WO1996003094A1 - Membran zur regeneration von körpergeweben und verwendung der membran als wundabdeckung und hautersatz - Google Patents

Membran zur regeneration von körpergeweben und verwendung der membran als wundabdeckung und hautersatz Download PDF

Info

Publication number
WO1996003094A1
WO1996003094A1 PCT/EP1995/002869 EP9502869W WO9603094A1 WO 1996003094 A1 WO1996003094 A1 WO 1996003094A1 EP 9502869 W EP9502869 W EP 9502869W WO 9603094 A1 WO9603094 A1 WO 9603094A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
membrane according
microns
gekenn
cells
Prior art date
Application number
PCT/EP1995/002869
Other languages
English (en)
French (fr)
Inventor
Günter BERTHOLDT
Original Assignee
W.L. Gore & Associates Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by W.L. Gore & Associates Gmbh filed Critical W.L. Gore & Associates Gmbh
Priority to AU31628/95A priority Critical patent/AU3162895A/en
Priority to EP95927681A priority patent/EP0772425A1/de
Publication of WO1996003094A1 publication Critical patent/WO1996003094A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive bandages or dressings
    • A61F13/023Adhesive bandages or dressings wound covering film layers without a fluid retention layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/10Hair or skin implants
    • A61F2/105Skin implants, e.g. artificial skin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • C12N5/0698Skin equivalents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/09Coculture with; Conditioned medium produced by epidermal cells, skin cells, oral mucosa cells
    • C12N2502/094Coculture with; Conditioned medium produced by epidermal cells, skin cells, oral mucosa cells keratinocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1323Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/40Polyhydroxyacids, e.g. polymers of glycolic or lactic acid (PGA, PLA, PLGA); Bioresorbable polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides

