WO1995028993A1 - Method of decomposing halogenated aromatic compound with alkaline substance - Google Patents

Method of decomposing halogenated aromatic compound with alkaline substance Download PDF

Info

Publication number
WO1995028993A1
WO1995028993A1 PCT/JP1995/000785 JP9500785W WO9528993A1 WO 1995028993 A1 WO1995028993 A1 WO 1995028993A1 JP 9500785 W JP9500785 W JP 9500785W WO 9528993 A1 WO9528993 A1 WO 9528993A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogenated aromatic
aromatic compound
pcb
alkaline
group
Prior art date
Application number
PCT/JP1995/000785
Other languages
French (fr)
Japanese (ja)
Inventor
Fumio Tanimoto
Kiyohiko Tsukumo
Atsuhiko Nakamura
Tsuneo Yano
Nobuhiro Suzuki
Toshinori Toma
Koichi Furuhashi
Nobuyuki Nakayama
Original Assignee
Research Institute For Production Development
Mitsui & Co., Ltd.
Neos Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute For Production Development, Mitsui & Co., Ltd., Neos Co., Ltd. filed Critical Research Institute For Production Development
Priority to EP95916026A priority Critical patent/EP0711580A1/en
Priority to AU22672/95A priority patent/AU2267295A/en
Publication of WO1995028993A1 publication Critical patent/WO1995028993A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/36Detoxification by using acid or alkaline reagents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen

Definitions

  • the present invention relates to a method for safely decomposing a halogenated aromatic compound such as polychlorinated biphenyl (hereinafter abbreviated as PCB) by using an alkaline substance in a polar solvent.
  • a halogenated aromatic compound such as polychlorinated biphenyl (hereinafter abbreviated as PCB)
  • No. 54 discloses the alumina-alkaline method.
  • U.S. Pat. No. 4,532,028 also discloses that in a mixture of an alkyl or alkylene sulfoxide and a polyol, an alkali and a PCB having a concentration of 50,000 ppm or less are used. A method is described in which the reaction is carried out at 0 ° C or less to obtain a few ppm.
  • Each of these conventional techniques has excellent features, but it further removes halogenated aromatic compounds from low-concentration levels of samples, and consequently contains substantially 25 halogenated aromatic compounds. At present, it has not been reduced to such an extent that it is less than 1 ppm. Removal to the bottom has not yet been realized.
  • the solvent used in the conventional method is heated to a high temperature of 150 ° C or more in the presence of an alkaline substance or an alkaline metal, the solvent loses chemical stability. As a result, decomposition and polymerization proceed, so that there is a problem that it cannot be carried out industrially.
  • the inventors of the present invention have made various studies to solve the above-mentioned problems, and as a result, have a high boiling point polar solvent and have excellent stability against alcohol even at high temperatures.
  • Select a non-proton polar solvent, and in this non-proton polar solvent heat a halogenated aromatic compound and an amount of an alkali substance that significantly exceeds the amount dissolved in the non-proton polar solvent at a high temperature. It has been found that the contacting method below is very effective in decomposing the halogenated aromatic compound.
  • the present invention provides a method for decomposing a halogenated aromatic compound by bringing the halogenated aromatic compound into contact with the alkali substance in a non-proton polar solvent.
  • the contact temperature ranges from about 150 ° C to about 300 ° C, and the contact time ranges from 1 hour to 10 hours.
  • a special feature is that the mixing ratio at the start is 5,000 mg Z kg or more.
  • the mixing ratio of the alkali substance to the whole reaction system at the start of the reaction is 7, OOOOmgZkg or more.
  • halogenated aromatic compounds to be decomposed A halogenated aromatic compound selected from the group consisting of polychlorinated biphenyls, polychlorinated terphenyls, polybrominated biphenyls, and analogs thereof, or two or more halogens selected from this group There are mixtures of fluorinated aromatic compounds.
