on a conventional method, and obtaining Flaveleria bidentis (SEQ ID NO: 1) Plaque hybridization using a region with high homology to the nucleotide sequence (SEQ ID NO: 2) of the maize PPDK gene (SEQ ID NO: 2) to select and clone a positive clone and determine the nucleotide sequence by the dideoxy method Determined by The second sequence has high homology to the PPDK gene of the genus Flavelaria 'Bidentis, has relatively high homology to the PPDK of maize, and is further purified directly from the leaves of Flavelaria' Since it completely matches the N-terminal sequence, C-terminal sequence and internal sequence of the PPDK, it is clear that the gene is a PPDK gene of Flavier-Brownii.
  • the P PDK gene sequence of Flavelia's bidentis was determined by plaque hybridization using maize cDNA as a probe, selecting and cloning positive clones, and determining the dideoxy method.
  • the amino acid sequence shown in SEQ ID NO: 5 is novel and differs by 40 amino acid residues from the amino acid sequence of PPDK of the genus Flavelia pydentis. I have. In addition, about 180 amino acid residues differ from the amino acid sequence of maize PPDK.
  • the amino acid sequence of Flaveria brawnii PP DK shown in SEQ ID NO: 5 thus has high homology especially to the amino acid sequence of Flaveria 'Bidentis PPDK' of the same genus, but Flaveria 'Bidentis PP DK is cold sensitive. In contrast, the Flavelaria 'Brownii PPDK is cold-tolerant and slight amino acid sequence differences result in important trait differences.
  • the present invention provides a cloned PPDK gene encoding the amino acid sequence shown in SEQ ID NO: 5. As described above, this amino acid sequence is novel and has a remarkable effect of having low temperature resistance.
  • the gene of the present invention is not limited to having the nucleotide sequence shown in SEQ ID NO: 5, but may have any nucleotide sequence as long as it encodes this amino acid sequence. .
  • the inventors of the present application also attempted to identify a region involved in imparting low-temperature resistance in the Flavella brawnii PPDK gene represented by SEQ ID NO: 5.
  • the PPDK gene of Flavelaria bronchii was divided into three parts with restriction enzymes so that the size would be approximately equal, and the divided regions corresponded to those of the maize PPDK gene.
  • the quinola PPDK gene was formed in exchange for the region, and it was examined whether the PPDK encoded by the chimeric gene has low temperature resistance. As a result, it was confirmed that there was a region imparting low-temperature resistance in the last one-third of the region of Flaveria 'Brownii.
  • the last one-third of the region was roughly equally divided into two by restriction enzymes, and it was confirmed in a similar manner which of the two regions had a region imparting low-temperature resistance.
  • the amino acid sequence shown in SEQ ID NO: 5 was downstream of the XhoI site of the Flavelaria 'Brownii PPDK gene, ie, the amino acid sequence shown in SEQ ID NO: 5; It has been confirmed that the amino acid sequence up to (hereinafter, this sequence may be referred to as a “cold-resistance conferring sequence”) has a function of conferring low-temperature resistance.
  • SEQ ID NO: 1 in the sequence listing contains the nucleotide sequence and the deduced amino acid sequence of the gene encoding the PPDK of Flavelaria dentis.
  • SEQ ID NO: 2 shows the nucleotide sequence and predicted amino acid sequence of a gene encoding corn PPDK (Journal of Biochemistry 263, 11080-11083 (1988)).
  • SEQ ID NO: 3 shows that the pacteria Pacteroides symbiosus
  • SEQ ID NO: 4 shows the nucleotide sequence and deduced amino acid sequence of the gene encoding PPDK of Entamoeba histolytica, which is a pacteria
  • low-temperature resistance means that when the enzyme is left at a temperature of 0 ° C. for 20 minutes, its activity is 60% or more of that before leaving.
  • the region from arginine at position 832 to valine at position 955 defines low-temperature tolerance.
  • the method for imparting low-temperature resistance to PPDK is limited to the method for producing a quinola gene by exchanging the low-temperature-resistance-imparting sequence in Flavier-Brownii PPDK with the corresponding part of low-temperature-sensitive PPDK, as in the following example.
  • the corresponding part of the plant's own cold-sensitive PPDK can be modified by site-directed mutagenesis to have the same sequence as the cold-resistance-conferring sequence of Flavelia'Brownii PPDK. It is.
  • any cloned DNA encoding the polypeptide having the above-mentioned low-temperature tolerance imparting sequence and having PPDK activity is included in the scope of the present invention.
  • proline was substituted for position 869 of the amino acid sequence shown in SEQ ID NO: 1.
  • the PPDK that imparts low-temperature resistance is not limited to those shown in Sequence Listings 1 to 4, but may be any as long as it has a homology of 50% or more to each. Preferably, it should be homologous to the nucleotide sequence of Pflavin 'Brownie's PDK, and should be at least 48.5%, more preferably at least 90%.
  • amino acid sequence of a peptide having a physiological activity is slightly changed, that is, one or more amino acids in the amino acid sequence are substituted or deleted, or one or more amino acids are substituted. It is a well-known fact that even when added, the physiological activity of the peptide may be maintained. Therefore, a polypeptide having the amino acid sequence represented by SEQ ID NO: 5 with such a modification and having low-temperature-resistant PDK activity is also included in the scope of the present invention. That is, in the amino acid sequence represented by SEQ ID NO: 5, one or more amino acids are activated! ], Polypeptides that have been deleted or substituted and have cold-tolerant PPDK activity are also included within the scope of the present invention.
  • a DNA encoding a polypeptide having one or more nucleotides added, deleted or substituted in the base sequence represented by SEQ ID NO: 5 and having low-temperature-resistant PPDK activity is also included in the present invention. Included in the range.
  • DNA that results in the addition, deletion or substitution of amino acids can be performed by, for example, well-known techniques of site-directed mutagenesis (eg, Nucleic Acid Research, Vol. 10, No. 20, p6487-6500, 1982).
  • site-directed mutagenesis eg, Nucleic Acid Research, Vol. 10, No. 20, p6487-6500, 1982.
  • one or more amino acids refers to a number of amino acids that can be added, deleted or substituted by site-directed mutagenesis.
  • Site-directed mutagenesis can be performed, for example, as follows using a synthetic oligonucleotide primer complementary to the single-stranded phage DNA to be mutated, except for the specific mismatch that is the desired mutation. That is, a strand complementary to a phage is synthesized using the above-mentioned synthetic oligonucleotide as a primer, and a phage-carrying host bacterium is transformed with the obtained double-stranded DNA. Plate the transformed bacterial culture on agar and form plaques from single cells containing the phage. You. Then, theoretically, 50% of the new colonies contain the phage with the mutation as a single chain, and the remaining 50% have the original sequence.
  • the resulting plaque is hybridized with the DNA completely having the above-mentioned desired mutation at a temperature at which the DNA does not hybridize with the DNA having the original mutation, but does not hybridize with the DNA having the original mutation. Allows hybridization to occur with the synthetic probe that has been treated with the enzyme. Next, a plaque forming a hybrid with the probe is picked up, cultured, and the DNA is recovered.
  • One or more amino acid substitutions, deletions or insertions in the amino acid sequence of the enzyme that do not cause loss of the enzyme activity may be performed by treating the gene with a mutagen in addition to the site-directed mutagenesis described above.
  • the gene may be selectively cleaved, and then the selected nucleotides may be removed, added, or substituted, and then ligated.
  • a low-temperature-tolerant plant can be produced by transforming a plant with the Pflank'Brownii PDK gene or a DNA having the PDK activity and containing the sequence for imparting low-temperature tolerance.
  • the transformed plant include corn, sugarcane, millet, hee and sorghum, but are not limited thereto.
  • a method for transforming a plant has already been established, and a method using agrobacterium can be preferably employed. Transformation methods of plants using Agrobacterium medfaciens are well known in the art, and thus, dicotyledonous plants (for example, Japanese Patent Application Laid-Open No. Hei 4-330324) and monocotyledonous plants ( 10 94 00977). Alternatively, it can be introduced into a plant protoplast by a conventional method such as electroporation, or it can be transformed by attaching DNA to tungsten particles or the like and driving it into a plant embryo. is there. Specific methods for these transformations are described in the Examples below.
  • RNA was isolated from the leaves of F. brownii (60s) by the guanidine hydrochloride / phenol method. This method yielded 26.5 mg of RNA after lithium precipitation.
  • 118.9 polyA ( + ) RNA was obtained from 13.2 mg of RNA according to a conventional method.
  • the packaging reagents attached to the TimeSaver cDNA Synthesis Kit (Pharmacia), Lambda ZAP11 vector (Stratagene) and cDNA cloning system AgtlO (Amersham) were used.
  • a cDNA library was prepared in which the DNA fragment was inserted into the EcoRI site of the Lambda ZAPII vector.
  • the size of the prepared cDNA live tally was 4150,000 pfu.
  • XU-Blue was used as a host cell.
  • Primer 5 near the processing site: GACGGCTAAAAAGAGGGT (designed based on high homology between cDNA of Flavoria and Bidentis PPDK and cDNA of maize PPDK) and R primer—R: TATCGAGAAACCTTCTATAC (Flaveria' Bidentis PCR II vector (commercially available from Invitrogen), which has a fragment amplified from L brownii RNA by reverse transcription PCR using a part of the PPDK sequence (complementary strand), and amplifies the fragment by PCR using the same primer. After electrophoresis, DNA was recovered from the gel by SUPREC-01 (Takara Shuzo).
  • a 428 bp DNA fragment starting from 24 bp downstream of the N-terminus of the mature protein can be obtained.
  • This fragment was labeled with 32 P using a Multiprime DNA labeling system (Amersham) to prepare a probe.
  • the cDNA library was screened by a plaque hybridization method.
  • Hybond N + (Amersham) was used as a hybridization filter, and hybridization conditions were 65 in 6xSSC, 5x Denhardt's solution, 0.1DSSDS, 100 g ml denatured salmon testis DNA. C overnight.
  • the washing conditions were 2xSSC, 0.13 ⁇ 4SDS for 5 minutes at room temperature, 2xSSC, 0.13 ⁇ 4SDS for 90 minutes at room temperature, and lxSSC, 0.13 ⁇ 4SDS for 68 minutes at 68 ° C. This resulted in 28 independent positive PT / JP95 / 01040
  • the library prepared as described above was a library suitable for cDNA screening including a sufficiently long insert. Therefore, it is advantageous to apply the present method to isolation of mRNA from Flavelonia broni, and to obtain a large amount of mRNA at once by treating a large amount of RNA as in this case.
  • the full-length can be obtained by preparing a probe using a primer near the processing site of the target protein as described above. It was possible to easily screen cDNA.
  • Deletion mutants were prepared to determine the entire base sequence of the inserted cDNA fragment of P631. 0 Deletion mutants were prepared using the Deletion Kit for Kilo-Sequence.
  • PPDK was directly purified from Flaveria 'Brownii, and the amino acid sequences of its N-terminal region, C-terminal region and internal region were determined. Purification of PPDK was performed as follows. Grind the green leaves of Flavelia brawnii using 3 volumes of Extraction Buffer ⁇ Centrifuge the supernatant after 30% saturation with ammonium sulfate to remove the protein that precipitates-and recover the protein with 70% saturated ammonium sulfate, and use Sephadex G25 (Pharmacia).
  • pass through a DEAE-Sepharose column (Pharmacia)-elute proteins adsorbed on the column with a 50-400 mM KC1 concentration gradient-collect active fractions and 70% saturation Concentrate with ammonium sulfate and desalting with Sephadex G25. Apply to a hydroxyapatite column. ⁇ Raise the concentration of phosphate in the phosphate buffer from 10 mM to 40 mM to elute the adsorbed protein. ⁇ Collect active fractions and collect 70% saturation. Concentrate with ammonium sulfate, desalting with Sephadex G25.
  • the N-terminal sequence, C-terminal sequence and internal sequence of the obtained purified PPDK were determined. That is, the N-terminal amino acid sequence was obtained by transferring a protein onto a PVDF membrane and using a gas-phase amino acid sequencer. The C-terminal sequence was estimated from the relationship between the amino acid composition released from digestion of purified PPM with carboxypeptidase Y and the digestion time. The internal amino acid sequence was determined by revealing the amino acid sequence from the N-terminal side of the peptide generated when the protein was digested with protease. The detailed method is as follows. First, according to the method for determining the amino acid sequence at the N-terminus. 0
  • an overlay solution Tris-HCl pH 6.8 125 mM, EDTA lmM, 0.1 SDS, 0.01 BPB, 20 glycerol
  • an enzyme solution Tris-HCl pH 6.8 125 mM
  • N-terminal sequence Asn Pro Val Ser Pro Pro Val (72 to 78)
  • the amino acid sequence shown in SEQ ID NO: 5 and the partial amino acid sequence determined directly from the above purified PPDK are in good agreement, and the amino acid sequence shown in SEQ ID NO: 5 is the amino acid sequence of PPDK.
  • the amino acid sequence was confirmed.
  • 40 amino acids (Flavier pidetis) and 180 in the mature protein portion were obtained.
  • About one (corn) amino acids were different.
  • the 1st to 71st amino acid sequences are not present in the mature protein, and are transit peptides necessary for passage through the membrane. And is understood to be processed after passing through the membrane.
  • Table 1 below shows the differences between the amino acid residues in the mature proteins of Flavelaria brawnii and Flavelaria bidentis.
  • p631Sac Plasmid lacking p631 after Sacl
  • Sacl Sacl
  • a primer containing an EcoRV site based on the sequence near the processing site 4 PCR was performed using a combination of GATATCAATCCGGTGTCTCCTCC and a primer M13 RV (Takara Shuzo) complementary to the vector sequence, and the amplified fragment was subcloned into pCR II.
  • a fragment containing the N-terminal part was excised from pCR II using EcoRV and Sacl restriction enzymes, cut with the Sacl-Hind III fragment of p631 (including the rest of PPDK cDNA) and Ncol, and blunt-ended with Klenow enzyme. After that, a three-fragment ligation reaction was performed with pKK233-2 digested with Hindi 11 (FIG. 1). This plasmid was transformed into E. coli MV1184 and used for expression experiments. Dilute 1 ml of the preculture into 9 ml of fresh LB medium (containing 50 mg of ampicillin), shake at 37 ° C for 3 hours, and add 1 PTG to 5 mM.
  • the cells were recovered by centrifugation.
  • the cells were suspended in 0.5 ml of extraction buffer (50 mM Hepes-KOH pH7.5, 10 mM MgSO ImM EDTA, 5 mM DTT), lysozyme was added to about 0.5 mg ral, treated on ice for 5 minutes, and then sonicated. Enzymes were extracted by treating with a crushing device (Cosmo Bio UCD-130T) at intervals of 30 seconds for 5 minutes while cooling on ice.
  • PPDK produced in Escherichia coli from PPPDK cDNAs of Flaveria bronyii, Flaveria bidentis and maize (Harvest queen) showed almost the same migration on SDS-PAGE as the plant-derived enzyme.
  • the expected molecular weights of the mature enzymes from the cDNAs are all the same, and the apparent molecular weights on SDS-PAGE are quite different. This was due to the difference in the amino acid composition contained in each polypeptide, and was not due to post-translational modifications such as protein truncation processing and glycosylation.
  • the cold tolerance of various PPDKs produced in E. coli was consistent with the corresponding plant enzymes.
  • FIG. 2 shows the relationship between the elapsed time since the enzyme was placed at a temperature of 0 ° C. and the relative activity of PPDK.
  • a cDNA was prepared by removing the transit peptide and incorporated into the expression vector. It was important to match the position exactly to the N-terminal position of the plant-derived enzyme.
  • TTKKRVFTF- leaf-derived enzyme
  • the EcoRI-Hindi 11 fragment of pKK-brownii is equivalent to pKK-bidentis (plasmid obtained by incorporating cDNA of Flavelaria bidentis into pKK-223-2 by the same method as pKK-brownii).
  • ⁇ _011 was exchanged for the corresponding fragment, and conversely, the EcoRI-Hindi ⁇ fragment of pKK-bidentis was exchanged for the corresponding fragment of pKK brownii to produce pKK-100.
  • the Ndel-Hindlll fragments were exchanged for each other to produce pKK-001 and pKK-110.
  • the first PCR was carried out using a combination of link-FRV and M4 link-R using the Xii-HindiII fragment of brownii or bidentis subcloned in Bluescript SK (-) for type I.
  • the obtained fragments (total of 4 types) were purified by gel excision, and the first half of brownii and the latter half of bidentis, or the first half of bidentis and the latter half of brownii were mixed to form type II, and the second PCR was performed using Primer M4 RV.
  • the amplified binding fragment was digested with Xhol and HindII, and replaced with the corresponding part of pKK-bidentis to produce pKK-1 inkO1 and pKK-1 ink10.
  • Another set of chimeric genes was created using the PstI site between the recombination site of linking PCR and Hindi11.
  • the Xhol-Pstl fragment of pKK-linklO and the Pstl-HindiII fragment of ⁇ -bidentis were incorporated into the Xhol-Hindi 11 site of pKK-bidentis (3-fragment ligation reaction) to give pKK-linklOl.
  • the Xhol-Pstl fragment of pKK-bidentis and the Pstl-Hindi 11 fragment of pKK-brownii were similarly incorporated into the Xhol-HindiII site of pKK_bidentis to obtain pKK-linkl10.
  • the 40 amino acid substitutions found in the mature protein portion of the PPDK of Flavelaria'Brownii and Flaverian bidentis are relatively higher in the N- and C-termini of the enzyme and less near the central active center.
  • the cDNA is divided into three parts: the front, middle, and rear, using the EcoRI and Ndel sites, which are common to both genes, and these are interchanged to produce a chimeric gene. It was examined whether it was involved in resistance. As a result, low temperature tolerance was obtained when the latter half of Flaveria'Brownii cDNA was present, and low temperature sensitivity was obtained when the latter half of Flaveria'Bidentis cDNA was present.
  • the chimeric enzyme pKK-linkO having the last region containing four substitutions was cold-resistant, and the chimeric enzyme pKK-linkOl having the first half region containing three substitutions was inactivated at low temperature. Therefore, the latter half region was recombined with the restriction enzyme Pstl, and a chimeric gene having two amino acid substitutions was prepared and the low-temperature resistance was measured. It was estimated that there were two or more locations.
  • PCR was performed using maize PPM cDNA as type III, and the obtained fragment was subcloned into pCR11. This fragment was excised from pCR II with Sacl and Ndel, and the Sacl-Smal fragment of pKK-PPM (vector fragment) and brownii PPDK cDNA were cut with Hindin, blunt-ended with Klenow enzyme, and cut with Ndel. A three-fragment ligation reaction was performed with the obtained fragments (FIG. 3) to obtain pKK-mz bro (Nde).
  • PCR was carried out using the maize PPDK cDNA as a type I using mXhoI: CTCGAGGGATCTCAATCATTG (complementary strand side) containing the primers PPDK-F and Xhol, and the obtained fragment was subcloned into pCR II, followed by Sacl and Xhol. It was excised from pCRII and ligated with pKK-mz bro (Nde) ⁇ Sac I-Xhol fragment (vector fragment) to obtain pKK-mz bro (Xho).
  • the corn F._ brownii chimeric PPDK prepared this time can use the transit peptide of corn PPDK as it is, so the transit portion is also a transformant derived from Flavelaria 'Brownii' PPDK and the chloroplast of cold-resistant PPDK If there is a problem in transporting to the cell, it may be resolved by introducing this chimeric gene instead.
  • sequences of the primers used for mutagenesis are as shown in Table 2. After confirming the mutated nucleotide sequence with a DNA sequencer, these fragments were inserted into the Xhol-HindiII site of pKK-bidentis.
  • the 869Gln-Pro mutation acquired low-temperature tolerance (the activity after the low-temperature treatment was 60-70%), and the 885Ile ⁇ Leu and 95211e-Val mutations It is difficult to inactivate at low temperature, and considering the results of the chimeric enzyme pKK-linkllO in (1) above, it is presumed that low temperature resistance is obtained when these two mutations coexist. From the above results, it was concluded that three residues of 869Pro, 885Leu, and 952Val were involved in cold tolerance. Among these residues involved in low-temperature tolerance of brownii, 869Pro and 885Leu are also brownii-type in corn PPM.
  • Transformation methods are not limited to the particle gun method, but include the electroporation method (Rhodes CA et al., Science 240: 204-207, 1988) and the PEG method (Armstrong C. L et al., Plant Cell Reports 9: 335- 339, 1990), tissue-electroporation method (D'Halluin K.
  • Seeds are obtained from the obtained plant body, germinated, and PPDK is separated from the leaves of the obtained plant to examine its low-temperature tolerance. The effect of temperature on the rate of photosynthesis is examined for transformed and untransformed plants. Characteristics of corn plants that exhibit higher photosynthetic rates at low temperatures grown over generations and determined by measuring photosynthetic rates at different temperatures and by measuring the cold tolerance of PPDK isolated from the plant Ensure conversion stability.
  • An intermediate vector containing the full-length cDNA shown in SEQ ID NO: 5 and containing the reporter gene is introduced into the disarmed Ti plasmid of Agrobacterium umme faciliens 0 This is Draper J et al eds. It can be performed by the method described in Plant Genetic Transfomation and Gene Expression-a laboratory manual, Blackwell Scientific Publications (ISBN 0-632-02172-1).
  • the leaf tissue or callus of Flaveria bidentis is infected with the Agrobacterium mme fascient. This can be performed by co-culturing the tissue or callus with Agrobacterium ctemefasciens. Infected cells are selected based on drug resistance. Plants are regenerated from the selected calli in a conventional manner. Seeds are obtained from the obtained plant body, germinated, and PPDK is isolated from the leaves of the obtained plant to examine its low-temperature tolerance. The effect of temperature on the rate of photosynthesis is examined for transformed and untransformed plants. By growing F. verdentis plants that exhibit higher photosynthetic rates at low temperatures for generations and measuring photosynthetic rates at different temperatures and by measuring the cold tolerance of PPDK isolated from the plant. Ensure the stability of the transformation being examined.
  • AAA AGC CAT GTG GTA GCA ACC GGT TTG CCA GCA TCC CCC GGG GCA GCT 1498
  • Gly Thr Thr Gly Glu Val lie Leu Gly Lys Gin Leu Leu Ala Pro Pro
  • Sequence type nucleic acid
  • Sequence type nucleic acid Array
  • Arg lie Glu Ala Lys Ser Leu Asp Gin Leu Leu His Pro Thr Phe Asn
  • ATC AGA AAG ATC ATC CTT TCC GAT TCA GTG GAA GCA AGA GAA GAG GCT 1839 lie Arg Lys Met lie Leu Ser Asp Ser Val Glu Ala Arg Glu Glu Ala
  • Val Thr Tyr Pro Glu lie Ala Lys Met Gin Thr Arg Ala Val Met Glu
  • GGT ATG ATG GAT ACT ATT CTT AAT CTT GGA CTT AAT GAT AAA ACT GTT 392 Gly Met Met Asp Thr lie Leu Asn Leu Gly Leu Asn Asp Lys Thr Val 100 105 110 115
  • Glu lie Met lie Pro Asn Val Thr Glu Val Asn Glu Leu lie Asn Leu
  • GGT ATT AAA GTA CCA TTC TCG TAT GGT ACT ATG GTT GAA TGT GTT AGA 2312
  • Ala Ala Leu Thr Ala Asp Lys lie Ala Thr Glu Ala Ser Phe Phe Ser
  • Sequence type nucleic acid
  • AGC CCA AGG GCC AAT AAG TAC AGG AGT ATT AAC CAG ATA ACT GGG TTA 1083 Ser Pro Arg Ala Asn Lys Tyr Arg Ser lie Asn Gin lie Thr Gly Leu
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid Array
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid

Abstract

A novel polypeptide having a cold-resistant pyruvate phosphate dikinase activity as a means for imparting cold resistance to plants; a cloned DNA coding for the polypeptide; and a recombinant vector containing the DNA. The polypeptide has an amino acid sequence, in any of the following dikinase (1) and polypeptide (2), wherein at least one amino acid residue present in the region with a length of one-sixth of the total length from the C-terminus of the amino acid sequence has been replaced by another amino acid residue and also has a cold-resistant pyruvate phosphate dikinase activity: (1) a pyruvate phosphate dikinase having an amino acid sequence represented by any of the SEQ ID Nos. 1 to 4 in the Sequence Listing, and (2) a polypeptide having an amino acid sequence which is at least 50 % homologous with the amino acid sequence of the dikinase (1) and also having a pyruvate phosphate dikinase activity.