Definitions

  • the invention relates to a membrane for the regeneration of body tissues, processes for their production, their use for the co-cultivation of cells, their use as artificial skin and their use as part of a wound plaster.
  • the outer cellular layer of human skin is separated from the underlying cellular layer (Dennis) by a basement membrane.
  • This basement membrane which is characterized by a special, corrugated structure (rete strips), consists of so-called ECM proteins (extra-cellular matrix), some of which are epidermal cells
  • Keratinocytes partly synthesized by dermis cells (fibroblasts).
  • the basement membrane represents a cellular barrier on the one hand, but on the other hand allows gas and mass exchange between the two cell layers.
  • the basal cells produce the cells of the overlying layers by cell division, it is assumed that the structure of the rete strips also detects the structure of the skin surface.
  • Keratinocytes can indeed repopulate the skin surface starting from the wound edges and the so-called skin appendages (eg hair, sweat glands).
  • skin appendages eg hair, sweat glands.
  • the rete strips in particular are usually no longer or only insufficiently formed.
  • the newly formed tissue is morphologically and functionally distinctly different from normal skin and is referred to as scar tissue.
  • Body skin transplant the best results.
  • the skin is brought into a mesh-like configuration ("mesh graft") by means of a large number of small incisions in order to enlarge the surface.
  • the matrices generally consist of collagen and / or hyaluronic acid or polylactide and / or polyglycolide. Resorbable and non-resorbable nets and felts made from polylactide and / or polyglycolide have also been used. Although these sponge-like matrices have the advantage of higher mechanical stability compared to simple sheets have the higher content of foreign material, as well as the increased time required for colonization with cells, disadvantageous.
  • An implantation system is known from WO 93/19700 which, as an essential component, has a PTFE membrane with a certain pore diameter and a certain thickness, in which cells are settled which are able to form certain biological products. The system is not used to regenerate the skin.
  • a membrane which can be used as a skin replacement is already known from EP 0 462 426.
  • the membrane consists of a biocompatible material and is perforated.
  • the holes are arranged regularly and have a diameter between 10 and 1000 microns.
  • the perforation is intended to support membrane ingrowth and skin regeneration. Form in the hole areas
  • the invention has for its object to provide a membrane which supports the reconstruction of living biological tissue and in particular the regeneration of body tissues and human skin, as well as a method for producing the membrane.
  • this object is achieved by a membrane which has the features of the characterizing part of claim 1 and can be produced by a method according to claim 27.
  • the invention is based essentially on the knowledge that the basal membrane with well-formed rete strips is of crucial importance
  • the shape and function of the membrane according to the invention represents an equivalent of the basal membrane of human skin. If it consists of resorbable material, it can serve as a "placeholder" for the basal membrane of human skin and take over its function until the cells correspond have built their own functional structures.
  • the particular advantage of the invention is that with a minimal amount of foreign material and time in a cell culture or in the body, the crucial initial conditions for the natural regeneration of a complex tissue can be created.
  • the membrane allows structured attachment of macromolecules that promote the adhesion or non-attachment of certain cell types or trigger other cell reactions. It is also possible to isolate certain cells by cell sorting and to distribute them in a specific ratio in the wells of the membrane. Since the basement membrane occurs in many other body tissues, the membrane according to the invention is also suitable for the regeneration of these tissues.
  • the membrane according to the invention represents an approximately morphological replica of the basement membrane of human skin.
  • the intrinsically stable microstructure is preferably characterized by bumps and depressions distributed in a regular pattern, which can be described, for example, by the superposition of two orthogonal sinus waves. In principle, one could then compare the microstructure of the membrane with the shape of an "egg carton", which in particular also has strength against shear forces.
  • the transitions between bumps and depressions are preferably soft and flowing, without edges. However, in some applications it can be sufficient if only humps or only depressions are provided. A smooth transition between the bumps or depressions is also not absolutely necessary, but is advantageous.
  • the corrugated surface structure of the membrane according to the invention allows membranes to be stacked on top of one another in such a way that cavities are formed which, on the one hand, absorb liquids when they come into contact with them through the capillary action, and in which, on the other hand, cells can grow without being mechanically damaged.
  • Such arrangements have proven themselves in connection with wound plasters, which may also be due to the fact that an increase in surface area of approximately 40% compared to a flat membrane is achieved and thus an improved oxygen supply to the cells is ensured.
  • the membrane has a thickness of 0.5 to 500 microns, especially about 2 to 20 microns. In general, depending on the material, the membrane should be as thin as possible, but it still has to be manageable.
  • the pore size of the membrane is preferably less than 3 microns.
  • Pores are said to be such that they are permeable to gases such as oxygen and to macromolecules, but are impermeable to cells.
  • the spacing of the individual bumps or depressions from one another or, in other words, the grid dimension is approximately 50 to 500 microns, preferably approximately 200 microns.
  • the magnitude of the height or Depth, ie the amplitude of the hump plus depression is approximately 50 to 1000 microns, in particular between 100 and 500 microns, preferably approximately 150 to 300 microns.
  • the material from which the membrane is made is preferably a
  • the intrinsically stable microstructure is produced by means of conventional methods.
  • An embossing method is preferred in which either engraving rollers are used as the embossing tool, as is the case for
  • Example is known from US Pat. No. 3,484,835, or else corresponding engraving plates.
  • the microporosity can also be generated by known methods.
  • a felt-like or fibrous extruded material can also be used as the starting material for the membrane.
  • Membranes can be adjusted precisely by selecting suitable monomers.
  • Engraving technology is usually used to produce the embossing rolls or plates required for the embossing process.
  • Two methods are available in engraving technology.
  • One method is mainly limited to mechanical processes, in which a structure is embossed into a surface by means of a suitably designed tool tip, which, if it has been hardened, serves as a master for tool molding.
  • the method is laser engraving, which is usually based on rotating, ceramic-coated layers n rollers is used, wherein a helical scanning laser beam is modulated by scanning a gray tone pattern.
  • a correspondingly modulated stylus can also be used as a mechanical analogue for this.
  • the first-mentioned method provides engraving plates or rollers that have a specific arrangement of geometric depressions in the form of cuboids, spheres, truncated cones, etc., between which flat residual surfaces remain which can still be rounded off by etching techniques.
  • a surface of 20 x 20 mm made of unhardened steel was engraved with a engraving tool in the form of a pyramid with a square base and a uniform edge length of 0.2 mm (edges and tip rounded). fourth, that the distance from pyramid tip to pyramid tip is 0.2 mm. This mold was then hardened and served as a master for the embossing molds to be molded from it.
  • Gray tone templates are therefore dispensed with in accordance with the invention and instead the laser is controlled by specifying mathematical functions in such a way that a surface of the order of magnitude and shape of the basement membrane structures is produced, the transitions between bumps and depressions preferably being fluid.
  • the laser requires an associated z value for each coordinate of the xy plane, which specifies the depth to be generated, so that when viewed over the surface, a relief structure approximates the basement membrane.
  • a mathematical approximation to the egg-shaped basal membrane structure can be mathematically described as orthogonal interference from describe two sine waves of the same amplitude, frequency and phase, for example in the form:
  • the matrix of z values obtained is then used as the basis for the
  • Pulse frequency modulation of the laser beam and the translational x-y control of the workpiece table are used.