  • a method of adding an inexpensive chemical in excess of the reacting chemicals is generally used, but in the present invention, the amount of the non-proton polar solvent as a solvent is reduced. Set the amount of alkaline substance corresponding to. That is, in the present invention, rather than excess of the alkali substance with respect to the halogenated aromatic compound, excess of the alkali substance with respect to the non-proton polar solvent is used.
  • IS enhances the action of non-proton polar solvents.
  • the content of the halogenated aromatic compound is not limited to 100%, and for example, the content of the halogenated aromatic compound may be reduced from 2 ppm by a hydrocarbon oil whose main component is a non-aromatic hydrocarbon. Those diluted to a concentration range of up to 80% can also be treated.
  • calcium hydroxide (Ca (OH) 2) and the like may be added to the reaction system in the form of calcium oxide (Ca0) and an oxide.
  • the effective non-proton polar solvent is 1, 3 under any conditions.
  • These non-proton polar solvents are readily available because they are commercially available because they are used relatively industrially. Of particular note is that these non-proton polar solvents, in addition to being less toxic and less dangerous, also better dissolve halogenated aromatics.
  • the reaction rate between the halogenated aromatic compound and the alkali substance may be significantly reduced.
  • the halogenated aromatic compound was decomposed from a concentration of several ppm to a value lower than the detection limit (less than 0.5 ppb). However, it was confirmed that they were substantially eliminated.
  • non-proton polar solvents include 1,3-dimethyl-2-imidazolidinone (hereinafter abbreviated as DMI), tetramethylethylene sulfone, and 1.3— Dimethyl-1 2—Imidazolidinone and tetramethylene sulfonate, the main component of which is a solvent selected from the group consisting of a mixture of dimethyl sulfoxide, N-methylpyrrolidone, Is it possible to use methyl urea, methyl blend liquor, and polyethylene glycol dimethyl ether?
  • the halogenated aromatic compound can be effectively decomposed even when one polar solvent selected from the above or a mixture containing two or more polar solvents selected from this group at a concentration of 35% or less is used.
  • Table 1 shows the processing conditions and the amount of residual PCB after the processing for the examples and comparative examples of the present invention.
  • the column of residual PCB is indicated as ND.
  • the initial compounding ratio of the alkaline substance to the entire reaction system is equivalent to 17,000 mg / kg, and the alkaline ratio to the chlorine amount in PCB is equivalent to 90 molar ratio.
  • the PCB concentration in the oil reservoir was reduced to 80 ppb even if the treatment was performed for about 2 hours under the same conditions.
  • the initial compounding ratio of the alkaline substance to the entire reaction system is equivalent to 48,000 mg / kg, and the alkaline ratio to the chlorine amount in the PCB is equivalent to 16 in molar ratio.
  • the PCB concentration in the oil reservoir was reduced to 40 ppb even after the treatment was performed for about 3 hours under the same conditions.
  • the alkali ratio to the chlorine amount in the PCB is 120 in molar ratio, which is higher than or equal to that of Examples 1 to 7, but high concentration of PCB remains.
  • the initial compounding ratio of the alkaline substance to the whole reaction system was 2, 000 mg / day despite the excess of NaOH relative to the PCB. kg.
  • Examples 1 to 7 the case where 50 g of insulating oil containing PCB was added to the reaction system was explained.
  • the insulating oil containing PCB was added to the reaction system.
  • the case where a very small amount is added to the above is described. In this case, since the amount of insulating oil is small, the insulating oil itself dissolves into the DMI layer. After the reaction, the PCB concentration in the DMI layer is analyzed by GC-MS.
  • Example 9 3 g of insulating oil containing PCB, 90 g of DMl, and 13 g of powdered NaOH were mixed in a flask. As in Example 1. Keep them at a temperature of 200 ° C for about 5 hours, stirring them well. Next, after cooling to room temperature, the PCB of the DMI layer is analyzed by GC-MS. As a result, it was confirmed that the concentration of PCB, which was initially 70, OOO ppm in the entire reaction system, decreased to below the detection limit of GC-MS. Under these conditions, the initial blending ratio of the alkaline substance is equivalent to 130,000 mg / kg, and the alkaline ratio to the chlorine amount in the PCB is equivalent to 3 in molar ratio. In addition, it was confirmed that the PCB was reduced to 70 ppb even when the treatment was performed for about 2 hours under the same conditions.