Description

明細書  Specification
低温耐性ピルビン酸リン酸ジキナーゼ活性を有するポリべプチド及びそれをコー ドする D N A並びに該 D N Aを含む組換えべクタ一及び形質転換植物 Polypeptide having cold-tolerant pyruvate phosphate dikinase activity, DNA encoding the same, and recombinant vectors and transformed plants containing the DNA
技術分野  Technical field
本発明は、 植物に低温耐性を付与する手段としての新規な低温耐性ピルビン酸 リン酸ジキナーゼ (以下、 「PPDK」 と言うことがある) 活性を有するポリべ プチド、 それをコードするクローン化された DN A及び該 DN Aを含む組換えべ クタ一に関する。 さらにまた、 本発明は、 上記本発明の DN Aにより形質転換さ れた植物に関する。  The present invention relates to a polypeptide having a novel cold-tolerant pyruvate phosphate dikinase (hereinafter sometimes referred to as “PPDK”) activity as a means for imparting cold-tolerance to plants, and a clone encoding the same. The present invention relates to a DNA and a recombinant vector containing the DNA. Furthermore, the present invention relates to a plant transformed with the DNA of the present invention.
背景技術  Background art
植物は強光 · 高温, 低 co2 といった条件での光合成能力は高いが、 一部 の低温条件に適応したものを除き、 一般に低温では光合成量が大きく低下する。 P P D K (EC 2.7.9.1 、 ATP, ピルビン酸及びオルトリン酸から AMP、 ホス ホェノールピルビン酸及びピロリン酸を生じる反応を触媒) は 経路の重要な 酵素の一つであるが、 その活性は葉組織の光合成速度に比べて十分とはいえず、 光合成の炭酸固定を律速する酵素の一つである。 また PPDKは低温感受性 酵素であることが発見と同時に指摘されている。 トウモロコシ PPDKの場合、 11.7°Cに酵素活性の変曲点があり、 この温度はトウモロコシの生育の限界温度と 一致している。 これらのことから、 P PDKは C4 植物の光合成速度が低温で低 下する一因であると考えられており、 P PDKの低温感受性の改善により C4 植 物である トウモロコシの生育限界温度を引き下げることができるかも知れない。 キク科植物フラベリァ ·ブローニイ (Flaveria browniij はじ。 /CA 中間型に 分類され、 その P PDKは 0°Cの低温処理においてもほとんど失活しないことが 知られている(Burnell JN: A comparative study of the cold-sensitivity of pyruvate, Pi dikinase in Flaveria species. Plant Cell Physiol. 31, 295 - 297 (1990)) 。 Plants strong light and high temperature, but photosynthetic capacity is higher in conditions and low co 2, except those adapted for part of the low temperature condition, the generally low amount of photosynthesis is greatly reduced. PPDK (EC 2.7.9.1, which catalyzes the reaction of ATP, pyruvate and orthophosphate to generate AMP, phosphophenolpyruvate and pyrophosphate) is one of the key enzymes in the pathway but its activity in leaf tissue It is not enough compared to the rate of photosynthesis, and is one of the enzymes that regulates carbon fixation in photosynthesis. It was pointed out at the same time that PPDK was a cold-sensitive enzyme. In the case of corn PPDK, there is an inflection point of the enzyme activity at 11.7 ° C, which is consistent with the critical temperature for corn growth. From these facts, it is thought that P PDK is one of the factors that lowers the photosynthetic rate of C 4 plants at low temperatures.By improving the low-temperature sensitivity of P PDK, P PDK lowers the growth limit temperature of C 4 plants, maize. May be able to reduce it. Asteraceae plant Flaveria browniij (Flaveria browniij reticulata) / C A is classified as intermediate type, and its PDK is known to be hardly inactivated even at 0 ° C low temperature treatment (Burnell JN: A comparative study of The cold-sensitivity of pyruvate, Pi dikinase in Flaveria species. Plant Cell Physiol. 31, 295-297 (1990)).
もし、 上記フラベリ了 ·ブローニイの低温耐性 P PDKをコードする遺伝子を クローニングし、 それを用いて植物を形質転換すれば、 植物に低温耐性を付与す ることができると期待される。 発明の開示 If the gene encoding the low temperature-resistant PPDK of Flaverii-Brownii is cloned and used to transform plants, it is expected that the plants can be given low-temperature resistance. Disclosure of the invention
従って、 本発明の目的は、 植物に低温耐性を付与する手段として、 新規な低温 耐性 P P DK活性を有するポリぺプチド、 それをコードするクローン化された DN A及び該 DN Aを含む組換えべクタ一を提供することである。 さらにまた、 本発明の目的は、 上記本発明の D N Aにより形質転換された植物を提供すること である。  Accordingly, an object of the present invention is to provide a novel cold-tolerant polypeptide having PPDK activity, a cloned DNA encoding the same, and a recombinant vector containing the DNA, as a means for imparting cold-resistance to plants. The purpose is to provide a doctor. Still another object of the present invention is to provide a plant transformed with the DNA of the present invention.
本願発明者らは、 鋭意研究の結果、 フラベリァ ·ブローニイの完全な P PDK 遗伝子をクローニングし、 その塩基配列及びそれがコードするアミノ酸配列を决 定することに成功し、 また、 該 PPDK遺伝子のうち、 低温耐性を付与する領域 を同定することに成功し、 本発明を完成した。  As a result of intensive studies, the present inventors have succeeded in cloning the complete P PDK gene of Flavelia bronyii and determining its nucleotide sequence and the amino acid sequence encoded thereby. Among them, the inventors succeeded in identifying a region imparting low-temperature resistance, and completed the present invention.
すなわち、 本発明は、 下記(1) (2) のいずれかにおいて、 アミノ酸配列の C— 末端から全長の 6分の 1の範囲における少なくとも 1つ以上のァミノ酸残基を他 のアミノ酸残基に置換したアミノ酸配列を有し、 かつ低温耐性ピルビン酸リン酸 ジキナ一ゼ活性を有するポリべプチドを提供する。  That is, the present invention relates to any one of the following (1) and (2), wherein at least one or more amino acid residues in the range from the C-terminus of the amino acid sequence to one sixth of the entire length are replaced with other amino acid residues. Provided is a polypeptide having a substituted amino acid sequence and having a low-temperature-resistant pyruvate phosphate dikinase activity.
(1) 配列表の配列番号 1ないし 4のいずれかに示すアミノ酸配列を有するピルビ ン酸リン酸ジキナーゼ。  (1) A pyruvate phosphate dikinase having an amino acid sequence represented by any one of SEQ ID NOs: 1 to 4 in the sequence listing.
(2) (1) に示すアミノ酸配列に 50%以上相同なアミノ酸配列を有し、 かつピル ビン酸リン酸ジキナーゼ活性を有するポリべプチド。  (2) A polypeptide having an amino acid sequence at least 50% homologous to the amino acid sequence shown in (1), and having a pyruvate phosphate dikinase activity.
また、 本発明は、 本発明の低温耐性 PPDK活性を有するポリペプチドをコー ドするクローン化された DNAを提供する。 さらに、 本発明は、 本発明の DNA を含み、 宿主中で低温耐性 P PDKを有するポリべプチドを発現することができ る組換えべクタ一を提供する。 さらに、 本発明は、 本発明の DN Aで形質転換さ れた植物を提供する。  The present invention also provides a cloned DNA encoding a polypeptide having the cold-resistant PPDK activity of the present invention. Further, the present invention provides a recombinant vector comprising the DNA of the present invention and capable of expressing a polypeptide having a cold-resistant PPDK in a host. Further, the present invention provides a plant transformed with the DNA of the present invention.
本発明により、 低温耐性を有する P PDK遺伝子がクローニングされ、 その塩 基配列が決定された。 また、 その遺伝子の中で低温耐性を付与する領域も决定さ れた。 従って、 本発明の遺伝子で低温感受性の PPDKを有する植物を形質転換 することにより、 低温感受性の PPDKを低温耐性に変えることができる。 さら に、 上記低温耐性付与領域を低温感受性 PPDKの相同部分に組み入れることに より、 低温感受性 P PDKを低温耐性に変えることができる。 これにより、 従 来、 その植物を栽培できなかった寒冷地においてもその植物を栽培することが可 能になる。 従って、 本発明は、 農業に大いに貢献するものと期待される。 According to the present invention, a PDKK gene having low temperature resistance was cloned and its base sequence was determined. In addition, the region conferring low-temperature tolerance in the gene was determined. Therefore, by transforming a plant having a cold-sensitive PPDK with the gene of the present invention, the cold-sensitive PPDK can be changed to cold-tolerant. Furthermore, the low-temperature-sensitive PPDK can be changed to low-temperature-resistance by incorporating the low-temperature-resistant region into the homologous portion of the low-temperature-sensitive PPDK. As a result, Since then, it is possible to grow the plant even in cold regions where the plant could not be grown. Therefore, the present invention is expected to greatly contribute to agriculture.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の P PDK遺伝子の一例を含む発現ベクターの構築方法を示す 模式図である。  FIG. 1 is a schematic diagram showing a method for constructing an expression vector containing one example of the PPDK gene of the present invention.
図 2は、 大腸菌で発現させた、 フラベリア ' ブローニイ、 フラベリア 'パイデ ンチス及びトウモロコシの P P D Kを 0 °Cに保持した際の酵素活性の経時変化を 示す図である。  FIG. 2 is a diagram showing the time course of the enzyme activity when P.sup.PPDK of Flavelaria 'Brownii, Flavelaria' Paidentis and maize expressed in E. coli was maintained at 0 ° C.
図 3は、 トウモロコシ PPDKとフラベリア .ブローニイ PPDKのキメラ遺 伝子を構築する方法を示す模式図である。  FIG. 3 is a schematic diagram showing a method for constructing a chimeric gene of corn PPDK and Flavelonia brawnii PPDK.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明により、 低温耐性を有する、 フラベリア ·ブローニイの P PDK遺伝子 がクローニングされ、 その塩基配列及びそれがコードする推定ァミノ酸配列が決 定された。 該塩基配列及びアミノ酸配列が配列表の配列番号 5に示されている。 この配列は、 下記実施例において詳述するように、 フラベリア 'ブローニイの緑 葉から全 RNAを抽出し、 常法に基づき c DNAライブラリーを作製し、 フラベ リア ·バイデンチス (Flaveria bidentis) (配列番号 1 ) 及びトウモロコシの PPDK遺伝子の塩基配列 (配列番号 2) の相同性の高い領域をプローブとして プラークハイプリダイゼーションを行い、 陽性クローンを選択してクローニング し、 ダイデォキシ法にて塩基配列を決定することにより決定された。 二の配列 は、 同属のフラベリア 'バイデンチスの PPDK遺伝子と高い相同性を有し、 ト ゥモロコシの P P DKとも比較的高い相同性を有し、 さらに、 フラベリア ' ブ 口—ニイの綠葉から直接精製された PPDKの N末端配列、 C末端配列及び内部 配列と完全に一致しているので、 フラベリァ ·ブローニイの PPDK遺伝子であ ることは明らかである。 なお、 フラベリア 'バイデンチスの P PDK遺伝子配列 は、 トウモロコシ c DNAをプローブとしてプラークハイプリダイゼーションを 行い、 陽性クローンを選択してクローニングし、 ダイデォキシ法にて決定した。 配列番号 5に示すァミノ酸配列は新規なものであり、 同属のフラベリア ·パイ デンチスの PPDKのアミノ酸配列と比較して 40個のアミ ノ酸残基が相違して いる。 また、 トウモロコシの PPDKのアミ ノ酸配列とは 180個程度のァミ ノ 酸残基が相違している。 配列番号 5に示されるフラベリア · ブローニイの P P DKのアミノ酸配列は、 このように特に同属のフラベリァ 'バイデンチスの P PDKのァミノ酸配列と高い相同性を有するが、 フラベリア ' バイデンチスの P P DKは低温感受性であるのに対し、 フラベリア 'ブローニイの P PDKは低 温耐性であり、 わずかなアミノ酸配列の相違が重要な形質の相違をもたらしてい る。 本発明は、 この配列番号 5に示されるアミノ酸配列をコードするクローン化 された P PDK遺伝子を提供する。 上述のように、 このアミノ酸配列は新規であ り、 また、 低温耐性を有するという顕著な効果を有するものである。 本発明の遺 伝子は、 配列番号 5に示される塩基配列を有するものに限定されるものではな く、 このアミノ酸配列をコードするものであれば、 いずれの塩基配列を有してい てもよい。 According to the present invention, the P. plavens of Flavelonia brawnii, which has low temperature resistance, was cloned, and its nucleotide sequence and the predicted amino acid sequence encoded thereby were determined. The nucleotide sequence and the amino acid sequence are shown in SEQ ID NO: 5 in the sequence listing. As described in detail in the Examples below, this sequence is obtained by extracting total RNA from green leaves of Flavelaria 'Brownii, preparing a cDNA library based on a conventional method, and obtaining Flaveleria bidentis (SEQ ID NO: 1) Plaque hybridization using a region with high homology to the nucleotide sequence (SEQ ID NO: 2) of the maize PPDK gene (SEQ ID NO: 2) to select and clone a positive clone and determine the nucleotide sequence by the dideoxy method Determined by The second sequence has high homology to the PPDK gene of the genus Flavelaria 'Bidentis, has relatively high homology to the PPDK of maize, and is further purified directly from the leaves of Flavelaria' Since it completely matches the N-terminal sequence, C-terminal sequence and internal sequence of the PPDK, it is clear that the gene is a PPDK gene of Flavier-Brownii. The P PDK gene sequence of Flavelia's bidentis was determined by plaque hybridization using maize cDNA as a probe, selecting and cloning positive clones, and determining the dideoxy method. The amino acid sequence shown in SEQ ID NO: 5 is novel and differs by 40 amino acid residues from the amino acid sequence of PPDK of the genus Flavelia pydentis. I have. In addition, about 180 amino acid residues differ from the amino acid sequence of maize PPDK. The amino acid sequence of Flaveria brawnii PP DK shown in SEQ ID NO: 5 thus has high homology especially to the amino acid sequence of Flaveria 'Bidentis PPDK' of the same genus, but Flaveria 'Bidentis PP DK is cold sensitive. In contrast, the Flavelaria 'Brownii PPDK is cold-tolerant and slight amino acid sequence differences result in important trait differences. The present invention provides a cloned PPDK gene encoding the amino acid sequence shown in SEQ ID NO: 5. As described above, this amino acid sequence is novel and has a remarkable effect of having low temperature resistance. The gene of the present invention is not limited to having the nucleotide sequence shown in SEQ ID NO: 5, but may have any nucleotide sequence as long as it encodes this amino acid sequence. .
本願発明者らは、 また、 配列番号 5に示されるフラベリァ · ブローニイの P PDK遺伝子のうち、 低温耐性を付与することに関与している領域を同定する ことを試みた。 すなわち、 下記実施例に詳述するように、 フラベリア 'ブロー二 ィの P P D K遺伝子を制限酵素でおよそ均等な大きさになるように 3分割し、 分 割した領域を トウモロコシの P PD K遺伝子の対応領域と交換してキノ ラ PPDK遺伝子を形成し、 該キメラ遺伝子がコードする PPDKが低温耐性を有 するか否かを調べた。 その結果、 フラベリア 'ブローニイの最後の 1 / 3の領域 中に低温耐性を付与する領域が存在することが確認された。 さらに、 この最後の 1 / 3の領域をおよそ均等に制限酵素で 2分割し、 そのいずれに低温耐性を付与 する領域が存在するかを同様な方法で確認した。 その結果、 配列番号 5に示され るフラベリア 'ブローニイの P PDK遺伝子の Xho I 部位よりも下流、 すなわ ち、 配列番号 5に示すァミノ酸配列のうち、 832番目のアルギニンから 955 番目のパリ ンまでのアミノ酸配列 (以下、 この配列を 「低温耐性付与配列」 と言 うことがある) 中に低温耐性を付与する機能が存在していることが確認された。 すなわち、 PPDKの低温耐性に関与する領域は、 C末端から全長の 1/6の 範囲に存在することが判明した。 一方、 配列表の配列番号 1にはフラベリア 'バ ィデンチスの PPDKをコ—ドする遺伝子の塩基配列及び推定アミノ酸配列が、 配列番号 2にはトウモロコシの PPDKをコードする遺伝子の塩基配列及び推定 ア ミ ノ酸配列が示されている (Journal of Biochemistry 263, 11080-11083 (1988))。 配列番号 3にはパクテリァであるパクテロイデス · シンバイオサスThe inventors of the present application also attempted to identify a region involved in imparting low-temperature resistance in the Flavella brawnii PPDK gene represented by SEQ ID NO: 5. In other words, as described in detail in the Examples below, the PPDK gene of Flavelaria bronchii was divided into three parts with restriction enzymes so that the size would be approximately equal, and the divided regions corresponded to those of the maize PPDK gene. The quinola PPDK gene was formed in exchange for the region, and it was examined whether the PPDK encoded by the chimeric gene has low temperature resistance. As a result, it was confirmed that there was a region imparting low-temperature resistance in the last one-third of the region of Flaveria 'Brownii. Furthermore, the last one-third of the region was roughly equally divided into two by restriction enzymes, and it was confirmed in a similar manner which of the two regions had a region imparting low-temperature resistance. As a result, the amino acid sequence shown in SEQ ID NO: 5 was downstream of the XhoI site of the Flavelaria 'Brownii PPDK gene, ie, the amino acid sequence shown in SEQ ID NO: 5; It has been confirmed that the amino acid sequence up to (hereinafter, this sequence may be referred to as a “cold-resistance conferring sequence”) has a function of conferring low-temperature resistance. That is, it was found that the region involved in low-temperature resistance of PPDK was present in a range of 1/6 of the entire length from the C-terminus. On the other hand, SEQ ID NO: 1 in the sequence listing contains the nucleotide sequence and the deduced amino acid sequence of the gene encoding the PPDK of Flavelaria dentis. SEQ ID NO: 2 shows the nucleotide sequence and predicted amino acid sequence of a gene encoding corn PPDK (Journal of Biochemistry 263, 11080-11083 (1988)). SEQ ID NO: 3 shows that the pacteria Pacteroides symbiosus
(Bacteroides symbiosus)の P P D Kをコ—ドする遺伝子の塩基配列及び推定ァ ミノ酸配列が示されている (Biochemistry 29, 10757 - 10765 (1990))。 配列番号 4にはパクテリァであるェンタモエバ · ヒス ト リチカ (Entamoeba histolytica) の PPDKをコードする遺伝子の塩基配列及び推定アミノ酸配列が示されているThe nucleotide sequence and the deduced amino acid sequence of the gene encoding PDK of (Bacteroides symbiosus) are shown (Biochemistry 29, 10757-10765 (1990)). SEQ ID NO: 4 shows the nucleotide sequence and deduced amino acid sequence of the gene encoding PPDK of Entamoeba histolytica, which is a pacteria
(Molecular and Biochemical Parasitology 62, 3- 156 (1993))。 上記のよう に、 P PDKに低温耐性を付与する領域が、 C末端から全長の 1 Z6の範囲内に あることが本発明により判明したので、 これらの配列番号 1ないし 4に示される ァミノ酸配列の C末端から全長の 6分の 1の範囲における少なくとも 1つ以上の アミノ酸残基を他のアミノ酸残基に置換することにより、 低温耐性 PPDKを得 ることが可能である。 なお、 ここで、 「低温耐性」 とは、 酵素を 0°Cの温度下に 20分間放置した際に、 その活性が放置前の 60%以上あることを意味する。 上述のように、 配列番号 5に示すアミノ酸配列のうち、 832番目のアルギニ ンから 955番目のバリンまでの領域が低温耐性を規定しているので、 配列番号 1ないし 4に記載される低温感受性 P PDKの対応部分を、 配列番号 5に示すァ ミノ酸配列のうち、 832番目のアルギニンから 955番目のバリンまでのァミ ノ酸配列に置き換えることにより、 その低温感受性 PPDKを低温耐性に変える ことができる。 この知見は非常に重要であり、 これを利用して、 所望の PPDK に低温耐性を付与することができる。 また、 PPDKに低温耐性を付与する方法 としては、 下記実施例のように、 フラベリァ ·ブローニイ PPDK中の低温耐性 付与配列を低温感受性 PPDKの対応部分と交換することによりキノラ遺伝子を 作製する方法に限定されるものではなく、 その植物自身の低温感受性 P P D Kの 対応部分を、 部位特異的変異 (site-directed mutagenesis)によりフラベリア ' ブローニイ P P D Kの低温耐性付与配列と同じ配列になるように改変することも 可能である。 従って、 上記低温耐性付与配列を含み、 PPDK活性を有するポリ ぺプチドをコ一ドするクローン化された DN Aはいずれも本発明の範囲に包含さ れる。 特に、 配列番号 1に示すァミノ酸配列の 869番目をプロリンに置換した P P D K並びに 8 8 5番目及び 9 5 2番目をロイシン及びパリ ンにそれぞれ置換 した P P D Kは低温耐性を有する。 (Molecular and Biochemical Parasitology 62, 3-156 (1993)). As described above, the region conferring low-temperature resistance to the PPDK was found by the present invention to be within 1Z6 of the full length from the C-terminus, and thus the amino acid sequences represented by SEQ ID NOS: 1 to 4 were used. By substituting at least one or more amino acid residues within one-sixth of the total length from the C-terminus with other amino acid residues, low-temperature-resistant PPDK can be obtained. Here, “low temperature resistance” means that when the enzyme is left at a temperature of 0 ° C. for 20 minutes, its activity is 60% or more of that before leaving. As described above, in the amino acid sequence shown in SEQ ID NO: 5, the region from arginine at position 832 to valine at position 955 defines low-temperature tolerance. By replacing the corresponding portion of the PDK with the amino acid sequence from arginine 832 to valine 955 of the amino acid sequence shown in SEQ ID NO: 5, it is possible to convert the cold-sensitive PPDK to cold-resistant. it can. This finding is very important and can be used to confer low temperature resistance to the desired PPDK. In addition, the method for imparting low-temperature resistance to PPDK is limited to the method for producing a quinola gene by exchanging the low-temperature-resistance-imparting sequence in Flavier-Brownii PPDK with the corresponding part of low-temperature-sensitive PPDK, as in the following example. Alternatively, the corresponding part of the plant's own cold-sensitive PPDK can be modified by site-directed mutagenesis to have the same sequence as the cold-resistance-conferring sequence of Flavelia'Brownii PPDK. It is. Therefore, any cloned DNA encoding the polypeptide having the above-mentioned low-temperature tolerance imparting sequence and having PPDK activity is included in the scope of the present invention. In particular, proline was substituted for position 869 of the amino acid sequence shown in SEQ ID NO: 1. PPDK and PPDK in which 885th and 952nd are substituted with leucine and parin, respectively, have low temperature resistance.
低温耐性を付与する P P D Kは配列表 1から 4に示すものに限定されるわけで はなく、 それぞれに対し相同性が 5 0 %以上あるものであればよい。 好ましく は、 フラベリア 'ブローニーの P P D Kの塩基配列と相同性があるものが良く、 4 8 . 5 %以上、 さらに好ましくは 9 0 %以上が良い。  The PPDK that imparts low-temperature resistance is not limited to those shown in Sequence Listings 1 to 4, but may be any as long as it has a homology of 50% or more to each. Preferably, it should be homologous to the nucleotide sequence of Pflavin 'Brownie's PDK, and should be at least 48.5%, more preferably at least 90%.
なお、 一般に、 生理活性を有するぺプチドのァミノ酸配列が小さく変更された 場合、 すなわち、 該アミノ酸配列の中の 1又は複数のアミノ酸が置換され若しく は欠失し又は 1又は複数のアミノ酸が付加された場合でも、 該ぺプチドの生理活 性が維持される場合があることは周知の事実である。 従って、 配列番号 5で示さ れるアミノ酸配列を有するポリべプチドにこのような修飾が加えられ、 かつ低温 耐性 P P D K活性を有するポリぺプチドも本発明の範囲内に含まれる。 すなわ ち、 配列番号 5で示されるアミノ酸配列において、 1又は複数のアミ ノ酸が付 力!]、 欠失若しくは置換されておりかつ低温耐性 P P D K活性を有するポリべプチ ドも本発明の範囲内に含まれる。 また、 同様に、 配列番号 5で示される塩基配列 において、 1又は複数のヌクレオチドが付加、 欠失若しくは置換されておりかつ 低温耐性 P P D K活性を有するポリべプチドをコ—ドする D N Aも本発明の範囲 に含まれる。  In general, when the amino acid sequence of a peptide having a physiological activity is slightly changed, that is, one or more amino acids in the amino acid sequence are substituted or deleted, or one or more amino acids are substituted. It is a well-known fact that even when added, the physiological activity of the peptide may be maintained. Therefore, a polypeptide having the amino acid sequence represented by SEQ ID NO: 5 with such a modification and having low-temperature-resistant PDK activity is also included in the scope of the present invention. That is, in the amino acid sequence represented by SEQ ID NO: 5, one or more amino acids are activated! ], Polypeptides that have been deleted or substituted and have cold-tolerant PPDK activity are also included within the scope of the present invention. Similarly, a DNA encoding a polypeptide having one or more nucleotides added, deleted or substituted in the base sequence represented by SEQ ID NO: 5 and having low-temperature-resistant PPDK activity is also included in the present invention. Included in the range.
アミノ酸の付加、 欠失又は置換をもたらす D N Aは、 例えば、 周知技術である 部位特異的変異誘発 (例えば Nucleic Acid Research, Vol. 10, No. 20, p6487- 6500, 1982) により実施することができ、 本明細書において 「1又は複数のアミ ノ酸」 とは、 部位特異的変異誘発法により付加、 欠失又は置換できる程度の数の ァミノ酸を意味する。  DNA that results in the addition, deletion or substitution of amino acids can be performed by, for example, well-known techniques of site-directed mutagenesis (eg, Nucleic Acid Research, Vol. 10, No. 20, p6487-6500, 1982). As used herein, the term "one or more amino acids" refers to a number of amino acids that can be added, deleted or substituted by site-directed mutagenesis.
部位特異的変異誘発は、 例えば、 所望の変異である特定の不一致の他は変異を 受けるべき一本鎖ファージ D N Aに相補的な合成オリゴヌクレオチドプライマ一 を用いて次のように行うことができる。 すなわち、 プライマーとして上記合成ォ リゴヌクレオチドを用いてファージに相補的な鎖を合成させ、 得られた二重鎖 D N Aでファージ担持性宿主細菌を形質転換する。 形質転換された細菌の培養物 を寒天にプレートし、 ファ一ジを含有する単一細胞からプラークを形成せしめ る。 そうすると、 理論的には、 5 0 %の新コロニーが単鎖として変異を有するフ ァージを含有し、 残りの 5 0 %が元の配列を有する。 得られたプラークを、 上記 所望の変異を有する D N Aと完全に一致するものとはハイプリ ッ ド形成するが、 もとの鎖を有する不一致のものとはハイブリ ツ ド形成しない温度において、 キ ナ一ゼ処理された合成プローブとハイプリッ ド形成せしめる。 次に該プローブと ハイプリ ド形成するプラークを拾い、 培養し、 D N Aを回収する。 Site-directed mutagenesis can be performed, for example, as follows using a synthetic oligonucleotide primer complementary to the single-stranded phage DNA to be mutated, except for the specific mismatch that is the desired mutation. That is, a strand complementary to a phage is synthesized using the above-mentioned synthetic oligonucleotide as a primer, and a phage-carrying host bacterium is transformed with the obtained double-stranded DNA. Plate the transformed bacterial culture on agar and form plaques from single cells containing the phage. You. Then, theoretically, 50% of the new colonies contain the phage with the mutation as a single chain, and the remaining 50% have the original sequence. The resulting plaque is hybridized with the DNA completely having the above-mentioned desired mutation at a temperature at which the DNA does not hybridize with the DNA having the original mutation, but does not hybridize with the DNA having the original mutation. Allows hybridization to occur with the synthetic probe that has been treated with the enzyme. Next, a plaque forming a hybrid with the probe is picked up, cultured, and the DNA is recovered.
なお、 酵素のアミノ酸配列に、 酵素活性を喪失せしめない 1又は複数のアミノ 酸の置換、 欠失又は挿入の方法としては、 上記の部位特異的変異誘発の他にも、 遺伝子を変異原で処理する方法及び遣伝子を選択的に開裂し、 次に選択されたヌ クレオチドを除去、 付加、 又は置換し、 次いで連結する方法もある。  One or more amino acid substitutions, deletions or insertions in the amino acid sequence of the enzyme that do not cause loss of the enzyme activity may be performed by treating the gene with a mutagen in addition to the site-directed mutagenesis described above. Alternatively, the gene may be selectively cleaved, and then the selected nucleotides may be removed, added, or substituted, and then ligated.
フラベリア 'ブローニイの P P D K遺伝子、 又は、 その低温耐性付与配列を含 み、 P P D K活性を有する D N Aで植物を形質転換することにより、 低温耐性の 植物を作出することができる。 この際、 形質転換する植物の好ましい例として、 トウモロコシ、 サトウキビ、 キビ、 ヒェ及びソルガム等を挙げることができるが これらに限定されるものではない。  A low-temperature-tolerant plant can be produced by transforming a plant with the Pflank'Brownii PDK gene or a DNA having the PDK activity and containing the sequence for imparting low-temperature tolerance. At this time, preferable examples of the transformed plant include corn, sugarcane, millet, hee and sorghum, but are not limited thereto.
植物の形質転換方法は既に確立されており、 ァグロパクテリゥム ' ッメファシ エンスを用いた方法を好ましく採用することができる。 ァグロパクテリゥム · ッ メファシエンスを用いた植物の形質転換方法はこの分野において周知であり、 こ れにより双子葉植物 (たとえば特開平 4一 3 3 0 2 3 4号公報) でも単子葉植物 (10 94 00977)でも形質転換することができる。 あるいは、 植物のプロ 卜プラス 卜に常法であるエレク トロポレーショ ン法等により導入することもできるし、 D N Aをタングステン粒子等に付着させ、 植物の胚に打ち込むことによって形質 転換を行うことも可能である。 これら形質転換の具体的方法は下記実施例に記載 されている。  A method for transforming a plant has already been established, and a method using agrobacterium can be preferably employed. Transformation methods of plants using Agrobacterium medfaciens are well known in the art, and thus, dicotyledonous plants (for example, Japanese Patent Application Laid-Open No. Hei 4-330324) and monocotyledonous plants ( 10 94 00977). Alternatively, it can be introduced into a plant protoplast by a conventional method such as electroporation, or it can be transformed by attaching DNA to tungsten particles or the like and driving it into a plant embryo. is there. Specific methods for these transformations are described in the Examples below.
実施例 Example
以下、 本発明を実施例に基づき、 より具体的に説明する。 もっとも、 本発明は 下記実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
1 . フラベリァ ·ブローニイの P P D K遺伝子のクローニング及び塩基配列决定 (1 ) c D N Aライブラリ一の作製と完全長 c D N Aのクローニング (i) c DN Aライブラリ一の作製 1. Cloning and Nucleotide Sequence Determination of Flavella brawnii PPDK Gene (1) Preparation of cDNA Library and Cloning of Full-length cDNA (i) Preparation of a cDNA library
F. browniiの綠葉(60s) より塩酸グァニジン/フヱノール法により全 RNA を単 離した。 この方法により リチウム沈澱の後 26.5mgの RNA を得ることができた。 次 に Oligo dTセルロース タイプ 7 (フアルマシア) を充填したカラムを用い、 常 法に従い 13.2mgの RNA から 118.9 のポリ A (+)RNAを得た。 c DNAライブラ リーの作製には TimeSaver c D N A Synthesis kit (フアルマシア) , Lambda ZAP11ベクター (ス トラタジーン) および c DNA cloning system AgtlO (アマ シャム) に添付されているパッケージング試薬を用いた。 EcoRI Notlリ ンカ一を 用い Lambda ZAPI Iベクターの EcoRI サイ 卜に DNA 断片が挿入された c D N Aライ ブラリーを作製した。 作製した c DN Aライブタリーのサイズは 41, 5万 pfu であ つた。 また宿主細胞として XU-Blueをもちいた。 Total RNA was isolated from the leaves of F. brownii (60s) by the guanidine hydrochloride / phenol method. This method yielded 26.5 mg of RNA after lithium precipitation. Next, using a column packed with Oligo dT cellulose type 7 (Pharmacia), 118.9 polyA ( + ) RNA was obtained from 13.2 mg of RNA according to a conventional method. For the preparation of the cDNA library, the packaging reagents attached to the TimeSaver cDNA Synthesis Kit (Pharmacia), Lambda ZAP11 vector (Stratagene) and cDNA cloning system AgtlO (Amersham) were used. Using the EcoRI Notl linker, a cDNA library was prepared in which the DNA fragment was inserted into the EcoRI site of the Lambda ZAPII vector. The size of the prepared cDNA live tally was 4150,000 pfu. XU-Blue was used as a host cell.
(ii)プローブの調製  (ii) Preparation of probe