  • microrelief production by means of laser engraving is often used in connection with rotating, mostly ceramic-coated rollers, but can also be used for processing copper and hard metal and also in connection with flat plates. It has been found that laser processing of hard metal is the most suitable for the microrelief structures of the membrane according to the invention.
  • the ablation power (number of pulses, intensity) was modulated using the above formula and was scanned over the workpiece with the required step size (at least 0.1 ⁇ m)
  • step size at least 0.1 ⁇ m
  • continuous microrelief structure are generated, which would not be achievable by means of gray tone prelase.
  • Relief structures in the range of 10 x 10 ⁇ m bl:) 0 x 1000 ⁇ m are achieved (with regard to the distances and the height differences between the bumps and depressions). Material-specific discontinuities in the ablation characteristics can be compensated for by correction factors in the mathematical description of the structure.
  • the 3D-structured tool surface produced very precisely with this method showed very good results not only with the usual ceramic coatings but especially with tool hard metal.
  • the engraved surface serves as a master in a subsequent embossing process in order to produce a metal tool roller or flat tool surface.
  • the master is stamped into a non-hardened roller surface or flat surface using a stepwise rotary or translational process (so-called molettage).
  • molettage a stepwise rotary or translational process
  • This roller is then hardened and, in a second moletage, again serves as a master for the production of a production roller by rolling this master onto the production roller.
  • a film can then be embossed in a conventional embossing calender either with a union counter roller or with a "washed" soft counter roller.
  • Laser engraving directly into a hard metal surface means that there is no need for the first few days and the subsequent hardening.
  • the microrelief can finally also be produced in a third way, which consists in obtaining a tissue impression of the Dennis by performing a skin biopsy and then extracting, drying and coating the dermis with polyether .
  • the crosslinked polyether layer is then peeled off from the Dennis (negative) and serves as a template for a hard plaster cast (positive).
  • a steel mold is molded from the hard plaster mold.
  • the microreel obtained in this way represents an ideal approximation to the structure of the basement membrane.
  • a skin biopsy for example, was obtained with the help of a dermatome (Castroviejo-Dermatom, Storz Instrument) with a depth setting of 0.5 to 1 mm.
  • the sample was cut to size Area of 20 x 20 mm and incubated for 15 to 48 hours in 0.2% trypsin at 4 ° C.
  • the piece was transferred to a small 30 mm diameter petri dish with 2 ml of 10% fetal calf serum (FCS).
  • FCS fetal calf serum
  • Adhesive medium was removed from the tissue by suction and coated with the Impregum impression compound (ESPE, Seefeld, Polyether, 2-component system), a slight pressure being exerted on the impression compound. After 15 minutes, the polyether layer was removed and clamped in a suitable frame. A positive impression was made of this negative impression after about 24 hours with super hard plaster, as is common in dental laboratory technology, for example. This hard plaster positive impression serves as a master for a metal impression.
  • Impregum impression compound Impregum impression compound
  • the actual embossing tools are produced in the form of embossing rollers or embossing plates by casting the master as a silicone or steel mold. From this so produced n form, a second form is obtained by impression, so that one obtains a positive and a negative form.
  • the hard plaster mold which shows the tissue impression, was used to produce a stainless steel mold in accordance with common dental laboratory technology.
  • Positive and negative impressions made of silicone were obtained from the microrelief, which was produced by engraving, be it with geometric stamps or laser-machined microrelief rollers. This was carried out in a vacuum casting plant (type C003MC2) from HEK. The two-component system silicone and hardener from HEK was used, silicone with Shore hardness 80 being used. First a negative impression was made, from which another impression, the positive impression, was made after the cooled negative impression with spray release agent (HEK) had been coated. Two channels were incorporated into the mold, which allow material to flow between the two complementary molded parts.
  • HEK spray release agent
  • membranes were produced both from a hyaluronic acid stabilized by esterification ("Hyaff” from Fidia Advanced Biopolymers) and from a copolymer consisting of polyglycolic acid (PGA) and trimethylene carbonate (TMC) (ratio 65:35).
  • Hyaff hyaluronic acid stabilized by esterification
  • PGA polyglycolic acid
  • TMC trimethylene carbonate
  • the hyaff film is in gel form, the permeability of which depends on the degree of crosslinking of the gel.
  • the macro molecules diffuse through the gel, which is equipped with "water spaces”.
  • the gel has a higher or lower degree of permeability. Permeability of the membrane made of Hyaff film for molecules between 20,000 and 50,000 daltons is advantageous.
  • FIG. 1 shows a perspective view of the membrane with the microstructure and a half-opened outer membrane
  • Fig. 3 is a schematic representation of stacked membrane separated by a grid.
  • the membrane according to the invention with the microstructure (reference number 10 in FIG. 1) is placed directly on the wound. Keratinocytes are isolated from the patient from a biopsy and multiplied in a cell culture for 2-3 weeks. These keratinocytes are brought into suspension and fixed with fibrin glue on the membrane with microstructure. An outer membrane (reference number 12 in FIG. 1) which is different from the membrane according to the invention is placed over this. The keratinocytes collect in the depressions 14 and form there a "critical" mass for optimal growth conditions.
  • the patient can be cared for after a much shorter waiting time.
  • the outer membrane 12 is, for. B. made of polyurethane, microporous polyethylene or PTFE. It is permeable to gases and water vapor, but impermeable to liquids and germs.
  • FIG. 2 shows a wound plaster according to the invention, consisting of an outer membrane 12 and a stack of absorbable membranes 10 with a microstructure, which are separated from one another by absorbable networks 18. The net prevents the membranes from being too close together (Fig. 3). Maximum void volume results when the bumps 16 of an upper membrane 10 lie over the depressions 14 of a lower membrane 10.
  • the network can serve to glue the membranes together at points 20, e.g. B. by brief thermal softening of the mesh material. The network can be omitted if necessary.
  • the absorbable membrane is perforated to allow blood and secretions to pass through.
  • the outer membrane (12) can protrude over the edge of the inner membrane and can be provided with adhesive in this area in order to enable the wound plaster to be fixed on the skin.
  • the membranes stacked one on top of the other form a cushion into which blood and secretions can penetrate through capillary forces. Blood clots on these membranes.
  • the keratinocytes migrate into the patch along the bumps occupied by fibrin and preferentially adhere there. Wound healing takes place essentially without scar formation.
  • membrane layers close to the wound remain on the wound, the surface of which they protect and the newly formed structures are retained.
  • the pain receptors also remain covered, so that the detachment of the wound plaster is particularly sensitive to pain
  • the membrane can also be used for the cultivation of cells, in particular for the co-cultivation of differentiated cells for the regeneration of tissues.
  • These can e.g. B. for transplantation, for examining tissue functions, for the synthesis of highly effective macromolecules or as a biological sensor.
  • the membrane is clamped in a frame and a cell suspension of two different cell types is applied to both sides of the frame one after the other. After sedimentation and Fixing one cell type, the frame is turned and the same procedure is repeated with a suspension of the other cell type.
  • normal human fibroplasts were sown on one side of the membrane in a concentration of 50,000 to 100,000 cells per cm 2 in DMEM medium (Gibco) with 10% fetal calf serum and for a week incubated at 37 ° C.
  • the membrane was then turned over and covered with normal human keratinocytes in Rheinwald and Green Medium (Cell, 1975) + 10% fetal calf serum in a concentration of 50,000 to 100,000 cells per cm. This co-culture was carried out for 2 to 4 weeks incubated at 37 ° C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Wood Science & Technology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Cardiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Membran zur Regeneration von Körpergeweben aus einem biokompatiblen Material, gekennzeichnet durch die Kombination der folgenden Merkmale: einer Dicke im Bereich von 0,5 bis 500 Mikron, für Gase und Makromoleküle durchlässig, für Zellen dagegen undurchlässig, einer Mikrostruktur in Form von Höckern (16) und/oder Vertiefungen (14).