  • Example 9 3 g of insulating oil containing PCB, 90 g of DMl, and 13 g of powdered NaOH were mixed in
  • the initial blending ratio of the alkaline substance is equivalent to 25,000 mg / kg, and the alkaline ratio to the chlorine amount in PCB is equivalent to 4 in molar ratio.
  • PCB was reduced to 60 ppb even when the treatment was performed for about 2 hours under the same conditions.
  • Example 11 to Example 14 described the case where insulating oil was not added instead of adding PCB directly to the reaction system. In these cases, too, after the reaction, the concentration of the PCB in the DMI layer is analyzed by GC-MS.
  • Example 12 First, as shown in Table 1, 0 ⁇ 11 of 1002, 1.9 g of powdery NaOH, and an amount of PCB with a concentration of 100,000 ppm in total reaction system After mixing them in a flask, they are kept at a temperature of 200 for about 5 hours, with good stirring, as in Example 8. Next, after cooling to room temperature, the PCB of the DMI layer is analyzed by GC-MS. As a result, it was confirmed that PCB decreased to below the detection limit of GC-MS. Under these conditions, the initial blending ratio of the alkaline substance is 19, OOOmgZkg, and the alkaline ratio to the chlorine amount in PCB is 3 in molar ratio. In addition, it was confirmed that PCB was reduced to 35 ppb even when the treatment was performed for about 2 hours under the same conditions, Example 12
  • the initial compounding ratio of the alkali substance is equivalent to 20, OOO mggZkg, and the alkali ratio to the chlorine amount in the PCB is equivalent to 2.8 in molar ratio.
  • the PCB was reduced to 40 ppb even if the treatment was performed for about 2 hours under the same condition> 0 cases.
  • the conditions for decomposing the PCB by bringing the PCB and the alkaline substance into contact with each other in a non-proton polar solvent are, in addition to the above examples, the amount of the alkaline substance added at the start of the reaction.
  • the contact temperature between the PCB and the alkaline substance is set in a range from about 150 ° C to about 300 ° C
  • the contact time is set in a range from about 1 hour to about 10 hours.
  • the mixing ratio of the alkaline substance to the entire reaction system at the start of the reaction was 5,000 mg / kg or more, the PCB could be reliably decomposed to below the detection limit.
  • the mixing ratio of the alkaline substance to the entire reaction system at the start of the reaction was set to 7.0000 mg kg or more. By doing so, it was confirmed that the PCB could be more reliably decomposed to below the detection limit.
  • PCB halogenated aromatic compounds
  • PCB polychlorinated terphenyls
  • NaOH, KOH, CaOH, and CaO NaO, Mg (OH) 2, and the like can be used as the alkaline substance.
  • a mixture with lenglycol dimethyl ether may be used.
  • dimethyl sulfoxide, N-methylpyrrolidone, and tetramethyl are preferred from the viewpoint of alkali resistance at high temperatures. It is preferable that the blending ratio of tyl urea, polyethylene glycol, or polyethylene glycol dimethyl ether is 35% or less.
  • PCB-containing non-proton Aluminium re-treatment Treatment Insulation oil amount under remaining conditions Polar soluble matter amount [g] vs. temperature control PCB
  • the halogenated aromatic compound and the alkali substance are mixed in a non-proton polar solvent at a temperature of about 150 ° C. to about 300 ° C. for about 1 hour. It is characterized in that it is brought into contact for about 10 hours and the mixing ratio of the alkaline substance to the whole reaction system at the start of the reaction is set to 5,000 mg / kg or more. Therefore, according to the present invention, even small amounts of halogenated aromatic compounds such as PCBs that directly harm the human body can be reliably and safely removed to a substantially harmless state. It is. Therefore, it is possible to treat hydrocarbon oil containing PCB to a substantially harmless state.