プロセシング部位付近に相当するプライマ一 5': GACGGCTAAAAAGAGGGT (フラベ リア ,バイデンチスの PPDKの c DNAと トウモロコシ PPDKの c DNAの 相同性の高い部分に基づいて設計) および R プライマ— R:TATCGAGAAACCTTCTATAC (フラベリア 'バイデンチスの PPDKの配列の一部、 相補鎖) により逆転写 PCR で L brownii RNAより増幅された断片をもつ pCR IIベクター (インビトロジェン 社より市販) を錶型とし、 同プライマ—により PCR で断片を増幅、 電気泳動後 SUPREC- 01 (宝酒造) によりゲルから DNA を回収した。 この過程で成熟タンパク 質の N末端の下流 24bpより始まる 428bp の DNA断片を得ることができる。 この断 片を Multiprime DNA labelling system (アマシャム) を用い32 P で標識しプ ローブを調製した。 Primer 5 'near the processing site: GACGGCTAAAAAGAGGGT (designed based on high homology between cDNA of Flavoria and Bidentis PPDK and cDNA of maize PPDK) and R primer—R: TATCGAGAAACCTTCTATAC (Flaveria' Bidentis PCR II vector (commercially available from Invitrogen), which has a fragment amplified from L brownii RNA by reverse transcription PCR using a part of the PPDK sequence (complementary strand), and amplifies the fragment by PCR using the same primer. After electrophoresis, DNA was recovered from the gel by SUPREC-01 (Takara Shuzo). In this process, a 428 bp DNA fragment starting from 24 bp downstream of the N-terminus of the mature protein can be obtained. This fragment was labeled with 32 P using a Multiprime DNA labeling system (Amersham) to prepare a probe.
(iii) 完全長フラベリァ ' ブローニイ c DNAのクローニング  (iii) Cloning of full-length Flaveria 'Brownii cDNA
上記 DN A断片をプローブとして c DN Aライブラリーをプラークハイブリダ ィゼーション法によりスク リ一二ングした。 ハイプリダイゼーシヨンフィルタ一 として Hybond N+ (アマシャム) を用い、 ハイブリダィゼーシヨンの条件は 6xSSC , 5xデンハルト液, 0.1¾SDS, 100 g ml変性サケ精巣 DNA 中で 65。C overnight とた。 洗浄条件は 2xSSC , 0.1¾SDS で室温 5分, 2xSSC, 0.1¾SDSで室温 90分, さらに lxSSC , 0.1¾SDS で 68°C90分とした。 この結果、 28個の独立した陽性プ P T/JP95/01040 Using the above DNA fragment as a probe, the cDNA library was screened by a plaque hybridization method. Hybond N + (Amersham) was used as a hybridization filter, and hybridization conditions were 65 in 6xSSC, 5x Denhardt's solution, 0.1DSSDS, 100 g ml denatured salmon testis DNA. C overnight. The washing conditions were 2xSSC, 0.1¾SDS for 5 minutes at room temperature, 2xSSC, 0.1¾SDS for 90 minutes at room temperature, and lxSSC, 0.1¾SDS for 68 minutes at 68 ° C. This resulted in 28 independent positive PT / JP95 / 01040
9  9
ラ一クを得た。 このうちシグナルの強かった 11プラークを選び 2次スク リーニン グをおこなった。 2次スク リ一二ングは 2回目の洗浄時間を 6 0分とした以外は 前述の 1次スク リーニングと同様の方法でおこなった。 その結果、 6 クローンか ら単一ファージ由来の独立した陽性プラークを得た。 挿入 DNA 断片部分のサイズ を調べるため前述の R プライマーと M13PrimerM4 (GTTTTCCCAGTCACGAC , 宝酒 造) および M13PrimerRV (CAGGAAACAGCTATGAC , 宝酒造) をプライマ—としフ ァージを铸型として PCR をおこなった。 この結果、 2クローンが完全長であつ た。 次に、 in vivo Excisionを行い揷入 DNA 断片部分をプラス ミ ドベクター pBruescript! ISK (-) (ストラタジーン) にサブクローニングした。 サブクロー二 ングした組換えプラスミ ドを p411および p631と命名した。 I got a rank. Of these, 11 plaques with strong signals were selected for second screening. The secondary screening was performed in the same manner as the primary screening described above, except that the second cleaning time was 60 minutes. As a result, independent positive plaques derived from a single phage were obtained from six clones. In order to determine the size of the inserted DNA fragment, PCR was performed using the above-mentioned R primer, M13PrimerM4 (GTTTTCCCAGTCACGAC, Takara Shuzo) and M13PrimerRV (CAGGAAACAGCTATGAC, Takara Shuzo) as primers, and a phage type II. As a result, two clones were full length. Next, in vivo excision was performed, and the introduced DNA fragment was subcloned into the plasmid vector pBruescript! ISK (-) (Stratagene). The subcloned recombinant plasmids were named p411 and p631.
上記のように作製したライブラリ一は、 上記 P C Rにより、 十分長いインサ一 卜を含む c D N Aスク リ一二ングに向くライブラリ一であることがわかった。 従 つて、 フラベリアブローニの m R N Aの単離には今回の方法を適用し、 さらに今 回のように大量の R N Aの処理により大量の m R N Aを一度に得ることが有利で ある。  From the above PCR, it was found that the library prepared as described above was a library suitable for cDNA screening including a sufficiently long insert. Therefore, it is advantageous to apply the present method to isolation of mRNA from Flavelonia broni, and to obtain a large amount of mRNA at once by treating a large amount of RNA as in this case.
また、 上記 c D N Aライブラリーは、 上述のように十分長いィンサー トを多く 含んでいるため、 上記のように目的タンパク質のプロセッシング部位付近のプラ イマ一を用いたプローブを調製することにより、 完全長 c D N Aのスク リ一ニン グを容易に行うことが可能であった。  In addition, since the cDNA library contains many inserts that are sufficiently long as described above, the full-length can be obtained by preparing a probe using a primer near the processing site of the target protein as described above. It was possible to easily screen cDNA.
(2) c D N A全塩基配列の決定と予想されるァミ ノ酸配列の比較  (2) Determination of the entire nucleotide sequence of cDNA and comparison of the expected amino acid sequence
P631 の揷入 c D N A断片について全塩基配列を決定するため Deletion mutants を作製した 0 Deletion mutantsの作製は Kilo - Sequence 用 Deletion KitDeletion mutants were prepared to determine the entire base sequence of the inserted cDNA fragment of P631. 0 Deletion mutants were prepared using the Deletion Kit for Kilo-Sequence.
(宝酒造) を用いおこなった。 ただし、 ェキソヌクレアーゼ I I I の反応の停止は あらかじめ 6 5 °Cに保温したマングビーンヌク レアーゼバッファ一 (Mung Bean Nuclease Buffer)に移すことによりおこなった。 塩基配列の決定には、 Qiagen Plasmid Mini Kit (Diagen ) を用いて精製したプラス ミ ドを使用し、 Taq DyeDeoxy Terminator Cycle Sequencing Kit (ABI ) および Applied Biosystems(Takara Shuzo). However, the reaction of exonuclease II was stopped by transferring the enzyme to Mung Bean Nuclease Buffer which had been kept at 65 ° C in advance. To determine the nucleotide sequence, use a plasmid purified using the Qiagen Plasmid Mini Kit (Diagen), Taq Dye Deoxy Terminator Cycle Sequencing Kit (ABI) and Applied Biosystems
373A DNA Sequencer (ABI ) を用いおこなった。 塩基配列は一部を除き両方の鎖 について決定した。 決定された塩基配列を基にアミ ノ酸配列を決定した。 決定さ れた塩基配列及びァミ ノ酸配列を配列表の配列番号 5に示す。 This was performed using a 373A DNA Sequencer (ABI). The nucleotide sequence was determined for both strands except a part. The amino acid sequence was determined based on the determined base sequence. Determined The nucleotide sequence and amino acid sequence obtained are shown in SEQ ID NO: 5 in the sequence listing.
なお、 単離した c DN Aの塩基配列の決定のためにデリ一シヨ ンクローンの作 製を試みたが、 ェキソヌクレア一ゼ III による削り込み反応は、 反応液を単にマ ングビーンヌク レアーゼバッファ一に変えただけでは止まらないため、 マング ビーンヌクレアーゼバッファーを予め 65 °Cに暖めておく ことが重要であった。 また、 挿入遺伝子の上流側からの削り込みだけではベクターとのつなぎ目から数 えて約 600〜 900 b pまでの部分の塩基配列が決定できないため両方向から の削り込みが必要であった。  Although we attempted to create a delivery clone to determine the nucleotide sequence of the isolated cDNA, the excision reaction using exonuclease III simply changed the reaction solution to Mangbean nuclease buffer. It was important to pre-warm the Mang Bean nuclease buffer to 65 ° C, as it did not stop. In addition, since the base sequence of about 600 to 900 bp counted from the joint with the vector cannot be determined only by cutting the inserted gene from the upstream side, cutting from both directions was necessary.
一方、 フラベリア 'ブローニイから PPDKを直接精製し、 その N末端領域、 C末端領域及び内部領域のァミ ノ酸配列を決定した。 PPDKの精製は次のよう にして行った。 3培量の抽出 Bufferを用いてフラベリア · ブローニイの緑葉をす りつぶす→遠心後上精を 30%硫安飽和とし沈澱するタ ンパクを除く—さらに 70%飽和硫安でタンパクを回収、 Sephadex G25 (フアルマシア社製) で脱塩す る→DEAE-Sepharoseカラム (フアルマシア社製) を通す—カラムに吸着している タンパクを 50- 400mMの KC 1濃度勾配により溶出する—活性のあるフラクション を集め 70%飽和硫安で濃縮, Sephadex G25で脱塩する—ヒ ドロキシァパタイ 卜 カラムにかける→リ ン酸 Bufferのリ ン酸濃度を 10mMから 40mMに上げて吸着タンパ クを溶出する→活性のあるフラクションを集め 70%飽和硫安で濃縮, Sephadex G25で脱塩する。 その後 SDS- PAGE電気泳動を行ない PPDKのバン ドを切取り、 ゲル からタンパクを電気溶出により回収した。 このような手順で精製した P PDKサ ンプル約 5〜 1 Onmolを得た。 このようにして得られた精製 P P D Kは、 SDS — P AG Eで 1本のバン ドを示した。  On the other hand, PPDK was directly purified from Flaveria 'Brownii, and the amino acid sequences of its N-terminal region, C-terminal region and internal region were determined. Purification of PPDK was performed as follows. Grind the green leaves of Flavelia brawnii using 3 volumes of Extraction Buffer → Centrifuge the supernatant after 30% saturation with ammonium sulfate to remove the protein that precipitates-and recover the protein with 70% saturated ammonium sulfate, and use Sephadex G25 (Pharmacia). → pass through a DEAE-Sepharose column (Pharmacia)-elute proteins adsorbed on the column with a 50-400 mM KC1 concentration gradient-collect active fractions and 70% saturation Concentrate with ammonium sulfate and desalting with Sephadex G25. Apply to a hydroxyapatite column. → Raise the concentration of phosphate in the phosphate buffer from 10 mM to 40 mM to elute the adsorbed protein. → Collect active fractions and collect 70% saturation. Concentrate with ammonium sulfate, desalting with Sephadex G25. Thereafter, SDS-PAGE electrophoresis was performed to cut off the band of PPDK, and the protein was recovered from the gel by electroelution. Approximately 5-1 Onmol of P PDK sample purified by such a procedure was obtained. The purified PPDK thus obtained showed one band in SDS-PAGE.
次いで、 得られた精製 P P D Kの N末端配列、 C末端配列及び内部配列を決定 した。 すなわち、 N末端のアミ ノ酸配列は、 タンパク質を PVDF膜に転写し、 気相 アミ ノ酸シーケンサーを用い行なった。 C末端配列は精製した PPMをカルボキシ ぺプチダーゼ Yにより消化し、 遊離してくるアミ ノ酸組成と消化時間の関係から 推定した。 内部のァミ ノ酸配列はタンパク質をプロテアーゼで消化した時に生じ るべプチドの N末側からァミ ノ酸配列を明かにすることにより決定した。 詳細な 方法は以下のとおりである。 まず N末のアミ ノ酸配列を决定する時の方法に準じ 0 Next, the N-terminal sequence, C-terminal sequence and internal sequence of the obtained purified PPDK were determined. That is, the N-terminal amino acid sequence was obtained by transferring a protein onto a PVDF membrane and using a gas-phase amino acid sequencer. The C-terminal sequence was estimated from the relationship between the amino acid composition released from digestion of purified PPM with carboxypeptidase Y and the digestion time. The internal amino acid sequence was determined by revealing the amino acid sequence from the N-terminal side of the peptide generated when the protein was digested with protease. The detailed method is as follows. First, according to the method for determining the amino acid sequence at the N-terminus. 0
11  11
てフラベリア 'ブローニイの綠葉より PPDKをある程度精製し、 通常の SDS-PAGE電 気泳動を行なった後、 ゲルをクマシ一 Brilliant Blue R250 で染色、 PPDKのパン ドを切り取る。 切り取ったゲルを平衡化 buffer (Tris-HCl pH6. 8 125πιΜ, EDTA lmM, 0. 1¾ SDS) 中で平衡化しゥエルに挿入、 2回目の SDS-PAGE電気泳動を行な う。 この時平衡化したゲルとともに重層液 (Tris-HCl pH6. 8 125mM, EDTA lmM, 0. 1¾ SDS, 0. 01¾ BPB, 20¾グリセロール) および酵素液 (Tris-HCl pH6. 8 125mM,After purifying PPDK to a certain extent from the leaves of Flaveria 'Brownii, and performing normal SDS-PAGE electrophoresis, stain the gel with Coomassie Brilliant Blue R250 and cut out the PPDK band. Equilibrate the cut gel in an equilibration buffer (Tris-HCl pH 6.8 125πιπ, EDTA lmM, 0.1¾ SDS), insert it into the well, and perform the second SDS-PAGE electrophoresis. At this time, together with the equilibrated gel, an overlay solution (Tris-HCl pH 6.8 125 mM, EDTA lmM, 0.1 SDS, 0.01 BPB, 20 glycerol) and an enzyme solution (Tris-HCl pH 6.8 125 mM,
EDTA lmM, 0. 1¾ SDS, 0. 01¾ BPB, 10¾グリセロール, リシルエンドべプチダーゼ 1〜5 / g または V 8プロテアーゼ 0. 01~0. 1 ) を加えておきしばらく泳動 した後、 濃縮ゲル中でタンパク質の消化を行なう (電源 off とし 4 5分間放 置) 。 その後泳動を再開し、 N末のアミノ酸配列を決定する時の方法に準じて PVDF膜に転写、 気相アミノ酸シーケンサーを用い消化断片の N末端よりアミノ酸 配列を決定した。 EDTA lmM, 0.1¾ SDS, 0.01¾ BPB, 10¾ glycerol, lysyl endopeptidase 1 ~ 5 / g or V8 protease 0.01 ~ 0.1) Digest (power off for 45 minutes). Thereafter, electrophoresis was restarted, transferred to a PVDF membrane according to the method for determining the N-terminal amino acid sequence, and the amino acid sequence was determined from the N-terminal of the digested fragment using a gas-phase amino acid sequencer.
上記のように決定した N末端配列、 C末端配列及び内部配列を以下に示す。 N末端配列: Asn Pro Val Ser Pro Pro Val ( 7 2〜 7 8 )  The N-terminal sequence, C-terminal sequence and internal sequence determined as described above are shown below. N-terminal sequence: Asn Pro Val Ser Pro Pro Val (72 to 78)
C末端配列: Leu ― Ala Ala * - Val Val ( 9 4 8〜 9 5 5 ) C-terminal sequence: Leu-Ala Ala *-Val Val (948 to 955)
内部配列(l) :Lys Leu Tyr Gly Glu Phe Leu Val Asn Ala Gin Gly - Asp Val Val Ala ( 3 4 9〜 3 6 5 ) Internal sequence (l): Lys Leu Tyr Gly Glu Phe Leu Val Asn Ala Gin Gly-Asp Val Val Ala (349-365)
内部配列(2) : Gin Leu Leu Ala Pro Pro Ala Met Ser Asn Ala Leu 一 Thr Internal sequence (2): Gin Leu Leu Ala Pro Pro Ala Met Ser Asn Ala Leu One Thr
( 5 9 2〜 6 0 5 )  (59 2 ~ 6 0 5)
内部配列(3) :Leu Thr Ala Asp Thr Gly Met Ser Lys Asp Glu l ie Tyr Ser Arg He Glu ( 7 2 1〜 7 3 8 ) Internal sequence (3): Leu Thr Ala Asp Thr Gly Met Ser Lys Asp Glu lie Tyr Ser Arg He Glu (72 1 to 7 38)
内部配列(4) : Ala - 一 一 Ser Phe Gly Thr Asn Asp Leu Cys Gin Met Val Phe Gly - Ser ( 8 4 4〜 8 6 2 ) Internal sequence (4): Ala-one Ser Phe Gly Thr Asn Asp Leu Cys Gin Met Val Phe Gly-Ser (844-862)
なお、 上記ァミノ酸配列において、 「*」 はグルタミンであるが用いた分析機器 では分析不能であるものを示し、 「一」 は分析結果が不明瞭なものを示す。 ま た、 括弧内は、 配列番号 5に示すァミ ノ酸配列の対応部分のァミノ酸番号を示 す。 内部配列(2) 及び(4) では、 配列番号 5の対応部分の配列と一部異なってい るが、 これはアミノ酸シークェンサ一のエラ一によるものと考えられる。 周知の ように、 アミ ノ酸シークェンサ一のエラーはかなりの頻度で起きるのに対し、 D N Aシークェンサ一のエラーはほとんど起きない。 In the above amino acid sequence, "*" indicates glutamine, which cannot be analyzed by the analytical instrument used, and "one" indicates that the analysis result is unclear. The numbers in parentheses indicate the amino acid numbers of the corresponding portions of the amino acid sequence shown in SEQ ID NO: 5. Although the internal sequences (2) and (4) are partially different from the sequence of the corresponding portion of SEQ ID NO: 5, it is considered that this is due to the amino acid sequencer error. As is well known, amino acid sequencer errors occur quite frequently, Errors in the DNA sequencer rarely occur.
配列番号 5に示すアミ ノ酸配列と、 上記の精製 P P D Kから直接决定された部 分ァミ ノ酸配列とは良く一致しており、 配列番号 5に示されるァミ ノ酸配列が P P D Kのアミ ノ酸配列であることが確認された。 なお、 配列番号 5に示すアミ ノ酸配列を公知のフラベリァ · バイデンチスの P P D K及び トウモロコシの P P D Kのアミ ノ酸配列と比較したところ、 成熟タンパク部分で 40個 (フラベリ ァ · パイデンチス) , 及び 1 8 0個程度 ( トウモロコシ) のァミ ノ酸が異なって いた。 また、 上記の結果から、 配列番号 5に示すアミ ノ酸配列のうち、 1番目か ら 7 1番目のアミ ノ酸配列は成熟タンパク質に存在せず、 膜の通過に必要な トラ ンジッ トぺプチ ドであり、 膜通過後にプロセッシングされるものと解される。 フ ラベリア · ブローニイとフラベリア · バイデンチスの成熟タンパク質中のァミ ノ 酸残基の相違点を下記表 1に示す。  The amino acid sequence shown in SEQ ID NO: 5 and the partial amino acid sequence determined directly from the above purified PPDK are in good agreement, and the amino acid sequence shown in SEQ ID NO: 5 is the amino acid sequence of PPDK. The amino acid sequence was confirmed. When the amino acid sequence shown in SEQ ID NO: 5 was compared with the amino acid sequences of known Flavier bidentis PPDK and maize PPDK, 40 amino acids (Flavier pidetis) and 180 in the mature protein portion were obtained. About one (corn) amino acids were different. From the above results, among the amino acid sequences shown in SEQ ID NO: 5, the 1st to 71st amino acid sequences are not present in the mature protein, and are transit peptides necessary for passage through the membrane. And is understood to be processed after passing through the membrane. Table 1 below shows the differences between the amino acid residues in the mature proteins of Flavelaria brawnii and Flavelaria bidentis.
表 1 ブロ ノくィデンチス 相違するアミ ノ酸番号 5 Phe 6 Ser Table 1 Bronodentis Different amino acid numbers 5 Phe 6 Ser
及びァミ ノ酸 1 0 Pro 1 1 leu  And amino acids 1 0 Pro 1 1 leu
1 5 Asn 1 6 Arg  1 5 Asn 16 Arg
2 8 Thr 2 9 Asn  2 8 Thr 2 9 Asn
4 0 Pro 4 1 Ser  4 0 Pro 4 1 Ser
4 1 Ala 4 2 Ser  4 1 Ala 4 2 Ser
4 8 Arg 4 7 し eu  4 8 Arg 4 7 shi eu
4 9 Arg 4 8 Thr  4 9 Arg 4 8 Thr
5 0 Lys 4 9 Pro  5 0 Lys 4 9 Pro
5 2 Ser 5 0 Ala  5 2 Ser 5 0 Ala
5 7 l ie 5 5 Pro  5 7 lie 5 5 Pro
6 1 Thr 5 9 Ser  6 1 Thr 5 9 Ser
6 2 Gly 6 0 Ser
Figure imgf000015_0001
6 2 Gly 6 0 Ser
Figure imgf000015_0001
ει ει
tOI0/S6df/XDd 69CtO/96 OAV 736 Arg 734 し ys tOI0 / S6df / XDd 69CtO / 96 OAV 736 Arg 734 then ys
739 し ys 737 Asn  739 ys 737 Asn
111 Asn 775 Thr  111 Asn 775 Thr
803 Gly 801 Ser  803 Gly 801 Ser
818 leu 81 6 Val  818 leu 81 6 Val
838 Asp 836 Glu  838 Asp 836 Glu
84 1 Ala 839 Gly  84 1 Ala 839 Gly
845 Glu 843 Asp  845 Glu 843 Asp
871 Pro 869 Gin  871 Pro 869 Gin
875 Ser 873 Ala  875 Ser 873 Ala
887 Leu 885 lie  887 Leu 885 lie
954 Val 952 lie  954 Val 952 lie
2. フラベリア ·ブローニイ P PDKの大腸菌における生産と低温耐性の測定 上記のようにして単離したフラベリア ·ブローニイ P P DK c DN Aから実際 に低温耐性酵素が生産されることを確認するために大腸菌での発現を次のように して行った。 2. Production of Flaveria brawnii PPDK in Escherichia coli and measurement of low-temperature tolerance In order to confirm that a low-temperature-resistant enzyme is actually produced from Flavelia brawnii PPDK DNA isolated as described above, E. coli was used. Was expressed as follows.
トランジッ トぺプチドの除去および発現ベクターと読み枠を合わせて結合する ための制限酵素部位の導入を以下のように行った。 p631を Saclで切断し再環状化 して得た p631Sac (p631の Sacl以降を欠失したプラスミ ド) を铸型として、 プロ セシ ン グ部位付近の配列に基づき EcoRV 部位を含むプラ イ マ— 4 : GATATCAATCCGGTGTCTCCTCCと、 ベクターの配列に相補的なプライマー M13 RV (宝酒 造) との組合せで PCR を行い、 増幅された断片を pCR IIにサブクローニングし た。 制限酵素 EcoRV および Saclを用いて N末端部分を含む断片を pCR IIから切り 出し、 p631の Sacl- Hind III 断片 (PPDK cDNA の残りの部分を含む) および Ncolで切断し Klenow酵素で末端を平滑化した後 Hindi 11 で切断した pKK233- 2とと もに 3断片連結反応を行った (図 1 ) 。 このプラスミ ドを E. coli MV1184に形質 転換し発現実験に用いた。 1mlの前培養液を 9 mlの新しい LB培地 (50mg lのアン ピシリンを含む) に希釈し、 37°Cで 3時間振邀培養後 1PTGを 5 mMとなるよう添加 し、 さらに 3時間培養したのち遠心により菌体を回収した。 菌体を 0.5ml の抽出 バッファー (50mM Hepes- KOH pH7.5, 10mM MgSO ImM EDTA, 5mM DTT) に懸濁 し、 リゾチームを約 0.5mg ralとなるように加え氷上で 5分間処理後、 超音波破砕 装置 (コスモバイオ UCD- 130T型) により氷冷しながら 30秒間隔、 5分間処理し酵 素を抽出した。 微量遠心機で 10分遠心し、 上清をカラムバッファー (50mM Hepes -KOH pH 7.0, lOmM MgCl,, 2mM EDTA , lOmM DTT) で平衡化した Sephadex G25力 ラムを通し低分子物質を除いた後、 25°Cで 30分以上放置して 4量体への会合を行 い、 活性測定に用いた。 The removal of the transit peptide and the introduction of a restriction enzyme site for joining the expression vector and the reading frame together were performed as follows. p631Sac (plasmid lacking p631 after Sacl) obtained by cutting p631 with Sacl and recyclizing was type III, and a primer containing an EcoRV site based on the sequence near the processing site 4 : PCR was performed using a combination of GATATCAATCCGGTGTCTCCTCC and a primer M13 RV (Takara Shuzo) complementary to the vector sequence, and the amplified fragment was subcloned into pCR II. A fragment containing the N-terminal part was excised from pCR II using EcoRV and Sacl restriction enzymes, cut with the Sacl-Hind III fragment of p631 (including the rest of PPDK cDNA) and Ncol, and blunt-ended with Klenow enzyme. After that, a three-fragment ligation reaction was performed with pKK233-2 digested with Hindi 11 (FIG. 1). This plasmid was transformed into E. coli MV1184 and used for expression experiments. Dilute 1 ml of the preculture into 9 ml of fresh LB medium (containing 50 mg of ampicillin), shake at 37 ° C for 3 hours, and add 1 PTG to 5 mM. After further culturing for 3 hours, the cells were recovered by centrifugation. The cells were suspended in 0.5 ml of extraction buffer (50 mM Hepes-KOH pH7.5, 10 mM MgSO ImM EDTA, 5 mM DTT), lysozyme was added to about 0.5 mg ral, treated on ice for 5 minutes, and then sonicated. Enzymes were extracted by treating with a crushing device (Cosmo Bio UCD-130T) at intervals of 30 seconds for 5 minutes while cooling on ice. After centrifugation in a microcentrifuge for 10 minutes, the supernatant was passed through a Sephadex G25 column equilibrated with a column buffer (50 mM Hepes-KOH pH 7.0, 10 mM MgCl, 2 mM EDTA, 10 mM DTT) to remove low molecular weight substances. The mixture was allowed to stand at 25 ° C for 30 minutes or longer to associate with the tetramer and used for activity measurement.
フラベリア · ブローニイ、 フラベリア · バイデンチスおよび トウモロコシ (ハーべス トクィーン) の P PDK cDNA から大腸菌内で生産された P PDKは SDS- PAGE上で植物由来の酵素とほぼ同じ泳動度を示した。 各々の c DNAから予 想される成熟酵素の分子量はいずれも同じ程度である力、 SDS-PAGEでの見かけ上 の分子量はかなり異なっている。 これは各ポリベプチドに含まれるァミノ酸組成 の違いによるもので、 タンパクの削り込みプロセシングゃ糖鎖付加などの翻訳後 修飾によるものではないことが明らかとなった。 大腸菌で生産された各種 P PDKの低温耐性は、 対応する植物酵素と一致した。 すなわち、 フラベリア ' ブローニイ P PDKの低温耐性にはこの植物に特有な補助因子や翻訳後のプロセ シングは必要なく、 この c DNAをトウモロコシに導入して発現させれば低温耐 性 P PDKが生産されるものと期待される。 なお、 図 2は、 酵素を 0°Cの温度下 に置いてからの経過時間と P PDKの相対活性の関係を示すものである。  PPDK produced in Escherichia coli from PPPDK cDNAs of Flaveria bronyii, Flaveria bidentis and maize (Harvest queen) showed almost the same migration on SDS-PAGE as the plant-derived enzyme. The expected molecular weights of the mature enzymes from the cDNAs are all the same, and the apparent molecular weights on SDS-PAGE are quite different. This was due to the difference in the amino acid composition contained in each polypeptide, and was not due to post-translational modifications such as protein truncation processing and glycosylation. The cold tolerance of various PPDKs produced in E. coli was consistent with the corresponding plant enzymes. In other words, the low-temperature tolerance of Flaveria'Brownii PPDK does not require cofactors or post-translational processing unique to this plant.If this cDNA is introduced into corn and expressed, low-temperature-resistant PPDK is produced. Expected. FIG. 2 shows the relationship between the elapsed time since the enzyme was placed at a temperature of 0 ° C. and the relative activity of PPDK.
なお、 上記工程において、 大腸菌で活性のある P PDKを生産するにはトラン ジッ トぺプチドを除去した形の c DN Aを作製して発現べクタ一に組み込んだ 力く、 その際の切り取る位置を正確に植物由来酵素の N末端位置と対応する場所に 合わせることが重要だった。  In the above process, in order to produce an active PPDK in E. coli, a cDNA was prepared by removing the transit peptide and incorporated into the expression vector. It was important to match the position exactly to the N-terminal position of the plant-derived enzyme.
(F. brownii 大腸菌での生産量 (使用したプライマ—)  (F. brownii E. coli production (primers used)
M1TAKKRVFTF- 一 2  M1TAKKRVFTF- 1 2
MIPVSPPVTTTKKRVFTF- + 3  MIPVSPPVTTTKKRVFTF- + 3
MINPVSPPVTTTKKRVFTF- ++ 4  MINPVSPPVTTTKKRVFTF- ++ 4
NPVSPPVTTTKKRVFTF' (葉由来酵素) (F. bidentis) NPVSPPVTTTKKRVFTF '(leaf-derived enzyme) (F. bidentis)
MITAKKRVFTF- ++  MITAKKRVFTF- ++
MIPVSPPVTTAKKRVFTF- TA KRVFTF- (葉由来酵素)  MIPVSPPVTTAKKRVFTF- TA KRVFTF- (leaf-derived enzyme)
(トウモロコシ)  (corn)
MATKKRVFTF- ++  MATKKRVFTF- ++
TTKKRVFTF- (葉由来酵素)  TTKKRVFTF- (leaf-derived enzyme)
すなわち、 フラベリア 'ブローニー c DN Aの発現実験を行う時点で既にトゥ モロコシ及びフラベリ了 ·パイデンチス P PDKの発現に成功しており、 どちら も トウモロコシの切断部位を参照してうま く発現できていた。 そこでフラベリ ァ .ブローニー c DN Aにおいてもプライマー 2を用いて同じ位置で切断して発 現ベクターを作製し、 発現を試みたが PPDKは全く生産できなかった。 そこで 葉由来酵素の N末端配列に基づいて、 N末端に 7残基多く含むような発現べク ターをプライマー 3を用いて作製し、 発現を試みたところ P P D Kの生産が確認 された。 しかしこの段階でもまだ発現量が少なく、 低温耐性を測定するのに十分 な酵素量が得られなかった。 そこでさらに N末端側に 1残基延長した発現べク 夕一をプライマ一 4を用いて作製し、 発現実験を行ったところ大量の P PDKが 生産でき、 その低温耐性を確認できた。 なお、 プライマー 2及びプライマー 3の 塩基配列は次のとおりであった。  That is, when the expression experiment of Flavelia'brownie cDNA was carried out, expression of corn and Flavellii-Pydentis PPDK was already successful, and both were successfully expressed with reference to the cleavage site of corn. Thus, the expression vector was prepared by cutting at the same position using Primer 2 also for Flaveler brownie cDNA and expression was attempted, but no PPDK could be produced at all. Therefore, based on the N-terminal sequence of the leaf-derived enzyme, an expression vector containing 7 residues more at the N-terminus was prepared using primer 3, and expression was attempted. As a result, production of PDKK was confirmed. However, even at this stage, the expression level was still low, and the amount of enzyme sufficient to measure low-temperature resistance was not obtained. Therefore, an expression vector extended one residue further to the N-terminal side was prepared using Primer 14, and an expression experiment was performed. As a result, a large amount of PPDK was produced, and its low-temperature resistance was confirmed. The nucleotide sequences of Primer 2 and Primer 3 were as follows.
プライマ— 2 : CGGTGTCTCCTCCGGATATCACGGCTAAAAAGAG Primer 2: CGGTGTCTCCTCCGGATATCACGGCTAAAAAGAG
プライマー 3 : TTGATATCCCGGTTGTCTCCTCCGGTA Primer 3: TTGATATCCCGGTTGTCTCCTCCGGTA
3. フラベリア .ブローニイ P PDK遺伝子中の低温耐性付与領域の決定 (1) フラベリア ' ブローニイとフラベリア 'バイデンチスのキメラ  3. Determination of cold-tolerant region in P. flaveria P. brunii PDK gene (1) Chimera of Flaveria 'Brownii and Flavelia' bidentis
常法に従い制限酵素を用いて組換えた。 pKK-brownii の EcoRI- Hindi 11 断片を pKK-bidentis (フラベリア 'バイデンチスの cDN Aを、 pKK-brownii の構築方 法と同様の方法により pKK- 223- 2 に組み込んで得られたプラスミ ド) の相当する 断片と交換して ρΚΚ_011 、 逆に pKK- bidentisの EcoRI- Hindi Π 断片を pKK brownii の相当する断片と交換して pKK-100 を作製した。 同様に Ndel- Hindlll断片を相互 に交換して pKK - 001 および pKK- 110 を作製した。 また pKK- 110 の Xho-HindIII 断 片を pKK-bidentisの相当する断片と交換して pKK- 1101を、 pKK- bidentisの Xhol ^ !断片を !^ ^^ の相当する断片と交換して pKK- 1110を作製した。 Xhol -Hindl l l断片をさらに細かく相互に組換えるため、 PCR による断片の結合を行つ た (linking PCR 法) 。 bidentisと brownii の Xhol- Hindi I I断片の中で塩基配列 が同じである場所に、 互いに相補的なプライマ一 link- F: GCAGAGATGATGTTGGCAAG および link- R:CTTGCCAACATCATCTCTGC を作製した。 Bluescript SK (-) にサブク ローニングした brownii または bidentisの Xhol - Hindi I I断片を铸型に用い、 link - F RV 、 M4 link-R の組み合わせで第 1回目の PCR を行った。 得られた断片 (計 4種類) をゲル切り出しにより精製し、 brownii 前半と bidentis後半、 または bidentis前半と brownii 後半の断片を混合して铸型とし、 プライマ一 M4 RV によ り第 2回目の PCR を行った。 増幅された結合断片を Xholおよび Hindl l l で切断 し、 pKK- bident i sの相当する部分と置き換えて pKK- 1 inkO 1および pKK- 1 ink 10を作 製した。 linking PCR の組換え部位と Hindi 11 の間にある Pst l部位を利用しても う一組のキメラ遺伝子を作製した。 pKK- linklOの Xhol - Pstl 断片および ρΠ- bidentisの Pstl- Hindi I I断片を pKK- bidentisの Xhol- Hindi 11部位に組み込み ( 3 断片連結反応) 、 pKK- linklOl とした。 また pKK- bidentisの Xhol- Pst l 断片およ び pKK- brownii の Pstl- Hindi 11断片を同様にして pKK_bidentisの Xhol- Hindi I I部 位に組み込んで pKK-linkl lO とした。 It was recombined using restriction enzymes according to a conventional method. The EcoRI-Hindi 11 fragment of pKK-brownii is equivalent to pKK-bidentis (plasmid obtained by incorporating cDNA of Flavelaria bidentis into pKK-223-2 by the same method as pKK-brownii). ΡΚΚ_011 was exchanged for the corresponding fragment, and conversely, the EcoRI-HindiΠ fragment of pKK-bidentis was exchanged for the corresponding fragment of pKK brownii to produce pKK-100. Similarly, the Ndel-Hindlll fragments were exchanged for each other to produce pKK-001 and pKK-110. Xho-HindIII cleavage of pKK-110 The pieces were exchanged for the corresponding fragments of pKK-bidentis to replace pKK-1101 with XKK of pKK-bidentis! Fragments! PKK-1110 was generated in exchange for the corresponding fragment of ^^^. In order to further recombine the Xhol-Hindll fragments with each other, the fragments were linked by PCR (linking PCR method). Primer link-F: GCAGAGATGATGTTGGCAAG and link-R: CTTGCCAACATCATCTCTGC which were complementary to each other were prepared in the place where the base sequence is the same in the Xhol-Hindi II fragment of bidentis and brownii. The first PCR was carried out using a combination of link-FRV and M4 link-R using the Xii-HindiII fragment of brownii or bidentis subcloned in Bluescript SK (-) for type I. The obtained fragments (total of 4 types) were purified by gel excision, and the first half of brownii and the latter half of bidentis, or the first half of bidentis and the latter half of brownii were mixed to form type II, and the second PCR was performed using Primer M4 RV. Was done. The amplified binding fragment was digested with Xhol and HindII, and replaced with the corresponding part of pKK-bidentis to produce pKK-1 inkO1 and pKK-1 ink10. Another set of chimeric genes was created using the PstI site between the recombination site of linking PCR and Hindi11. The Xhol-Pstl fragment of pKK-linklO and the Pstl-HindiII fragment of ρΠ-bidentis were incorporated into the Xhol-Hindi 11 site of pKK-bidentis (3-fragment ligation reaction) to give pKK-linklOl. Similarly, the Xhol-Pstl fragment of pKK-bidentis and the Pstl-Hindi 11 fragment of pKK-brownii were similarly incorporated into the Xhol-HindiII site of pKK_bidentis to obtain pKK-linkl10.