Description

Membran zur Regeneration von Körpergeweben und Ver¬ wendung der Membran als Wundabdeckung und Hautersatz
Die Erfindung betrifft eine Membran zur Regeneration von Körperge¬ weben, Verfahren für ihre Herstellung, ihre Verwendung für die Ko- Kultivierung von Zellen, ihre Verwendung als künstliche Haut und ihre Verwendung als Teil eines Wundpflasters.
Die äußere zelluläre Schicht der menschlichen Haut (Epidermis) wird durch eine Basalmembram von der darunterliegenden zellulären Schicht (Dennis) getrennt. Diese Basalmembran, die sich durch eine besondere, gewellte Struktur (Rete-Leisten) auszeichnet, besteht aus sogenannten ECM-Proteinen (Extra-Cellular-Matrix), die teils von Epidermis- Zellen
(Keratinozyten), teils von Dermis-Zellen (Fibroblasten) synthetisiert werden. Die Basalmembran stellt einerseits eine zelluläre Barriere dar, erlaubt aber andererseits Gas- und Stoffaustausch zwischen den beiden Zellschichten.
Die Basalzellen erzeugen durch Zellteilung die Zellen der darüber liegenden Schichten, man nimmt an, daß mit der Struktur der Rete- Leisten auch die Struktur der Hautoberfläche deteπrύniert wird.
Bei großflächigen Verletzungen der Haut, bei der neben der Epidermis auch die Basalmembran zerstört wird, kann diese Struktur nicht mehr ohne weiteres nachgebildet werden. Zwar können Keratinozyten aus¬ gehend von den Wundrändern und den sogenannten Hautanhangsgebilden (z. B. Haare, Schweißdrüsen) die Hautoberfläche neu besiedeln. Jedoch werden insbesondere die Rete-Leisten meist nicht mehr oder nur ungenü¬ gend ausgebildet. Das neugebildete Gewebe ist morphologisch und funk¬ tioneil deutlich von der normalen Haut verschieden und wird als Narben¬ gewebe bezeichnet.
Werden, wie z. B. bei drittgradigen Brandwunden, auch tiefere Haut¬ schichten verletzt und mit ihnen die Keratinozyten der Hautanhangs¬ gebilde zerstört, ist auch eine geordnete Narbenbildung nicht mehr möglich. Dies bedeutet, daß eine Wundheilung erschwert und meist mit Deformationen, wie einseitig gerichteten Kontraktionen, und Wucherun¬ gen verbunden ist.
Die bisherigen Behandlungsverfahren haben im wesentlichen das Ziel durch mechanische und/oder chemische (z. B. Salben, Gele) Abdeckung die Wunde vor Infektionen und weiteren Verletzungen zu schützen und gegebenenfalls ein günstiges Klima für die Wundheilung zu schaffen. Über die besten Bedingungen für die Wundheilung gibt es unterschied- liehe Auffassungen, wobei z. B. eine Schule die trockene, eine andere
Schule die feuchte Wundheilung favorisiert. Beiden gemeinsam ist die Absicht, die natürliche Wundheilung möglichst ungestört ablaufen zu lassen.
Zur Behandlung von tiefen, großflächigen Wunden bringt derzeit die
Transplantation körpereigener Haut die besten Ergebnisse. Dazu wird die Haut zur Oberflächenvergrößerung durch ein besonderes Verfahren mit Hilfe einer Vielzahl kleiner Schnitte in eine netzartige Konfiguration ("mesh graft") gebracht.
In besonders schweren Fällen, wenn, wie z. B. bei bestimmten Ver¬ brennungen, 80 bis 90 % der Körperoberfläche geschädigt sind, ist für eine autologe (körpereigene) Transplantation nicht genügend unge- schädigtes Gewebe vorhanden. In diesen Fällen gelingt es, basierend auf den bahnbrechenden Arbeiten von Green und Rheinwald (Cell, 6, 331 -
334, 1975), aus einer Biopsie gewonnene Keratinozyten in vitro in einer Zellkultur zu vermehren, in Form von dünnen Zellschichten (sheets) zu züchten und schließlich auf den Patienten zu transplan tieren.
Zur Verbesserung der mechanischen Stabilität und der Handhabbarkeit der Zellschichten (sheets) wurden diese auf schwammartigen Matrices angesiedelt. Die Matrices bestehen in der Regel aus Kollagen und/oder Hyaluronsäure oder Polylactid und/oder Polyglycolid. Auch resorbier¬ bare und nicht resorbierbare Netze sowie Filze aus Polylactid und/oder Polyglycolid wurden verwendet. Obwohl diese schwammartigen Matrices gegenüber einfachen Sheets den Vorteil höherer mechanischen Stabilität haben, ist der höhere Gehalt an Fremdmaterial, sowie auch der erhöhte Zeitbedarf, der für die Besiedlung mit Zellen benötigt wird, nachteilig.
Aus der WO 93/19700 ist ein Implantationssystem bekannt, das als wesentlichen Bestandteil eine PTFE Membran mit bestimmtem Poren¬ durchmesser und bestimmter Dicke besitzt, in dem Zellen angesiedelt werden, die in der Lage sind, gewisse biologische Produkte zu bilden. Das System dient nicht der Regeneration der Haut.
Aus der EP 0 462 426 ist bereits eine Membran bekannt, die als Haut¬ ersatz verwendet werden kann. Die Membran besteht aus einem biokom¬ patiblen Material und ist perforiert. Die Löcher sind regelmäßig angeordnet und haben einen Durchmesser zwischen 10 und 1000 Mikron. Die Lochperforierung soll das Einwachsen der Membran und die Hautregeneration unterstützen. In den Lochbereichen bilden sich
Mikrokolonien von eingesäten autologen oder heterologen Keratinozyten. Die Membran befindet sich noch in der klinischen Erprobung.
Der Erfindung liegt die Aufgabe zugrunde eine Membran zu schaffen, die die Rekonstruktion von lebendem biologischen Gewebe unterstützt und insbesondere die Regeneration von Körpergeweben und der mensch¬ lichen Haut, sowie ein Verfahren zur Herstellung der Membran anzuge¬ ben.
Erfindungsgemäß wird diese Aufgabe durch eine Membran gelöst, welche die Merkmale des Kennzeichens des Anspruchs 1 aufweist und nach einem Verfahren gemäß Anspruch 27 hergestellt werden kann.
Die Erfindung basiert ganz wesentlich auf der Erkenntnis, daß die Basal- membran mit gut ausgebildeten Rete-Leisten von entscheidender
Bedeutung für die Funktionalität der Haut ist. Sie geht weiter davon aus, daß normale Zeil- und ECM-Strukturen entstehen, wenn dafür geeignete Ausgangsbedingungen geschaffen werden. Zu diesen Bedingungen gehört nicht nur, daß epidermale Zellschichten mit dermalen in Kontakt kommen, sondern daß zusätzlich eine bestimmte dreidimensionale
Struktur vorhanden sein muß, welche Bereiche mit unterschiedlichen Bedingungen, z. B. in der Versorgung mit Sauerstoff oder der lokalen Konzentration bestimmter Signalmoleküle erzeugt. Erst durch diese Bedingungen wird eine Kaskade von Ereignissen ausgelöst, die zu einer vollständigen Geweberegeneration führt.
Die erfindungsgemäße Membran stellt in ihrer Form und Funktion ein Äquivalent der Basalmembran der menschlichen Haut dar. Besteht sie aus resorbierbarem Material, so kann sie als "Platzhalter" der Basal¬ membran menschlichen Haut dienen und deren Funktion solange über- nehmen, bis die Zellen entsprechende eigene funktionelle Strukturen aufgebaut haben.
Der besondere Vorteil der Erfindung ist es, daß mit einem minimalen Anteil an Fremdmaterial und Zeit in einer Zellkultur oder im Körper die entscheidenden Anfangsbedingungen für die natürliche Regeneration eines komplexen Gewebes geschaffen werden können.
Die Membran erlaubt eine strukturierte Anheftung von Makromolekülen, die die Haftung bzw. die Nicht- Anheftung bestimmter Zelltypen fördern oder sonstige Zellreaktionen auslösen. Es ist auch möglich, durch Zell- sortierung bestimmte Zellen zu isolieren und diese gezielt in einem bestimmten Verhältnis in den Vertiefungen der Membran zu verteilen. Da die Basalmembran in vielen anderen Körpergeweben vorkommt, eignet sich die erfindungsgemäße Membran auch zur Regeneration dieser Gewebe.
Die erfindungsgemäße Membran stellt eine angenähert morphologische Nachbildung der Basalmembran der menschlichen Haut dar. Die eigen¬ stabile MikroStruktur zeichnet sich bevorzugt durch in regelmäßigem Raster verteilte Höcker und Vertiefungen aus, die beispielsweise durch die Überlagerung zweier orthogonaler Sinus- Wellen beschrieben werden kann. Man könnte die Mikrostniktur der Membran dann im Prinzip auch mit der Form eines "Eierkartons" vergleichen, die insbesondere auch Festigkeit gegen Scherkräfte besitzt. Die Übergänge zwischen Höckern und Vertiefungen sind bevorzugt weich und fließend, ohne Kanten aus¬ gebildet. Es kann allerdings in manchen Anwendungsfällen durchaus ausreichend sein, wenn nur Höcker bzw. nur Vertiefungen vorgesehen sind. Auch ein fließender Übergang zwischen den Höckern bzw. Ver¬ tiefungen ist nicht unbedingt erforderlich aber vorteilhaft.
Aus der Patentschrift US-5,188,124 sind Folien mit Höckern für die medizinische Anwendung bekannt. Diese Struktur soll dazu beitragen, daß die Folien auf damit abgedeckten Hautblasen nicht so leicht verrut¬ schen, indem nämlich durch die Höcker die frei zugängliche Oberfläche wesentlich reduziert und die Reibung auf der freien Seite dadurch ent- scheidend verringert wird. Zur Regeneration von Körpergeweben sind diese Folien allerdings weder bestimmt, noch wären sie - schon allein wegen ihrer relativ großen Dicke von 0,5 bis 10 mm - dafür geeignet.