Abstract

A method of decomposing a halogenated aromatic compound with an alkaline substance safely without fail, which comprises bringing the aromatic compound into contact with the alkaline substance in an aprotic polar solvent at a temperature ranging from about 150 to about 300 °C for about one to about ten hours, the alkaline substance being present in an amount of about 5,000 mg per kilogram of the reaction mixture as a whole in starting the reaction.

Description

明 細 書 ハロゲン化芳香族化合物をアルカ リ物質により分解する方法 〔技術分野〕  Description Method for decomposing halogenated aromatic compounds with alkaline substances [Technical field]
この発明は、 ポリ塩化ビフヱニール (以下、 P C Bと略す。 ) など のハロゲン化芳香族化合物を極性溶剤中でアルカ リ物質を用いて安全 に分解する方法に関するものである。  The present invention relates to a method for safely decomposing a halogenated aromatic compound such as polychlorinated biphenyl (hereinafter abbreviated as PCB) by using an alkaline substance in a polar solvent.
! 0 〔背景技術〕 ! 0 [Background Art]
P C B等のハロゲン化芳香族化合物は、 その処置に困難を極めてい ることから、 2 0年余りにわたつて、 ハロゲン化芳香族化合物の除去 或いは分解に関して、 多くの努力が成されている。 その数例を示すと - アルカ リ存在下における反応と しては、 米国特許第 2 , 9 5 1 , 8 0 Since halogenated aromatic compounds such as PCB are extremely difficult to treat, much effort has been made for the removal or decomposition of halogenated aromatic compounds for more than 20 years. Some examples are given below.- The reaction in the presence of alkali is described in U.S. Pat. No. 2,951,80.
】 5 4号にアルミナ—アルカ リ法が示されている。 また、 米国特許第 4 , 5 3 2 , 0 2 8号には、 アルキル或いはアルキレンスルホキシ ドとポ リオールとの混合物中で、 アルカ リ と 5 0 , 0 0 O p p m以下の P C Bとを 2 0 0 °C以下で反応させて、 数 p p mとする方法が示されてい る。 そのほかにも、 ナ ト リ ウムの溶融物を用いるカナダ特許第 1 , 1No. 54 discloses the alumina-alkaline method. U.S. Pat. No. 4,532,028 also discloses that in a mixture of an alkyl or alkylene sulfoxide and a polyol, an alkali and a PCB having a concentration of 50,000 ppm or less are used. A method is described in which the reaction is carried out at 0 ° C or less to obtain a few ppm. In addition, Canadian Patent Nos. 1, 1 using sodium melts
2 0 8 1 , 7 7 1号に開示された方法や、 ポリエチレングリ コールを吸着 したアルカ リ土類金属を用いるイタ リア特許第 1 , 2 0 6, 5 0 8号 に開示された方法などが知られている。 The method disclosed in US Pat. No. 2,081,770 and the method disclosed in Italian Patent Nos. 1, 206, 508 using an alkaline earth metal to which polyethylene glycol is adsorbed are exemplified. Are known.
これらの従来の技術は、 それぞれに優れた特徴があるが、 低濃度レ ベルの試料から更にハロゲン化芳香族化合物を除去して、 実質的にハ 2 5 ロゲン化芳香族化合物の混入が認められない程度にまで減少させるに 至っていないのが現状であり、 ハロゲン化芳香族化合物を 1 p p m以 下にまで除去することが未だに実現化されていない。 また、 従来の方 法において使用する溶剤をアル力 リ物質またはアル力 リ金属が存在す る状態において 1 5 0 °C以上の高温度にまで加熱したときには、 溶剤 が化学的な安定性を失って分解、 重合などが進行してしまうので、 ェ 業的に実施できないという問題点がある。 Each of these conventional techniques has excellent features, but it further removes halogenated aromatic compounds from low-concentration levels of samples, and consequently contains substantially 25 halogenated aromatic compounds. At present, it has not been reduced to such an extent that it is less than 1 ppm. Removal to the bottom has not yet been realized. In addition, when the solvent used in the conventional method is heated to a high temperature of 150 ° C or more in the presence of an alkaline substance or an alkaline metal, the solvent loses chemical stability. As a result, decomposition and polymerization proceed, so that there is a problem that it cannot be carried out industrially.