フラベリア ' ブローニイとフラベリア ·バイデンチスの P P D Kの成熟タンパ ク部分に見られる 40ケ所のァミノ酸置換は酵素の N末および C末よりに比較的多 く、 中央の活性中心付近には少ない。 そこでまず両遺伝子に共通に存在する制限 酵素 EcoRI および Ndel部位を用いて cDNAを前 ·中 ·後の 3つの部分に分け、 これ らを相互に交換してキメラ遺伝子を作製し、 どの部分が低温耐性に関与している かを調べた。 その結果、 フラベリア 'ブローニイ cDNA の後半 1 3 を持つ場合に 低温耐性が獲得され、 逆にフラベリア 'バイデンチス cDNAの後半 1 3 を持つ場合 は低温感受性となった。 次に後半 1 3 領域を制限酵素 Xholにより 2つの部分に分 け、 pKK- bidentisの相当する部分にそれぞれ導入して低温耐性を測定した。 その 結果、 Xhol部位以降 (最も C末より 1 6 の領域) が低温耐性に必要十分であつ た。 次に後半 1 6 領域 (Xho卜 Hindi I I断片、 7個のアミノ酸置換を含む) につい て linking PCR 法によりキメラ遺伝子を作製し、 pKK-bidentisに導入して低温耐 性を測定した。 その結果、 4個の置換を含む最も後ろの領域を持つキメラ酵素 pKK -linklOは低温耐性で、 3個の置換を含む前半領域を持つキメラ酵素 pKK- linkOlは 低温失活した。 そこでこの後半領域を制限酵素 Pstlにより組換え、 2個ずつのァ ミノ酸置換を持つキメラ遺伝子を作製して低温耐性を測定したが、 いずれのキメ ラ酵素も低温耐性を示し、 耐性に関わる領域が 2 ケ所以上存在すると推定され た。 The 40 amino acid substitutions found in the mature protein portion of the PPDK of Flavelaria'Brownii and Flaverian bidentis are relatively higher in the N- and C-termini of the enzyme and less near the central active center. First, the cDNA is divided into three parts: the front, middle, and rear, using the EcoRI and Ndel sites, which are common to both genes, and these are interchanged to produce a chimeric gene. It was examined whether it was involved in resistance. As a result, low temperature tolerance was obtained when the latter half of Flaveria'Brownii cDNA was present, and low temperature sensitivity was obtained when the latter half of Flaveria'Bidentis cDNA was present. Next, the latter 13 regions were divided into two parts by the restriction enzyme Xhol, and introduced into the corresponding parts of pKK-bidentis, respectively, and the low-temperature resistance was measured. As a result, the portion after the Xhol site (most 16 region from C-terminal) was necessary and sufficient for low-temperature tolerance. Next, the second half of the 16 region (Xho Hindi II fragment, including 7 amino acid substitutions) A chimeric gene was prepared by the linking PCR method and introduced into pKK-bidentis, and the low-temperature resistance was measured. As a result, the chimeric enzyme pKK-linkO having the last region containing four substitutions was cold-resistant, and the chimeric enzyme pKK-linkOl having the first half region containing three substitutions was inactivated at low temperature. Therefore, the latter half region was recombined with the restriction enzyme Pstl, and a chimeric gene having two amino acid substitutions was prepared and the low-temperature resistance was measured. It was estimated that there were two or more locations.
(2) トウモロコシとフラベリア · ブローニイのキメラ  (2) Chimera of maize and Flavelia brawnii
プライマ— PPDK- F :CTCACTGTTCGAAGAGAAGC および Nde l 部位を含む mNdel : CATATGCTCTGTCCGGCATAATC (相補鎖側) を用い、 トウモロコシ PPM cDNA を铸型 として PCR を行い、 得られた断片を pCR 11にサブクロ一ニングした。 この断片を Saclおよび Ndelにより pCR I Iから切り出し、 pKK- PPMの Sacl- Smal 断片 (べク ター断片) および brownii PPDK cDNAを Hindi n で切断し Klenow酵素で末端を 平滑化した後 Ndelで切断して得た断片とともに 3断片連結反応を行い (図 3 ) 、 pKK-mz bro(Nde) を得た。 またプライマ— PPDK-Fおよび Xhol部位を含む mXhoI: CTCGAGGGATCTCAATCATTG (相補鎖側) を用いてトウモロコシ PPDK cDNA を铸型と して PCR を行い、 得られた断片を pCR I Iにサブクローニングした後 Saclおよび Xholにより pCR Πから切り出し、 pKK-mz bro(Nde) ©Sac I -Xhol 断片 (ベクター 断片) と結合し、 pKK - mz bro(Xho) を得た。  Using a primer PPDK-F: CTCACTGTTCGAAGAGAAGC and an mNdel containing an Ndel site: CATATGCTCTGTCCGGCATAATC (complementary strand side), PCR was performed using maize PPM cDNA as type III, and the obtained fragment was subcloned into pCR11. This fragment was excised from pCR II with Sacl and Ndel, and the Sacl-Smal fragment of pKK-PPM (vector fragment) and brownii PPDK cDNA were cut with Hindin, blunt-ended with Klenow enzyme, and cut with Ndel. A three-fragment ligation reaction was performed with the obtained fragments (FIG. 3) to obtain pKK-mz bro (Nde). In addition, PCR was carried out using the maize PPDK cDNA as a type I using mXhoI: CTCGAGGGATCTCAATCATTG (complementary strand side) containing the primers PPDK-F and Xhol, and the obtained fragment was subcloned into pCR II, followed by Sacl and Xhol. It was excised from pCRII and ligated with pKK-mz bro (Nde) © Sac I-Xhol fragment (vector fragment) to obtain pKK-mz bro (Xho).
トウモロコシ PPDKと brownii PPDK C末 1 3領域 (Nde卜 Hindi 11断片) あるいは 1 6 領域 (Xho卜 Hindi I I断片) のキメラ酵素はいずれも brownii と同レベルの強い 低温耐性を示した。 このように、 アミノ酸配列が相当異なるトウモロコシ PPDKを 低温耐性化できたことから、 この後半 1 3 領域あるいは 1 6 領域を導入すること により各種植物起源の PPDKを低温耐性化できると考えられる。 今回作製したトウ モロコシ F._ brownii キメラ PPDKはトウモロコシ PPDKのトランジッ トぺプチ ドを そのままの形で利用できるので、 トランジッ ト部分もフラベリア 'ブローニイ P P D K由来の形質転換体で低温耐性 PPDKの葉緑体への輸送に問題がみられる場 合、 このキメラ遺伝子を代わりに導入することで解決されると考えられる。  Both the maize PPDK and brownii PPDK C-terminal 13 (Nde Hindi 11 fragment) or 16 (Xho Hindi II fragment) chimeric enzymes exhibited the same level of low-temperature tolerance as brownii. As described above, since the corn PPDK having a considerably different amino acid sequence could be made low-temperature-tolerant, it is considered that by introducing the latter 13 regions or 16 regions, PPDK derived from various plants can be made to be low-temperature-tolerant. The corn F._ brownii chimeric PPDK prepared this time can use the transit peptide of corn PPDK as it is, so the transit portion is also a transformant derived from Flavelaria 'Brownii' PPDK and the chloroplast of cold-resistant PPDK If there is a problem in transporting to the cell, it may be resolved by introducing this chimeric gene instead.
(3) 点変異クローン pKK-brownii の Xhol- Hindll I断片について、一残基ずつ brownii 型— bidentis 型のアミノ酸置換を作製した。 また pKK- bidentisの Xhol- Hindi II断片について一 残基ずつ bidentis型→brownii 型のアミ ノ酸置換を作製した。 変異導入は browniiおよび F. bidentis PPM cDNA の Xho卜 Hind III 断片をそれぞれ pBluescript I1SK (-) にサブクローニングし、 メガラベルキッ 卜 (宝酒造) およ び Mutan-K キッ ト (宝酒造) を用い Kunkel法に基づき行なった。 変異導入に用い たプライマーの配列は表 2に示したとおりである。 変異した塩基配列を DNA シー ケンサ一により確認した後、 これらの断片を pKK- bidentisの Xhol - Hindi Π部位に 組み込んだ。 (3) Point mutation clone For the Xhol-Hindll I fragment of pKK-brownii, brownii-bidentis amino acid substitutions were made one by one. In addition, for the Xhol-HindiII fragment of pKK-bidentis, amino acid substitution from bidentis type to brownii type was made for each residue. Mutagenesis was performed by subcloning the Xhoto HindIII fragment of brownii and F. bidentis PPM cDNA into pBluescript I1SK (-), respectively, and using the Megalabel kit (Takara Shuzo) and Mutan-K kit (Takara Shuzo) based on the Kunkel method. Was. The sequences of the primers used for mutagenesis are as shown in Table 2. After confirming the mutated nucleotide sequence with a DNA sequencer, these fragments were inserted into the Xhol-HindiII site of pKK-bidentis.
表 2 点変異クローン作製に用いたプライマー Table 2 Primers used for generating point mutation clones
F. brownii型から F. bidentis 型への変異導入 Mutation from F. brownii type to F. bidentis type
836DE 5 ' GCAATCTCTTCAGCAATC 836DE 5 'GCAATCTCTTCAGCAATC
839AG 5 ' GCTTCTTTTCCAATCTCATC  839AG 5 'GCTTCTTTTCCAATCTCATC
843ED 5 ' CGAAAAGAAATCGGCTTC  843ED 5 'CGAAAAGAAATCGGCTTC
869PQ 5 ' GAAAGATAAATCTGCAAAAACTTG  869PQ 5 'GAAAGATAAATCTGCAAAAACTTG
873SA 5'GCCTTGAGCAAGATAAATC  873SA 5'GCCTTGAGCAAGATAAATC
885L1 5'TTCTGGTCAATAACCTCAATG  885L1 5'TTCTGGTCAATAACCTCAATG
952V I 5'GCTTAAACAATGACTTGTGC  952V I 5'GCTTAAACAATGACTTGTGC
F. bidentis 型から F. brownii型への変異導入 Mutation from F. bidentis to F. brownii
836ED 5 ' CCAATCTCATCAGCTATTAAAG 836ED 5 'CCAATCTCATCAGCTATTAAAG
839GA 5 ' GCTTCTTTTGCAATCTCTTC  839GA 5 'GCTTCTTTTGCAATCTCTTC
843DE 5'CGAAAAGAACTCAGCTTC  843DE 5'CGAAAAGAACTCAGCTTC
869QP 5 ' CAAGATAAATCGGCAAAAACTTG  869QP 5 'CAAGATAAATCGGCAAAAACTTG
873AS 5 ' GAATGCCTTGAGAAAGATAAATC  873AS 5 'GAATGCCTTGAGAAAGATAAATC
885IL 5' CTTTCTGGTCAAGAACCTCAAATG  885IL 5 'CTTTCTGGTCAAGAACCTCAAATG
9521V 5'GCTTAAACAACGACTTGTGC pKK- 1110の Xhol-Hindlll領域の相違ァミノ酸を一つずつ bidentis型に置換した 酵素はすべて低温耐性を示し、 低温耐性を付与する変異は複数存在すると考えら れた (一つの残基を変更しただけでは耐性が損なわれない) 。 そこで逆に pKK - bidentisの Xhol - Hindi II領域の相違アミノ酸を一つずつ brownii 型に置換し、 低 温耐性酵素となるかどうかを調べた。 すなわち、 0°C20分間処理後の酵素活性 を調べた。 その結果、 869Gln— Pro 変異が低温耐性を獲得し (前記低温処理後の 活性が との 60〜70%) 、 また 885Ile→Leu および 95211e— Val 変異はやや 低温失活しにく く、 上記(1) のキメラ酵素 pKK- linkllO の結果と併せて考えると これら二つの変異が共存するときに低温耐性を獲得するものと推定される。 以上 の結果から、 869Pro · 885Leu · 952Valの 3残基が低温耐性に関与するものと結論 された。 brownii の低温耐性に関わるこれらの残基のうち 869Pro · 885Leuについ てはトウモロコシ PPMでも brownii 型となっている。 従ってこれらの残基が brownii 型であるだけでは低温耐性を獲得するとは限らず、 brownii あるいは bidentisのァミノ酸配列の中で初めて完全な耐性を付与するものであると考えら れるため、 アミノ酸配列がかなり異なる他種 PPDKを低温耐性化する場合は点変異 導入ではなく、 トウモロコシ PPMに対して行ったように領域単位で導入したキヌ ラ遣伝子を作製することが好ましい。 9521V 5'GCTTAAACAACGACTTGTGC Differences in the Xhol-Hindlll region of pKK-1110 All enzymes in which amino acids were replaced one by one with a bidentis type showed low temperature resistance, and it was thought that there were multiple mutations that confer low temperature resistance (one Changing the residue alone does not impair resistance). Therefore, conversely, the different amino acids in the Xhol-HindiII region of pKK-bidentis were replaced one by one with brownii type, and it was examined whether or not the enzyme became a low-temperature resistant enzyme. That is, the enzyme activity after treatment at 0 ° C for 20 minutes was examined. As a result, the 869Gln-Pro mutation acquired low-temperature tolerance (the activity after the low-temperature treatment was 60-70%), and the 885Ile → Leu and 95211e-Val mutations It is difficult to inactivate at low temperature, and considering the results of the chimeric enzyme pKK-linkllO in (1) above, it is presumed that low temperature resistance is obtained when these two mutations coexist. From the above results, it was concluded that three residues of 869Pro, 885Leu, and 952Val were involved in cold tolerance. Among these residues involved in low-temperature tolerance of brownii, 869Pro and 885Leu are also brownii-type in corn PPM. Therefore, it is considered that these residues alone are not brownii-type, but do not necessarily acquire low-temperature resistance, and are considered to be the first amino acid sequences of brownii or bidentis to confer complete resistance. When making a significantly different type of PPDK resistant to low temperatures, it is preferable not to introduce a point mutation but to produce a quinula gene introduced in a region unit as performed for corn PPM.
4. フラベリア .ブローニイ P PDK遺伝子によるトウモロコシの形質転換  4. Transformation of maize with Flaveria brawnii P PDK gene
Gordon- Kamm f. J. et al. (The Plant Cell 2:603-618, 1990)、 あるいは Gordon- Kamm f. J. et al. (The Plant Cell 2: 603-618, 1990), or
Koziel M.G. et al. (Bio Technology 11:194-200, 1993)らの方法に従い、 pK - brownii をタングステンあるいは金の微細な粒子にコーティングし、 トウモロコ シの未熟胚ぁるいは懸濁培養細胞に打ち込む。 導入処理した細胞から形質転換細 胞の選抜を行った後、 得られた形質転換カルスを常法により培養し、 植物体を再 生する。 形質転換方法はパーティクルガン法に限られず、 エレク トロポレーショ ン法 (Rhodes C. A. et al. , Science 240:204-207, 1988)、 PEG法 (Armstrong C. L et al. , Plant Cell Reports 9:335-339, 1990)、 ティ ッシュ一エレク トロ ポレーショ ン法 (D'Halluin K. et al. , The Plant Cell 4:1495-1505, 1992)、 あるいはァグロパクテリゥ厶法 (Hiei Y. and Komari T. WO 9400977) などか含 まれる。 得られた植物体から種子を得、 発芽させ、 得られた植物の葉から PPDKを分離してその低温耐性を調べる。 形質転換された植物及び形質転換さ れていない植物について、 光合成速度に対する温度の効果を調べる。 低温におい てより高い光合成速度を示すトウモロコシ植物を何世代にもわたって増殖させ、 異なる温度において光合成速度を測定することにより及び植物体から単離した PPDKの低温耐性を測定することにより調べられる形質転換の安定性を確保す る。 According to the method of Koziel MG et al. (Bio Technology 11: 194-200, 1993), pK-brownii is coated on fine particles of tungsten or gold and implanted into immature maize embryos or suspension cultured cells . After selecting transformed cells from the transfected cells, the resulting transformed callus is cultured by a conventional method, and the plant is regenerated. Transformation methods are not limited to the particle gun method, but include the electroporation method (Rhodes CA et al., Science 240: 204-207, 1988) and the PEG method (Armstrong C. L et al., Plant Cell Reports 9: 335- 339, 1990), tissue-electroporation method (D'Halluin K. et al., The Plant Cell 4: 1495-1505, 1992), or agro-pakterium method (Hiei Y. and Komari T. WO 9400977) And so on. Seeds are obtained from the obtained plant body, germinated, and PPDK is separated from the leaves of the obtained plant to examine its low-temperature tolerance. The effect of temperature on the rate of photosynthesis is examined for transformed and untransformed plants. Characteristics of corn plants that exhibit higher photosynthetic rates at low temperatures grown over generations and determined by measuring photosynthetic rates at different temperatures and by measuring the cold tolerance of PPDK isolated from the plant Ensure conversion stability.
5. フラベリア 'ブローニイ P PDK遺伝子によるフラベリァ ·バイデンチスの 形質転換 5. Flaveria 'Brownii P FDKV Gene by PDKK Gene Transformation
配列番号 5に示す完全長 c D N Aを含み、 レポーター遺伝子を含む中間べク ターを、 ァグロパクテリ ゥム · ッメ ファシエンスのデイ スアーム ド T i プラス ミ ドに導入する 0 これは Draper J et al eds. Plant Genetic Transfomation and Gene Expression - a laboratory manual, Blackwell Scientific Publications (ISBN 0-632-02172-1) に記載された方法により行うことができる。 An intermediate vector containing the full-length cDNA shown in SEQ ID NO: 5 and containing the reporter gene is introduced into the disarmed Ti plasmid of Agrobacterium umme faciliens 0 This is Draper J et al eds. It can be performed by the method described in Plant Genetic Transfomation and Gene Expression-a laboratory manual, Blackwell Scientific Publications (ISBN 0-632-02172-1).
一方、 フラベリア ·バイデンチスの葉組織又はカルスを前記ァグロバクテリゥ ム ·ッメ ファシエンスに感染させる。 これは、 該組織又はカルスをァグロパ'クテ リウム ·ッメファシエンスと共存培養することにより行うことができる。 感染細 胞を薬剤耐性に基づき選択する。 選択されたカルスから常法により植物体を再生 する。 得られた植物体から種子を得、 発芽させ、 得られた植物の葉から P P D K を分離してその低温耐性を調べる。 形質転換された植物及び形質転換されていな い植物について、 光合成速度に対する温度の効果を調べる。 低温においてより高 い光合成速度を示すフラベリァ ·バイデンチス植物を何世代にもわたって増殖さ せ、 異なる温度において光合成速度を測定することにより及び植物体から単離し た P P D Kの低温耐性を測定することにより調べられる形質転換の安定性を確保 する。 On the other hand, the leaf tissue or callus of Flaveria bidentis is infected with the Agrobacterium mme fascient. This can be performed by co-culturing the tissue or callus with Agrobacterium ctemefasciens. Infected cells are selected based on drug resistance. Plants are regenerated from the selected calli in a conventional manner. Seeds are obtained from the obtained plant body, germinated, and PPDK is isolated from the leaves of the obtained plant to examine its low-temperature tolerance. The effect of temperature on the rate of photosynthesis is examined for transformed and untransformed plants. By growing F. verdentis plants that exhibit higher photosynthetic rates at low temperatures for generations and measuring photosynthetic rates at different temperatures and by measuring the cold tolerance of PPDK isolated from the plant. Ensure the stability of the transformation being examined.
ςπ on soi οοτ λχο an J3S J3S 13W ηΐ3 Biv na usy BTV ^TO sAq λχο λχο naq naq m 133 IXV 30V V3I OIV 3V0 130 IID IVV V30 V03 VVV V90 V09 Oil Oil ςπ on soi οοτ λχο an J3 S J3 S 1 3 W η ΐ3 Biv na usy BTV ^ TO sAq λχο λχο naq naq m 133 IXV 30V V3I OIV 3V0 130 IID IVV V30 V03 VVV V90 V09 Oil Oil
Q6 06 58 ュ 9S sA jaw dsy SJV usy Αχο η ο jss §JV ^ΐθ sAq Λχο sqd J¾ Q6 06 58 new 9S sA jaw dsy SJV usy Αχο η ο jss §JV ^ ΐθ sAq Λχο sqd J¾
331 VVV 31V DVO 90V 3VV 330 WO 丄 3V VOV V30 VVV 100 III I3V LL 331 VVV 31V DVO 90V 3VV 330 WO 丄 3V VOV V30 VVV 100 III I3V LL
08 i O  08 i O
ΤΒΛ SJV SAI sXq Βχν 丄 ュ4丄 T¾ 〇■¾ OJJ J9S T^A OJd usy ngq Λ ΤΒΛ SJV SAI sXq Βχν 丄 4 丄 T¾ 〇 ■ ¾ OJJ J9S T ^ A OJd usy ngq Λ
862 丄丄 3 OOV OVV VVV 133 93V 03V 019 033 133 131 0X0 933 IVV 113 丄丄3 862 丄 丄 3 OOV OVV VVV 133 93V 03V 019 033 133 131 0X0 933 IVV 113 丄 丄 3
59 09 59  59 09 59
BTV v OJd OJJ am na A13 J3S J3S Sjy naq OJJ Sjy J3S ΐ BTV v OJd OJJ am na A13 J3S J3S Sjy naq OJJ Sjy J3S ΐ
092 V30 V03 ODD 333 I3V VII 309 I0V 33V 393 Oil 3V3 V33 VOV DOV 丄丄3 092 V30 V03 ODD 333 I3V VII 309 I0V 33V 393 Oil 3V3 V33 VOV DOV 丄 丄 3
09 ^  09 ^
SJV BTV OJd jqi naq SAQ 8jy lls^ sqj s -iss uig 3jy STH stH usySJV BTV OJd jqi naq SAQ 8jy l l s ^ sqj s -iss uig 3jy STH stH usy
202 VOV 939 033 I3V VII 101 303 313 III 931 031 VV3 XD3 3V3 3V3 OVV 202 VOV 939 033 I3V VII 101 303 313 III 931 031 VV3 XD3 3V3 3V3 OVV
58 OS 52 02 naq gjy Sjy naq dsy Α ^ usy 8jy Sjy UTO sAq ^e^ S-ty ^TV OJ^ nsq 58 OS 52 02 naq gjy Sjy naq dsy Α ^ usy 8jy Sjy UTO sAq ^ e ^ S-ty ^ TV OJ ^ nsq
^9ΐ Oil V33 303 313 IV3 XD9 OVV V03 003 VV3 OVV 010 VOV 039 033 VII ^ 9ΐ Oil V33 303 313 IV3 XD9 OVV V03 003 VV3 OVV 010 VOV 039 033 VII
9ΐ Οΐ 9  9ΐ Οΐ 9
SAQ J3S nig Sjy ^TV S s q naq nsq n Αχ^ η ο 八 ュ 9g naq ュ 95 SAQ J3S nig Sjy ^ TV S s q naq nsq n Αχ ^ η ο 8g 9g naq 95
90ΐ 391 ODI 103 330 VDI OVV DID 丄丄 3 9IV 100 WO 113 131 Oil 001 ΐ 90ΐ 391 ODI 103 330 VDI OVV DID 丄 丄 3 9IV 100 WO 113 131 Oil 001 ΐ
J3S law ; sw  J3S law; sw
85 13V 9IV OIV 00VV0VV9I 39V3V3XIIV VOLOLV丄 VOL 30IIVID9I3 1I33I31V03 圆  85 13V 9IV OIV 00VV0VV9I 39V3V3XIIV VOLOLV 丄 VOL 30IIVID9I3 1I33I31V03 圆
9 1 6 2 : $ϊ©「ιίΜ 9 1 6 2: $ ϊ © 「ιίΜ
ΐ : 飾 2S 【拏 ¾】  ΐ: Decoration 2S [Halla ¾]
OtOIO/S6df/13d 69€tO/96 OAV s q ηχο ΛΙΟ sAq εχν ηχ^ Λ ュ Λ丄 Λ usy sAq 丄 sX ηχο 八 naq 8 OVV WO 300 OVV V30 WO 913 IVl 9X0 DVV OVV 3VI VVV 0V3 110 113 OtOIO / S6df / 13d 69 € tO / 96 OAV sq ηχο ΛΙΟ sAq εχν ηχ ^ Λ Λ 丄 usy sAq 丄 sX ηχο eight naq 8 OVV WO 300 OVV V30 WO 913 IVl 9X0 DVV OVV 3VI VVV 0V3 110 113
992  992
dsy sAq risq dsy BTV eiv 丄 dsy J¾ dsy na S TH ΘΤ Ι ^1 sAq dsy sAq risq dsy BTV eiv 丄 dsy J¾ dsy na S TH ΘΤ Ι ^ 1 sAq
928 IVO VVV 113 IVO 130 133 I3V DID IVO 33V 3V9 3X3 IV3 XXV 300 VVV 928 IVO VVV 113 IVO 130 133 I3V DID IVO 33V 3V9 3X3 IV3 XXV 300 VVV
582 082  582 082
n BIV sAq 9w ujo ηχ^ naq sA ηχο dsy aqd na Jas S TH OJd 9Π n BIV sAq 9w ujo ηχ ^ naq sA ηχο dsy aqd na Jas S TH OJd 9Π
8 丄 WO 130 VVV OIV OVO 0V9 VII OVV VV9 3V3 III VII V3I IVO 933 DIV 8 丄 WO 130 VVV OIV OVO 0V9 VII OVV VV9 3V3 III VII V3I IVO 933 DIV
m m m  m m m
'ίΐθ 1SW ΐ^Λ ΐ¾Λ USV ^ΐθ 3qd 19^ dsy nsq 9qd Sjy v dsy OS 109 OIV V丄 3 110 OVV 303 III 31V IVO 313 丄丄丄 00V VOV IVl 031 OVD 'ίΐθ 1SW ΐ ^ Λ ΐ¾Λ US V ^ ΐθ 3qd 19 ^ dsy nsq 9qd Sjy v dsy OS 109 OIV V 丄 3 110 OVV 303 III 31V IVO 313 丄 丄 丄 00V VOV IVl 031 OVD
o\z OOZ  o \ z OOZ
_τΛ丄 BTV 3Md SJV BTV ^ΐθ S s Χχ9 na λχο BIV ISA ΐΒΛ nI3_τΛ 丄 BTV 3Md SJV BTV ^ ΐθ S s Χχ9 na λχο BIV ISA ΐ Β Λ n I3
289 IV丄 3dD 111 003 V30 V90 IOV VVV 300 133 VIO 109 130 V19 310 289 IV 丄 3dD 111 003 V30 V90 IOV VVV 300 133 VIO 109 130 V19 310
56 ΐ 06ΐ 981 081 dsy usy naq Αχ{) nsq usy naq 八 jtq丄 dsy aaj¾ OJJ IS¾ JSS 56 ΐ 06ΐ 981 081 dsy usy naq Αχ {) nsq usy naq eight jtq 丄 dsy aaj¾ OJJ IS¾ JSS
^9 XV9 IVV 113 930 id IVV Oil VIO 13V DV9 91V OIV 103 130 OIV 丄:)丄 ^ 9 XV9 IVV 113 930 id IVV Oil VIO 13V DV9 91V OIV 103 130 OIV 丄 :) 丄
9Ζΐ ΟΑΐ 99ΐ 9Ζΐ ΟΑΐ 99ΐ
9ΐ Ι Βχν εχν Α ο j as 3jy ΤΒΛ JSS Π9Ί η31 nsq OJJ sA js§ OJJ dsy9ΐ Ι Βχν εχν Α ο j as 3jy ΤΒΛ JSS Π9 Ί η 31 nsq OJJ sA js§ OJJ dsy
985 VIV 330 139 100 031 103 310 001 IID 313 310 133 VVV 131 9D3 3V9 985 VIV 330 139 100 031 103 310 001 IID 313 310 133 VVV 131 9D3 3V9
09ΐ 55Ϊ 051  09ΐ 55Ϊ 051
13 Π3ΐ J9S BIV -I3S 13K n^o sAq uif) ュ clsy naq Αχο ηχο J9S 13 Π3ΐ J9S BIV -I3S 13K n ^ o sAq uif) cl clsy naq Αχο ηχο J9S
889 130 DID 131 VDO 131 DIV OVO VVV OVD 310 IVl IV9 Vll 309 WO VOL 889 130 DID 131 VDO 131 DIV OVO VVV OVD 310 IVl IV9 Vll 309 WO VOL
OH 581  OH 581
9i i "TO dsy dJi nsq Αχο OJJ OJJ ng J9S sAq Αχο usy UIQ UJQ JA丄 9i i "TO dsy dJi nsq Αχο OJJ OJJ ng J9S sAq Αχο usy UIQ UJQ JA 丄
06 LLV OVO IVO 001 Oil 100 V33 133 VI3 30V OVV VOO IVV VV3 VV3 丄 V丄 06 LLV OVO IVO 001 Oil 100 V33 133 VI3 30V OVV VOO IVV VV3 VV3 丄 V 丄
OS ! 52ΐ 03ΐ  OS! 52ΐ 03ΐ
"TO ηι;) s P] V ηχο j x ass an J¾ naq
Figure imgf000026_0001
OJJ OJJ JBA S nsq
"TO ηι;) s P] V ηχο jx ass an J¾ naq
Figure imgf000026_0001
OJJ OJJ JBA S nsq
WO OVO IDl VDO WO I3V V3I LLV I3V 313 009 133 133 113 V3I VI3 S WO OVO IDl VDO WO I3V V3I LLV I3V 313 009 133 133 113 V3I VI3 S
Ot-OlO/S6df/10d 69ひ 0/96 ΟΛ\ ί^ςει ovv 313 oiv νιο m iiv νον οιο νοΰ ιοο ννν ιοΰ ιον ιοο ννν ς ο so Ot-OlO / S6df / 10d 69h 0/96 ΟΛ \ ί ^ ςει ovv 313 oiv νιο m iiv νον οιο νοΰ ιοο ννν ιοΰ ιον ιοο ννν ς ο so
Λΐ9 jqx SJV SAQ υχο naq aa^ 丄 na 8jy usy ηχο Λ -^ΜΙ ^Md Λΐ9 jqx SJV SAQ υχο naq aa ^ 丄 na 8jy usy ηχο Λ-^ ΜΙ ^ Md
90SI 300 VOV V03 301 VV3 Oil OIV 001 113 OOV 3VV WO VV3 110 V3V :)丄丄 90SI 300 VOV V03 301 VV3 Oil OIV 001 113 OOV 3VV WO VV3 110 V3V :) 丄 丄
00 969 06£  00 969 06 £
ηΐ3 an dsy m dsy sA αΑχ STH Αχο naq an S Q usy ηΐ3 an dsy m dsy sA αΑχ STH Αχο naq an S Q usy
852Ϊ VV3 丄丄 V IVO OIV OIV IVO VVV DVI 3V3 VOO OVO VII 01V OVO 301 VV852Ϊ VV3 丄 丄 V IVO OIV OIV IVO VVV DVI 3V3 VOO OVO VII 01V OVO 301 VV
S£ 088 518  S £ 088 518
πΐθ ΐΒΛ nsq ηχ^ sA _iA丄 ¾τν dsy OJJ n SAQ J¾ jaw ュ q丄 χο πΐθ ΐΒΛ nsq ηχ ^ sA _iA 丄 ¾τν dsy OJJ n SAQ J¾ jaw 丄 q 丄 χο
0121 9V0 010 113 OVO VVV DVl VOO IVO 1DD OiV DDI I3V OVO OiV 33V ODD 0121 9V0 010 113 OVO VVV DVl VOO IVO 1DD OiV DDI I3V OVO OiV 33V ODD
OAS 098  OAS 098
nai dsy ηχ^ OJJ jqi 3jy ^Τ Ι ^TD ^TV ί^Λ ΐ dsy ηχο χ^ uxa εχ nai dsy ηχ ^ OJJ jqi 3jy ^ Τ Ι ^ TD ^ TV ί ^ Λ ΐ dsy ηχο χ ^ uxa εχ
Ζ9 Π Oil IVO VV3 V3D VOV V9V DIV OOO 130 113 110 IVO OVO VOO OVD 130 Ζ9 Π Oil IVO VV3 V3D VOV V9V DIV OOO 130 113 110 IVO OVO VOO OVD 130
99S 058 91^8 0^8 usv 9Ϊ Ι naq aqj Αχο ιΑχ nsq sAq s ^ J¾ J9S OJJ usy 99S 058 91 ^ 8 0 ^ 8 usv 9Ϊ Ι naq aqj Αχο ιΑχ nsq sAq s ^ J¾ J9S OJJ usy
H U IVV 31V VII ill OVO OOO DVl VI3 OVV OVV 9V9 109 33V 30V V33 OVV H U IVV 31V VII ill OVO OOO DVl VI3 OVV OVV 9V9 109 33V 30V V33 OVV
9εε οεε . ε gJV 3Md nsq AIO J¾ jas J¾ usy Αχ aw usy ο aqd 9901 OOV I3V 311 113 119 103 13V VOO VOL I3V OVV VOO 3IV OVV 303 丄丄丄  9εε οεε .ε gJV 3Md nsq AIO J¾ jas J¾ usy Αχ aw usy ο aqd 9901 OOV I3V 311 113 119 103 13V VOO VOL I3V OVV VOO 3IV OVV 303 丄 丄 丄
028 5TS 0ΐ8  028 5TS 0ΐ8
ΤΒΛ J9W J3S UTO 3ΐ [ usy ΐ BTV JMI ιο sAq το Jt[丄 an UTO ΤΒΛ J9W J3S UTO 3ΐ [usy ΐ BTV JMI ιο sAq το Jt [丄 an UTO
8Ϊ 0Ι 310 DIV 30V VV3 IIV 3VV 113 V30 I3V 930 OVV VII V90 I3V VIV OVD 8Ϊ 0Ι 310 DIV 30V VV3 IIV 3VV 113 V30 I3V 930 OVV VII V90 I3V VIV OVD
G08 Οθε G62 usy 3 1 jag 3JV 丄 sAq usy Βχν 3ュ V OJJ jas dsy dュ丄 _Τ3§ dsy siy G08 Οθε G62 usy 3 1 jag 3JV 丄 sAq usy Βχν 3 ュ V OJJ jas dsy d 丄 _Τ3§ dsy siy
0Z6 VV IIV IDV VOV 3VI OVV IVV 333 OOV V33 33V 3V0 391 IDX IVO III 0Z6 VV IIV IDV VOV 3VI OVV IVV 333 OOV V33 33V 3V0 391 IDX IVO III
062 082  062 082
ΐ^Λ BTV usv ΐ^Λ ^TV Π3ΐ nio na UT3 sAq sA OJJ dsy J¾ OJJ 3 ΐ ^ Λ BTV usv ΐ ^ Λ ^ TV Π3ΐ nio na UT3 sAq sA OJJ dsy J¾ OJJ 3
ZZQ 119 130 IVV 319 V30 VII OVO VI3 OVD VVV OVV V33 IVO VOV 333 丄丄丄 ZZQ 119 130 IVV 319 V30 VII OVO VI3 OVD VVV OVV V33 IVO VOV 333 丄 丄 丄
OLZ 59Z 09Z tOl0/S6df/XDd 69€tO/96 OAV Lys Arg Thr Gly Lys Gly Ala Val Arg l ie Ala Val Asp Met Val AsnOLZ 59Z 09Z tOl0 / S6df / XDd 69 € tO / 96 OAV Lys Arg Thr Gly Lys Gly Ala Val Arg lie Ala Val Asp Met Val Asn
420 425 430 435420 425 430 435
GAA GGG CTA ATT GAT ACT AGA ACA GCA ATT AAG AGG GTT GAG ACT CAA 1402GAA GGG CTA ATT GAT ACT AGA ACA GCA ATT AAG AGG GTT GAG ACT CAA 1402
Glu Gly Leu He Asp Thr Arg Thr Ala He Lys Arg Val Glu Thr Gin Glu Gly Leu He Asp Thr Arg Thr Ala He Lys Arg Val Glu Thr Gin
440 445 450  440 445 450
CAT CTA GAT CAG CTT CTT CAT CCA CAG TTT GAG GAT CCG TCT GCT TAC 1450 CAT CTA GAT CAG CTT CTT CAT CCA CAG TTT GAG GAT CCG TCT GCT TAC 1450
His Leu Asp Gin Leu Leu His Pro Gin Phe Glu Asp Pro Ser Ala Tyr His Leu Asp Gin Leu Leu His Pro Gin Phe Glu Asp Pro Ser Ala Tyr
455 460 465  455 460 465
AAA AGC CAT GTG GTA GCA ACC GGT TTG CCA GCA TCC CCC GGG GCA GCT 1498 AAA AGC CAT GTG GTA GCA ACC GGT TTG CCA GCA TCC CCC GGG GCA GCT 1498
Lys Ser His Val Val Ala Thr Gly Leu Pro Ala Ser Pro Gly Ala Ala Lys Ser His Val Val Ala Thr Gly Leu Pro Ala Ser Pro Gly Ala Ala
470 475 480  470 475 480
GTG GGA CAG GTT TGT TTT AGT GCA GAG GAT GCA GAA ACA TGG CAT GCA 1546 GTG GGA CAG GTT TGT TTT AGT GCA GAG GAT GCA GAA ACA TGG CAT GCA 1546
Val Gly Gin Val Cys Phe Ser Ala Glu Asp Ala Glu Thr Trp His Ala Val Gly Gin Val Cys Phe Ser Ala Glu Asp Ala Glu Thr Trp His Ala
485 490 495  485 490 495
CAA GGA AAG AGT GCT ATC TTG GTA AGG ACC GAA ACA AGC CCA GAA GAT 1594 CAA GGA AAG AGT GCT ATC TTG GTA AGG ACC GAA ACA AGC CCA GAA GAT 1594
Gin Gly Lys Ser Ala l ie Leu Val Arg Thr Glu Thr Ser Pro Glu AspGin Gly Lys Ser Ala lie Leu Val Arg Thr Glu Thr Ser Pro Glu Asp
500 505 510 515500 505 510 515
GTT GGT GGT ATG CAT GCA GCA GCT GGA ATC TTA ACC GCT AGA GGA GGC 1642GTT GGT GGT ATG CAT GCA GCA GCT GGA ATC TTA ACC GCT AGA GGA GGC 1642
Val Gly Gly Met His Ala Ala Ala Gly l ie Leu Thr Ala Arg Gly Gly Val Gly Gly Met His Ala Ala Ala Gly lie Leu Thr Ala Arg Gly Gly
520 525 530  520 525 530
ATG ACA TCA CAT GCA GCG GTG GTG GCT CGC GGA TGG GGC AAA TGT TGT 1690 ATG ACA TCA CAT GCA GCG GTG GTG GCT CGC GGA TGG GGC AAA TGT TGT 1690
Met Thr Ser His Ala Ala Val Val Ala Arg Gly Trp Gly Lys Cys Cys Met Thr Ser His Ala Ala Val Val Ala Arg Gly Trp Gly Lys Cys Cys
535 540 545  535 540 545
GTT TCC GGT TGT GCT GAT ATT CGT GTG AAC GAT GAT ATG AAG ATT TTT 1738 GTT TCC GGT TGT GCT GAT ATT CGT GTG AAC GAT GAT ATG AAG ATT TTT 1738
Val Ser Gly Cys Ala Asp l ie Arg Val Asn Asp Asp Met Lys l ie Phe Val Ser Gly Cys Ala Asp lie Arg Val Asn Asp Asp Met Lys lie Phe
550 555 560  550 555 560
ACG ATT GGC GAC CGT GTG ATT AAA GAA GGC GAC TGG CTT TCT CTT AAT 1786 ACG ATT GGC GAC CGT GTG ATT AAA GAA GGC GAC TGG CTT TCT CTT AAT 1786
Thr l ie Gly Asp Arg Val l ie Lys Glu Gly Asp Trp Leu Ser Leu Asn Thr l ie Gly Asp Arg Val lie Lys Glu Gly Asp Trp Leu Ser Leu Asn
565 570 575 PC / / 1 40 565 570 575 PC / / 1 40
27  27
GGT ACA ACT GGT GAA GTC ATA TTG GGT AAA CAG CTA CTG GCT CCA CCT 1834 GGT ACA ACT GGT GAA GTC ATA TTG GGT AAA CAG CTA CTG GCT CCA CCT 1834