Die gewellte Oberflächenstruktur der erfindungsgemäßen Membran erlaubt es, Membranen so aufeinander zu stapeln, daß Hohlräume ent¬ stehen, die einerseits bei Kontakt mit Flüssigkeiten diese durch die Kapillarwirkung aufsaugen, und in denen andererseits Zellen wachsen können, ohne mechanisch geschädigt zu werden. Solche Anordnungen haben sich im Zusammenhang mit Wundpflastern bewährt, was mög- licherweise auch darauf zurückzuführen ist, daß eine Oberflächen¬ vergrößerung von ca. 40 % verglichen mit einer flachen Membran er¬ reicht wird und somit eine verbesserte Sauerstoffversorgung der Zellen gewährleistet wird.
Die Membran hat eine Dicke von 0,5 bis 500 Mikron, insbesondere etwa 2 bis 20 Mikron. Ganz allgemein gilt, daß abhängig vom Material die Membran so dünn als möglich ausgebildet sein soll, wobei sie jedoch noch handhabbar bleiben muß.
Die Porengröße der Membran liegt vorzugsweise unter 3 Mikron. Die
Poren sollen so beschaffen sein, daß sie für Gase wie Sauerstoff und für Makromoleküle durchlässig, für Zellen jedoch undurchlässig sind.
Der Abstand der einzelnen Höcker bzw. Vertiefungen voneinander oder mit anderen Worten das Rastermaß beträgt etwa 50 bis 500 Mikron, vorzugsweise etwa 200 Mikron. Die Größenordnung der Höhe bzw. Tiefe, d.h. die Amplitude von Höcker plus Vertiefung liegt etwa bei 50 bis 1000 Mikron, insbesondere zwischen 100 und 500 Mikron, vorzugs¬ weise etwa bei 150 bis 300 Mikron.
Das Material, aus dem die Membran besteht, ist vorzugsweise ein
Material, das von lebenden Zellen abgebaut werden kann und dessen. Abbauprodukte keine negative Auswirkung auf den Regenerationsprozeß der Haut haben. Bevorzugt werden Polyglycolid, Polylactid, Copolymere dieser Stoffe oder ihre Derivative, Polycaprolacton, Polydioxanone, Polyphosphazene, Polysulfone und Polyurethane. Auch Polyhydroxybut- tersäure, mit Netzmittel vernetztes Kollagen oder Hyaluronsäure sind geeignet. Weitere Beispiele für geeignete Materialien sind in der EP 0 462 426 genannt, auf deren Offenbarung ausdrücklich Bezug genommen wird. Das Material muß jedenfalls solange stabil sein, bis ausreichend körpereigene Strukturen aufgebaut sind, d. h. vorzugsweise etwa 5 bis
10 Tage.
Die Herstellung der eigenstabilen MikroStruktur erfolgt mittels her¬ kömmlicher Verfahren. Bevorzugt wird ein Prägeverfahren, bei dem als Prägewerkzeug entweder Gravurwalzen verwendet werden, wie es zum
Beispiel aus der Patentschrift US 3,484,835 bekannt ist, oder aber ent¬ sprechende Gravurplatten. Die Mikroporosität kann ebenfalls durch bekannte Verfahren erzeugt werden. Auch kann ein filzartiges oder faserig extrudiertes Material als Ausgangsmaterial für die Membran eingesetzt werden. Die mechanischen und chemischen Eigenschaften der
Membran lassen sich durch Auswahl geeigneter Monomere genau ein¬ stellen.
Für die Herstellung der für das Prägeverfahren erforderlichen Präge- walzen oder -platten findet üblicherweise die Gravurtechnologie Ver¬ wendung. In der Gravurtechnologie bieten sich zwei Methoden an. Die eine Methode beschränkt sich hauptsächlich auf mechanische Verfahren, bei denen mittels einer entsprechend ausgebildeten Werkzeugspitze eine Struktur in eine Oberfläche eingeprägt wird, die, wenn sie gehärtet worden ist, als Master für die Werkzeugabformung dient. Die andere
Methode ist die Lasergravur, die zumeist auf rotierenden, keramikbe- schichtet n Walzen Anwendung findet, wobei durch Abtasten eines Grautonvorlagemusters ein schraubenförmig scannender Laserstrahl moduliert wird. Als mechanisches Analogon hierzu ist auch ein entspre¬ chend modulierter Stichel verwendbar.
Das erstgenannte Verfahren liefert Gravurplatten oder -walzen, die eine bestimmte Anordnung von geometrischen Vertiefungen in Form von Quadern, Kugeln, Kegelstümpfen etc. aufweisen, zwischen denen plane Restflächen bestehen bleiben, die durch Ätztechniken noch verrundet werden können. Zur Erzeugung einer erfindungsgemäßen Membran mittels dieser Gravurtechnologie wurde beispielsweise eine Oberfläche von 20 x 20 mm aus ungehärtetem Stahl mit einem Gravurwerkzeug in Form einer Pyramide mit quadratischer Grundfläche und einer einheitli¬ chen Kantenlänge von 0,2 mm (Kanten und Spitze abgerundet) so gra- viert, daß der Abstand von Pyramidenspitze zu Pyramidenspitze 0,2 mm beträgt. Diese Form wurde danach gehärtet und diente als Master für die davon abzuformenden Prägeformen.
Mittels der zweitgenannten Gravurtechnolie, der Lasergravur, ist es möglich, wesentlich komplexere dreidimensionale Strukturen zu erzeu¬ gen. Deshalb wird im Zusammenhang mit der vorliegenden Erfindung aufgrund der angestrebten komplexen 3D-Struktur die Lasergravurtech¬ nologie bevorzugt. Die Genauigkeit dieses Verfahrens ist allerdings normalerweise durch die Qualität der Grautonvorlage stark begrenzt. Auf Grautonvorlagen wird deshalb erfindungsgemäß verzichtet und stattdessen wird der Laser durch Vorgabe mathematischer Funktionen so gesteuert, daß eine Oberfläche in der Größenordnung und Ausformung der Basalmembranstrukturen erzeugt wird, wobei die Übergänge zwi¬ schen Höckern und Vertiefungen vorzugsweise fließend sind.
Der Laser benötigt dazu für jede Koordinate der x-y-Ebene einen zuge¬ hörigen z-Wert, der die zu erzeugende Tiefe angibt, so daß sich über die Fläche gesehen eine der Basalmembran angenäherte Reliefstruktur er¬ gibt. Eine mathematische Annäherung an die eierkartonförmige Basal- membranstruktur läßt sich mathematisch als orthogonale Interferenz von zwei Sinusschwingungen derselben Amplitude, Frequenz und Phase beschreiben, z.B. in der Form:
z = f (X,y) = Ax * sin(2τ) * x/300+Ay * sin(2τ) * y/300,
mit A = Ax + Ay = 300 μm
für Amplituden und Wellenlängen von 300 μm.
Vereinfacht läßt sich dies ausdrücken durch:
z(x,y) = A*sin(x) + A*sin(y) oder z(x>y) = A*cos(x) + A*cos(y).
Die erhaltene Matrix von z- Werten wird dann als Grundlage für die
Pulsfrequenzmodu ierung des Laserstrahls und die translatorische x-y- Steuerung des Werkstücktisches benutzt.
Dies läßt sich auf die rotatorische Lasergravur übertragen, indem y=r*f gesetzt wird, wo r den Radius der zu gravierenden Walze und ζ die
Winkelposition angeben.
Die Mikroreliefherstellung mittels Lasergravur wird häufig im Zu¬ sammenhang mit rotierenden, meist keramikbeschichteten Walzen ange- wendet, kann aber ebenso zur Bearbeitung von Kupfer und Hartmetall und auch im Zusammenhang mit ebenen Platten Verwendung finden. Es hat sich herausgestellt, daß für die Mikroreliefstrukturen der erfindungs¬ gemäßen Membran die Laserbearbeitung von Hartmetall am geeignetsten ist.
Durch Verwendung eines Laserstrahls mit Fokusbreite 2 bis 20 Mikro¬ metern, der in seiner Ablationsleistung (Pulszahl, Intensität) mittels der oben angegebenen Formel moduliert wurde und mit der erforderlichen Schrittweite (mindestens 0,1 μm) scannend über das Werkstück geführt wurde, konnte eine definierte, stetige Mikroreliefstruktur erzeugt wer¬ den, wie sie mittels Grautonvorlase nicht erreichbar wäre. Es wurden Reliefstrukturen im Bereich von 10 x 10 μm bL : )0 x 1000 μm er¬ reicht (bezüglich der Abstände und den Höhendifferenzen zwischen den Höckern und Vertiefungen). Materialspezifische Diskontinuitäten in der Ablationscharakteristik können durch Korrekturfaktoren in der mathematischen Beschreibung der Struktur ausgeglichen werden.
Die mit dieser Methode sehr präzise erzeugte 3D-strukturierte Werk¬ zeugoberfläche zeigte nicht nur bei den üblichen Keramikbeschichtungen sondern insbesondere bei Werkzeughartmetall sehr gute Ergebnisse. Im Falle einer Keramikgravur, dient die gravierte Oberfläche in einem nachfolgenden Prägeverfahren als Master, um eine Metallwerkzeugwalze bzw. plane Werkzeugoberfläche herzustellen. Dabei wird der Master durch schrittweises rotatorisches bzw. translatorisches Verfahren in eine ungehärtete Walzenoberfläche bzw. plane Oberfläche eingeprägt (sog. Molettage). Diese Walze wird anschließend gehärtet und dient bei einer zweiten Molettage wiederum als Master für die Herstellung einer Pro- duktionswalze, indem dieser Master auf die Produktionswalze abgewälzt wird. Mit dieser Produktionswalze kann dann in einem herkömmlichen Prägekalander entweder mit Unionsgegen walze oder einer "eingewasche- nen" weichen Gegenwalze ein Film geprägt werden. Vorteilhaft bei der
Lasergravur direkt in eine Hartmetalloberfläche ist, daß die erste Molet¬ tage und die anschließende Härtung entfallen.
Das Mikrorelief kann neben der mechanischen Gravur und der Laser- gravur schließlich auch auf eine dritte Weise erzeugt werden, die darin besteht, einen Gewebeabdruck der Dennis zu gewinnen, indem eine Hautbiopsie durchgeführt und die Dermis anschließend extrahiert, ge¬ trocknet und mit Polyäther beschichtet wird. Die vernetzte Poly- ätherschicht wird dann von der Dennis abgezogen (Negativ) und dient als Vorlage für einen Hartgipsabdruck (Positiv). Von der Hartgipsform wird schließlich eine Stahlform abgeformt. Das so gewonnene Mikrore¬ lief stellt eine ideale Annäherung an die Struktur der Basalmembran dar.