さ らに、 最近では、 パラフ ィ ンを水素源とする還元法も研究されて いるが、 この方法でも、 約 l p p m程度の P C Bが残存するとと もに 反応温度が高いという欠点がある。  Recently, a reduction method using paraffin as a hydrogen source has also been studied. However, even this method has a drawback that about 1 ppm of PCB remains and the reaction temperature is high.
〔発明の開示〕  [Disclosure of the Invention]
そこで、 本願発明者は、 上記の課題を解消すべく種々の検討を重ね た結果、 高沸点の極性溶剤であって、 かつ、 高温度下においてもアル カ リ に対して優れた安定性をもつ非プロ ト ン極性溶剤を選択し、 この 非プロ ト ン極性溶剤中で、 ハロゲン化芳香族化合物と、 非プロ ト ン極 性溶剤への溶解量を大幅に越える量のアルカ リ物質とを高温下で接触 させる方法がハロゲン化芳香族化合物を分解するのに非常に効果的で あることを見出した。  The inventors of the present invention have made various studies to solve the above-mentioned problems, and as a result, have a high boiling point polar solvent and have excellent stability against alcohol even at high temperatures. Select a non-proton polar solvent, and in this non-proton polar solvent, heat a halogenated aromatic compound and an amount of an alkali substance that significantly exceeds the amount dissolved in the non-proton polar solvent at a high temperature. It has been found that the contacting method below is very effective in decomposing the halogenated aromatic compound.
従って、 本発明では、 ハロゲン化芳香族化合物とアルカ リ物質とを 非プロ 卜 ン極性溶剤中で接触させてハロゲン化芳香族化合物を分解す る方法において、 ハロゲン化芳香族化合物とアルカ リ物質との接触温 度を約 1 5 0 °Cから約 3 0 0 °Cまでの範囲と し、 その接触時間を 1 時 間から 1 0時間までの範囲と し、 反応系全体に対するアルカ リ物質の 反応開始時における配合比を 5 , 0 0 0 m g Z k g以上とするこ とに 特徵を有する。  Accordingly, the present invention provides a method for decomposing a halogenated aromatic compound by bringing the halogenated aromatic compound into contact with the alkali substance in a non-proton polar solvent. The contact temperature ranges from about 150 ° C to about 300 ° C, and the contact time ranges from 1 hour to 10 hours. A special feature is that the mixing ratio at the start is 5,000 mg Z kg or more.
特に、 反応系全体に対するアルカ リ物質の反応開始時における配合 比については、 7 , O O O m g Z k g以上とすることが好ま しい。  In particular, it is preferable that the mixing ratio of the alkali substance to the whole reaction system at the start of the reaction is 7, OOOOmgZkg or more.
ここに、 分解の対象となるべき代表的なハロゲン化芳香族化合物と しては、 ポリ塩化ビフヱニール、 ポリ塩化ターフ ェニル、 ポリ臭化ビ フエニール、 およびそれらの類縁化合物からなる群から選択した一つ のハロゲン化芳香族化合物、 またはこの群から選択した二以上のハロ ゲン化芳香族化合物の混合物がある。 Here, typical halogenated aromatic compounds to be decomposed A halogenated aromatic compound selected from the group consisting of polychlorinated biphenyls, polychlorinated terphenyls, polybrominated biphenyls, and analogs thereof, or two or more halogens selected from this group There are mixtures of fluorinated aromatic compounds.