Gly Thr Thr Gly Glu Val l ie Leu Gly Lys Gin Leu Leu Ala Pro Pro Gly Thr Thr Gly Glu Val lie Leu Gly Lys Gin Leu Leu Ala Pro Pro
580 585 590 595  580 585 590 595
GCA ATG AGC AAT GAC TTA GAA ATA TTC ATG TCA TGG GCT GAT CAA GCA 1882 GCA ATG AGC AAT GAC TTA GAA ATA TTC ATG TCA TGG GCT GAT CAA GCA 1882
Ala Met Ser Asn Asp Leu Glu l ie Phe Met Ser Trp Ala Asp Gin Ala Ala Met Ser Asn Asp Leu Glu lie Phe Met Ser Trp Ala Asp Gin Ala
600 605 610  600 605 610
AGG CGT CTC AAG GTT ATG GCA AAT GCA GAC ACA CCT AAT GAT GCA TTA 1930 AGG CGT CTC AAG GTT ATG GCA AAT GCA GAC ACA CCT AAT GAT GCA TTA 1930
Arg Arg Leu Lys Val Met Ala Asn Ala Asp Thr Pro Asn Asp Ala Leu Arg Arg Leu Lys Val Met Ala Asn Ala Asp Thr Pro Asn Asp Ala Leu
615 620 625  615 620 625
ACA GCC AGA AAC AAT GGT GCA CAA GGG ATC GGG CTC TGT AGA ACT GAA 1978 ACA GCC AGA AAC AAT GGT GCA CAA GGG ATC GGG CTC TGT AGA ACT GAA 1978
Thr Ala Arg Asn Asn Gly Ala Gin Gly l ie Gly Leu Cys Arg Thr Glu Thr Ala Arg Asn Asn Gly Ala Gin Gly lie Gly Leu Cys Arg Thr Glu
630 635 640  630 635 640
CAT ATG TTT TTC GCT TCT GAT GAG AGG ATC AAA GCT GTA AGA AAG ATG 2026 CAT ATG TTT TTC GCT TCT GAT GAG AGG ATC AAA GCT GTA AGA AAG ATG 2026
His Met Phe Phe Ala Ser Asp Glu Arg l ie Lys Ala Val Arg Lys Met His Met Phe Phe Ala Ser Asp Glu Arg lie Lys Ala Val Arg Lys Met
645 650 655  645 650 655
ATC ATG GCG GTC ACT CCA GAA CAA AGA AAA GTG GCT CTA GAT CTC TTA 2074 l ie Met Ala Val Thr Pro Glu Gin Arg Lys Val Ala Leu Asp Leu Leu  ATC ATG GCG GTC ACT CCA GAA CAA AGA AAA GTG GCT CTA GAT CTC TTA 2074 l ie Met Ala Val Thr Pro Glu Gin Arg Lys Val Ala Leu Asp Leu Leu
660 665 670 675  660 665 670 675
CTC CCA TAC CAA AGA TCC GAT TTT GAG GGC ATT TTC CGA GCA ATG GAT 2122 CTC CCA TAC CAA AGA TCC GAT TTT GAG GGC ATT TTC CGA GCA ATG GAT 2122
Leu Pro Tyr Gin Arg Ser Asp Phe Glu Gly l ie Phe Arg Ala Met Asp Leu Pro Tyr Gin Arg Ser Asp Phe Glu Gly lie Phe Arg Ala Met Asp
680 685 690  680 685 690
GGA CTT CCT GTA ACT ATC CGC CTT CTA GAC CCT CCA CTT CAT GAG TTT 2170 GGA CTT CCT GTA ACT ATC CGC CTT CTA GAC CCT CCA CTT CAT GAG TTT 2170
Gly Leu Pro Val Thr l ie Arg leu Leu Asp Pro Pro leu His Glu Phe Gly Leu Pro Val Thr lie Arg leu Leu Asp Pro Pro leu His Glu Phe
695 700 705  695 700 705
TTA CCC GAA GGT GAT CTA GAA CAC ATA GTG AAC GAA CTT GCA GTC GAC 2218 TTA CCC GAA GGT GAT CTA GAA CAC ATA GTG AAC GAA CTT GCA GTC GAC 2218
Leu Pro Glu Gly Asp Leu Glu His l ie Val Asn Glu Leu Ala Val Asp Leu Pro Glu Gly Asp Leu Glu His Lie Val Asn Glu Leu Ala Val Asp
710 715 720  710 715 720
ACA GGC ATG AGT GCA GAT GAA ATC TAT TCA AAA ATC GAA AAT CTA TCT 2266 ACA GGC ATG AGT GCA GAT GAA ATC TAT TCA AAA ATC GAA AAT CTA TCT 2266
Thr Gly Met Ser Ala Asp Glu l ie Tyr Ser Lys l ie Glu Asn Leu Ser 725 730 735 Thr Gly Met Ser Ala Asp Glu lie Tyr Ser Lys lie Glu Asn Leu Ser 725 730 735
GAA GTG AAC CCT ATG CTT GGT TTC CGT GGT TGC AGA TTA GGG ATT TCA 2314 Glu Val Asn Pro Met Leu Gly Phe Arg Gly Cys Arg Leu Gly He Ser 740 745 750 755 GAA GTG AAC CCT ATG CTT GGT TTC CGT GGT TGC AGA TTA GGG ATT TCA 2314 Glu Val Asn Pro Met Leu Gly Phe Arg Gly Cys Arg Leu Gly He Ser 740 745 750 755
TAC CCC GAG CTA ACA GAA ATG CAA GTT CGT GCG ATC TTT CAA GCT GCA 2362 Tyr Pro Glu Leu Thr Glu Met Gin Val Arg Ala He Phe Gin Ala Ala TAC CCC GAG CTA ACA GAA ATG CAA GTT CGT GCG ATC TTT CAA GCT GCA 2362 Tyr Pro Glu Leu Thr Glu Met Gin Val Arg Ala He Phe Gin Ala Ala
760 765 770  760 765 770
GTG TCT ATG ACC AAT CAG GGG GTG ACT GTA ATA CCA GAG ATC ATG GTT 2410 Val Ser Met Thr Asn Gin Gly Val Thr Val l ie Pro Glu l ie Met Val  GTG TCT ATG ACC AAT CAG GGG GTG ACT GTA ATA CCA GAG ATC ATG GTT 2410 Val Ser Met Thr Asn Gin Gly Val Thr Val lie Pro Glu lie Met Val
775 780 785  775 780 785
CCG TTA GTG GGG ACA CCT CAG GAA TTA CGT CAT CAA ATC ACT GTA ATT 2458 Pro Leu Val Gly Thr Pro Gin Glu Leu Arg His Gin He Ser Val l ie  CCG TTA GTG GGG ACA CCT CAG GAA TTA CGT CAT CAA ATC ACT GTA ATT 2458 Pro Leu Val Gly Thr Pro Gin Glu Leu Arg His Gin He Ser Val l ie
790 795 800  790 795 800
CGT GGA GTA GCT GCA AAT GTG TTT GCT GAA ATG GGG GTG ACA TTG GAA 2506 Arg Gly Val Ala Ala Asn Val Phe Ala Glu Met Gly Val Thr Leu Glu  CGT GGA GTA GCT GCA AAT GTG TTT GCT GAA ATG GGG GTG ACA TTG GAA 2506 Arg Gly Val Ala Ala Asn Val Phe Ala Glu Met Gly Val Thr Leu Glu
805 810 815  805 810 815
TAT AAA GTG GGA ACG ATG ATT GAG ATT CCT CGA GCT GCT TTA ATA GCT 2554 Tyr Lys Val Gly Thr Met l ie Glu l ie Pro Arg Ala Ala Leu l ie Ala 820 825 830 835 TAT AAA GTG GGA ACG ATG ATT GAG ATT CCT CGA GCT GCT TTA ATA GCT 2554 Tyr Lys Val Gly Thr Met lie Glu lie Pro Arg Ala Ala Leu lie Ala 820 825 830 830 835
GAA GAG ATT GGA AAA GAA GCT GAT TTC TTT TCG TTT GGA ACC AAT GAT 2602 Glu Glu l ie Gly Lys Glu Ala Asp Phe Phe Ser Phe Gly Thr Asn Asp GAA GAG ATT GGA AAA GAA GCT GAT TTC TTT TCG TTT GGA ACC AAT GAT 2602 Glu Glu lie Gly Lys Glu Ala Asp Phe Phe Ser Phe Gly Thr Asn Asp
840 845 850  840 845 850
CTG ACC CAG ATG ACA TTT GGG TAC AGC AGA GAT GAT GTT GGC AAG TTT 2650 Leu Thr Gin Met Thr Phe Gly Tyr Ser Arg Asp Asp Val Gly Lys Phe  CTG ACC CAG ATG ACA TTT GGG TAC AGC AGA GAT GAT GTT GGC AAG TTT 2650 Leu Thr Gin Met Thr Phe Gly Tyr Ser Arg Asp Asp Val Gly Lys Phe
855 860 865  855 860 865
TTG CAG ATT TAT CTT GCT CAA GGC ATT CTG CAG CAT GAT CCA TTT GAG 2698 Leu Gin l ie Tyr Leu Ala Gin Gly l ie Leu Gin His Asp Pro Phe Glu  TTG CAG ATT TAT CTT GCT CAA GGC ATT CTG CAG CAT GAT CCA TTT GAG 2698 Leu Gin lie Tyr Leu Ala Gin Gly lie Leu Gin His Asp Pro Phe Glu
870 875 880  870 875 880
GTT ATT GAC CAG AAA GGG GTG GGT CAG TTG ATT AAG ATG GCT ACG GAG 2746 Val He Asp Gin Lys Gly Val Gly Gin Leu l ie Lys Met Ala Thr GluGTT ATT GAC CAG AAA GGG GTG GGT CAG TTG ATT AAG ATG GCT ACG GAG 2746 Val He Asp Gin Lys Gly Val Gly Gin Leu lye Lys Met Ala Thr Glu
885 890 895 885 890 895
AAA GGT CGT GCA GCA AAT CCT AAC TTA AAG GTT GGG ATA TGT GGG GAG 2794 Lys Gly Arg Ala Ala Asn Pro Asn Leu Lys Val Gly He Cys Gly Glu 900 905 910 915 AAA GGT CGT GCA GCA AAT CCT AAC TTA AAG GTT GGG ATA TGT GGG GAG 2794 Lys Gly Arg Ala Ala Asn Pro Asn Leu Lys Val Gly He Cys Gly Glu 900 905 910 915
CAT GGT GGG GAG CCT TCT TCT GTT GCA TTT TTT GAT GGA GTT GGA CTA 2842 His Gly Gly Glu Pro Ser Ser Val Ala Phe Phe Asp Gly Val Gly Leu CAT GGT GGG GAG CCT TCT TCT GTT GCA TTT TTT GAT GGA GTT GGA CTA 2842 His Gly Gly Glu Pro Ser Ser Val Ala Phe Phe Asp Gly Val Gly Leu
920 925 930  920 925 930
GAT TAT GTG TCG TGC TCT CCA TTT AGG GTT CCT ATC GCA AGG TTG GCC 2890 Asp Tyr Val Ser Cys Ser Pro Phe Arg Val Pro l ie Ala Arg Leu Ala  GAT TAT GTG TCG TGC TCT CCA TTT AGG GTT CCT ATC GCA AGG TTG GCC 2890 Asp Tyr Val Ser Cys Ser Pro Phe Arg Val Pro lie Ala Arg Leu Ala
935 940 945  935 940 945
GCT GCA CAA GTC ATT GTT TAAGCTT 2915 Ala Ala Gin Val l ie Val  GCT GCA CAA GTC ATT GTT TAAGCTT 2915 Ala Ala Gin Val lie Val
950 配列番号: 2  950 SEQ ID NO: 2
配列の長さ : 2 8 8 0 Array length: 2 8 8 0
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CGGCGCAGTA GGGGATCGGA AGG ATG GCG GCA TCG GTT TCC AGG GCC ATC TGC 53  CGGCGCAGTA GGGGATCGGA AGG ATG GCG GCA TCG GTT TCC AGG GCC ATC TGC 53
Met Ala Ala Ser Val Ser Arg Ala l ie Cys 1 5 10 Met Ala Ala Ser Val Ser Arg Ala lie Cys 1 5 10
GTA CAG AAG CCG GGC TCA AAA TGC ACC AGG GAC AGG GAA GCG ACC TCC 101 Val Gin Lys Pro Gly Ser Lys Cys Thr Arg Asp Arg Glu Ala Thr Ser GTA CAG AAG CCG GGC TCA AAA TGC ACC AGG GAC AGG GAA GCG ACC TCC 101 Val Gin Lys Pro Gly Ser Lys Cys Thr Arg Asp Arg Glu Ala Thr Ser
15 20 25  15 20 25
TTC GCC CGC CGA TCG GTC GCA GCG CCG AGG CCC CCG CAC GCC AAA GCC 149 Phe Ala Arg Arg Ser Val Ala Ala Pro Arg Pro Pro His Ala Lys Ala  TTC GCC CGC CGA TCG GTC GCA GCG CCG AGG CCC CCG CAC GCC AAA GCC 149 Phe Ala Arg Arg Ser Val Ala Ala Pro Arg Pro Pro His Ala Lys Ala
30 35 40  30 35 40
CGC CGG CGT CAT CCG CTC CGA CTC CGG CGC GGG ACG GGG CCA CAT TGC 197 002 ¾6ΐ 06ΐCGC CGG CGT CAT CCG CTC CGA CTC CGG CGC GGG ACG GGG CCA CAT TGC 197 002 ¾6ΐ 06ΐ
3JV ηΐ3 ^TD s sAq eiv BTV η。Ί ^ΤΟ ^TV ^TV ΐ¾ "TO dsV usv naq3JV η ΐ3 ^ TD s sAq eiv BTV η . Ί ^ ΤΟ ^ TV ^ TV ΐ¾ "TO ds V usv naq
629 333 0V9 900 39V 3VV 339 030 DIO ODD 330 030 010 WO 3V3 OVV 313 m 081 5il 629 333 0V9 900 39V 3VV 339 030 DIO ODD 330 030 010 WO 3V3 OVV 313 m 081 5il
^ΐθ Η3Ί usv naq Λ J¾ dsy Αχο OJJ J3S Ι^Λ ^TV ^χν^ ΐθ Η3 Ί usv naq Λ J¾ dsy Αχο OJJ J3S Ι ^ Λ ^ TV ^ χν
185 093 013 DVV 313 910 33V 3V3 OIV OIV 300 333 OIV DDI 9ID 330 330185 093 013 DVV 313 910 33V 3V3 OIV OIV 300 333 OIV DDI 9ID 330 330
Oil G9I 091 591 χθ J9S 3jy ΪΒΛ J3S nsi nai OJJ 3JV UTO o^d DSV ^ΐθ ュ 8£ 300 DDI 303 DID 331 3X3 013 DID DD3 303 0V3 033 IV9 D90 013 33V Oil G9I 091 591 χθ J9S 3jy ΪΒΛ J3S nsi nai OJJ 3JV UTO o ^ d DS V ^ ΐθ Interview 8 £ 300 DDI 303 DID 331 3X3 013 DID DD3 303 0V3 033 IV9 D90 013 33V
09ΐ OH  09ΐ OH
BTV ΛΤΟ 13W ユ^ L nig cLt丄 UTO χο dsy A an \ BTV BTV ΛΤΟ 13W Yu ^ L nig cLt 丄 UTO χο dsy A an \ BTV
98^ 330 309 OIV 3V1 0V9 OVO 019 901 OVO 013 3D0 3V0 310 DIV 3V0 330
Figure imgf000032_0001
98 ^ 330 309 OIV 3V1 0V9 OVO 019 901 OVO 013 3D0 3V0 310 DIV 3V0 330
Figure imgf000032_0001
dJX nsq Αιο εχν OJJ na Βχν s Αχο εχν dsy 丄 uio u^j) SAQ ^ 301 313 000 933 333 313 339 DDI 900 330 3V9 3V3 DVI 0V3 0V3 391  dJX nsq Αιο εχν OJJ na Βχν s Αχο εχν dsy 丄 uio u ^ j) SAQ ^ 301 313 000 933 333 313 313 339 DDI 900 330 3V9 3V3 DVI 0V3 0V3 391
02ΐ 9Π 0Π 02ΐ 9Π 0Π
^TV ηΐ3 JSS ΐ^Λ J ^Md ^TO QJd ojj iB J3S naq Αχο 3Π -i3S^ TV η ΐ3 JSS ΐ ^ Λ J ^ Md ^ TO QJd ojj iB J3S naq Αχο 3Π -i3S
686 9D0 OVO 03V 931 913 03V DII 000 V30 933 019 031 OID 903 3IV DOV 686 9D0 OVO 03V 931 913 03V DII 000 V30 933 019 031 OID 903 3IV DOV
50ΐ 00ΐ 96  50ΐ 00ΐ 96
BTV l^K "TO BTV n9i usy eIV ^TO sAq Αχ ^10 η9Ί nal nlD s 1 jaw in 9D9 OIV OVO 330 OID DVV 930 300 OVV DOO DOO 013 OID WO OVV OXV BTV l ^ K "TO BTV n9i usy e IV ^ TO sAq Αχ ^ 10 η9 Ί na l n lD s 1 jaw in 9D9 OIV OVO 330 OID DVV 930 300 OVV DOO DOO 013 OID WO OVV OXV
06 98 08 Qi 06 98 08 Qi
: i usy ^ΐθ nio J9S sA Αχο sAq Λχο 3qj STH sqj ΙΒΛ S^V sAq: I usy ^ ΐθ nio J9S sA Αχο sAq Λχο 3qj STH sqj ΙΒΛ S ^ V sAq
S62 33V OVV OVV 303 OVO 30V OVV 300 9VV 300 311 DVD Oil 010 99V OVV S62 33V OVV OVV 303 OVO 30V OVV 300 9VV 300 311 DVD Oil 010 99V OVV
OZ S9 09 s q jqi Jqi UTO 3Π 。·¾ v ^TV dsy T^A ΐ^Λ ^TV V Η3Ί OJd J3SOZ S9 09 sq jqi Jqi UTO 3Π. · ¾ v ^ TV dsy T ^ A ΐ ^ Λ ^ TV V Η3 Ί OJd J3S
VVV 33V 03V 0V3 VIV 033 030 330 DV9 IID 319 333 OOV 913 033 931 VVV 33V 03V 0V3 VIV 033 030 330 DV9 IID 319 333 OOV 913 033 931
55 05 ^  55 05 ^
SAQ S T^ OJJ ij) _r 丄 TJ) 3jy S^V n9 S-^V ηθ1 OJJ S TJ{ gjy SAQ ST ^ OJJ ij) _r丄TJ) 3jy S ^ V n9 S- ^ V ηθ 1 OJJ S TJ {gjy
OSOS
P0l0IS6dTILDd 69 W/96 OAV TTC GCC TAC GAC TCC TTC CGC CGC TTC CTC GAC ATG TTC GGC AAC GTC 677 Phe Ala Tyr Asp Ser Phe Arg Arg Phe Leu Asp Met Phe Gly Asn Val P0l0IS6dTILDd 69 W / 96 OAV TTC GCC TAC GAC TCC TTC CGC CGC TTC CTC GAC ATG TTC GGC AAC GTC 677 Phe Ala Tyr Asp Ser Phe Arg Arg Phe Leu Asp Met Phe Gly Asn Val
205 210 215  205 210 215
GTC ATG GAC ATC CCC CGC TCA CTG TTC GAA GAG AAG CTT GAG CAC ATG 725 Val Met Asp l ie Pro Arg Ser Leu Phe Glu Glu Lys Leu Glu His Met  GTC ATG GAC ATC CCC CGC TCA CTG TTC GAA GAG AAG CTT GAG CAC ATG 725 Val Met Asp lie Pro Arg Ser Leu Phe Glu Glu Lys Leu Glu His Met
220 225 230  220 225 230
AAG GAA TCC AAG GGG CTG AAG AAC GAC ACC GAC CTC ACG GCC TCT GAC 773 Lys Glu Ser Lys Gly Leu Lys Asn Asp Thr Asp Leu Thr Ala Ser Asp 235 240 245 250 AAG GAA TCC AAG GGG CTG AAG AAC GAC ACC GAC CTC ACG GCC TCT GAC 773 Lys Glu Ser Lys Gly Leu Lys Asn Asp Thr Asp Leu Thr Ala Ser Asp 235 240 245 250
CTC AAA GAG CTC GTG GGT CAG TAC AAG GAG GTC TAC CTC TCA GCC AAG 821 Leu Lys Glu Leu Val Gly Gin Tyr Lys Glu Val Tyr Leu Ser Ala Lys CTC AAA GAG CTC GTG GGT CAG TAC AAG GAG GTC TAC CTC TCA GCC AAG 821 Leu Lys Glu Leu Val Gly Gin Tyr Lys Glu Val Tyr Leu Ser Ala Lys
255 260 265  255 260 265
GGA GAG CCA TTC CCC TCA GAC CCC AAG AAG CAG CTG GAG CTA GCA GTG 869 Gly Glu Pro Phe Pro Ser Asp Pro Lys Lys Gin Leu Glu Leu Ala Val  GGA GAG CCA TTC CCC TCA GAC CCC AAG AAG CAG CTG GAG CTA GCA GTG 869 Gly Glu Pro Phe Pro Ser Asp Pro Lys Lys Gin Leu Glu Leu Ala Val
270 275 280  270 275 280
CTG GCT GTG TTC AAC TCG TGG GAG AGC CCC AGG GCC AAG AAG TAC AGG 917 Leu Ala Val Phe Asn Ser Trp Glu Ser Pro Arg Ala Lys Lys Tyr Arg  CTG GCT GTG TTC AAC TCG TGG GAG AGC CCC AGG GCC AAG AAG TAC AGG 917 Leu Ala Val Phe Asn Ser Trp Glu Ser Pro Arg Ala Lys Lys Tyr Arg
285 290 295  285 290 295
AGC ATC AAC CAG ATC ACT GGC CTC AGG GGC ACC GCC GTG AAC GTG CAG 965 Ser l ie Asn Gin l ie Thr Gly Leu Arg Gly Thr Ala Val Asn Val Gin  AGC ATC AAC CAG ATC ACT GGC CTC AGG GGC ACC GCC GTG AAC GTG CAG 965 Ser lie Asn Gin lie Thr Gly Leu Arg Gly Thr Ala Val Asn Val Gin
300 305 310  300 305 310
TGC ATG GTG TTC GGC AAC ATG GGG AAC ACT TCT GGC ACC GGC GTG CTC 1013 Cys Met Val Phe Gly Asn Met Gly Asn Thr Ser Gly Thr Gly Val Leu  TGC ATG GTG TTC GGC AAC ATG GGG AAC ACT TCT GGC ACC GGC GTG CTC 1013 Cys Met Val Phe Gly Asn Met Gly Asn Thr Ser Gly Thr Gly Val Leu
315 320 325 330315 320 325 330
TTC ACC AGG AAC CCC AAC ACC GGA GAG AAG AAG CTG TAT GGC GAG TTC 1061 Phe Thr Arg Asn Pro Asn Thr Gly Glu Lys Lys Leu Tyr Gly Glu Phe TTC ACC AGG AAC CCC AAC ACC GGA GAG AAG AAG CTG TAT GGC GAG TTC 1061 Phe Thr Arg Asn Pro Asn Thr Gly Glu Lys Lys Leu Tyr Gly Glu Plu
335 340 345  335 340 345
CTG GTG AAC GCT CAG GGT GAG GAT GTG GTT GCC GGA ATA AGA ACC CCA 1109 Leu Val Asn Ala Gin Gly Glu Asp Val Val Ala Gly l ie Arg Thr Pro 350 355 360 CTG GTG AAC GCT CAG GGT GAG GAT GTG GTT GCC GGA ATA AGA ACC CCA 1109 Leu Val Asn Ala Gin Gly Glu Asp Val Val Ala Gly lie Arg Thr Pro 350 355 360
GAG GAC CTT GAC GCC ATG AAG AAC CTC ATG CCA CAG GCC TAC GAC GAG 1157 GAG GAC CTT GAC GCC ATG AAG AAC CTC ATG CCA CAG GCC TAC GAC GAG 1157
Glu Asp Leu Asp Ala Met Lys Asn Leu Met Pro Gin Ala Tyr Asp Glu Glu Asp Leu Asp Ala Met Lys Asn Leu Met Pro Gin Ala Tyr Asp Glu
365 370 375  365 370 375
CTT GTT GAG AAC TGC AAC ATC CTG GAG AGC CAC TAC AAG GAA ATG CAG 1205 CTT GTT GAG AAC TGC AAC ATC CTG GAG AGC CAC TAC AAG GAA ATG CAG 1205
Leu Val Glu Asn Cys Asn l ie Leu Glu Ser His Tyr Lys Glu Met Gin Leu Val Glu Asn Cys Asn lie Leu Glu Ser His Tyr Lys Glu Met Gin
380 385 390  380 385 390
GAT ATC GAG TTC ACT GTC CAG GAA AAC AGG CTG TGG ATG TTG CAG TGC 1253 GAT ATC GAG TTC ACT GTC CAG GAA AAC AGG CTG TGG ATG TTG CAG TGC 1253
Asp l ie Glu Phe Thr Val Gin Glu Asn Arg Leu Trp Met Leu Gin Cys 395 400 405 410Asp lie Glu Phe Thr Val Gin Glu Asn Arg Leu Trp Met Leu Gin Cys 395 400 405 410
AGG ACA GGG AAA CGT ACG GGC AAA ACT GCC GTG AAG ATC GCC GTG GAC 1301AGG ACA GGG AAA CGT ACG GGC AAA ACT GCC GTG AAG ATC GCC GTG GAC 1301
Arg Thr Gly Lys Arg Thr Gly Lys Ser Ala Val Lys l ie Ala Val Asp Arg Thr Gly Lys Arg Thr Gly Lys Ser Ala Val Lys lie Ala Val Asp
415 420 425  415 420 425
ATG GTT AAC GAG GGC CTT GTT GAG CCC CGC TCA GCG ATC AAG ATG GTA 1349 ATG GTT AAC GAG GGC CTT GTT GAG CCC CGC TCA GCG ATC AAG ATG GTA 1349
Met Val Asn Glu Gly Leu Val Glu Pro Arg Ser Ala l ie Lys Met Val Met Val Asn Glu Gly Leu Val Glu Pro Arg Ser Ala lie Lys Met Val
430 435 440  430 435 440
GAG CCA GGC CAC CTG GAC CAG CTT CTT CAT CCT CAG TTT GAG AAC CCG 1397 GAG CCA GGC CAC CTG GAC CAG CTT CTT CAT CCT CAG TTT GAG AAC CCG 1397
Glu Pro Gly His Leu Asp Gin Leu Leu His Pro Gin Phe Glu Asn Pro Glu Pro Gly His Leu Asp Gin Leu Leu His Pro Gin Phe Glu Asn Pro
445 450 455  445 450 455
TCG GCG TAC AAG GAT CAA GTC ATT GCC ACT GGT CTG CCA GCC TCA CCT 1445 TCG GCG TAC AAG GAT CAA GTC ATT GCC ACT GGT CTG CCA GCC TCA CCT 1445
Ser Ala Tyr Lys Asp Gin Val l ie Ala Thr Gly Leu Pro Ala Ser Pro Ser Ala Tyr Lys Asp Gin Val lie Ala Thr Gly Leu Pro Ala Ser Pro
460 465 470  460 465 470
GGG GCT GCT GTG GGC CAG GTT GTG TTC ACT GCT GAA GAT GCT GAA GCA 1493 GGG GCT GCT GTG GGC CAG GTT GTG TTC ACT GCT GAA GAT GCT GAA GCA 1493
Gly Ala Ala Val Gly Gin Val Val Phe Thr Ala Glu Asp Ala Glu Ala 475 480 485 490Gly Ala Ala Val Gly Gin Val Val Phe Thr Ala Glu Asp Ala Glu Ala 475 480 485 490
TGG CAT TCC CAA GGG AAA GCT GCT ATT CTG GTA AGG GCG GAG ACC AGC 1541TGG CAT TCC CAA GGG AAA GCT GCT ATT CTG GTA AGG GCG GAG ACC AGC 1541
Trp His Ser Gin Gly Lys Ala Ala l ie Leu Val Arg Ala Glu Thr Ser Trp His Ser Gin Gly Lys Ala Ala lie Leu Val Arg Ala Glu Thr Ser
495 500 505  495 500 505
CCT GAG GAC GTT GGT GGC ATG CAC GCT GCT GTG GGG ATT CTT ACA GAG 1589 599 099 599 n9i
Figure imgf000035_0001
is« "TO 3
CCT GAG GAC GTT GGT GGC ATG CAC GCT GCT GTG GGG ATT CTT ACA GAG 1589 599 099 599 n9i
Figure imgf000035_0001
is «" TO 3
1202 313 030 0V3 9V3 09V DID OVO 113 33V 333 130 OIV IIV OIV OVO 00V 0¾9 9 5S9 Λ BIV sAq an 3JV ητθ dsy ュ ss BTV sqd 3Md i^W SIH jqi §jy 8A6I 310 130 OVV IIV 30V OVO 3V3 VOX 130 ILL 3丄丄 OIV 3V3 OVO V3V D03 1202 313 030 0V3 9V3 09V DID OVO 113 33V 333 130 OIV IIV OIV OVO 00V 0¾9 9 5S9 Λ BIV sAq an 3JV ητθ dsy ss BTV sqd 3Md i ^ W SIH jqi §jy 8A6I 310 130 OVVIIV 30V 130V 3 丄 丄 OIV 3V3 OVO V3V D03
089 529 0Z9 s i½i Αχο sn H "TO ^TV ^TD usy usy SJV ^iv -iqi ns dsy 089 529 0Z9 s i½i Αχο sn H "TO ^ TV ^ TD usy usy SJV ^ iv -iqi ns dsy
9Ζ6Ϊ 301 VLL VOO IIV VOO VV3 V30 000 IVV 3VV V03 333 I3V Oil V39 IVO 9Ζ6Ϊ 301 VLL VOO IIV VOO VV3 V30 000 IVV 3VV V03 333 I3V Oil V39 IVO
919 019 ¾09 dsy OJJ :rii丄 dsy Βχν usy εχν naq
Figure imgf000035_0002
dsy dsy
919 019 ¾09 dsy OJJ: rii 丄 dsy Βχν usy εχν naq
Figure imgf000035_0002
dsy dsy
LL \ IVO 133 33V XVO 330 3VV 133 013 310 OVV 313 9VV VOV 119 IVO 丄 V3 LL \ IVO 133 33V XVO 330 3VV 133 013 310 OVV 313 9VV VOV 119 IVO 丄 V3
009 569 069  009 569 069
ΐ¾ dJi BTV 1SW 3Md JMI 3 naq dsy Α ο jag naq Βχγ oaj
Figure imgf000035_0003
s
ΐ¾ dJi BTV 1SW 3Md JMI 3 naq dsy Α ο jag naq Βχγ oaj
Figure imgf000035_0003
s
6Z8I 010 001 330 OIV 311 XDV VOO 013 IVO 130 I3V 113 033 VDD V33 DDI 6Z8I 010 001 330 OIV 311 XDV VOO 013 IVO 130 I3V 113 033 VDD V33 DDI
589 085  589 085
n9i ojd uio sAi Ai3 ns d\ \ ΙΒΛ "TO ^IO J9S ^13 usy nsq iasn9i ojd uio sAi Ai3 ns d \ \ ΙΒΛ "TO ^ IO J9 S ^ 13 usy nsq ias
18 I 113 033 0V3 OVV 903 lid DIV 010 9V3 100 13V 031 933 IVV 913 031 0 595 099 99518 I 113 033 0V3 OVV 903 lid DIV 010 9V3 100 13V 031 933 IVV 913 031 0 595 099 995
"31 dJ丄 ηχο Ai9 3jy na τ^Λ SJH S ^ΐθ 9T I ^Mi ΐ^Λ "91 sAq εεπ 013 oox ovo 109 wo αοα οια oio ivo DOV VOO 3丄 V OOV OIO OIO OVV "31 dJ 丄 ηχο Ai9 3jy na τ ^ Λ SJH S ^ ΐθ 9T I ^ Mi ΐ ^ Λ" 91 sAq εεπ 013 oox ovo 109 wo αοα οια oio ivo DOV VOO 3 丄 V OOV OIO OIO OVV
055 5^9 0^5 055 5 ^ 9 0 ^ 5
"TO BTV dsy usy T^A v 3ΐ Ι ^IO s AJO JSS i¾A s sAq"TO BTV dsy usy T ^ A v 3ΐ Ι ^ IO s AJO JSS i¾A s sAq
5891 DVO 030 XVO 3VV VI9 303 XIV 390 VDX 391 VOO 031 313 331 331 VVV 5891 DVO 030 XVO 3VV VI9 303 XIV 390 VDX 391 VOO 031 313 331 331 VVV
525 089 929  525 089 929
^ΐθ 丄 djx gjy BTV ΐ^Λ ΐ^Λ ^TV ^TV SIH J3S Jqi ISW ^το ^ΐθ 3JV Ζ£9ΐ 900 031 ODX 1D3 V30 310 910 130 130 3V3 DDI 13V OIV 300 103 09V ^ ΐθ 丄 djx gjy BTV ΐ ^ Λ ΐ ^ Λ ^ TV ^ TV SIH J3S Jqi ISW ^ το ^ ΐθ 3J V Ζ £ 9ΐ 900 031 ODX 1D3 V30 310 910 130 130 3V3 DDI 13V OIV 300 103 09V
029 919 015  029 919 015
ΠΤΟ -iqi nai an BTV BTV SIR 3K ^TD ^IO ΐ^Λ dsy ηχο OJJ εε ΠΤΟ -iqi nai an BTV BTV SIR 3K ^ TD ^ IO ΐ ^ Λ dsy ηχο OJJ εε
PQl0JS6dF/lDd 69£ 96 O GAC CGT CTC TTG ACG TAT CAG AGG TCT GAC TTC GAA GGC ATT TTC CGT 2069 Asp Arg Leu Leu Thr Tyr Gin Arg Ser Asp Phe Glu Gly l ie Phe Arg PQl0JS6dF / lDd 69 £ 96 O GAC CGT CTC TTG ACG TAT CAG AGG TCT GAC TTC GAA GGC ATT TTC CGT 2069 Asp Arg Leu Leu Thr Tyr Gin Arg Ser Asp Phe Glu Gly lie Phe Arg
670 675 680  670 675 680
GCT ATG GAT GGA CTC CCG GTG ACC ATC CGA CTC CTG GAC CAT CCT TCT 2117 Ala Met Asp Gly Leu Pro Val Thr l ie Arg Leu Leu Asp His Pro Ser  GCT ATG GAT GGA CTC CCG GTG ACC ATC CGA CTC CTG GAC CAT CCT TCT 2117 Ala Met Asp Gly Leu Pro Val Thr lie Arg Leu Leu Asp His Pro Ser
685 690 695  685 690 695
TAC GAG TTC CTT CCA GAA GGG AAC ATC GAG GAC ATT GTA AGT GAA TTA 2165 Tyr Glu Phe Leu Pro Glu Gly Asn l ie Glu Asp l ie Val Ser Glu Leu  TAC GAG TTC CTT CCA GAA GGG AAC ATC GAG GAC ATT GTA AGT GAA TTA 2165 Tyr Glu Phe Leu Pro Glu Gly Asn lie Glu Asp lie Val Ser Glu Leu
700 705 710  700 705 710
TGT GCT GAG ACG GGA GCC AAC CAG GAG GAT GCC CTC GCG CGA ATT GAA 2213 Cys Ala Glu Thr Gly Ala Asn Gin Glu Asp Ala Leu Ala Arg l ie Glu 715 720 725 730 TGT GCT GAG ACG GGA GCC AAC CAG GAG GAT GCC CTC GCG CGA ATT GAA 2213 Cys Ala Glu Thr Gly Ala Asn Gin Glu Asp Ala Leu Ala Arg lie Glu 715 720 725 730
AAG CTT TCA GAA GTA AAC CCG ATG CTT GGC TTC CGT GGG TGC AGG CTT 2261 Lys Leu Ser Glu Val Asn Pro Met Leu Gly Phe Arg Gly Cys Arg Leu AAG CTT TCA GAA GTA AAC CCG ATG CTT GGC TTC CGT GGG TGC AGG CTT 2261 Lys Leu Ser Glu Val Asn Pro Met Leu Gly Phe Arg Gly Cys Arg Leu
735 740 745  735 740 745
GGT ATA TCG TAC CCT GAA TTG ACA GAG ATG CAA GCC CGG GCC ATT TTT 2309 Gly He Ser Tyr Pro Glu Leu Thr Glu Met Gin Ala Arg Ala l ie Phe  GGT ATA TCG TAC CCT GAA TTG ACA GAG ATG CAA GCC CGG GCC ATT TTT 2309 Gly He Ser Tyr Pro Glu Leu Thr Glu Met Gin Ala Arg Ala lie Phe
750 755 760  750 755 760
GAA GCT GCT ATA GCA ATG ACC AAC CAG GGT GTT CAA GTG TTC CCA GAG 2357 Glu Ala Ala l ie Ala Met Thr Asn Gin Gly Val Gin Val Phe Pro Glu  GAA GCT GCT ATA GCA ATG ACC AAC CAG GGT GTT CAA GTG TTC CCA GAG 2357 Glu Ala Ala lie Ala Met Thr Asn Gin Gly Val Gin Val Phe Pro Glu
765 770 775  765 770 775
ATA ATG GTT CCT CTT GTT GGA ACA CCA CAG GAA CTG GGG CAT CAA GTG 2405 l ie Met Val Pro Leu Val Gly Thr Pro Gin Glu Leu Gly His Gin Val  ATA ATG GTT CCT CTT GTT GGA ACA CCA CAG GAA CTG GGG CAT CAA GTG 2405 l ie Met Val Pro Leu Val Gly Thr Pro Gin Glu Leu Gly His Gin Val
780 785 790  780 785 790
ACT CTT ATC CGC CAA GTT GCT GAG AAA GTG TTC GCC AAT GTG GGC AAG 2453 Thr Leu l ie Arg Gin Val Ala Glu Lys Val Phe Ala Asn Val Gly Lys 795 800 805 810 ACT CTT ATC CGC CAA GTT GCT GAG AAA GTG TTC GCC AAT GTG GGC AAG 2453 Thr Leu lie Arg Gin Val Ala Glu Lys Val Phe Ala Asn Val Gly Lys 795 800 805 810
ACT ATC GGG TAC AAA GTT GGA ACA ATG ATT GAG ATC CCC AGG GCA GCT 2501 Thr He Gly Tyr Lys Val Gly Thr Met l ie Glu l ie Pro Arg Ala Ala 815 820 825 ACT ATC GGG TAC AAA GTT GGA ACA ATG ATT GAG ATC CCC AGG GCA GCT 2501 Thr He Gly Tyr Lys Val Gly Thr Met lie Glu lie Pro Arg Ala Ala 815 820 825
CTG GTG GCT GAT GAG ATA GCG GAG CAG GCT GAA TTC TTC TCC TTC GGA 2549 Leu Val Ala Asp Glu l ie Ala Glu Gin Ala Glu Phe Phe Ser Phe Gly  CTG GTG GCT GAT GAG ATA GCG GAG CAG GCT GAA TTC TTC TCC TTC GGA 2549 Leu Val Ala Asp Glu lie Ala Glu Gin Ala Glu Phe Phe Ser Phe Gly
830 835 840  830 835 840
ACG AAC GAC CTG ACG CAG ATG ACC TTT GGG TAC AGC AGG GAT GAT GTG 2597 Thr Asn Asp Leu Thr Gin Met Thr Phe Gly Tyr Ser Arg Asp Asp Val  ACG AAC GAC CTG ACG CAG ATG ACC TTT GGG TAC AGC AGG GAT GAT GTG 2597 Thr Asn Asp Leu Thr Gin Met Thr Phe Gly Tyr Ser Arg Asp Asp Val
845 850 855  845 850 855
GGA AAG TTC ATT CCC GTT CAT CTT GCT CAG GGC ATC CTC CAA CAT GAC 2645 Gly Lys Phe l ie Pro Val His Leu Ala Gin Gly l ie Leu Gin His Asp  GGA AAG TTC ATT CCC GTT CAT CTT GCT CAG GGC ATC CTC CAA CAT GAC 2645 Gly Lys Phe lie Pro Val His Leu Ala Gin Gly lie Leu Gin His Asp
860 865 870  860 865 870
CCC TTC GAG GTC CTG GAC CAG AGG GGA GTG GGC GAG CTG GTG AAG TTT 2693 Pro Phe Glu Val Leu Asp Gin Arg Gly Val Gly Glu Leu Val Lys Phe 875 880 885 890 CCC TTC GAG GTC CTG GAC CAG AGG GGA GTG GGC GAG CTG GTG AAG TTT 2693 Pro Phe Glu Val Leu Asp Gin Arg Gly Val Gly Glu Leu Val Lys Phe 875 880 885 890
GCT ACA GAG AGG GGC CGC AAA GCT AGG CCT AAC TTG AAG GTG GGC ATT 2741 Ala Thr Glu Arg Gly Arg Lys Ala Arg Pro Asn Leu Lys Val Gly He GCT ACA GAG AGG GGC CGC AAA GCT AGG CCT AAC TTG AAG GTG GGC ATT 2741 Ala Thr Glu Arg Gly Arg Lys Ala Arg Pro Asn Leu Lys Val Gly He
895 900 905  895 900 905
TGT GGA GAA CAC GGT GGA GAG CCT TCG TCT GTG GCC TTC TTC GCG AAG 2789 Cys Gly Glu His Gly Gly Glu Pro Ser Ser Val Ala Phe Phe Ala Lys  TGT GGA GAA CAC GGT GGA GAG CCT TCG TCT GTG GCC TTC TTC GCG AAG 2789 Cys Gly Glu His Gly Gly Glu Pro Ser Ser Val Ala Phe Phe Ala Lys
910 915 920  910 915 920
GCT GGG CTG GAT TTC GTT TCT TGC TCC CCT TTC AGG GTT CCG ATT GCT 2837 Ala Gly Leu Asp Phe Val Ser Cys Ser Pro Phe Arg Val Pro He Ala  GCT GGG CTG GAT TTC GTT TCT TGC TCC CCT TTC AGG GTT CCG ATT GCT 2837 Ala Gly Leu Asp Phe Val Ser Cys Ser Pro Phe Arg Val Pro He Ala
925 930 935  925 930 935
AGG CTA GCT GCA GCT CAG GTG CTT GTC TGAGGCTGCC TCCTCG 2880 Arg Leu Ala Ala Ala Gin Val Leu Val  AGG CTA GCT GCA GCT CAG GTG CTT GTC TGAGGCTGCC TCCTCG 2880 Arg Leu Ala Ala Ala Gin Val Leu Val
940 945 配列番号: 3  940 945 SEQ ID NO: 3
配列の長さ : 2 6 1 0 Array length: 2 6 1 0
配列の型:核酸 配列 Sequence type: nucleic acid Array
GAATTCTCAA TCCTTTGCTC ATCGCAGCAT ATCAATGTTA ACACATAAAC TTTAGGAGGA 60 AGAAAACTT ATG GCA AAA TGG GTT TAT AAG TTC GAA GAA GGC AAT GCA TCT 11 1  GAATTCTCAA TCCTTTGCTC ATCGCAGCAT ATCAATGTTA ACACATAAAC TTTAGGAGGA 60 AGAAAACTT ATG GCA AAA TGG GTT TAT AAG TTC GAA GAA GGC AAT GCA TCT 11 1
Met Ala Lys Trp Val Tyr Lys Phe Glu Glu Gly Asn Ala Ser 1 5 10  Met Ala Lys Trp Val Tyr Lys Phe Glu Glu Gly Asn Ala Ser 1 5 10
ATG AGA AAC CTT CTT GGA GGC AAA GGC TGC AAC CTT GCA GAG ATG ACC 159 ATG AGA AAC CTT CTT GGA GGC AAA GGC TGC AAC CTT GCA GAG ATG ACC 159
Met Arg Asn Leu Leu Gly Gly Lys Gly Cys Asn Leu Ala Glu Met Thr 15 20 25 30 Met Arg Asn Leu Leu Gly Gly Lys Gly Cys Asn Leu Ala Glu Met Thr 15 20 25 30
ATC TTA GGA ATG CCG ATT CCA CAG GGC TTT ACT GTA ACA ACA GAA GCT 207 l ie Leu Gly Met Pro l ie Pro Gin Gly Phe Thr Val Thr Thr Glu Ala  ATC TTA GGA ATG CCG ATT CCA CAG GGC TTT ACT GTA ACA ACA GAA GCT 207 l ie Leu Gly Met Pro lie Pro Gin Gly Phe Thr Val Thr Thr Glu Ala
35 40 45  35 40 45
TGT ACA GAG TAC TAC AAC AGT GGA AAA CAG ATC ACA CAG GAA ATT CAG 255 TGT ACA GAG TAC TAC AAC AGT GGA AAA CAG ATC ACA CAG GAA ATT CAG 255
Cys Thr Glu Tyr Tyr Asn Ser Gly Lys Gin l ie Thr Gin Glu l ie Gin Cys Thr Glu Tyr Tyr Asn Ser Gly Lys Gin lie Thr Gin Glu lie Gin
50 55 60  50 55 60
GAT CAG ATT TTC GAA GCT ATC ACA TGG TTA GAG GAA CTG AAC GGC AAG 303 GAT CAG ATT TTC GAA GCT ATC ACA TGG TTA GAG GAA CTG AAC GGC AAG 303
Asp Gin l ie Phe Glu Ala l ie Thr Trp Leu Glu Glu Leu Asn Gly Lys Asp Gin lie Phe Glu Ala lie Thr Trp Leu Glu Glu Leu Asn Gly Lys
65 70 75  65 70 75
AAG TTC GGC GAC ACT GAA GAT CCG TTA TTA GTA TCT GTA CGT TCC GCG 351 AAG TTC GGC GAC ACT GAA GAT CCG TTA TTA GTA TCT GTA CGT TCC GCG 351
Lys Phe Gly Asp Thr Glu Asp Pro Leu Leu Val Ser Val Arg Ser Ala Lys Phe Gly Asp Thr Glu Asp Pro Leu Leu Val Ser Val Arg Ser Ala
80 85 90  80 85 90
GCC CGC GCA TCC ATG CCG GGT ATG ATG GAT ACC ATC CTG AAC CTT GGT 399 GCC CGC GCA TCC ATG CCG GGT ATG ATG GAT ACC ATC CTG AAC CTT GGT 399