Eine Hautbiopsie wurde zum Beispiel mit Hilfe eines Dermatoms (Castroviejo-Dermatom, Storz Instrument) mit einer Tiefeneinstellung von 0,5 bis 1 mm gewonnen. Die Probe wurde zugeschnitten auf eine Fläche von 20 x 20 mm und für 15 bis 48 Stunden in 0,2 % Trypsin bei 4°C inkubiert. Sobald an den Ecken eine erste Epidermis- Ablösung sichtbar wurde, wurde das Stück in eine kleine 30 mm Durchmesser Petrischale mit 2 ml 10%igem Fötalcalfserum (FCS) überführt. Dort wurde die Epidermis von der Dennis mit Hilfe zweier gebogener Pin¬ zetten vorsichtig abgelöst. Die Dennis wurde in eine trockene Petrischa¬ le überführt und dort flach mit der epidermalen Seite nach oben ausge¬ breitet. Das Gewebe wurde von anhaftendem Medium durch Absaugen befreit und mit der Abdruckmasse Impregum (Firma ESPE, Seefeld, Polyäther, 2-Komponentensystem) beschichtet, wobei auf die Abdruck¬ masse ein leichter Druck ausgeübt wurde. Nach 15 Minuten wurde die Polyätherschicht abgezogen und in einen geeigneten Rahmen einge¬ spannt. Von diesem Negativabdruck wurde nach ca. 24 Stunden mit Superhartgips ein Positivabdruck erstellt, sowie es z.B. in der Dentalla- bortechnik üblich ist. Dieser Hartgipspositivabdruck dient als Master für einen Metallabdruck.
Nachdem ein Master auf eine der drei oben beschriebenen Weisen her¬ gestellt worden ist, werden die eigentlichen Prägewerkzeuge in Form von Prägewalzen oder Prägeplatten durch Abguß des Masters als Sili¬ konform oder als Stahlform hergestellt. Von dieser so hergestellt n Form wird eine zweite Form durch Abdruck gewonnen, so daß man eine Positiv- und eine Negativform erhält.
Im Speziellen wurde von der Hartgipsform, die den Gewebeabdruck zeigt, gemäß gängiger Dentallabortechnik eine Edelstahlform erzeugt.
Von dem Mikrorelief, das durch Gravur, sei es mit geometrischen Stem¬ peln oder laserstrahlbearbeiteter Mikroreliefwalze, hergestellt wurde, wurden formschlüssige Positiv- und Negativabdrücke aus Silikon ge¬ wonnen. Dies wurde in einer Vakuumgießanlage (Typ C003MC2) der Firma HEK durchgeführt. Verwendet wurde hierbei das Zweikomponen¬ tensystem Silikon und Härter der Firma HEK, wobei Silikon der Shore- Härte 80 benutzt wurde. Zuerst wurde ein Negativabdruck hergestellt, von dem dann ein weiterer Abdruck, der Positivabdruck, hergestellt wurde, nachdem der erkaltete Negativabdruck mit Sprühtrennmittel (HEK) beschichtet worden war. In die Form wurden zwei Kanäle einge¬ arbeitet, die es erlauben, Material zwischen die beiden komplementären Formteilen fließen zu lassen.
Mit den so hergestellten Prägeformen wurden sowohl Membranen aus einer durch Veresterung stabilisierten Hyaluronsäure ("Hyaff" von Fidia Advanced Biopolymers) als auch aus einem aus Polyglycolsäure (PGA) und Trimethylencarbonat (TMC) bestehenden Copolymer (Verhältnis 65:35) hergestellt.
Bei der Membranherstellung aus Hyaff wurden Folien aus 100 % mit Benzylalkohol veresterte Hyaluronsäure (Hyaff 11 von Fidia Advanced Biopolymers) mit einer Dicke von 0,04 mm in Stücke von 20 x 20 mm geschnitten. Die Stücke wurden auf beiden Seiten mit ca. 50 μ\ Di- methylformamid (DMF von Merck) benetzt, in die Silikonform gelegt und 30 Sekunde unter Vakuum verpreßt. Die geprägten Membranen wurden vorsichtig mit einer Pinzette aus der Form entnommen und in reinen Äthylalkohol überführt. Nach 5 bis 60 Minuten wurden die Mem¬ branen in physiologischer Kochsalzlösung (0,9 % NaCl) gewaschen. Zur Sterilisation wurden die Membranen in geeignete Folien eingeschweißt und mit 25 kGy bestrahlt.
Die Hyaff-Folie liegt in Gelform vor, dessen Durchlässigkeit vom Ver¬ netzungsgrad des Gels abhängt. Die Makrr noleküle diffundieren durch das Gel hindurch, welches mit "Wasserräumen" ausgestattet ist. Je nach
Vernetzungsgrad, Art der Makromoleküle und Anzahl der hydrophilen Gruppen hat das Gel einen höheren oder niederigeren Durchlässigkeits¬ grad. Eine Durchlässigkeit der aus Hyaff-Folie hergestellten Membran für Moleküle zwischen 20.000 und 50.000 Dalton ist vorteilhaft.
Im Falle der Membranherstellung aus PGA-TMC wurden diese Copoly- meτs mit der kleinstmöglichen Spinndüse extrudiert (Faserdurchmesser ca. 30 μ ) und zu einem dünnen Filz verarbeitet (Dicke 800 bis 1000 μm). Dieser Filz wurde mit Aceton benetzt bei etwa 195°C mit einem Druck von etwa 4,137 bar (60 psi) für etwa 8 Sekunden zwischen zwei formschlüssigen Stahlformen verpreßt. Das Ergebnis war eine mikro¬ poröse Membran mit einer Dicke von ca. 40 μm.
Nachfolgend soll die Erfindung anhand der beigefügten Zeichnung er- läutert werden. Darin zeigen:
Fig. 1 eine perspektivische Ansicht der Membran mit der Mikrostruk- tur und einer halb aufgeklappten äußeren Membran;
Fig. 2 einen schematischen Querschnitt durch ein Wundpflaster;
Fig. 3 eine schematische Darstellung gestapelter Membrane getrennt durch ein Gitternetz.
Für die Wundabdeckung großer drittgradiger Brandwunden wird die erfindungsgemäße Membran mit der MikroStruktur (Bezugsziffer 10 in Fig. 1) direkt auf die Wunde gelegt. Keratinozyten werden aus einer Biopsie vom Patienten isoliert und 2-3 Wochen in einer Zellkultur ver - mehrt. Diese Keratinozyten werden in Suspension gebracht und mit Fibrinkleber auf der Membran mit MikroStruktur fixiert. Darüber wird eine äußere, von der erfindungsgemäßen Membran verschiedene Mem¬ bran (Bezugsziffer 12 in Fig. 1) gelegt. Die Keratinozyten sammeln sich in den Vertiefungen 14 und bilden dort eine "kritische" Masse für opti¬ male Wachstumsbedingungen. Da bei Verwendung von Suspensionen eine festigkeitssteigernde Differenzierung der Zellen nicht abgewartet werden muß, wie es etwa bei der Produktion von Sheets der Fall wäre, kann der Patient nach wesentlich kürzerer Wartezeit versorgt werden. Durch die Ansammlung der Keratinozyten in den Vertiefungen könnte diese besonders schonend verteilt werden. Diese Art der Auftragung ist einer dünnen, gleichmäßigen Auftragung vorzuziehen.
Die äußere Membran 12 besteht z. B. aus Polyurethan, mikroporösem Polyethylen oder PTFE. Sie ist durchlässig für Gase und Wasserdampf, aber undurchlässig für Flüssigkeiten und Keime. Figur 2 zeigt ein erfindungsgemäßes Wundpflaster, bestehend aus einer äußeren Membran 12 und einem Stapel aus resorbierbaren Membranen 10 mit MikroStruktur, die durch resorbierbare Netze 18 voneinander getrennt werden. Das Netz verhindert, daß die Membranen zu dicht aufeinander liegen (Fig. 3). Maximales Hohlraumvolumen ergibt sich, wenn die Höcker 16 einer oberen Membran 10 über den Vertiefungen 14 einer unteren Membran 10 liegen. Das Netz kann dazu dienen, die Membranen an den Stellen 20 miteinander zu verkleben, z. B. durch kurzzeitiges thermisches Erweichen des Netzmaterials. Das Netz kann gegebenenfalls entfallen. Die resorbierbaren Membrane sind perforiert, um Blut und Sekret durchtreten zu lassen. Die äußere Membran (12) kann randseitig über die innere Membran hinausragen und in diesem Bereich mit Klebstoff versehen sein, um eine Fixierung des Wund- pflasters, auf der Haut zu ermöglichen.
Die übereinander gestapelten Membranen formen ein Kissen, in das Blut und Sekrete durch Kapillarkräfte eindringen können. Die Blutgerinnung erfolgt auf diesen Membranen. Die Keratinozyten wandern entlang der von Fibrin besetzten Höckern in das Pflaster ein und haften sich bevor- zugt dort an. Die Wundheilung erfolgt im wesentlichen ohne Narbenbil¬ dung. Beim Abziehen des Pflasters nach eingetretener Heilung bzw. zum Wechseln verbleiben wundnahe Membranschichten auf der Wunde, deren Oberfläche sie schützen und deren neugebildete Strukturen er¬ halten bleiben. Auch die Schmerzrezeptoren bleiben bedeckt, so daß das Ablösen des Wundpflasters bei besonders schmerzempfindlichen
Patienten ohne Probleme erfolgen kann.
Schließlich kann die Membran auch zur Kultivierung von Zellen, ins¬ besondere zur Ko-Kultivierung von unterschiedlich differenzierten Zellen zur Regeneration von Geweben verwendet werden. Diese können z. B. zur Transplantation, zur Untersuchung von Gewebefunktionen, zur Synthese hochwirksamer Makromoleküle oder als biologischer Sensor verwendet werden. Man spannt die Membran in einen Rahmen und beaufschlagt beide Seiten des Rahmens nacheinander mit einer Zell- Suspension zweier unterschiedlicher Zellarten. Nach Sedimentation und Fixierung der einen Zellart wird der Rahmen gewendet und das gleiche Verfahren mit einer Suspension der anderen Zellart wiederholt.
Zur Ko-Kultivierung menschlicher Hautzellen auf der mikrostrukturier- ten Membran wurden normale menschliche Fibroplasten in einer Kon¬ zentration von 50.000 bis 100.000 Zellen pro cm2 in DMEM Medium (Gibco) mit 10 % fötalem Kälberserum auf eine Seite der Membran eingesät und eine Woche lang bei 37 °C inkubiert. Danach wurde die Membran gewendet und mit normalen menschlichen Keratinozyten in Rheinwald und Green Medium (Cell, 1975) + 10 % fötales Kälber¬ serum in einer Konzentration von 50.000 bis 100.000 Zellen pro cm" bedeckt. Diese Ko-Kultur wurde für 2 bis 4 Wochen bei 37°C inkubiert.

Claims

Patentans . üche
1. Membran zur Regeneration von Körpergeweben aus einem biokom¬ patiblen Material, gekennzeichnet durch die Kombination der folgenden Merkmale: einer Dicke im Bereich von 0,5 bis 500 Mikron, für Gase und Makromoleküle durchlässig, für Zellen dagegen un¬ durchlässig, einer Mikrostniktur in Form von Höckern (16) und/oder Vertief un- gen (14).
2. Membran nach Anspruch 1, dadurch gekennzeichnet, daß die Membran durchlässig ist für Moleküle zwischen 20.000 und 50.000 Dalton.
3. Membran nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Membran resorbierbar ist.
4. Membran nach einem der Ansprüche 1 bis 3, dadurch gekenn- zeichnet, daß die Membran eine gleichförmige Dicke aufweist.
5. Membran nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, daß die Höcker (16) und Vertiefungen (14) regelmäßig in Rasterform angeordnet sind.
6. Membran nach einem der Ansprüche 1 bis 5, dadurch gekenn¬ zeichnet, daß die Höcker (16) und Vertiefungen (14) alle gleich ausge¬ bildet sind und sich in ihrer Größe entsprechen.
7. Membran nach einem der Ansprüche 1 bis 6, dadurch gekenn¬ zeichnet, daß die MikroStruktur eigenstabil ist.
8. Membran nach einem der Ansprüche 1 bis 7, dadurch gekenn¬ zeichnet, daß die Höcker (16) und Vertiefungen (14) der Mikrostniktur unmittelbar aneinandergrenzen bzw. ineinander übergehen.
9. Membran nach Anspruch 8, dadurch gekennzeichnet, daß die Übergänge zwischen den Höckern und Vertiefungen weich und flie¬ ßend, ohne Kanten sind.
10. Membran nach einem der Ansprüche 1 bis 9, dadurch gekenn¬ zeichnet, daß sich die MikroStrukturen von Ober- und Unterseite der Membran entsprechen.
11. Membran nach Anspruch 10, dadurch gekennzeichnet, daß sich die MikroStruktur durch Überlagerung zweier Sinus- bzw. Cosinuskur¬ ven beschreiben läßt.
12. Membran nach Anspruch 11, dadurch gekennzeichnet, daß sich die Struktur durch die Formel z(x,y) = A*sin(x) + A*sin(y) oder z(x,y) = A*cos(x) + A*cos(y) beschreiben läßt, wobei A die Amplitude angibt.
13. Membran nach einem der Ansprüche 1 bis 12, dadurch gekenn- zeichnet, daß die Dicke der Membran 2 bis 20 Mikron beträgt.
14. Membran nach einem der Ansprüche 1 bis 13, dadurch gekenn¬ zeichnet, daß die Membran aus einem vernetzten Gel besteht.
15. Membran nach einem der Ansprüche 1 bis 14, dadurch gekenn¬ zeichnet, daß die Membran mikroporös ist und die Porengröße unter 3 Mikron liegt.
16. Membran nach einem der Ansprüche 1 bis 15, dadurch gekenn- zeichnet, daß der Abstand (A) von Höcker zu Höcker (16) bzw. von
Vertiefung zu Vertiefung (14) 50 bis 500 Mikron, vorzugsweise etwa 200 Mikron beträ Ogt*.
17. Membran nach einem der Ansprüche 1 bis 16, dadurch gekenn- zeichnet, daß die Amplitude von Höcker plus Vertiefung etwa 50 bis
1000 Mikron beträgt. S. Membran nach Anspruch 17, dadurch gekennzeichnet, daß die Amplitude 100 bis 500 Mikron beträgt.
19. Membran nach Anspruch 18, dadurch gekennzeichnet, daß die Amplitude 150 bis 300 Mikron beträgt.
20. Membran nach einem der Ansprüche 1 bis 19, dadurch gekenn¬ zeichnet, daß das Material für die Membran aus natürlichen ECM- Molekülen oder synthetischen Molekülen besteht.
21. Membran nach Anspruch 20, dadurch gekennzeichnet, daß das Material für die Membran aus der Gruppe ausgewählt wird, die aus Polylactid, Polyglycolid, Copolymeren dieser Stoffe oder ihren Deriva¬ ten, Polycaprolacton, Polydioxaneon, Polyphosphazen, Polysulfon, Poly- urethan, Polyhydroxybuttersäure, Hyaluronsäure oder mit Netzmittel vernetztem Kollagen besteht.
22. Verwendung der Membran nach einem der Ansprüche 1 bis 21 zur Kultivierung von Zellen.
23. Verfahren zur Kultivi *ng von Zellen unter Verwendung einer Membran nach einem der Ansprüche 1 bis 21, wobei körpereigene Kera¬ tinozyten auf der Membran fixiert werden.
24. Verwendung der Membran nach einem der Ansprüche 1 bis 21 zur
Ko-Kultivierung differenzierter Zellen.
25. Verfahren zur Ko-Kultivierung differenzierter Zellen unter Ver¬ wendung einer Membran nach einem der Ansprüche 1 bis 21, wobei die Membran in einen Rahmen eingespannt und auf beiden Seiten mit ent¬ sprechenden Zellsuspensionen beaufschlagt wird.
26. Künstliche Haut bestehend aus einer Membran nach einem der Ansprüche 1 bis 21. - 18 -
27. Künstliche Haut bestehend aus einer gemäß dem Verfahren nach Anspruch 23 oder 25 hergestellten Membran mit Zellkultur.
28. Verwendung einer Membran nach einem der Ansprüche 1 bis 21 zur Abdeckung von Brandwunden.
29. Verwendung einer gemäß dem Verfahren nach Anspruch 23 oder 25 hergestellten Membran zur Abdeckung von Brandwunden.
30. Wundpflaster, bestehend aus wenigstens einer Membran nach einem der Ansprüche 1 bis 21 und einer äußeren Membran (12), die gas¬ durchlässig, keimdicht und flüssigkeitsdicht ist.
31. Wundpflaster nach Anspruch 30 gekennzeichnet durch einen Stapel von Membranen (10), die gegebenenfalls durch Netze (18) aus resorbier¬ barem Material voneinander getrennt bleiben.
32. Wundpflaster nach Anspruch 30 oder 31, dadurch gekennzeichnet, daß die Membranen (10) perforiert sind, um Blut und Sekret durchtreten zu lassen.
33. Wundpflaster nach einem der Ansprüche 30 bis 32, dadurch ge¬ kennzeichnet, daß die äußere Membran (12) randseitig über die innere Membran (10) hinausragt und in diesem Bereich mit Klebstoff (20) beschichtet ist.
34. Verfahren zur Herstellung einer Membran nach einem der An¬ sprüche 1 bis 21, dadurch gekennzeichnet, daß die MikroStruktur der Membran mit einem eine entsprechende Reliefstruktur aufweisenden Prägewerkzeug erzeugt wird.
35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, daß das Prägewerkzeug eine Hartmetalloberfläche aufweist, in der die Relief¬ struktur unmittelbar durch Lasergravur erzeugt wird.
36. Ve: ahren nach Anspruch 35, da .. rch gek:: anzeichnet, daß die Laser-Vorrichtung zur Erzeugung der Reliefstruktur NC -gesteuert ist.
37. Verfahren nach Anspruch 35 oder 36, dadurch gekennzeichnet, daß die Laservorrichtung einen Laserstrahl der Breite von 2 bis 20
Mikron aufweist.
38. Verfahren nach einem der Ansprüche 35 bis 37, dadurch gekenn¬ zeichnet, daß mit dem lasergravierten Hartmetall Werkzeug ein Silikon- Werkzeug geprägt w:-d, das als Prägewerkzeug für die Membran dient.
39. Verfahren nach Anspruch 34, dadurch gekennzeichnet, daß die Reliefstruktur des Prägewerkzeugs durch Abformung eines Gewebeab¬ drucks erzeu Όgt* wird.
40. Verfahren nach Anspruch 39, dadurch gekennzeichnet, daß der Gewebeabdruck ein Abdruck der Dennis ist.
41. Verfahren nach Anspruch 40, dadurch gekennzeichnet, daß der Gewebeabdruck in Form eines Hartgipsabdrucks erzeugt wird, indem die
Dennis durch Hautbiopsie gewonnen und mit einer Abdruckmasse be¬ schichtet wird, und die Abdruckmasse, nachdem sie genügend ausgehär¬ tet ist, von der Dermis abgezogen und in Hartgips abgeformt wird.
42. Verfahren nach Anspruch 41, dadurch gekennzeichnet, daß das
Prägewerkzeug durch Abformung des Hartgipsabdrucks als hergestellt wird.
43. Verfahren nach Anspruch 34, dadurch gekennzeichnet, daß die Membran aus einer durch Veresterung stabilisierten Hyaluronsäure-
Folie besteht, die in einer Form für 30 Sekunden unter Vakuum verpreßt wird.
44. Verfahren nach Anspruch 43, dadurch gekennzeichnet, daß die Form eine Silikon form ist.
45. Verfahren nach Anspruch 34, dadurch gekennzeichnet, daß die Membran aus einem Filz aus Copolymerfasem besteht, der in einer Form verpreßt wird.
46. Verfahren nach Anspruch 45, dadurch gekennzeichnet, daß die
Copolymerfasem zu zwei Dritteln aus Polyglycolsäure (PGA) und zu einem Drittel aus Trimethylencarbonat (TMC) bestehen.
47. Verfahren nach Anspruch 45 oder 46, dadurch gekennzeichnet, daß die Copolymerfasem einen Durchmesser von etwa 30 Mikron ha¬ ben.
48. Verfahren nach einem der Ansprüche 45 bis 47, dadurch gekenn¬ zeichnet, daß die Verpressung bei einer Temperatur von etwa 195°C und einem Druck von etwa 4 bar für etwa 8 Sekunden durchgeführt wird.
PCT/EP1995/002869 1994-07-25 1995-07-20 Membran zur regeneration von körpergeweben und verwendung der membran als wundabdeckung und hautersatz WO1996003094A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU31628/95A AU3162895A (en) 1994-07-25 1995-07-20 Membrane for regenerating body tissues and use of said membrane as a wound covering and substitute skin
EP95927681A EP0772425A1 (de) 1994-07-25 1995-07-20 Membran zur regeneration von körpergeweben und verwendung der membran als wundabdeckung und hautersatz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4426315.5 1994-07-25
DE19944426315 DE4426315C1 (de) 1994-07-25 1994-07-25 Membran zur Regeneration von Körpergeweben und Verwendung der Membran als Wundabdeckung und Hautersatz

Publications (1)

Publication Number Publication Date
WO1996003094A1 true WO1996003094A1 (de) 1996-02-08

Family

ID=6524093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/002869 WO1996003094A1 (de) 1994-07-25 1995-07-20 Membran zur regeneration von körpergeweben und verwendung der membran als wundabdeckung und hautersatz

Country Status (5)

Country Link
EP (1) EP0772425A1 (de)
AU (1) AU3162895A (de)
CA (1) CA2195867A1 (de)
DE (1) DE4426315C1 (de)
WO (1) WO1996003094A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048541A1 (en) * 1998-03-26 1999-09-30 University Of Pittsburgh Assembled scaffolds for three-dimensional cell culturing and tissue generation
US6306646B1 (en) * 1998-03-03 2001-10-23 Weidman Plastics Technology Ag Culture dish
WO2002026939A2 (en) * 2000-09-25 2002-04-04 The Board Of Trustees Of The University Of Illinois Microfabrication of membranes for the growth of cells
US6420622B1 (en) 1997-08-01 2002-07-16 3M Innovative Properties Company Medical article having fluid control film
WO2006010727A2 (en) * 2004-07-27 2006-02-02 Universita' Degli Studi Di Roma 'la Sapienza' Tridimensional support for cell culture, culture method making use of such a support and stem-like cells obtained through such a method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648876C2 (de) * 1996-11-16 1999-10-07 Will Minuth Verfahren zum Herstellen eines natürlichen Implantats
DE19940977A1 (de) * 1999-08-28 2001-03-01 Lutz Claes Folie aus resorbierbarem Polymermaterial und Verfahren zur Herstellung einer solchen Folie
DE10014557A1 (de) * 2000-03-23 2001-10-04 Lohmann Therapie Syst Lts Wundauflage mit verminderter Verwachsungstendenz
DE102012011422A1 (de) 2012-06-08 2013-12-12 Gottlieb Binder Gmbh & Co. Kg Medizinprodukt zur Versorgung eines Individuums
US11963684B2 (en) * 2020-03-18 2024-04-23 Bvw Holding Ag Microstructured hemostat