Ala Arg Ala Ser Met Pro Gly Met Met Asp Thr l ie leu Asn Leu Gly 95 100 105 110Ala Arg Ala Ser Met Pro Gly Met Met Asp Thr lie leu Asn Leu Gly 95 100 105 110
TTA AAC GAC GTT GCA GTA GAG GGC TTT GCA AAG AAA ACG GGA AAT CCA 447TTA AAC GAC GTT GCA GTA GAG GGC TTT GCA AAG AAA ACG GGA AAT CCA 447
Leu Asn Asp Val Ala Val Glu Gly Phe Ala Lys Lys Thr Gly Asn Pro Leu Asn Asp Val Ala Val Glu Gly Phe Ala Lys Lys Thr Gly Asn Pro
115 120 125  115 120 125
AGA TTT GCA TAT GAT TCT TAC AGA AGA TTT ATC CAG ATG TAT TCC GAC 495 AGA TTT GCA TAT GAT TCT TAC AGA AGA TTT ATC CAG ATG TAT TCC GAC 495
Arg Phe Ala Tyr Asp Ser Tyr Arg Arg Phe l ie Gin Met Tyr Ser Asp Arg Phe Ala Tyr Asp Ser Tyr Arg Arg Phe lie Gin Met Tyr Ser Asp
130 135 140 GTA GTT ATG GAA GTT CCG AAG TCC CAT TTC GAG AAA ATC ATC GAT GCG 543130 135 140 GTA GTT ATG GAA GTT CCG AAG TCC CAT TTC GAG AAA ATC ATC GAT GCG 543
Val Val Met Glu Val Pro Lys Ser His Phe Glu Lys l ie l ie Asp Ala Val Val Met Glu Val Pro Lys Ser His Phe Glu Lys lie lie Asp Ala
145 150 155  145 150 155
ATG AAA GAA GAA AAG GGC GTT CAC TTC GAT ACA GAC CTG ACT GCC GAT 591 ATG AAA GAA GAA AAG GGC GTT CAC TTC GAT ACA GAC CTG ACT GCC GAT 591
Met Lys Glu Glu Lys Gly Val His Phe Asp Thr Asp Leu Thr Ala Asp Met Lys Glu Glu Lys Gly Val His Phe Asp Thr Asp Leu Thr Ala Asp
160 165 170  160 165 170
GAT TTA AAA GAG CTG GCT GAG AAG TTC AAA GCT GTT TAC AAA GAG GCT 639 GAT TTA AAA GAG CTG GCT GAG AAG TTC AAA GCT GTT TAC AAA GAG GCT 639
Asp Leu Lys Glu Leu Ala Glu Lys Phe Lys Ala Val Tyr Lys Glu Ala Asp Leu Lys Glu Leu Ala Glu Lys Phe Lys Ala Val Tyr Lys Glu Ala
175 180 185 190 175 180 185 190
ATG AAC GGC GAA GAG TTC CCA CAG GAG CCG AAG GAT CAG TTA ATG GGC 687ATG AAC GGC GAA GAG TTC CCA CAG GAG CCG AAG GAT CAG TTA ATG GGC 687
Met Asn Gly Glu Glu Phe Pro Gin Glu Pro Lys Asp Gin Leu Met Gly Met Asn Gly Glu Glu Phe Pro Gin Glu Pro Lys Asp Gin Leu Met Gly
195 200 205  195 200 205
GCT GTT AAA GCA GTT TTC CGT TCC TGG GAC AAC CCT CGT GCA ATC GTA 735 GCT GTT AAA GCA GTT TTC CGT TCC TGG GAC AAC CCT CGT GCA ATC GTA 735
Ala Val Lys Ala Val Phe Arg Ser Trp Asp Asn Pro Arg Ala l ie Val Ala Val Lys Ala Val Phe Arg Ser Trp Asp Asn Pro Arg Ala lie Val
210 215 220  210 215 220
TAC CGC CGT ATG AAC GAT ATC CCT GGA GAC TGG GGT ACT GCA GTT AAC 783 TAC CGC CGT ATG AAC GAT ATC CCT GGA GAC TGG GGT ACT GCA GTT AAC 783
Tyr Arg Arg Met Asn Asp He Pro Gly Asp Trp Gly Thr Ala Val Asn Tyr Arg Arg Met Asn Asp He Pro Gly Asp Trp Gly Thr Ala Val Asn
225 230 235  225 230 235
GTT CAG ACC ATG GTA TTT GGT AAC AAG GGC GAG ACC AGC GGT ACA GGC 831 GTT CAG ACC ATG GTA TTT GGT AAC AAG GGC GAG ACC AGC GGT ACA GGC 831
Val Gin Thr Met Val Phe Gly Asn Lys Gly Glu Thr Ser Gly Thr Gly Val Gin Thr Met Val Phe Gly Asn Lys Gly Glu Thr Ser Gly Thr Gly
240 245 250  240 245 250
GTT GCC TTC ACA CGT AAC CCA TCC ACA GGT GAA AAA GGC ATC TAC GGT 879 GTT GCC TTC ACA CGT AAC CCA TCC ACA GGT GAA AAA GGC ATC TAC GGT 879
Val Ala Phe Thr Arg Asn Pro Ser Thr Gly Glu Lys Gly l ie Tyr Gly Val Ala Phe Thr Arg Asn Pro Ser Thr Gly Glu Lys Gly lie Tyr Gly
255 260 265 270  255 260 265 270
GAG TAC CTG ATC AAT GCA CAG GGC GAG GAC GTA GTT GCA GGT GTC CGC 927 GAG TAC CTG ATC AAT GCA CAG GGC GAG GAC GTA GTT GCA GGT GTC CGC 927
Glu Tyr Leu l ie Asn Ala Gin Gly Glu Asp Val Val Ala Gly Val Arg Glu Tyr Leu lie Asn Ala Gin Gly Glu Asp Val Val Ala Gly Val Arg
275 280 285  275 280 285
ACA CCA CAG CCT ATC ACC CAG TTA GAG AAC GAT ATG CCT GAC TGC TAC 975 ACA CCA CAG CCT ATC ACC CAG TTA GAG AAC GAT ATG CCT GAC TGC TAC 975
Thr Pro Gin Pro 】le Thr Gin Leu Glu Asn Asp Met Pro Asp Cys Tyr 290 295 300 Thr Pro Gin Pro】 le Thr Gin Leu Glu Asn Asp Met Pro Asp Cys Tyr 290 295 300
AAG CAG TTC ATG GAT CTG GCC ATG AAG CTG GAG AAA CAT TTC CGT GAC 1023 AAG CAG TTC ATG GAT CTG GCC ATG AAG CTG GAG AAA CAT TTC CGT GAC 1023
Lys Gin Phe Met Asp Leu Ala Met Lys Leu Glu Lys His Phe Arg Asp Lys Gin Phe Met Asp Leu Ala Met Lys Leu Glu Lys His Phe Arg Asp
305 310 315  305 310 315
ATG CAG GAT ATG GAG TTC ACA ATC GAG GAA GGT AAA TTA TAC TTC TTA 1071 ATG CAG GAT ATG GAG TTC ACA ATC GAG GAA GGT AAA TTA TAC TTC TTA 1071
Met Gin Asp Met Glu Phe Thr l ie Glu Glu Gly Lys Leu Tyr Phe Leu Met Gin Asp Met Glu Phe Thr lie Glu Glu Gly Lys Leu Tyr Phe Leu
320 325 330  320 325 330
CAG ACA CGT AAC GGC AAG AGA ACA GCT CCG GCT GCT CTT CAG ATT GCC 1119 CAG ACA CGT AAC GGC AAG AGA ACA GCT CCG GCT GCT CTT CAG ATT GCC 1119
Gin Thr Arg Asn Gly Lys Arg Thr Ala Pro Ala Ala Leu Gin l ie AlaGin Thr Arg Asn Gly Lys Arg Thr Ala Pro Ala Ala Leu Gin lie Ala
335 340 345 350335 340 345 350
TGC GAT TTA GTA GAC GAA GGC ATG ATC ACA GAG GAA GAG GCT GTT GTA 1167TGC GAT TTA GTA GAC GAA GGC ATG ATC ACA GAG GAA GAG GCT GTT GTA 1167
Cys Asp Leu Val Asp Glu Gly Met l ie Thr Glu Glu Glu Ala Val Val Cys Asp Leu Val Asp Glu Gly Met lie Thr Glu Glu Glu Alu Val Val
355 360 365  355 360 365
AGA ATC GAA GCA AAA TCT CTT GAT CAG TTA CTT CAC CCG ACC TTC AAC 1215 AGA ATC GAA GCA AAA TCT CTT GAT CAG TTA CTT CAC CCG ACC TTC AAC 1215
Arg l ie Glu Ala Lys Ser Leu Asp Gin Leu Leu His Pro Thr Phe Asn Arg lie Glu Ala Lys Ser Leu Asp Gin Leu Leu His Pro Thr Phe Asn
370 375 380  370 375 380
CCG GCT GCT TTA AAG GCC GGC GAA GTA ATC GGT TCC GCT CTT CCG GCA 1263 CCG GCT GCT TTA AAG GCC GGC GAA GTA ATC GGT TCC GCT CTT CCG GCA 1263
Pro Ala Ala Leu Lys Ala Gly Glu Val l ie Gly Ser Ala Leu Pro Ala Pro Ala Ala Leu Lys Ala Gly Glu Glu Val lie Gly Ser Ala Leu Pro Ala
385 390 395  385 390 395
TCT CCT GGC GCA GCA GCA GGT AAA GTA TAC TTC ACC GCT GAT GAG GCT 1311 TCT CCT GGC GCA GCA GCA GGT AAA GTA TAC TTC ACC GCT GAT GAG GCT 1311
Ser Pro Gly Ala Ala Ala Gly Lys Val Tyr Phe Thr Ala Asp Glu Ala Ser Pro Gly Ala Ala Ala Gly Lys Val Tyr Phe Thr Ala Asp Glu Ala
400 405 410  400 405 410
AAG GCT GCC CAC GAG AAG GGT GAG AGA GTT ATC CTT GTT CGT CTT GAG 1359 AAG GCT GCC CAC GAG AAG GGT GAG AGA GTT ATC CTT GTT CGT CTT GAG 1359
Lys Ala Ala His Glu Lys Gly Glu Arg Val l ie Leu Val Arg Leu GluLys Ala Ala His Glu Lys Gly Glu Arg Val lie Leu Val Arg Leu Glu
415 420 425 430415 420 425 430
ACA TCT CCG GAA GAT ATC GAA GGT ATG CAT GCA GCC GAA GGT ATC CTG 1407ACA TCT CCG GAA GAT ATC GAA GGT ATG CAT GCA GCC GAA GGT ATC CTG 1407
Thr Ser Pro Glu Asp He Glu Gly Met His Ala Ala Glu Gly l ie Leu Thr Ser Pro Glu Asp He Glu Gly Met His Ala Ala Glu Gly lie Leu
435 440 445  435 440 445
ACA GTG CGC GGC GGT ATG ACA AGC CAT GCA GCC GTA GTT GCA CGT GGT 1455 Thr Val Arg Gly Gly Met Thr Ser His Ala Ala Val Val Ala Arg GlyACA GTG CGC GGC GGT ATG ACA AGC CAT GCA GCC GTA GTT GCA CGT GGT 1455 Thr Val Arg Gly Gly Met Thr Ser His Ala Ala Val Val Ala Arg Gly
450 455 460 450 455 460
ATG GGA ACA TGC TGC GTA TCC GGA TGC GGT GAG ATC AAG ATC AAC GAA 1503 Met Gly Thr Cys Cys Val Ser Gly Cys Gly Glu l ie Lys l ie Asn Glu  ATG GGA ACA TGC TGC GTA TCC GGA TGC GGT GAG ATC AAG ATC AAC GAA 1503 Met Gly Thr Cys Cys Val Ser Gly Cys Gly Glu lie Lys lie Asn Glu
465 470 475  465 470 475
GAA GCT AAG ACA TTC GAA CTT GGC GGA CAC ACA TTT GCA GAG GGA GAT 1551 Glu Ala Lys Thr Phe Glu Leu Gly Gly His Thr Phe Ala Glu Gly Asp  GAA GCT AAG ACA TTC GAA CTT GGC GGA CAC ACA TTT GCA GAG GGA GAT 1551 Glu Ala Lys Thr Phe Glu Leu Gly Gly His Thr Phe Ala Glu Gly Asp
480 485 490  480 485 490
TAC ATC TCC TTA GAT GGT TCC ACA GGT AAG ATT TAC AAG GGC GAC ATC 1599 Tyr l ie Ser Leu Asp Gly Ser Thr Gly Lys lie Tyr Lys Gly Asp l ie 495 500 505 510 TAC ATC TCC TTA GAT GGT TCC ACA GGT AAG ATT TAC AAG GGC GAC ATC 1599 Tyr l ie Ser Leu Asp Gly Ser Thr Gly Lys lie Tyr Lys Gly Asp lie 495 500 505 510
GAG ACT CAG GAA CGT TCC GTA AGC GGA AGC TTC GAG CGT ATC ATG GTA 1647 Glu Thr Gin Glu Arg Ser Val Ser Gly Ser Phe Glu Arg He Met Val GAG ACT CAG GAA CGT TCC GTA AGC GGA AGC TTC GAG CGT ATC ATG GTA 1647 Glu Thr Gin Glu Arg Ser Val Ser Gly Ser Phe Glu Arg He Met Val
515 520 525  515 520 525
TGG GCT GAC AAG TTC AGA ACA TTA AAG GTT CGT ACA AAT GCC GAC ACA 1695 Trp Ala Asp Lys Phe Arg Thr Leu Lys Val Arg Thr Asn Ala Asp Thr  TGG GCT GAC AAG TTC AGA ACA TTA AAG GTT CGT ACA AAT GCC GAC ACA 1695 Trp Ala Asp Lys Phe Arg Thr Leu Lys Val Arg Thr Asn Ala Asp Thr
530 535 540  530 535 540
CCG GAA GAT ACA CTC AAT GCC GTT AAA CTG GGT GCA GAG GGC ATC GGT 1743 Pro Glu Asp Thr Leu Asn Ala Val Lys Leu Gly Ala Glu Gly l ie Gly  CCG GAA GAT ACA CTC AAT GCC GTT AAA CTG GGT GCA GAG GGC ATC GGT 1743 Pro Glu Asp Thr Leu Asn Ala Val Lys Leu Gly Ala Glu Gly lie Gly
545 550 555  545 550 555
CTT TGC CGT ACA GAG CAT ATG TTC TTC GAG GCT GAC AGA ATC ATG AAG 1791 Leu Cys Arg Thr Glu His Met Phe Phe Glu Ala Asp Arg He Met Lys  CTT TGC CGT ACA GAG CAT ATG TTC TTC GAG GCT GAC AGA ATC ATG AAG 1791 Leu Cys Arg Thr Glu His Met Phe Phe Glu Ala Asp Arg He Met Lys
560 565 570  560 565 570
ATC AGA AAG ATC ATC CTT TCC GAT TCA GTG GAA GCA AGA GAA GAG GCT 1839 l ie Arg Lys Met l ie Leu Ser Asp Ser Val Glu Ala Arg Glu Glu Ala  ATC AGA AAG ATC ATC CTT TCC GAT TCA GTG GAA GCA AGA GAA GAG GCT 1839 lie Arg Lys Met lie Leu Ser Asp Ser Val Glu Ala Arg Glu Glu Ala
575 580 585 590575 580 585 590
CTG AAC GAA TTA ATC CCG TTC CAG AAG GGC GAT TTC AAG GCT ATG TAC 1887 Leu Asn Glu Leu l ie Pro Phe Gin Lys Gly Asp Phe Lys Ala Met Tyr CTG AAC GAA TTA ATC CCG TTC CAG AAG GGC GAT TTC AAG GCT ATG TAC 1887 Leu Asn Glu Leu lie Pro Phe Gin Lys Gly Asp Phe Lys Ala Met Tyr
595 600 605 AAA GCT CTG GAA GGC AGG CCA ATG ACG GTT CGC TAC CTG GAT CCG CCG 1935595 600 605 AAA GCT CTG GAA GGC AGG CCA ATG ACG GTT CGC TAC CTG GAT CCG CCG 1935
Lys Ala Leu Glu Gly Arg Pro Met Thr Val Arg Tyr Leu Asp Pro Pro Lys Ala Leu Glu Gly Arg Pro Met Thr Val Arg Tyr Leu Asp Pro Pro
610 615 620  610 615 620
CTG CAT GAG TTC GTT CCT CAT ACA GAA GAG GAG CAG GCT GAA CTG GCT 1983 CTG CAT GAG TTC GTT CCT CAT ACA GAA GAG GAG CAG GCT GAA CTG GCT 1983
Leu His Glu Phe Val Pro His Thr Glu Glu Glu Gin Ala Glu Leu Ala Leu His Glu Phe Val Pro His Thr Glu Glu Glu Gin Ala Glu Leu Ala
625 630 635  625 630 635
AAG AAC ATG GGC CTT ACT TTA GCA GAA GTA AAA GCA AAA GTT GAC GAA 2031 AAG AAC ATG GGC CTT ACT TTA GCA GAA GTA AAA GCA AAA GTT GAC GAA 2031
Lys Asn Met Gly Leu Thr Leu Ala Glu Val Lys Ala Lys Val Asp Glu Lys Asn Met Gly Leu Thr Leu Ala Glu Val Lys Ala Lys Val Asp Glu
640 645 650  640 645 650
TTA CAC GAG TTC AAC CCA ATG ATG GGC CAT CGT GGC TGC CGT CTT GCA 2079 TTA CAC GAG TTC AAC CCA ATG ATG GGC CAT CGT GGC TGC CGT CTT GCA 2079
Leu His Glu Phe Asn Pro Met Met Gly His Arg Gly Cys Arg Leu AlaLeu His Glu Phe Asn Pro Met Met Gly His Arg Gly Cys Arg Leu Ala
655 660 665 670655 660 665 670
GTT ACC TAT CCG GAA ATT GCA AAG ATG CAG ACA AGA GCC GTT ATG GAA 2127GTT ACC TAT CCG GAA ATT GCA AAG ATG CAG ACA AGA GCC GTT ATG GAA 2127
Val Thr Tyr Pro Glu l ie Ala Lys Met Gin Thr Arg Ala Val Met Glu Val Thr Tyr Pro Glu lie Ala Lys Met Gin Thr Arg Ala Val Met Glu
675 680 685  675 680 685
GCT GCT ATC GAA GTG AAG GAA GAG ACA GGA ATC GAT ATT GTT CCT GAG 2175 GCT GCT ATC GAA GTG AAG GAA GAG ACA GGA ATC GAT ATT GTT CCT GAG 2175
Ala Ala l ie Glu Val Lys Glu Glu Thr Gly l ie Asp l ie Val Pro Glu Ala Ala lie Glu Val Lys Glu Glu Thr Gly lie Asp lie Val Pro Glu
690 695 700  690 695 700
ATC ATG ATT CCG TTA GTT GGC GAG AAG AAA GAG CTT AAG TTC GTT AAG 2223 l ie Met l ie Pro Leu Val Gly Glu Lys Lys Glu Leu Lys Phe Val Lys  ATC ATG ATT CCG TTA GTT GGC GAG AAG AAA GAG CTT AAG TTC GTT AAG 2223 lie Met lie Pro Leu Val Gly Glu Lys Lys Glu Leu Lys Phe Val Lys
705 710 715  705 710 715
GAC GTA GTT GTG GAA GTA GCT GAG CAG GTT AAG AAA GAG AAA GGT TCC 2271 GAC GTA GTT GTG GAA GTA GCT GAG CAG GTT AAG AAA GAG AAA GGT TCC 2271
Asp Val Val Val Glu Val Ala Glu Gin Val Lys Lys Glu Lys Gly Ser Asp Val Val Val Glu Val Ala Glu Gin Val Lys Lys Glu Lys Gly Ser
720 725 730  720 725 730
GAT ATG CAG TAC CAC ATC GGT ACC ATG ATC GAA ATT CCT CGT GCA GCT 2319 GAT ATG CAG TAC CAC ATC GGT ACC ATG ATC GAA ATT CCT CGT GCA GCT 2319
Asp Met Gin Tyr His l ie Gly Thr Met l ie Glu l ie Pro Arg Ala Ala Asp Met Gin Tyr His lie Gly Thr Met lie Glu lie Pro Arg Ala Ala
735 740 745 750  735 740 745 750
CTC ACA GCA GAT GCC ATC GCT GAG GAA GCA GAG TTC TTC TCC TTC GGT 2367 CTC ACA GCA GAT GCC ATC GCT GAG GAA GCA GAG TTC TTC TCC TTC GGT 2367
Leu Thr Ala Asp Ala l ie Ala Glu Glu Ala Glu Phe Phe Ser Phe Gly 25 ΐ ΙΙΟ V33 ID VOO IIV VVV VOV 01V VDV 301 113 V90 100 VOO OVV V00Leu Thr Ala Asp Ala lie Ala Glu Glu Ala Glu Phe Phe Ser Phe Gly 25 ΐ ΙΙΟ V33 ID VOO IIV VVV VOV 01V VDV 301 113 V90 100 VOO OVV V00
51 01 5 χ na na sAq sAq usy Jqi dsy ;) dsy ηχο 9qd BTV ^丄 ΐ^Λ51 01 5 χ na na sAq sAq usy Jqi dsy;) dsy ηχο 9qd BTV ^ 丄 ΐ ^ Λ
V09 113 313 VVV OVV 3VV 33V VOO IVO 100 IVO WO 3IX 130 IVl VXO V09 113 313 VVV OVV 3VV 33V VOO IVO 100 IVO WO 3IX 130 IVl VXO
Ϊ  Ϊ
3JV "TO 19W  3JV "TO 19W
99 V9V VV3 OIV V1VVXV3 V3I1V31I3V OVlllVVOVV X3IIIVV00V VlllVXOVVO mm■■ m  99 V9V VV3 OIV V1VVXV3 V3I1V31I3V OVlllVVOVV X3IIIVV00V VlllVXOVVO mm ■■ m
Z Z L Z ■  Z Z L Z ■
0192 0 0192 0
OJd rial nsi ai l ηχ^ Αχο S TH ηχο Αχ sOJd rial nsi ai l ηχ ^ Αχο S TH ηχο Αχ s
6092 VI0VVV3V33 3 Jii)V;)V丄 933 113 1X3 31V OVO 330 3V3 OVO 390 DDI6092 VI0VVV3V33 3 Jii) V;) V 丄 933 113 1X3 31V OVO 330 3V3 OVO 390 DDI
0S8 928 028 9180S8 928 028 918
3T I ^TO SA3 SAi naq A^g OJJ V ^丄 "TO ^ ΐί) sAq sAq i BTV3T I ^ TO SA3 SAi naq A ^ g OJJ V ^ 丄 "TO ^ ΐί) sAq sAq i BTV
6592 DIV 393 301 OVV 113 309 033 IDD V3V 3V3 ID3 300 VVV OVV 110 VD9 6592 DIV 393 301 OVV 113 309 033 IDD V3V 3V3 ID3 300 VVV OVV 110 VD9
018 908 008 018 908 008
H nig ΙΒΛ n9i UTO ^ld ^TO "TO dsy na gjy ^TV 34d QJdH nig ΙΒΛ n9i UTO ^ ld ^ TO "TO dsy na gjy ^ TV 3 4d QJd
3IV DV3 VIO V丄丄 OVO 300 XX3 300 V3V 9V3 3V9 113 VOV V30 Dll VDD 3IV DV3 VIO V 丄 丄 OVO 300 XX3 300 V3V 9V3 3V9 113 VOV V30 Dll VDD
96Z 06Z, 98Z  96Z 06Z, 98Z
dsy S " TO JA丄 3T I sAi BTV sX JAX 丄 d^ dsy ns sq^ sAq Λχο dsy S "TO JA 丄 3T I sAi BTV sX JAX 丄 d ^ dsy ns sq ^ sAq Λχο
IVO 331 OVO IVl 丄丄 V VVV V30 VVV IVl 3VI 331 IVO 013 311 OVV 309 IVO 331 OVO IVl 丄 丄 V VVV V30 VVV IVl 3VI 331 IVO 013 311 OVV 309
08A 0/i 08A 0 / i
BTV dsv dsy V S ^Md ^TO ^Md -iqi law "ID J¾ "91 dsy usy -ΐ¾BTV dsv dsy V S ^ Md ^ TO ^ Md -iqi law "ID J¾" 91 dsy usy -ΐ¾
330 3V0 103 331 311 300 Oil VOV 01V OVD VOV VII DVD 3VV VDV 99L 09L 1 330 3V0 103 331 311 300 Oil VOV 01V OVD VOV VII DVD 3VV VDV 99L 09L 1
I PI P
»OIO/S6df/X3d 69ひ 0/96 OAV Gly Lys Gly Ala Gly Leu Cys Thr Met Thr Lys l ie Gly Leu Pro Val»OIO / S6df / X3d 69h 0/96 OAV Gly Lys Gly Ala Gly Leu Cys Thr Met Thr Lys lie Gly Leu Pro Val
20 25 30 35 20 25 30 35
CCA CAA GGA TTT GTT ATT ACA ACT GAA ATG TGT AAA CAA TTC ATT GCT 200 CCA CAA GGA TTT GTT ATT ACA ACT GAA ATG TGT AAA CAA TTC ATT GCT 200
Pro Gin Gly Phe Val l ie Thr Thr Glu Met Cys Lys Gin Phe l ie Ala Pro Gin Gly Phe Val lie Thr Thr Glu Met Cys Lys Gin Phe lie Ala
40 45 50  40 45 50
AAT GGA AAC AAA ATG CCA GAA GGA TTA ATG GAA GAA GTT AAA AAA GAA 248 Asn Gly Asn Lys Met Pro Glu Gly Leu Met Glu Glu Val Lys Lys Glu  AAT GGA AAC AAA ATG CCA GAA GGA TTA ATG GAA GAA GTT AAA AAA GAA 248 Asn Gly Asn Lys Met Pro Glu Gly Leu Met Glu Glu Val Lys Lys Glu
55 60 65  55 60 65
TAT CAA TTA GTT GAA AAG AAA TCA GGA AAA GTC TTT GGA GGA GAA GAA 296 Tyr Gin Leu Val Glu Lys Lys Ser Gly Lys Val Phe Gly Gly Glu Glu  TAT CAA TTA GTT GAA AAG AAA TCA GGA AAA GTC TTT GGA GGA GAA GAA 296 Tyr Gin Leu Val Glu Lys Lys Ser Gly Lys Val Phe Gly Gly Glu Glu
70 75 80  70 75 80
AAT CCA CTT CTT GTT TCA GTC AGA TCA GGA GCT GCT ATG TCT ATG CCA 344 Asn Pro Leu Leu Val Ser Val Arg Ser Gly Ala Ala Met Ser Met Pro  AAT CCA CTT CTT GTT TCA GTC AGA TCA GGA GCT GCT ATG TCT ATG CCA 344 Asn Pro Leu Leu Val Ser Val Arg Ser Gly Ala Ala Met Ser Met Pro
85 90 95  85 90 95
GGT ATG ATG GAT ACT ATT CTT AAT CTT GGA CTT AAT GAT AAA ACT GTT 392 Gly Met Met Asp Thr l ie Leu Asn Leu Gly Leu Asn Asp Lys Thr Val 100 105 110 115 GGT ATG ATG GAT ACT ATT CTT AAT CTT GGA CTT AAT GAT AAA ACT GTT 392 Gly Met Met Asp Thr lie Leu Asn Leu Gly Leu Asn Asp Lys Thr Val 100 105 110 115
GTT GCT CTT GCT AAA TTA ACC AAC AAT GAA AGA TTT GCA TAT GAT TCA 440 Val Ala Leu Ala Lys Leu Thr Asn Asn Glu Arg Phe Ala Tyr Asp Ser GTT GCT CTT GCT AAA TTA ACC AAC AAT GAA AGA TTT GCA TAT GAT TCA 440 Val Ala Leu Ala Lys Leu Thr Asn Asn Glu Arg Phe Ala Tyr Asp Ser
120 125 130  120 125 130
TAC AGA AGA TTT GTT TCC CTC TTC GGA AAG ATT GCT CTT AAT GCT TGT 488 Tyr Arg Arg Phe Val Ser Leu Phe Gly Lys l ie Ala Leu Asn Ala Cys  TAC AGA AGA TTT GTT TCC CTC TTC GGA AAG ATT GCT CTT AAT GCT TGT 488 Tyr Arg Arg Phe Val Ser Leu Phe Gly Lys lie Ala Leu Asn Ala Cys
135 140 145  135 140 145
GAT GAA GTT TAT GAT AAG ACT CTT GAA AAC AAA AAA GTT GAA AAG GGA 536 Asp Glu Val Tyr Asp Lys Thr Leu Glu Asn lys Lys Val Glu Lys Gly  GAT GAA GTT TAT GAT AAG ACT CTT GAA AAC AAA AAA GTT GAA AAG GGA 536 Asp Glu Val Tyr Asp Lys Thr Leu Glu Asn lys Lys Val Glu Lys Gly
150 155 160  150 155 160
GTT AAA TTA GAT ACT GAA TTA GAT GCT AAT GAT ATG AAA GAA CTT GCA 584 Val Lys Leu Asp Thr Glu Leu Asp Ala Asn Asp Met Lys Glu Leu Ala  GTT AAA TTA GAT ACT GAA TTA GAT GCT AAT GAT ATG AAA GAA CTT GCA 584 Val Lys Leu Asp Thr Glu Leu Asp Ala Asn Asp Met Lys Glu Leu Ala
165 170 175 CAA GTC TTC ATT AAA AAG ACT GAA GAA TTC ACT AAA CAA CCA TTC CCA 632165 170 175 CAA GTC TTC ATT AAA AAG ACT GAA GAA TTC ACT AAA CAA CCA TTC CCA 632
Gin Val Phe He Lys Lys Thr Glu Glu Phe Thr Lys Gin Pro Phe ProGin Val Phe He Lys Lys Thr Glu Glu Plu Thr Lys Gin Pro Phe Pro
180 185 190 195180 185 190 195
GTT GAT CCA TAT GCT CAA TTA GAA TTT GCC ATT TGT GCT GTA TTC AGA 680GTT GAT CCA TAT GCT CAA TTA GAA TTT GCC ATT TGT GCT GTA TTC AGA 680
Val Asp Pro Tyr Ala Gin Leu Glu Phe Ala l ie Cys Ala Val Phe Arg Val Asp Pro Tyr Ala Gin Leu Glu Phe Ala lie Cys Ala Val Phe Arg
200 205 210  200 205 210
TCA TGG ATG GGA AAG AGA GCT GTT GAT TAC AGA AGA GAA TTC AAG ATT 728 TCA TGG ATG GGA AAG AGA GCT GTT GAT TAC AGA AGA GAA TTC AAG ATT 728
Ser Trp Met Gly Lys Arg Ala Val Asp Tyr Arg Arg Glu Phe Lys l ie Ser Trp Met Gly Lys Arg Ala Val Asp Tyr Arg Arg Glu Phe Lys lie
215 220 225  215 220 225
ACT CCA GAA CAA GCT GAT GGA ACT GCT GTT TCA GTT GTT TCT ATG GTT 776 ACT CCA GAA CAA GCT GAT GGA ACT GCT GTT TCA GTT GTT TCT ATG GTT 776
Thr Pro Glu Gin Ala Asp Gly Thr Ala Val Ser Val Val Ser Met Val Thr Pro Glu Gin Ala Asp Gly Thr Ala Val Ser Val Val Ser Met Val
230 235 240  230 235 240
TAT GGT AAT ATG GGT AAT GAT TCA GCT ACT GGT GTT TGT TTC ACT AGA 824 TAT GGT AAT ATG GGT AAT GAT TCA GCT ACT GGT GTT TGT TTC ACT AGA 824
Tyr Gly Asn Met Gly Asn Asp Ser Ala Thr Gly Val Cys Phe Thr Arg Tyr Gly Asn Met Gly Asn Asp Ser Ala Thr Gly Val Cys Phe Thr Arg
245 250 255  245 250 255
GAT CCA GGA ACA GGA GAA AAT ATG TTC TTC GGA GAA TAT CTT AAG AAT 872 GAT CCA GGA ACA GGA GAA AAT ATG TTC TTC GGA GAA TAT CTT AAG AAT 872
Asp Pro Gly Thr Gly Glu Asn Met Phe Phe Gly Glu Tyr Leu Lys Asn Asp Pro Gly Thr Gly Glu Asn Met Phe Phe Gly Glu Tyr Leu Lys Asn
260 265 270 275 260 265 270 275
GCA CAA GGA GAA GAT GTT GTT GCT GGT ATT AGA ACA CCA CAA ATT ATT 920GCA CAA GGA GAA GAT GTT GTT GCT GGT ATT AGA ACA CCA CAA ATT ATT 920
Ala Gin Gly Glu Asp Val Val Ala Gly l ie Arg Thr Pro Gin l ie l ie Ala Gin Gly Glu Asp Val Val Ala Gly lie Arg Thr Pro Gin lie lie
280 285 290  280 285 290
TCA AAG ATG GCA GAA GAT CGA GAT CTT CCA GGT TGC TAT GAA CAA CTT 968 TCA AAG ATG GCA GAA GAT CGA GAT CTT CCA GGT TGC TAT GAA CAA CTT 968
Ser Lys Met Ala Glu Asp Arg Asp Leu Pro Gly Cys Tyr Glu Gin Leu Ser Lys Met Ala Glu Asp Arg Asp Leu Pro Gly Cys Tyr Glu Gin Leu
295 300 305  295 300 305
CTT GAT ATT AGA AAG AAA TTA GAA GGA TAT TTC CAT GAA GTA CAA GAC 1016 CTT GAT ATT AGA AAG AAA TTA GAA GGA TAT TTC CAT GAA GTA CAA GAC 1016
Leu Asp l ie Arg Lys Lys Leu Glu Gly Tyr Phe His Glu Val Gin Asp Leu Asp lie Arg Lys Lys Leu Glu Gly Tyr Phe His Glu Val Gin Asp
310 315 320  310 315 320
TTT GAA TTC ACT ATT GAA AGA AAG AAA CTT TAC ATG CTC CAA ACT AGA 1064 TTT GAA TTC ACT ATT GAA AGA AAG AAA CTT TAC ATG CTC CAA ACT AGA 1064
Phe Glu Phe Thr l ie Glu Arg Lys Lys Leu Tyr Met Leu Gin Thr. Arg 325 330 335 Phe Glu Phe Thr lie Glu Arg Lys Lys Leu Tyr Met Leu Gin Thr. Arg 325 330 335
AAT GGA AAG ATG AAT GCA ACT GCT ACT GTC AGA ACA GGA GTT GAT ATG 1112 Asn Gly Lys Met Asn Ala Thr Ala Thr Val Arg Thr Gly Val Asp Met 340 345 350 355 AAT GGA AAG ATG AAT GCA ACT GCT ACT GTC AGA ACA GGA GTT GAT ATG 1112 Asn Gly Lys Met Asn Ala Thr Ala Thr Val Arg Thr Gly Val Asp Met 340 345 350 355
GTT GAA GAA GGA CTT ATT ACA AAA GAA CAA GCC ATT ATG AGA ATT GCA 1160 Val Glu Glu Gly Leu l ie Thr Lys Glu Gin Ala l ie Met Arg l ie Ala GTT GAA GAA GGA CTT ATT ACA AAA GAA CAA GCC ATT ATG AGA ATT GCA 1160 Val Glu Glu Gly Leu lie Thr Lys Glu Gin Ala lie Met Arg lie Ala
360 365 370  360 365 370
CCA CAA TCA GTT GAT CAA TTA CTT CAT AAG AAT ATG CCA GCT AAT TAT 1208 Pro Gin Ser Val Asp Gin Leu Leu His Lys Asn Met Pro Ala Asn Tyr  CCA CAA TCA GTT GAT CAA TTA CTT CAT AAG AAT ATG CCA GCT AAT TAT 1208 Pro Gin Ser Val Asp Gin Leu Leu His Lys Asn Met Pro Ala Asn Tyr
375 380 385  375 380 385
GCA GAA GCT CCA TTA GTT AAA GGA CTT CCA GCA TCA CCA GGA GCT GCT 1256 Ala Glu Ala Pro Leu Val Lys Gly Leu Pro Ala Ser Pro Gly Ala Ala  GCA GAA GCT CCA TTA GTT AAA GGA CTT CCA GCA TCA CCA GGA GCT GCT 1256 Ala Glu Ala Pro Leu Val Lys Gly Leu Pro Ala Ser Pro Gly Ala Ala
390 395 400  390 395 400
ACA GGA GCT GTT GTT TTT GAT GCC GAT GAT GCA GTT GAA CAA GCT AAA 1304 Thr Gly Ala Val Val Phe Asp Ala Asp Asp Ala Val Glu Gin Ala Lys  ACA GGA GCT GTT GTT TTT GAT GCC GAT GAT GCA GTT GAA CAA GCT AAA 1304 Thr Gly Ala Val Val Phe Asp Ala Asp Asp Ala Val Glu Gin Ala Lys
405 410 415  405 410 415
GGA AAG AAA GTT CTT CTT CTT AGA GAA GAA ACT AAA CCA GAA GAT ATT 1352 Gly Lys lys Val Leu Leu Leu Arg Glu Glu Thr Lys Pro Glu Asp l ie 420 425 430 435 GGA AAG AAA GTT CTT CTT CTT AGA GAA GAA ACT AAA CCA GAA GAT ATT 1352 Gly Lys lys Val Leu Leu Leu Arg Glu Glu Thr Lys Pro Glu Asp lie 420 425 430 435
CAT GGA TTC TTT GTT GCT GAA GGT ATT TTA ACC TGC AGA GGA GGA AAA 1400 His Gly Phe Phe Val Ala Glu Gly He Leu Thr Cys Arg Gly Gly Lys CAT GGA TTC TTT GTT GCT GAA GGT ATT TTA ACC TGC AGA GGA GGA AAA 1400 His Gly Phe Phe Val Ala Glu Gly He Leu Thr Cys Arg Gly Gly Lys
440 445 450  440 445 450
ACA TCA CAC GCA GCT GTC GTT GCT AGA GGT ATG GGT AAA CCA TGT GTT 1448 Thr Ser His Ala Ala Val Val Ala Arg Gly Met Gly Lys Pro Cys Val  ACA TCA CAC GCA GCT GTC GTT GCT AGA GGT ATG GGT AAA CCA TGT GTT 1448 Thr Ser His Ala Ala Val Val Ala Arg Gly Met Gly Lys Pro Cys Val
455 460 465  455 460 465
TCA GGA GCT GAA GGA ATT AAA GTT GAT GTT GCT AAG AAA ATT GCT AAG 1496 Ser Gly Ala Glu Gly l ie Lys Val Asp Val Ala Lys Lys l ie Ala Lys  TCA GGA GCT GAA GGA ATT AAA GTT GAT GTT GCT AAG AAA ATT GCT AAG 1496 Ser Gly Ala Glu Gly lie Lys Val Asp Val Ala Lys Lys lie Ala Lys
470 475 480  470 475 480
ATT GGA AGC CTT GAA GTT CAT GAA GGA GAT ATT TTA ACT ATT GAT GGA 1544 He Gly Ser Leu Glu Val His Glu Gly Asp l ie Leu Thr l ie Asp GlyATT GGA AGC CTT GAA GTT CAT GAA GGA GAT ATT TTA ACT ATT GAT GGA 1544 He Gly Ser Leu Glu Val His Glu Gly Asp lie Leu Thr lie Asp Gly
485 490 495 485 490 495
TCA ACT GGA TGT GTC TAT AAG GGA GAA GTT CCA TTA GAA GAA CCA CAA 1592 Ser Thr Gly Cys Val Tyr Lys Gly Glu Val Pro Leu Glu Glu Pro Gin 500 505 510 515 TCA ACT GGA TGT GTC TAT AAG GGA GAA GTT CCA TTA GAA GAA CCA CAA 1592 Ser Thr Gly Cys Val Tyr Lys Gly Glu Val Pro Leu Glu Glu Pro Gin 500 505 510 515
GTT GGA TCA GGA TAT TTC GGA ACC ATC TTA AAA TGG GCC AAT GAA ATT 1640 Val Gly Ser Gly Tyr Phe Gly Thr l ie Leu Lys Trp Ala Asn Glu l ie GTT GGA TCA GGA TAT TTC GGA ACC ATC TTA AAA TGG GCC AAT GAA ATT 1640 Val Gly Ser Gly Tyr Phe Gly Thr lie Leu Lys Trp Ala Asn Glu lie
520 525 530  520 525 530
AAA AAG ATT GGA GTT TTT GCT GCT GGA GAT CTT CCA TCA GCT GCT AAG 1688 Lys Lys l ie Gly Val Phe Ala Ala Gly Asp Leu Pro Ser Ala Ala Lys  AAA AAG ATT GGA GTT TTT GCT GCT GGA GAT CTT CCA TCA GCT GCT AAG 1688 Lys Lys lie Gly Val Phe Ala Ala Gly Asp Leu Pro Ser Ala Ala Lys
535 540 545  535 540 545
AAA GCC CTT GAA TTT GGA GCT GAA GGT ATT GGA CTT TGC AGA ACT GAA 1736 Lys Ala Leu Glu Phe Gly Ala Glu Gly l ie Gly Leu Cys Arg Thr Glu  AAA GCC CTT GAA TTT GGA GCT GAA GGT ATT GGA CTT TGC AGA ACT GAA 1736 Lys Ala Leu Glu Phe Gly Ala Glu Gly lie Gly Leu Cys Arg Thr Glu
550 555 560  550 555 560
CGT ATG TTC AAT GCA GTT GAA AGA CTT CCA ATT GTT GTC AAG ATG ATT 1784 Arg Met Phe Asn Ala Val Glu Arg Leu Pro He Val Val Lys Met l ie  CGT ATG TTC AAT GCA GTT GAA AGA CTT CCA ATT GTT GTC AAG ATG ATT 1784 Arg Met Phe Asn Ala Val Glu Arg Leu Pro He Val Val Lys Met l ie
565 570 575  565 570 575
CTT TCA AAT ACC CTT GAA GAA AGA AAG AAA TAT CTT AAT GAA CTT ATG 1832 Leu Ser Asn Thr Leu Glu Glu Arg Lys Lys Tyr Leu Asn Glu Leu Met 580 585 590 595 CTT TCA AAT ACC CTT GAA GAA AGA AAG AAA TAT CTT AAT GAA CTT ATG 1832 Leu Ser Asn Thr Leu Glu Glu Arg Lys Lys Tyr Leu Asn Glu Leu Met 580 585 585 590 595
CCA CTT CAA AAA CAA GAT TTC ATT GGA TTA TTG AAG ACT ATG AAT GGA 1880 Pro Leu Gin Lys Gin Asp Phe He Gly Leu Leu Lys Thr Met Asn Gly CCA CTT CAA AAA CAA GAT TTC ATT GGA TTA TTG AAG ACT ATG AAT GGA 1880 Pro Leu Gin Lys Gin Asp Phe He Gly Leu Leu Lys Thr Met Asn Gly
600 605 610  600 605 610
CTT CCA GTC ACT GTC AGA CTT CTT GAT CCA CCA TTA CAT GAA TTC CTC 1928 Leu Pro Val Thr Val Arg Leu Leu Asp Pro Pro Leu His Glu Phe Leu  CTT CCA GTC ACT GTC AGA CTT CTT GAT CCA CCA TTA CAT GAA TTC CTC 1928 Leu Pro Val Thr Val Arg Leu Leu Asp Pro Pro Leu His Glu Phe Leu
615 620 625  615 620 625
CCA ACT CTT GAA GAG TTA ATG AGA GAA ATC TTT GAA ATG AAA CTT TCA 1976 Pro Thr Leu Glu Glu Leu Met Arg Glu l ie Phe Glu Met Lys Leu Ser  CCA ACT CTT GAA GAG TTA ATG AGA GAA ATC TTT GAA ATG AAA CTT TCA 1976 Pro Thr Leu Glu Glu Leu Met Arg Glu lie Phe Glu Met Lys Leu Ser
630 635 640 GGT AAG ACT GAA GGA CTT GCA GAA AAA GAA GTT GTT CTT AAG AAA GTT 2024630 635 640 GGT AAG ACT GAA GGA CTT GCA GAA AAA GAA GTT GTT CTT AAG AAA GTT 2024
Gly Lys Thr Glu Gly Leu Ala Glu Lys Glu Val Val Leu Lys Lys Val Gly Lys Thr Glu Gly Leu Ala Glu Lys Glu Val Val Leu Lys Lys Val
645 650 655  645 650 655
AAA GAA CTT ATG GAA GTT AAT CCA ATG ATT GGA CAC AGA GGA ATT AGA 2072 AAA GAA CTT ATG GAA GTT AAT CCA ATG ATT GGA CAC AGA GGA ATT AGA 2072
Lys Glu Leu Met Glu Val Asn Pro Met l ie Gly His Arg Gly l ie Arg 660 665 670 675Lys Glu Leu Met Glu Val Asn Pro Met lie Gly His Arg Gly lie Arg 660 665 670 675
CTT GGA ACT ACT AAT CCA GAA ATT TAT GAA ATG CAA ATT AGA GCA TTC 2120CTT GGA ACT ACT AAT CCA GAA ATT TAT GAA ATG CAA ATT AGA GCA TTC 2120
Leu Gly Thr Thr Asn Pro Glu l ie Tyr Glu Met Gin He Arg Ala Phe Leu Gly Thr Thr Asn Pro Glu lie Tyr Glu Met Gin He Arg Ala Phe
680 685 690  680 685 690
TTA GAA GCT ACT CGT GAA GTT ATT AAG GAA GGA ATT AAC GAT CAT CGA 2168 TTA GAA GCT ACT CGT GAA GTT ATT AAG GAA GGA ATT AAC GAT CAT CGA 2168
Leu Glu Ala Thr Arg Glu Val l ie Lys Glu Gly l ie Asn Asp His Arg Leu Glu Ala Thr Arg Glu Val lie Lys Glu Gly lie Asn Asp His Arg
695 700 705  695 700 705
GAA ATT ATG ATT CCA AAT GTT ACA GAA GTT AAT GAA CTT ATT AAC TTA 2216 GAA ATT ATG ATT CCA AAT GTT ACA GAA GTT AAT GAA CTT ATT AAC TTA 2216
Glu l ie Met l ie Pro Asn Val Thr Glu Val Asn Glu Leu l ie Asn Leu Glu lie Met lie Pro Asn Val Thr Glu Val Asn Glu Leu lie Asn Leu
710 715 720  710 715 720
AGA AAG AAT GTT CTT GAA CCA GTT CAT GAA GAA GTT GAA AAG AAA TAT 2264 AGA AAG AAT GTT CTT GAA CCA GTT CAT GAA GAA GTT GAA AAG AAA TAT 2264
Arg Lys Asn Val Leu Glu Pro Val His Glu Glu Val Glu Lys Lys Tyr Arg Lys Asn Val Leu Glu Pro Val His Glu Glu Val Glu Lys Lys Tyr
725 730 735  725 730 735
GGT ATT AAA GTA CCA TTC TCG TAT GGT ACT ATG GTT GAA TGT GTT AGA 2312 GGT ATT AAA GTA CCA TTC TCG TAT GGT ACT ATG GTT GAA TGT GTT AGA 2312
Gly l ie Lys Val Pro Phe Ser Tyr Gly Thr Met Val Glu Cys Val Arg 740 745 750 755Gly lye Lys Val Pro Phe Ser Tyr Gly Thr Met Val Glu Cys Val Arg 740 745 750 755
GCA GCA TTA ACA GCT GAT AAG ATT GCT ACA GAA GCT TCA TTC TTC TCA 2360GCA GCA TTA ACA GCT GAT AAG ATT GCT ACA GAA GCT TCA TTC TTC TCA 2360
Ala Ala Leu Thr Ala Asp Lys l ie Ala Thr Glu Ala Ser Phe Phe Ser Ala Ala Leu Thr Ala Asp Lys lie Ala Thr Glu Ala Ser Phe Phe Ser
760 765 770  760 765 770
TTC GGA ACT AAT GAT CTT ACA CAA GGA ACA TTC TCA TAC TCA CGT GAA 2408 TTC GGA ACT AAT GAT CTT ACA CAA GGA ACA TTC TCA TAC TCA CGT GAA 2408
Phe Gly Thr Asn Asp Leu Thr Gin Gly Thr Phe Ser Tyr Ser Arg Glu Phe Gly Thr Asn Asp Leu Thr Gin Gly Thr Phe Ser Tyr Ser Arg Glu
775 780 785  775 780 785
GAT TCA GAA AAC AAA TTC ATT CCA AAA TAT GTT GAA CTT AAG ATT CTT 2456 GAT TCA GAA AAC AAA TTC ATT CCA AAA TAT GTT GAA CTT AAG ATT CTT 2456
Asp Ser Glu Asn Lys Phe l ie Pro Lys Tyr Val Glu Leu Lys l ie Leu 790 795 800 Asp Ser Glu Asn Lys Phe lie Pro Lys Tyr Val Glu Leu Lys lie Leu 790 795 800
CCA GCT AAT CCA TTT GAA ATT CTT GAT AGA CCA GGT GTT GGA GAA GTT 2504 Pro Ala Asn Pro Phe Glu He Leu Asp Arg Pro Gly Val Gly Glu Val  CCA GCT AAT CCA TTT GAA ATT CTT GAT AGA CCA GGT GTT GGA GAA GTT 2504 Pro Ala Asn Pro Phe Glu He Leu Asp Arg Pro Gly Val Gly Glu Val
805 810 815  805 810 815
ATG AGA ATT GCT GTT ACT AAA GGA AGA CAA ACA AGA CCA GAA TTA CTT 2552 Met Arg l ie Ala Val Thr Lys Gly Arg Gin Thr Arg Pro Glu Leu Leu 820 825 830 835 ATG AGA ATT GCT GTT ACT AAA GGA AGA CAA ACA AGA CCA GAA TTA CTT 2552 Met Arg lie Ala Val Thr Lys Gly Arg Gin Thr Arg Pro Glu Leu Leu 820 825 830 830 835
GTT GGT ATT TGT GGA GAA CAC GGA GGA GAA CCA TCA TCA ATT GAA TGG 2600 Val Gly l ie Cys Gly Glu His Gly Gly Glu Pro Ser Ser l ie Glu Trp GTT GGT ATT TGT GGA GAA CAC GGA GGA GAA CCA TCA TCA ATT GAA TGG 2600 Val Gly lie Cys Gly Glu His Gly Gly Glu Pro Ser Ser lie Glu Trp
840 845 850  840 845 850
TGC CAC ATG ATT GGA TTG AAC TAT GTT TCA TGT TCT TCA TAC AGA ATT 2648 Cys His Met l ie Gly Leu Asn Tyr Val Ser Cys Ser Ser Tyr Arg l ie  TGC CAC ATG ATT GGA TTG AAC TAT GTT TCA TGT TCT TCA TAC AGA ATT 2648 Cys His Met lie Gly Leu Asn Tyr Val Ser Cys Ser Ser Tyr Arg l ie
855 860 865  855 860 865
CCA GTT GCT AGA ATT GCT GCT GCT CAA GCC CAA ATT AGA CAT CCA AGA 2696 Pro Val Ala Arg l ie Ala Ala Ala Gin Ala Gin l ie Arg His Pro Arg  CCA GTT GCT AGA ATT GCT GCT GCT CAA GCC CAA ATT AGA CAT CCA AGA 2696 Pro Val Ala Arg lie Ala Ala Ala Gin Ala Gin lie Arg His Pro Arg
870 875 880  870 875 880
GAA AAT TAAATTAACT TTTTTGGTTT 2722 Glu Asn  GAA AAT TAAATTAACT TTTTTGGTTT 2722 Glu Asn
885 配列番号: 5  885 SEQ ID NO: 5
配列の長さ : 3 1 8 0 Array length: 3 1 8 0
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CTGAAATTCC CGTAATCTAT CATCATTTAC ACCACAAATC GATTCACATC CTCACCGAAT 60 AGAAATCAAA TATCATTTAC TCCATCTCAC GATCTCCTTT TGCTATTGCT GATACCTCAA 120 TTTCGCAGGT GAAGGCGGAC G ATG AGT TCG TTG TTT GTT GAA GGT ATG CCT 171  CTGAAATTCC CGTAATCTAT CATCATTTAC ACCACAAATC GATTCACATC CTCACCGAAT 60 AGAAATCAAA TATCATTTAC TCCATCTCAC GATCTCCTTT TGCTATTGCT GATACCTCAA 120 TTTCGCAGGT GAAGGCGGAC G ATG AGT TCG TTG TTT GTT GAA GGT ATG CCT 171
Met Ser Ser Leu Phe Val Glu Gly Met Pro 1 5 10 CTG AAG TCA GCC AAT GAG TCG TGC TTA CCG GCG AGC GTG AAG CAA CGG 219 Leu Lys Ser Ala Asn Glu Ser Cys Leu Pro Ala Ser Val Lys Gin Arg Met Ser Ser Leu Phe Val Glu Gly Met Pro 1 5 10 CTG AAG TCA GCC AAT GAG TCG TGC TTA CCG GCG AGC GTG AAG CAA CGG 219 Leu Lys Ser Ala Asn Glu Ser Cys Leu Pro Ala Ser Val Lys Gin Arg
15 20 25  15 20 25
CGA ACC GGT GAT CTC AGG CGA TTG AAC CAC CAC CGT CAA CCG GCG TTT 267 Arg Thr Gly Asp Leu Arg Arg Leu Asn His His Arg Gin Pro Ala Phe  CGA ACC GGT GAT CTC AGG CGA TTG AAC CAC CAC CGT CAA CCG GCG TTT 267 Arg Thr Gly Asp Leu Arg Arg Leu Asn His His Arg Gin Pro Ala Phe
30 35 40  30 35 40
GTC CGG GGG ATT TGC CGT CGG AAG TTG AGT GGA GTT AGC AGA ATA GAG 315 Val Arg Gly l ie Cys Arg Arg Lys Leu Ser Gly Val Ser Arg l ie Glu  GTC CGG GGG ATT TGC CGT CGG AAG TTG AGT GGA GTT AGC AGA ATA GAG 315 Val Arg Gly lie Cys Arg Arg Lys Leu Ser Gly Val Ser Arg lie Glu
45 50 55  45 50 55
TTG CGC ACC GGT GGT TTA ACT CTG CCA CGA GCG GTG CTT AAT CCG GTG 363 し eu Arg Thr Gly Gly Leu Thr Leu Pro Arg Ala Val Leu Asn Pro Val  TTG CGC ACC GGT GGT TTA ACT CTG CCA CGA GCG GTG CTT AAT CCG GTG 363 eu Arg Thr Gly Gly Leu Thr Leu Pro Arg Ala Val Leu Asn Pro Val
60 65 70  60 65 70
TCT CCT CCG GTA ACG ACG ACT AAA AAG AGG GTT TTC ACT TTT GGT AAA 411 Ser Pro Pro Val Thr Thr Thr Lys Lys Arg Val Phe Thr Phe Gly Lys 75 80 85 90  TCT CCT CCG GTA ACG ACG ACT AAA AAG AGG GTT TTC ACT TTT GGT AAA 411 Ser Pro Pro Val Thr Thr Thr Lys Lys Arg Val Phe Thr Phe Gly Lys 75 80 85 90
GGA AAC AGT GAA GGC AAC AAG GAC ATG AAA TCC TTG TTG GGA GGA AAA 459 Gly Asn Ser Glu Gly Asn Lys Asp Met Lys Ser Leu Leu Gly Gly Lys  GGA AAC AGT GAA GGC AAC AAG GAC ATG AAA TCC TTG TTG GGA GGA AAA 459 Gly Asn Ser Glu Gly Asn Lys Asp Met Lys Ser Leu Leu Gly Gly Lys
95 100 105  95 100 105
GGT GCA AAT CTT GCA GAG ATG GCA AGC ATT GGC CTA TCA GTT CCT CCT 507 Gly Ala Asn Leu Ala Glu Met Ala Ser He Gly Leu Ser Val Pro Pro  GGT GCA AAT CTT GCA GAG ATG GCA AGC ATT GGC CTA TCA GTT CCT CCT 507 Gly Ala Asn Leu Ala Glu Met Ala Ser He Gly Leu Ser Val Pro Pro
110 115 120  110 115 120
GGG CTC ACT ATT TCA ACT GAA GCA TGT GAG GAA TAT CAA CAA AAT GGA 555 Gly Leu Thr l ie Ser Thr Glu Ala Cys Glu Glu Tyr Gin Gin Asn Gly  GGG CTC ACT ATT TCA ACT GAA GCA TGT GAG GAA TAT CAA CAA AAT GGA 555 Gly Leu Thr lie Ser Thr Glu Ala Cys Glu Glu Tyr Gin Gin Asn Gly
125 130 135  125 130 135
AAA AAA CTG CCT CCA GGT TTA TGG GAT GAG ATT CTG GAA GGC TTA CAG 603 Lys Lys Leu Pro Pro Gly Leu Trp Asp Glu l ie Leu Glu Gly Leu Gin  AAA AAA CTG CCT CCA GGT TTA TGG GAT GAG ATT CTG GAA GGC TTA CAG 603 Lys Lys Leu Pro Pro Gly Leu Trp Asp Glu lie Leu Glu Gly Leu Gin
140 145 150  140 145 150
TAT GTC CAG AAA GAG ATG TCT GCA TCT CTC GGT GAC CCG TCT AAA GCT 651 Tyr Val Gin Lys Glu Met Ser Ala Ser leu Gly Asp Pro Ser Lys Ala 155 160 165 170TAT GTC CAG AAA GAG ATG TCT GCA TCT CTC GGT GAC CCG TCT AAA GCT 651 Tyr Val Gin Lys Glu Met Ser Ala Ser leu Gly Asp Pro Ser Lys Ala 155 160 165 170
CTC CTC CTT TCC GTC CGT TCG GGT GCT GCC ATA TCG ATG CCT GGT ATG 699CTC CTC CTT TCC GTC CGT TCG GGT GCT GCC ATA TCG ATG CCT GGT ATG 699
Leu Leu Leu Ser Val Arg Ser Gly Ala Ala l ie Ser Met Pro Gly Met Leu Leu Leu Ser Val Arg Ser Gly Ala Ala lie Ser Met Pro Gly Met
175 180 185  175 180 185
ATG GAC ACT GTA TTG AAT CTC GGG CTT AAT GAT GAG GTC GTA GAT GGT 747 Met Asp Thr Val Leu Asn Leu Gly Leu Asn Asp Glu Val Val Asp Gly  ATG GAC ACT GTA TTG AAT CTC GGG CTT AAT GAT GAG GTC GTA GAT GGT 747 Met Asp Thr Val Leu Asn Leu Gly Leu Asn Asp Glu Val Val Asp Gly
190 195 200  190 195 200
CTA GCT GCC AAA AGT GGA GCT CGC TTT GCC TAT GAC TCG TAT AGG AGG 795 Leu Ala Ala Lys Ser Cly Ala Arg Phe Ala Tyr Asp Ser Tyr Arg Arg  CTA GCT GCC AAA AGT GGA GCT CGC TTT GCC TAT GAC TCG TAT AGG AGG 795 Leu Ala Ala Lys Ser Cly Ala Arg Phe Ala Tyr Asp Ser Tyr Arg Arg
205 210 215  205 210 215
TTT CTA GAT ATG TTT GGC AAC GTT GTA ATG GGT ATC CCA CAT TCG TTA 843 Phe Leu Asp Met Phe Gly Asn Val Val Met Gly He Pro His Ser Leu  TTT CTA GAT ATG TTT GGC AAC GTT GTA ATG GGT ATC CCA CAT TCG TTA 843 Phe Leu Asp Met Phe Gly Asn Val Val Met Gly He Pro His Ser Leu
220 225 230  220 225 230
TTT GAT GAA AAG TTA GAG CAG ATG AAA GCT GAA AAA GGG ATT CAT CTC 891 Phe Asp Glu Lys Leu Glu Gin Met Lys Ala Glu Lys Gly l ie His Leu  TTT GAT GAA AAG TTA GAG CAG ATG AAA GCT GAA AAA GGG ATT CAT CTC 891 Phe Asp Glu Lys Leu Glu Gin Met Lys Ala Glu Lys Gly lie His Leu
235 240 245 250235 240 245 250
GAC ACT GAT CTC ACT GCT GCT GAT CTT AAA GAT CTT GCT GAG CAA TAC 939 Asp Thr Asp Leu Thr Ala Ala Asp Leu Lys Asp Leu Ala Glu Gin Tyr GAC ACT GAT CTC ACT GCT GCT GAT CTT AAA GAT CTT GCT GAG CAA TAC 939 Asp Thr Asp Leu Thr Ala Ala Asp Leu Lys Asp Leu Ala Glu Gin Tyr
255 260 265  255 260 265
AAG AAC GTG TAT GTG GAA GCA AAG GGC GAA AAG TTT CCC ACA GAT CCA 987 Lys Asn Val Tyr Val Glu Ala Lys Gly Glu Lys Phe Pro Thr Asp Pro  AAG AAC GTG TAT GTG GAA GCA AAG GGC GAA AAG TTT CCC ACA GAT CCA 987 Lys Asn Val Tyr Val Glu Ala Lys Gly Glu Lys Phe Pro Thr Asp Pro
270 275 280  270 275 280
AAG AAA CAG CTA GAG TTA GCA GTG AAT GCG GTT TTT GAT TCT TGG GAC 1035 Lys Lys Gin Leu Glu Leu Ala Val Asn Ala Val Phe Asp Ser Trp Asp  AAG AAA CAG CTA GAG TTA GCA GTG AAT GCG GTT TTT GAT TCT TGG GAC 1035 Lys Lys Gin Leu Glu Leu Ala Val Asn Ala Val Phe Asp Ser Trp Asp
285 290 295  285 290 295
AGC CCA AGG GCC AAT AAG TAC AGG AGT ATT AAC CAG ATA ACT GGG TTA 1083 Ser Pro Arg Ala Asn Lys Tyr Arg Ser l ie Asn Gin l ie Thr Gly Leu  AGC CCA AGG GCC AAT AAG TAC AGG AGT ATT AAC CAG ATA ACT GGG TTA 1083 Ser Pro Arg Ala Asn Lys Tyr Arg Ser lie Asn Gin lie Thr Gly Leu
300 305 310  300 305 310
AAG GGG ACC GCG GTT AAC ATT CAA TGC ATG GTG TTT GGC AAC ATG GGG 1 131 0 9^ 0 ΐΒΛ ΐ¾ STH J3S s Ί J eiv J3S ojj usy aqj UTQ OJJ STH ngqAAG GGG ACC GCG GTT AAC ATT CAA TGC ATG GTG TTT GGC AAC ATG GGG 1 131 0 9 ^ 0 ΐΒΛ ΐ¾ STH J3S s Ί J eiv J3S ojj usy aqj UTQ OJJ STH ngq
995Ϊ V19 013 1V3 39V VVV 3V丄 130 131 933 IVV OVO III 0V3 V33 1V3 丄丄:) 995Ϊ V19 013 1V3 39V VVV 3V 丄 130 131 933 IVV OVO III 0V3 V33 1V3 丄 丄 :)
S OQi' 5^  S OQi '5 ^
ri9i uio dsy na STH UTO jqx ΤΘ 3JV sA 9χ[ Βχν 丄 §JV 丄 ςΐ9ΐ no ova m via iva m IDV ovo no 33v ovv丄丄 v voo vov vov丄:) v  ri9i uio dsy na STH UTO jqx ΤΘ 3JV sA 9χ [Βχν 丄 §JV 丄 ςΐ9ΐ no ova m via iva m IDV ovo no 33v ovv 丄 丄 v voo vov vov 丄 :) v
^ o  ^ o
dsy 3TI "31 io ητο usv ΐ^Λ 13W dsy ΐ^Λ ^TV si I v A BTV ^I tm m IIV vio ooo m ovv oio oiv vxo νοΰ丄丄 v vov i ooo ΐΰο  dsy 3TI "31 io ητο usv ΐ ^ Λ 13W dsy ΐ ^ Λ ^ TV si I v A BTV ^ I tm m IIV vio ooo m ovv oio oiv vxo νοΰ 丄 丄 v vov i ooo ΐΰο
S 0 9ΐ^  S 0 9ΐ ^
s q χ9 J¾ 3jy ^ΐθ -^I S-^V SAQ ng xajy djj, nsq Sjy usv s q χ9 J¾ 3jy ^ ΐθ-^ I S- ^ V SAQ ng xajy djj, nsq Sjy usv
61^1 VVV 000 13V 103 VVV 000 VOV V9D 301 VV3 013 3IV 001 113 VOV 3VV61 ^ 1 VVV 000 13V 103 VVV 000 VOV V9D 301 VV3 013 3IV 001 113 VOV 3VV
0 GO^ 00^ 9680 GO ^ 00 ^ 968
"T9 uio ΙΒΛ 丄 sqj ΘΠ dsy 13« 13« dsy sAq λχ SIH 3iV ηχο"T9 uio ΙΒΛ 丄 sqj ΘΠ dsy 13« 13 «dsy sAq λχ SIH 3iV ηχο
U81 WO VV3 110 V3V 311 WO UV IV9 91V OXV IVO VVV 3V1 3V3 VOV 9V3 U81 WO VV3 110 V3V 311 WO UV IV9 91V OXV IVO VVV 3V1 3V3 VOV 9V3
068 589 08C nai 3TI ΐ^Λ SAQ usy r j) naq ητο 3JV JAX BTV "TO 0Jd 18« sAo Z \ VII IIV 010 101 DVV 3V0 010 XI3 OVO VOV 3VI V30 VV9 IOD OIV 301  068 589 08C nai 3TI ΐ ^ Λ SAQ usy r j) naq ητο 3JV JAX BTV "TO 0Jd 18« sAo Z \ VII IIV 010 101 DVV 3V0 010 XI3 OVO VOV 3VI V30 VV9 IOD OIV 301
0A6 598  0A6 598
J "TO 13W -iqi ΐ^Λ nai dsy ηχο OJJ jqi 3jy 3U χο BTV ΐ^Λ T¾ J "TO 13W -iqi ΐ ^ Λ nai dsy ηχο OJJ jqi 3jy 3U χο BTV ΐ ^ Λ T¾
¾Α2ΐ I3V DVO 9IV 33V 010 Oil IVO VV3 V33 V3V V9V 31V 090 133 110 丄丄;) ¾Α2ΐ I3V DVO 9IV 33V 010 Oil IVO VV3 V33 V3V V9V 31V 090 133 110 丄 丄;)
098 998 09S  098 998 09S
dsy "TO ^ΐθ "TO BTV usv T¾ naq a¾j ηχ^ J 丄 nsq s q sAq n^g dsy "TO ^ ΐθ" TO BTV usv T¾ naq a¾j ηχ ^ J 丄 nsq s q sAq n ^ g
IVO 9V3 V33 0V3 130 XVV 310 VII 111 9V0 000 IVI 013 OVV DVV OVO m 589 IVO 9V3 V33 0V3 130 XVV 310 VII 111 9V0 000 IVI 013 OVV DVV OVO m 589
^ΐθ Jqi J3S ojj usy V 丄 3qd ^ I^ TQ Jqi ATO JSS -rm usy ^ ΐθ Jqi J3S ojj usy V 丄 3qd ^ I ^ TQ Jqi ATO JSS -rm usy
6ΙΠ 100 13V 30V V33 DVV 30V IDV Oil 113 110 100 33V VOO V3I IDV DVV οεε ε 9ΐε6ΙΠ 100 13V 30V V33 DVV 30V IDV Oil 113 110 100 33V VOO V3I IDV DVV οεε ε 9ΐε
Λΐ3 jaw usv ΛΙΟ 9Md ΐΒ.,\ 13N SAO "TO 3Π usy ΐΒΛ BTV 'ίΐθ sAq Λΐ3 jaw usv ΛΙΟ 9Md ΐΒ., \ 13N SAO "TO 3Π usy ΐΒΛ BTV 'ίΐθ sAq
OS OS
ΟίΌΪ 0/S6df /IDd 69ひ 0/96 OAV P / 95/01 ΟίΌΪ 0 / S6df / IDd 69h 0/96 OAV P / 95/01
51  51
GCA ACC GGT TTG CCA GCA TCC CCT GGG GCA GCC GTG GGG CAG GTT GTG 161 1 Ala Thr Gly Leu Pro Ala Ser Pro Gly Ala Ala Val Gly Gin Val Val 475 480 485 490GCA ACC GGT TTG CCA GCA TCC CCT GGG GCA GCC GTG GGG CAG GTT GTG 161 1 Ala Thr Gly Leu Pro Ala Ser Pro Gly Ala Ala Val Gly Gin Val Val 475 480 485 490
TTC AGC GCA GAG GAT GCT GAA ACA TGG CAT GCA CAA GGA AAG AGT GCT 1659 Phe Ser Ala Glu Asp Ala Glu Thr Trp His Ala Gin Gly Lys Ser Ala TTC AGC GCA GAG GAT GCT GAA ACA TGG CAT GCA CAA GGA AAG AGT GCT 1659 Phe Ser Ala Glu Asp Ala Glu Thr Trp His Ala Gin Gly Lys Ser Ala
495 500 505  495 500 505
ATC TTG GTA AGG ACT GAA ACA AGC CCA GAA GAT GTT GGT GGT ATG CAT 1707 l ie Leu Val Arg Thr Glu Thr Ser Pro Glu Asp Val Gly Gly Met His  ATC TTG GTA AGG ACT GAA ACA AGC CCA GAA GAT GTT GGT GGT ATG CAT 1707 l ie Leu Val Arg Thr Glu Thr Ser Pro Glu Asp Val Gly Gly Met His
510 515 520  510 515 520
GCA GCA GCT GGA ATC TTA ACC GCT AGA GGA GGA ATG ACA TCA CAT GCA 1755 Ala Ala Ala Gly l ie Leu Thr Ala Arg Gly Gly Met Thr Ser His Ala  GCA GCA GCT GGA ATC TTA ACC GCT AGA GGA GGA ATG ACA TCA CAT GCA 1755 Ala Ala Ala Gly lie Leu Thr Ala Arg Gly Gly Met Thr Ser His Ala
525 530 535  525 530 535
GCA GTG GTG GCT CGC GGA TGG GGC AAA TGT TGT GTT TCT GGT TGT GCT 1803 Ala Val Val Ala Arg Gly Trp Gly Lys Cys Cys Val Ser Gly Cys Ala  GCA GTG GTG GCT CGC GGA TGG GGC AAA TGT TGT GTT TCT GGT TGT GCT 1803 Ala Val Val Ala Arg Gly Trp Gly Lys Cys Cys Val Ser Gly Cys Ala
540 545 550  540 545 550
GAT ATT CGT GTG AAC GAT GAT ATG AAG GTT TTT ACG ATA GGT GAC CGT 1851 Asp l ie Arg Val Asn Asp Asp Met Lys Val Phe Thr l ie Gly Asp Arg  GAT ATT CGT GTG AAC GAT GAT ATG AAG GTT TTT ACG ATA GGT GAC CGT 1851 Asp lie Arg Val Asn Asp Asp Met Lys Val Phe Thr lie Gly Asp Arg
555 560 565 570 555 560 565 570
GTG ATT AAA GAA GGT GAC TGG CTT TCA CTT AAT GGT TCA ACT GGC GAA 1899 Val l ie Lys Glu Gly Asp Trp Leu Ser Leu Asn Gly Ser Thr Gly Glu  GTG ATT AAA GAA GGT GAC TGG CTT TCA CTT AAT GGT TCA ACT GGC GAA 1899 Val lie Lys Glu Gly Asp Trp Leu Ser Leu Asn Gly Ser Thr Gly Glu
575 580 585  575 580 585
GTC ATA TTG GGT AAA CAG CTA CTG GCT CCA CCT GCA ATG AGC AAT GAT 1947 Val l ie Leu Gly Lys Gin Leu Leu Ala Pro Pro Ala Met Ser Asn Asp  GTC ATA TTG GGT AAA CAG CTA CTG GCT CCA CCT GCA ATG AGC AAT GAT 1947 Val lie Leu Gly Lys Gin Leu Leu Ala Pro Pro Ala Met Ser Asn Asp
590 595 600  590 595 600
TTA GAA ACA TTC ATG TCA TGG GCT GAT CAA GCA AGG CGT CTC AAG GTT 1995 Leu Glu Thr Phe Met Ser Trp Ala Asp Gin Ala Arg Arg leu Lys Val  TTA GAA ACA TTC ATG TCA TGG GCT GAT CAA GCA AGG CGT CTC AAG GTT 1995 Leu Glu Thr Phe Met Ser Trp Ala Asp Gin Ala Arg Arg leu Lys Val
605 610 615  605 610 615
ATG GCA AAT GCA GAC ACA CCT AAT GAT GCA TTA ACA GCC AGA AAC AAT 2043 Met Ala Asn Ala Asp Thr Pro Asn Asp Ala Leu Thr Ala Arg Asn Asn ΖζΖ VOV VOO DID VII 033 110 91V OIV OVO V O VIV VI9 I3V 010 ΟΰΟ OVD ATG GCA AAT GCA GAC ACA CCT AAT GAT GCA TTA ACA GCC AGA AAC AAT 2043 Met Ala Asn Ala Asp Thr Pro Asn Asp Ala Leu Thr Ala Arg Asn Asn ΖζΖ VOV VOO DID VII 033 110 91V OIV OVO VO VIV VI9 I3V 010 ΟΰΟ OVD
QLL ¾9A  QLL ¾9A
usv usv 13W A BTV BTV "TO sqd 9T I BTV SJV ΐ^Λ WJ) 13^ ηχ^ usv usv 13W A BTV BTV "TO sqd 9T I BTV SJV ΐ ^ Λ WJ) 13 ^ ηχ ^
S IVV OVV OIV 131 010 VOO 130 VV3 III 31V 030 103 110 WD OIV WO S IVV OVV OIV 131 010 VOO 130 VV3 III 31V 030 103 110 WD OIV WO
09A Q9I 051 jqi ns OJJ JA丄 jas ST I I Q nsq 3jy SAQ Αχο 8jy sqd ^ΐθ ίζη V3V VID DOO v丄 nv ooo VII vra αοι ιοΰ ioo on IOO no  09A Q9I 051 jqi ns OJJ JA 丄 jas ST I I Q nsq 3jy SAQ Αχο 8jy sqd ^ ΐθ ίζη V3V VID DOO v 丄 nv ooo VII vra αοι ιοΰ ioo on IOO no
5 OH ςει  5 OH ςει
13W OJJ usv ΐ^Λ ηΐΰ J3S η9Ί sA ηχ^ 3\ \ 3ay J3S 9ΐ Ι ηΐΟ dsy13W OJJ usv ΐ ^ Λ η ΐΰ J3S η9 Ί sA ηχ ^ 3 \ \ 3ay J3 S 9 ΐ Ι η ΐΟ dsy
6 εΖ OXV 133 OVV 10 m OOi VIJ. VVV VV9 3IV V3V V3X IV丄 31V WO 丄 V3 Q L 921 QZL 5 U s q jas 19W χ JiLL dsv ^TV ュ n\ usv A ^l l S TH ηχο nsq mZ VVV 33V OIV 3D0 VOV IV9 933 V3V 113 WO XVV 010 VIV 3VD VV3 VID 6 εΖ OXV 133 OVV 10 m OOi VIJ. VVV VV9 3IV V3V V3X IV丄31V WO丄V3 QL 921 QZL 5 U sq jas 19W χ JiLL dsv ^ TV Interview n \ usv A ^ ll S TH ηχο nsq mZ VVV 33V OIV 3D0 VOV IV9 933 V3V 113 WO XVV 010 VIV 3VD VV3 VID
ou goi oo dsy ηχ9 OJJ nsq sqj η ^ st}} nsq OJJ OJJ dsy naq ng-j gjy sn 8822 XVO 100 WO 330 VID III OVO 1V3 1X3 V33 13D 3V3 VID 113 393 3XV  ou goi oo dsy ηχ9 OJJ nsq sqj η ^ st}} nsq OJJ OJJ dsy naq ng-j gjy sn 8822 XVO 100 WO 330 VID III OVO 1V3 1X3 V33 13D 3V3 VID 113 393 3XV
G69 069 989  G69 069 989
ュ i}丄 TE ojj nsi dsy 19W BTV 3ュ v 311 ^TO ηΐ3 ^Md dsy J3SI i} 丄 TE ojj nsi dsy 19W BTV 3 v v 311 ^ TO η ΐ3 ^ Md dsy J3S
VOV VIO 133 丄丄 3 VOO XVO 9IV V30 V93 311 11V 330 9V0 111 IV9 331 VOV VIO 133 丄 丄 3 VOO XVO 9IV V30 V93 311 11V 330 9V0 111 IV9 331
089 9i9 0iL9 089 9i9 0iL9
SJV uff) j ojj naq nsq na dsy naq Β ν ^TV sAq Sjy U1 nT9 OJJ i813 VOV m 3VI V33 313 Vll 3X3 3V3 VXD 130 009 VVV V9V WD WO V33 SJV uff) j ojj naq nsq na dsy naq Β ν ^ TV sAq Sjy U 1 n T9 OJJ i813 VOV m 3VI V33 313 Vll 3X3 3V3 VXD 130 009 VVV V9V WD WO V33
599 099 959  599 099 959
•"U ΪΕΛ eiv WW 3Π 19N sAq 3JV ΐ^Λ ^TV sAq an 3jy ηχο dsy J3S • "U ΪΕΛ eiv WW 3Π 19N sAq 3JV ΐ ^ Λ ^ TV sAq an 3jy ηχο dsy J3S
13V 310 030 9IV 3IV OIV OVV VOV VI3 139 VVV 3IV 93V OVO OVO 丄:)丄 099 m m 9S913V 310 030 9IV 3IV OIV OVV VOV VI3 139 VVV 3IV 93V OVO OVO 丄 :) 丄 099 mm 9S9
BTV aqd 3Md 13W S TH nio J¾ 3ュ V SAQ nsq λχ an Αχθ "TO EIV ^ IDBTV aqd 3Md 13W S TH nio J¾ 3 V V SAQ nsq λχ an Αχθ "TO E IV ^ ID
1602 133 311 III OXV XV3 WO I3V VOV 101 313 V09 3丄 V 330 VV3 VOO 130 1602 133 311 III OXV XV3 WO I3V VOV 101 313 V09 3 丄 V 330 VV3 VOO 130
0S9 529 0Z9  0S9 529 0Z9
S3 S3
OtOlO/S6df/X3d 69€»Ό/96 OAV Gin Gly Val Thr Val l ie Pro Glu l ie Met Val Pro Leu Val Gly ThrOtOlO / S6df / X3d 69 € »Ό / 96 OAV Gin Gly Val Thr Val lie Pro Glu lie Met Val Pro Leu Val Gly Thr
780 785 790 780 785 790
CCT CAG GAA TTA CGG CAT CAA ATC GGC GTA ATT CGT GGT GTA GCT GCA 2571 Pro Gin Glu Leu Arg His Gin l ie Gly Val He Arg Gly Val Ala Ala 795 800 805 810 CCT CAG GAA TTA CGG CAT CAA ATC GGC GTA ATT CGT GGT GTA GCT GCA 2571 Pro Gin Glu Leu Arg His Gin lie Gly Val He Arg Gly Val Ala Ala 795 800 805 810
AAT GTT TTT GCT GAA ATG GGG CTG ACG TTG GAG TAT AAA GTG GGA ACG 2619 Asn Val Phe Ala Glu Met Gly Leu Thr Leu Glu Tyr Lys Val Gly Thr AAT GTT TTT GCT GAA ATG GGG CTG ACG TTG GAG TAT AAA GTG GGA ACG 2619 Asn Val Phe Ala Glu Met Gly Leu Thr Leu Glu Tyr Lys Val Gly Thr
815 820 825  815 820 825
ATG ATT GAG ATT CCT CGA GCT GCT TTG ATT GCT GAT GAG ATT GCA AAA 2667 Met l ie Glu He Pro Arg Ala Ala Leu l ie Ala Asp Glu l ie Ala Lys  ATG ATT GAG ATT CCT CGA GCT GCT TTG ATT GCT GAT GAG ATT GCA AAA 2667 Met lie Glu He Pro Arg Ala Ala Leu lie Ala Asp Glu lie Ala Lys
830 835 840  830 835 840
GAA GCC GAG TTC TTT TCG TTT GGA ACC AAT GAT TTG ACC CAG ATG ACA 2715 Glu Ala Glu Phe Phe Ser Phe Gly Thr Asn Asp Leu Thr Gin Met Thr  GAA GCC GAG TTC TTT TCG TTT GGA ACC AAT GAT TTG ACC CAG ATG ACA 2715 Glu Ala Glu Phe Phe Ser Phe Gly Thr Asn Asp Leu Thr Gin Met Thr
845 850 855  845 850 855
TTT GGG TAC AGC AGA GAT GAT GTT GGC AAG TTT TTG CCG ATT TAT CTT 2763 Phe Gly Tyr Ser Arg Asp Asp Val Gly Lys Phe Leu Pro l ie Tyr Leu  TTT GGG TAC AGC AGA GAT GAT GTT GGC AAG TTT TTG CCG ATT TAT CTT 2763 Phe Gly Tyr Ser Arg Asp Asp Val Gly Lys Phe Leu Pro lie Tyr Leu
860 865 870  860 865 870
TCT CAA GGC ATT CTG CAG CAT GAT CCA TTT GAG GTT CTT GAC CAG AAA 2811 Ser Gin Gly l ie Leu Gin His Asp Pro Phe Glu Val Leu Asp Gin Lys  TCT CAA GGC ATT CTG CAG CAT GAT CCA TTT GAG GTT CTT GAC CAG AAA 2811 Ser Gin Gly lie Leu Gin His Asp Pro Phe Glu Val Leu Asp Gin Lys
875 880 885 890 875 880 885 890
GGG GTG GCT CAA TTG ATC AAG ATG GCC ACG GAG AAA GGT CGT GCA GCC 2859 Gly Val Gly Gin Leu l ie Lys Met Ala Thr Glu Lys Gly Arg Ala Ala  GGG GTG GCT CAA TTG ATC AAG ATG GCC ACG GAG AAA GGT CGT GCA GCC 2859 Gly Val Gly Gin Leu lie Lys Met Ala Thr Glu Lys Gly Arg Ala Ala
895 900 905  895 900 905
AAT CCT AAC TTA AAG GTT GGG ATA TGT GGG GAG CAT GGT GGA GAA CCT 2907 Asn Pro Asn Leu Lys Val Gly l ie Cys Gly Glu His Gly Gly Glu Pro  AAT CCT AAC TTA AAG GTT GGG ATA TGT GGG GAG CAT GGT GGA GAA CCT 2907 Asn Pro Asn Leu Lys Val Gly lie Cys Gly Glu His Gly Gly Glu Pro
910 915 920  910 915 920
TCT TCT GTT GCA TTT TTT GAC GGA GTT GGA CTA GAT TAT GTG TCG TGC 2955 Ser Ser Val Ala Phe Phe Asp Gly Val Gly Leu Asp Tyr Val Ser Cys  TCT TCT GTT GCA TTT TTT GAC GGA GTT GGA CTA GAT TAT GTG TCG TGC 2955 Ser Ser Val Ala Phe Phe Asp Gly Val Gly Leu Asp Tyr Val Ser Cys
925 930 935 TCT CCA TTC AGG GTT CCT ATC GCA AGG TTG GCC GCT GCA CAA GTC GTT 3003 Ser Pro Phe Arg Val Pro l ie Ala Arg Leu Ala Ala Ala Gin Val Val 925 930 935 TCT CCA TTC AGG GTT CCT ATC GCA AGG TTG GCC GCT GCA CAA GTC GTT 3003 Ser Pro Phe Arg Val Pro lie Ala Arg Leu Ala Ala Ala Gin Val Val
940 945 950  940 945 950
GTT TAAGCTTTGA AAGGAGGATG GCTTATTTGC TTCATGTTTT CCGCCATTGT 3056 Val  GTT TAAGCTTTGA AAGGAGGATG GCTTATTTGC TTCATGTTTT CCGCCATTGT 3056 Val
955 955
ATATTATTTT GGTTTCATCC TTATTGTAAT GGTGAAAATG AACGATGTTT AAACAAAACA 3116 ACCCATTATA TTTTGGTTTG GTATGCAATA ATCTACTTTT CAAACAAAAA AAAAAAAAAA 3176 AAAA 3180 配列番号: 6  ATATTATTTT GGTTTCATCC TTATTGTAAT GGTGAAAATG AACGATGTTT AAACAAAACA 3116 ACCCATTATA TTTTGGTTTG GTATGCAATA ATCTACTTTT CAAACAAAAA AAAAAAAAAA3176 AAAA 3180 SEQ ID NO: 6
配列の長さ : 1 8 Array length: 1 8
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GACGGCTAAA AAGAGGGT 18 配列番号: 7  GACGGCTAAA AAGAGGGT 18 SEQ ID NO: 7
配列の長さ : 2 0 Array length: 20
配列の型:核酸 Sequence type: nucleic acid
配列 Array
TATCGAGAAA CCTTCTATAC 20 配列番号: 8  TATCGAGAAA CCTTCTATAC 20 SEQ ID NO: 8
配列の長さ : 1 7 Array length: 1 7
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GTTTTCCCAG TCACGAC 17 配列番号: 9 配列の長さ : 1 7 GTTTTCCCAG TCACGAC 17 SEQ ID NO: 9 Array length: 1 7
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CAGGAAACAG CTATGAC 17 配列番号: 1 0  CAGGAAACAG CTATGAC 17 SEQ ID NO: 10
配列の長さ : 2 3 Array length: 2 3
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GATATCAATC CGGTGTCTCC TCC 23 配列番号: 1 1  GATATCAATC CGGTGTCTCC TCC 23 SEQ ID NO: 1 1
配列の長さ : 3 4 Array length: 3 4
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CGGTGTCTCC TCCGGATATC ACGGCTAAAA AGAG 34 配列番号: 1 2  CGGTGTCTCC TCCGGATATC ACGGCTAAAA AGAG 34 SEQ ID NO: 1 2
配列の長さ : 2 7 Array length: 2 7
配列の型:核酸 Sequence type: nucleic acid
配列 Array
TTGATATCCC GGTTGTCTCC TCCGGTA 27 配列番号: 1 3  TTGATATCCC GGTTGTCTCC TCCGGTA 27 SEQ ID NO: 1 3
配列の長さ : 2 0 Array length: 20
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GCAGAGATGA TGTTGGCAAG 20 配列番号: 1 4 GCAGAGATGA TGTTGGCAAG 20 SEQ ID NO: 1 4
配列の長さ : 2 0 Array length: 20
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CTTGCCAACA TCATCTCTGC 20 配列番号: 1 5  CTTGCCAACA TCATCTCTGC 20 SEQ ID NO: 15
配列の長さ : 2 0 Array length: 20
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CTCACTGTTC GAAGAGAAGC 20 配列番号: 1 6  CTCACTGTTC GAAGAGAAGC 20 SEQ ID NO: 16
配列の長さ : 2 3 Array length: 2 3
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CATATGCTCT GTCCGGCATA ATC 23 配列番号: 1 7  CATATGCTCT GTCCGGCATA ATC 23 SEQ ID NO: 17
配列の長さ : 2 1 Array length: 2 1
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CTCGAGGGAT CTCAATCATT G 21 配列番号: 1 8  CTCGAGGGAT CTCAATCATT G 21 SEQ ID NO: 18
配列の長さ : 1 8 Array length: 1 8
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GCAATCTCTT CAGCAATC 18 配列番号: 1 9 GCAATCTCTT CAGCAATC 18 SEQ ID NO: 1 9
配列の長さ : 2 0 Array length: 20
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GCTTCTTTTC CAATCTCATC 20 配列番号: 2 0  GCTTCTTTTC CAATCTCATC 20 SEQ ID NO: 20
配列の長さ : 1 8 Array length: 1 8
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CGAAAAGAAA TCGGCTTC 18 配列番号: 2 1  CGAAAAGAAA TCGGCTTC 18 SEQ ID NO: 21
配列の長さ : 2 4 Array length: 2 4
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GAAAGATAAA TCTGCAAAAA CTTG 24 配列番号: 2 2  GAAAGATAAA TCTGCAAAAA CTTG 24 SEQ ID NO: 2 2
配列の長さ : 1 9 Array length: 1 9
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GCCTTGAGCA AGATAAATC 19 配列番号: 2 3  GCCTTGAGCA AGATAAATC 19 SEQ ID NO: 23
配列の長さ : 2 1 Array length: 2 1
配列の型:核酸 Sequence type: nucleic acid
配列 TTCTGGTCAA TAACCTCAAT G 21 配列番号: 2 4 Array TTCTGGTCAA TAACCTCAAT G 21 SEQ ID NO: 24
配列の長さ : 2 0 Array length: 20
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GCTTAAACAA TGACTTGTGC 20 配列番号: 2 5  GCTTAAACAA TGACTTGTGC 20 SEQ ID NO: 25
配列の長さ : 2 2 Array length: 2 2
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CCAATCTCAT CAGCTATTAA AG 22 配列番号: 2 6  CCAATCTCAT CAGCTATTAA AG 22 SEQ ID NO: 26
配列の長さ : 2 0 Array length: 20
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GCTTCTTTTG CAATCTCTTC 20 配列番号: 2 7  GCTTCTTTTG CAATCTCTTC 20 SEQ ID NO: 2 7
配列の長さ : 1 8 Array length: 1 8
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CGAAAAGAAC TCAGCTTC 18 配列番号: 2 8  CGAAAAGAAC TCAGCTTC 18 SEQ ID NO: 28
配列の長さ : 2 3 Array length: 2 3
配列の型:核酸 配列 Sequence type: nucleic acid Array
CAAGATAAAT CGGCAAAAAC TTG 23 配列番号 ·· 2 9  CAAGATAAAT CGGCAAAAAC TTG 23 SEQ ID NO: 2 9
配列の長さ : 2 3 Array length: 2 3
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GAATGCCTTG AGAAAGATAA ATC 23 配列番号: 3 0  GAATGCCTTG AGAAAGATAA ATC 23 SEQ ID NO: 30
配列の長さ : 2 4 Array length: 2 4
配列の型:核酸 Sequence type: nucleic acid
配列 Array
CTTTCTGGTC AAGAACCTCA AATG 24 配列番号: 3 1  CTTTCTGGTC AAGAACCTCA AATG 24 SEQ ID NO: 31
配列の長さ : 2 0 Array length: 20
配列の型:核酸 Sequence type: nucleic acid
配列 Array
GCTTAAACAA CGACTTGTGC 20  GCTTAAACAA CGACTTGTGC 20