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457919A (en) * 1966-06-22 1969-07-29 Smith & Nephew Adhesive surgical and other tapes,plasters,bandages,dressings,and the like
FR2351643A1 (fr) * 1975-11-24 1977-12-16 Int Paper Co Feuille pour pansement et son procede de fabrication
DE3923279A1 (de) * 1989-07-14 1990-01-18 Will W Prof Dr Minuth Minusheets ist ein neues produkt, um zellen in beliebigen behaeltnissen in hochdifferenzierter form auf einer moeglichst natuerlichen unterlage zu kultivieren
DE9003033U1 (de) * 1990-03-13 1991-04-11 Beiersdorf Ag, 20253 Hamburg Trägermaterial für medizinische Zwecke
WO1991013638A1 (en) * 1990-03-05 1991-09-19 Smith & Nephew Plc Cell culture products
EP0462426A1 (de) * 1990-06-01 1991-12-27 FIDIA S.p.A. Biologisch verträgliche perforierte Membranen und ihre Verwendung als Kunsthaut
EP0470007A2 (de) * 1990-08-03 1992-02-05 Terumo Kabushiki Kaisha Wundabdeckmaterial
US5182111A (en) * 1987-11-17 1993-01-26 Boston University Research Foundation In vivo delivery of active factors by co-cultured cell implants
US5188124A (en) * 1989-07-19 1993-02-23 Johnson & Johnson Consumer Products, Inc. Low friction film dressing
DE4132379A1 (de) * 1991-09-28 1993-04-08 Kernforschungsz Karlsruhe Substrat fuer zellkulturen und kultur von zellen oder zellaggregaten

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8801741A (nl) * 1988-07-08 1990-02-01 Utermoehlen Nv Kunsthuid.
US5314471A (en) * 1991-07-24 1994-05-24 Baxter International Inc. Tissue inplant systems and methods for sustaining viable high cell densities within a host

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457919A (en) * 1966-06-22 1969-07-29 Smith & Nephew Adhesive surgical and other tapes,plasters,bandages,dressings,and the like
FR2351643A1 (fr) * 1975-11-24 1977-12-16 Int Paper Co Feuille pour pansement et son procede de fabrication
US5182111A (en) * 1987-11-17 1993-01-26 Boston University Research Foundation In vivo delivery of active factors by co-cultured cell implants
DE3923279A1 (de) * 1989-07-14 1990-01-18 Will W Prof Dr Minuth Minusheets ist ein neues produkt, um zellen in beliebigen behaeltnissen in hochdifferenzierter form auf einer moeglichst natuerlichen unterlage zu kultivieren
US5188124A (en) * 1989-07-19 1993-02-23 Johnson & Johnson Consumer Products, Inc. Low friction film dressing
WO1991013638A1 (en) * 1990-03-05 1991-09-19 Smith & Nephew Plc Cell culture products
DE9003033U1 (de) * 1990-03-13 1991-04-11 Beiersdorf Ag, 20253 Hamburg Trägermaterial für medizinische Zwecke
EP0462426A1 (de) * 1990-06-01 1991-12-27 FIDIA S.p.A. Biologisch verträgliche perforierte Membranen und ihre Verwendung als Kunsthaut
EP0470007A2 (de) * 1990-08-03 1992-02-05 Terumo Kabushiki Kaisha Wundabdeckmaterial
DE4132379A1 (de) * 1991-09-28 1993-04-08 Kernforschungsz Karlsruhe Substrat fuer zellkulturen und kultur von zellen oder zellaggregaten

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781639B2 (en) 1997-08-01 2010-08-24 3M Innovative Properties Company Medical article having fluid control film
US6420622B1 (en) 1997-08-01 2002-07-16 3M Innovative Properties Company Medical article having fluid control film
US7910790B2 (en) 1997-08-01 2011-03-22 3M Innovative Properties Company Medical article having fluid control film
US6306646B1 (en) * 1998-03-03 2001-10-23 Weidman Plastics Technology Ag Culture dish
US6143293A (en) * 1998-03-26 2000-11-07 Carnegie Mellon Assembled scaffolds for three dimensional cell culturing and tissue generation
WO1999048541A1 (en) * 1998-03-26 1999-09-30 University Of Pittsburgh Assembled scaffolds for three-dimensional cell culturing and tissue generation
US6867342B2 (en) 1998-06-18 2005-03-15 3M Innovative Properties Company Drug delivery dressing having fluid control film
WO2002026939A2 (en) * 2000-09-25 2002-04-04 The Board Of Trustees Of The University Of Illinois Microfabrication of membranes for the growth of cells
US7695967B1 (en) 2000-09-25 2010-04-13 The Board Of Trustees Of The University Of Illinois Method of growing stem cells on a membrane containing projections and grooves
US6942873B2 (en) 2000-09-25 2005-09-13 The Board Of Trustees Of The University Of Illinois Microfabrication of membranes containing projections and grooves for growing cells
WO2002026939A3 (en) * 2000-09-25 2002-08-15 Univ Illinois Microfabrication of membranes for the growth of cells
WO2006010727A2 (en) * 2004-07-27 2006-02-02 Universita' Degli Studi Di Roma 'la Sapienza' Tridimensional support for cell culture, culture method making use of such a support and stem-like cells obtained through such a method
WO2006010727A3 (en) * 2004-07-27 2006-07-13 Univ Roma Tridimensional support for cell culture, culture method making use of such a support and stem-like cells obtained through such a method

Also Published As

Publication number Publication date
DE4426315C1 (de) 1996-03-21
CA2195867A1 (en) 1996-02-08
AU3162895A (en) 1996-02-22
EP0772425A1 (de) 1997-05-14

Similar Documents

Publication Publication Date Title
DE10312144B4 (de) Trägermaterial für die Gewebe- und Zellkultur und die Herstellung von Implantatmaterialien
KR101880313B1 (ko) 피부이식편의 제조장치
DE69018457T2 (de) Gegenstände zur behandlung von periodontitis und knochendefekten.
DE10162814B4 (de) Rekonstruiertes Haarfollikelmodell
EP0934750A2 (de) Biohybrider Gelenkflächenersatz
WO2004074425A2 (de) Verfahren und vorrichtung zur bildung von biologischem zellmaterial
DE69120527T2 (de) Zellkulturprodukte
DE3878909T2 (de) Vorrichtung und verfahren zur herstellung eines komposithautersatzes.
DE69808291T2 (de) Wundverbände mit biologisch abbaubarer Zellverankerungsschicht
HU215534B (hu) Biokompatíbilis, perforált membránok, eljárás előállításukra, hámszövet sejtek in vitro növekedésének elősegítésére való alkalmazásuk és az így kapott mesterséges bőr
JP2013533064A (ja) 培養を不用とし、または生物由来製品不使用とした、皮膚移植片の準備方法
EP0885022A1 (de) Abdeckmembran, daraus hergestellte formkörper und verfahren zu deren hertellung
US7815931B2 (en) Artificial skin substitute
DE10135275A1 (de) Implantat und Verfahren zu seiner Herstellung
JP2013538080A (ja) 皮膚移植片の適用方法
EP0772425A1 (de) Membran zur regeneration von körpergeweben und verwendung der membran als wundabdeckung und hautersatz
Li et al. Fabrication of patterned multi-walled poly-l-lactic acid conduits for nerve regeneration
US20140248585A1 (en) Medical barrier with micro pores
DE10220368A1 (de) Versteiftes Implantat
EP2167641B1 (de) Verfahren und vorrichtung zur bildung einer dreidimensionalen anordnung biologischer zellen
US5957690A (en) Textured high density PTFE medical barrier
EP1184040A1 (de) Hautmatrix zur Abdeckung und Regenerierung verletzter Hautpartien sowie Verfahren zu ihrer Herstellung
KR970014780A (ko) 생분해성 막과 그 제조방법
DE102005018644B4 (de) Implantat zur Behandlung von Röhrenknochendefekten, Verwendung eines Flächengebildes in einem solchen Implantat, sowie Verfahren zur Herstellung des Implantats
WO2000066712A2 (de) Modulare zellträgersysteme für dreidimensionales zellwachstum

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995927681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2195867

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1997 776773

Country of ref document: US

Date of ref document: 19970421

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1995927681

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWR Wipo information: refused in national office

Ref document number: 1995927681

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995927681

Country of ref document: EP