Claims

請求の範囲 The scope of the claims
1 . 下記(1 ) (2) のいずれかにおいて、 アミノ酸配列の C—末端から全長の 6分 の 1の範囲における少なくとも 1つ以上のァミノ酸残基を他のァミノ酸残基に置 換したアミノ酸配列を有し、 かつ低温耐性ピルビン酸リン酸ジキナーゼ活性を有 するポリべプチド。  1. In any of (1) and (2) below, at least one amino acid residue in the range of 1/6 of the full length from the C-terminal of the amino acid sequence has been replaced with another amino acid residue. A polypeptide having an amino acid sequence and low-temperature-resistant pyruvate phosphate dikinase activity.
(1 ) 配列表の配列番号 1ないし 4のいずれかに示すアミノ酸配列を有するピルビ ン酸リン酸ジキナーゼ。  (1) A pyruvate phosphate dikinase having an amino acid sequence represented by any one of SEQ ID NOs: 1 to 4 in the sequence listing.
(2) (1) に示すァミノ酸配列に 5 0 %以上相同なァミノ酸配列を有し、 かつピル ビン酸リン酸ジキナーゼ活性を有するポリべプチド。  (2) A polypeptide having an amino acid sequence 50% or more homologous to the amino acid sequence shown in (1), and having pyruvate phosphate dikinase activity.
2 . 配列表の配列番号 5に示すァミノ酸配列又は該ァミノ酸配列において 1又は 複数のアミノ酸が付加、 欠失若しくは置換されておりかつ低温耐性ピルビン酸リ ン酸ジキナーゼ活性を有するポリベプチド。  2. An amino acid sequence represented by SEQ ID NO: 5 in the sequence listing, or a polypeptide having one or more amino acids added, deleted or substituted in the amino acid sequence, and having a low-temperature-resistant pyruvate phosphoric acid dikinase activity.
3 . 配列表の配列番号 5に示すアミノ酸配列を有する請求項 2記載のポリべプチ  3. The polypeptide of claim 2, which has the amino acid sequence shown in SEQ ID NO: 5 in the sequence listing
4 . 配列表の配列番号 5に示すアミノ酸配列の 8 3 2〜 9 5 5番目の部分又は該 部分アミノ酸配列において 1又は複数のアミノ酸が付加、 欠失若しくは置換され ており、 かつピルビン酸リン酸ジキナーゼ活性を有するポリべプチドに低温耐性 を付与することができる配列を含み、 低温耐性ピルビン酸リン酸ジキナーゼ活性 を有するポリベプチド。 4. One or more amino acids are added, deleted or substituted in the 832 to 955th portion or the partial amino acid sequence of the amino acid sequence shown in SEQ ID NO: 5 in the sequence listing, and the pyruvate phosphate is used. A polypeptide comprising a sequence capable of imparting low-temperature resistance to a polypeptide having dikinase activity, and having low-temperature-resistant pyruvate phosphate dikinase activity.
5 . 配列表の配列番号 5に示すァミ ノ酸配列の 8 3 2〜 9 5 5番目の部分を含 み、 低温耐性ピルビン酸リン酸ジキナーゼ活性を有する請求項 4記載のポリぺプ チド。  5. The polypeptide according to claim 4, which comprises a portion of the amino acid sequence represented by SEQ ID NO: 5 in the sequence listing at position 832 to 955, and has a low-temperature-resistant pyruvate phosphate dikinase activity.
6 . 配列表の配列番号 5に示すアミノ酸配列の 8 3 2〜 9 5 5番目の部分又は該 部分ァミノ酸配列において 1又は複数のァミノ酸が付加、 欠失若しくは置換され ており、 かつピルビン酸リン酸ジキナーゼに低温耐性を付与することができる配 列で、 ピルビン酸リン酸ジキナーゼのァミノ酸配列の相同部分を置換した請求項 1記載のポリベプチド。  6. One or more amino acids are added, deleted or substituted in the 832 to 955th part or the partial amino acid sequence of the amino acid sequence shown in SEQ ID NO: 5 in the sequence listing, and pyruvate is used. 2. The polypeptide according to claim 1, wherein the homologous portion of the amino acid sequence of pyruvate phosphate dikinase is substituted with a sequence capable of imparting low temperature resistance to phosphate dikinase.
7 . 配列表の配列番号 5に示すァミノ酸配列の 8 3 2〜 9 5 5番目の部分で、 ピ ルビン酸リン酸ジキナーゼのァミノ酸配列の相同部分を置換した請求項 6記載の ポリぺプチド。 7. The amino acid sequence shown in SEQ ID NO: 5 in the amino acid sequence of SEQ ID NO: 5 at position 8332 to 9555, wherein the homologous portion of the amino acid sequence of pyruvate phosphate dikinase has been substituted. Polypeptide.
8. 配列表の配列番号 1に示すァミ ノ酸配列の 869番目をプロリンに置換した 請求項 1記載のポリベプチド。  8. The polypeptide according to claim 1, wherein the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing is substituted with proline at position 869.
9. 配列表の配列番号 1に示すァミノ酸配列の 885番目及び 952番目をロイ シン及びバリ ンにそれぞれ置換した請求項 1記載のポリべプチド。  9. The polypeptide according to claim 1, wherein positions 885 and 952 of the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing are substituted with leucine and valine, respectively.
1 0. 請求項 1ないし 9のいずれか 1項に記載のポリベプチドをコ一ドするク ローン化された DNA。  10. A cloned DNA encoding the polypeptide of any one of claims 1 to 9.
1 1. 配列表の配列番号 5で示される塩基配列又は該塩基配列において 1又は複 数のヌクレオチドが付加、 欠失若しくは置換されておりかつ低温耐性ピルビン酸 リ ン酸キナーゼ活性を有するポリぺプチ ドをコ一 ドする請求項 1 0記載の DN A。  1 1. The nucleotide sequence represented by SEQ ID NO: 5 in the sequence listing, or a polypeptide having one or more nucleotides added, deleted or substituted in the nucleotide sequence and having a low-temperature-resistant pyruvate kinase activity 10. The DNA of claim 10, wherein the code is a code.
1 2. 請求項 10記載の DNAを含み、 宿主中で低温耐性ピルビン酸リン酸ジキ ナーゼ活性を有するポリべプチドを発現することができる組換えベクター。 1 2. A recombinant vector comprising the DNA of claim 10 and capable of expressing a polypeptide having a low-temperature-resistant pyruvate phosphate dikinase activity in a host.
13. 請求項 10記載の DN Aで形質転換された植物。 13. A plant transformed with the DNA of claim 10.
PCT/JP1995/001040 1994-07-29 1995-05-30 Polypeptide having cold-resistant pyruvate phosphate dikinase activity, dna coding for the polypeptide, recombinant vector containing the dna, and transformed plant WO1996004369A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RO96-00667A RO118451B1 (en) 1994-07-29 1995-05-30 Polypeptide with dikinase orthophosphate pyruvate activity, dna encoding the same, recombinant vector with said dna and process for modifying a plant by means of said vector
HU9600790A HU222186B1 (en) 1994-07-29 1995-05-30 Cold resistant pyruvate ortophosphate dikinase, the dna coding it, the recombinante vector containing the dna, and the transformed plants
RU96108242A RU2136748C1 (en) 1994-07-29 1995-05-30 Polypeptide showing activity of cold-resistant pyruvate-orthophosphate dikinase (variants), cloned dna encoding polypeptide, recombinant vector and method of plant transformation
BR9506291A BR9506291A (en) 1994-07-29 1995-05-30 Polypeptide having cold-stable pyruvate and orthophosphate diquinase activity polypeptide cloned DNA recombinant vector and plants
UA96031191A UA28003C2 (en) 1994-07-29 1995-05-30 Chimeric polypeptide having piruvate ortophosphate activity and increases plant cold-resistance, DNA Fragment , recombinant vector, a method for obtaining polypeptide
MXPA/A/1996/001212A MXPA96001212A (en) 1994-07-29 1996-03-29 Polipeptido that has activity of piruvato ortofosfato dicinasa stable in cold, dna that codifies for the same and recombinant vector and transformed plants that contain the

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP19778094 1994-07-29
JP6/197780 1994-07-29
JPPCT/JP94/02022 1994-12-01
PCT/JP1994/002022 WO1995015385A1 (en) 1993-12-03 1994-12-01 Polypeptide having cold-resistant pyruvate phosphate dikinase activity, dna coding for the same, and recombinant vector and transformed plant both containing said dna

Publications (1)

Publication Number Publication Date
WO1996004369A1 true WO1996004369A1 (en) 1996-02-15

Family

ID=16380231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001040 WO1996004369A1 (en) 1994-07-29 1995-05-30 Polypeptide having cold-resistant pyruvate phosphate dikinase activity, dna coding for the polypeptide, recombinant vector containing the dna, and transformed plant

Country Status (6)

Country Link
CN (1) CN1174093C (en)
BR (1) BR9506291A (en)
RO (1) RO118451B1 (en)
RU (1) RU2136748C1 (en)
UA (1) UA28003C2 (en)
WO (1) WO1996004369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912156A (en) * 1993-12-03 1999-06-15 Japan Tobacco Inc. Polypeptide having cold-stable pyruvate, orthophoshate dikinase activity, DNA encoding the same and recombinant vector and transformed plants containing the DNA

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653727A (en) * 2012-01-18 2012-09-05 江南大学 Construction method and application of pyruvic acid-phosphoric acid double-kinase recombinant expression strain

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BIOCHEMISTRY, Vol. 29, No. 48, (1990), POCALYKO DAVID J. et al., "Analysis of Sequence Homologies in Plant and Bacterial Pyruvate Phosphate Dikinase, Enzyme I of the Bacterial Phosphoenolpyruvate Sugar Phosphotransferase System and Other PEP-Utilizing Enzymes. Identification of Potential Catalytic and Regulatory Motifs", pages 10757-10765. *
FEBS. LETT., Vol. 273, Nos. 1-2, (1990), ROSCHE E. et al., "Primary Structure of Pyruvate Orthophosphate Dikinase in the Dicotyledonous C-4 Plant Flaveria-Trinervia", pages 116-121. *
J. BIOL. CHEM., Vol. 263, No. 23, (1988), MATSUOKA M. et al., "Primary Structure of Maize Pyruvate, Orthophosphate Dikinase as Deduced from cDNA Sequence", pages 11080-3. *
MOL. BIOCHEM. PARASITOL., Vol. 62, No. 1, (1993), BRUCHHAUS IRIS et al., "Primary Structure of the Pyruvate Phosphate Dikinase in Entamoeba Histolytica", pages 153-6. *
PLANT CELL PHYSIOL., Vol. 31, No. 2, (1990), JAMES N. BURNELL et al., "A Comparative Study of the Cold-Sensitivity of Pyruvate, Pi Dikinase in Flaveria Species", pages 295-297. *
PLANT. MOL. BIOL., Vol. 26, No. 2, (1994), ROSCHE E. et al., "Primary Structure of the Photosynthetic Pyruvate Orthophosphate Dikinase of the C-3 Plant Flaveria Pringlei and Expression Analysis of Pyruvate Orthophosphate Dikinase Sequences in C-3, C-3-C-4 and C-4 Flaveria Species", pages 763-769. *
SCIENCE, Vol. 240, (1988), CAROL A. RHODES et al., "Genetically Transformed Maize Plants from Protoplasts", pages 204-7. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912156A (en) * 1993-12-03 1999-06-15 Japan Tobacco Inc. Polypeptide having cold-stable pyruvate, orthophoshate dikinase activity, DNA encoding the same and recombinant vector and transformed plants containing the DNA

Also Published As

Publication number Publication date
RO118451B1 (en) 2003-05-30
UA28003C2 (en) 2000-10-16
CN1135770A (en) 1996-11-13
RU2136748C1 (en) 1999-09-10
CN1174093C (en) 2004-11-03
BR9506291A (en) 1997-08-05
MX9601212A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
Savouré et al. Isolation, characterization, and chromosomal location of a gene encoding the Δ 1‐pyrroline‐5‐carboxylate synthetase in Arabidopsis thaliana
US6207881B1 (en) Control of fruit ripening through genetic control of ACC synthase synthesis
Humphries et al. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene
CA2492711A1 (en) Herbicide-resistant plants, and polynucleotides and methods for providing same
JPH11512618A (en) Novel polypeptides and polynucleotides related to the α- and β-subunits of glutamate dehydrogenase, and uses thereof
KR20010005581A (en) Plants with modified growth
FR2751987A1 (en) PLANT PHYTASES AND BIOTECHNOLOGICAL APPLICATIONS
JP2003506015A (en) Arabidopsis CDC7 and CDC27 homologs
WO1996030510A1 (en) Dna fragment, recombination vector containing the same, and method of the expression of alien gene with the use of the same
JP3329820B2 (en) Polypeptide having low-temperature-resistant pyruvate phosphate dikinase activity, DNA encoding the same, recombinant vector containing the DNA, and transformed plant
EP2922961B1 (en) Nucleotide sequence encoding wuschel-related homeobox4 (wox4) protein from corchorus olitorius and corchorus capsularis and methods of use for same
AU2002338197B2 (en) Method of elevating photosynthesis speed of plant by improving pyruvate phosphate dikinase
WO1996004369A1 (en) Polypeptide having cold-resistant pyruvate phosphate dikinase activity, dna coding for the polypeptide, recombinant vector containing the dna, and transformed plant
AU716115B1 (en) Method for shortening internode of inflorescence by introducing gene for petunia transcription factor PetSPL2
KR20160085207A (en) Nucleotide sequence encoding homeobox-leucine zipper protein hat22 (hd-zip protein 22) from corchorus olitorius and corchorus capsularis and methods of use
EP2310496B1 (en) Transgenic plants
JPH10512451A (en) Deoxyribonucleic acid encoding glutathione S-transferase and use thereof
GB2355265A (en) Proline transporter from rice (Oryza sativa)
CN113227383B (en) Role of HAK gene in regulating and controlling plant traits
AU696436B2 (en) Polypeptide having cold-resistant pyruvate phosphate dikinase activity, DNA coding for the same, and recombinant vector and transformed plant both containing said DNA
JPH08103267A (en) Betaine aldehyde dehydrogenase and gene capable of coding the same
CN112626049B (en) SpCas9-NRRH mutant for recognizing specific sites in rice gene targeting and application thereof
WO2012028673A1 (en) Spontaneous organogenesis in plants
WO1995011979A1 (en) Dna coding for carbonic anhydrase
KR20110006330A (en) Rhs10 gene controlling plant root hair development and a method to control plant root hair development using the gene

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95190941.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 1995 500857

Country of ref document: US

Date of ref document: 19950802

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN HU MX RO RU UA

WWE Wipo information: entry into national phase

Ref document number: PA/a/1996/001212

Country of ref document: MX