5 本発明に係る方法に関し、 今の段階では、 ハロゲン化芳香族化合物 がどのような化学反応を経て分解されるかを本質的な反応機構と して 学理的に説明できるまでに至っていないが、 本発明に係る分解方法を 繰り返し検討した結果、 ハロゲン化芳香族化合物は、 検出不可能な濃 度レベルにまで分解されることが確認された。 こ こで、 化学反応を完 5 Regarding the method according to the present invention, at this stage, it has not been possible to scientifically explain as what kind of chemical reaction the halogenated aromatic compound is decomposed as an essential reaction mechanism. As a result of repeatedly examining the decomposition method according to the present invention, it was confirmed that the halogenated aromatic compound was decomposed to an undetectable concentration level. Here, the chemical reaction is completed.
1 0 結させるには、 反応する薬品のうち、 安価な薬品の方を過剰に添加す る方法が一般的に用いられているが、 本発明では、 溶剤である非プロ 卜 ン極性溶剤の量に対応してアル力 リ物質の量を設定する。 すなわち, 本発明では、 ハロゲン化芳香族化合物に対してアル力 リ物質を過剰に するというよりは、 非プロ ト ン極性溶剤に対してアルカ リ物質を過剰In order to form a bond, a method of adding an inexpensive chemical in excess of the reacting chemicals is generally used, but in the present invention, the amount of the non-proton polar solvent as a solvent is reduced. Set the amount of alkaline substance corresponding to. That is, in the present invention, rather than excess of the alkali substance with respect to the halogenated aromatic compound, excess of the alkali substance with respect to the non-proton polar solvent is used.
I S にして、 非プロ ト ン極性溶剤の働きを高めていることに注目すべきで ある。 It should be noted that IS enhances the action of non-proton polar solvents.
本発明では、 ハロゲン化芳香族化合物が 1 0 0 %のものを出発物質 と した場合、 およびハロゲン化芳香族化合物が数 p p mに希釈された ものを出発物質と した場合のいずれの場合においても、 ハロゲン化芳 In the present invention, in each of the case where the starting material is one in which the halogenated aromatic compound is 100% and the case where the starting material is one in which the halogenated aromatic compound is diluted to several ppm, Halogenated
2 0 香族化合物は、 検出不可能な濃度レベルにまで分解されることが確認 された。 従って、 本発明では、 ハロゲン化芳香族化合物が 1 0 0 %の ものに限らず、 例えば、 主たる成分が非芳香族系の炭化水素である炭 化水素油によってハロゲン化芳香族化合物が 2 p p mから 8 0 %まで の濃度範囲に希釈されたものも処理の対象とすることができる。 It was confirmed that the 20 aromatic compounds were decomposed to undetectable concentration levels. Therefore, in the present invention, the content of the halogenated aromatic compound is not limited to 100%, and for example, the content of the halogenated aromatic compound may be reduced from 2 ppm by a hydrocarbon oil whose main component is a non-aromatic hydrocarbon. Those diluted to a concentration range of up to 80% can also be treated.
2 5 本発明において、 アル力 リ物質と しては、 水酸化ナ ト リ ウム ( N a O H ) 、 水酸化カ リ ウム (K O H ) 、 水酸化カルシウム ( C a ( O H ) 2 ) 、 及び水酸化マグネシウム (M g ( O H ) 2 ) からなる群から 選択した一つのアル力 リ物質、 またはこの群から選択した二以上のァ ルカ リ物質の混合物を用いる ことができる。 なお、 水酸化カルシウム ( C a ( O H ) 2 ) などについては、 酸化カルシウム ( C a 0 ) とい つ 酸化物の状態で反応系に加えてもよい。 25 In the present invention, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) ) 2), and magnesium hydroxide (Mg (OH) 2), or a mixture of two or more alkaline substances selected from this group. Incidentally, calcium hydroxide (Ca (OH) 2) and the like may be added to the reaction system in the form of calcium oxide (Ca0) and an oxide.
本発明では、 非プロ ト ン極性溶剤の種類によつてハロゲン化芳香族 化合物を分解する効果に多少の差異があり、 いずれの条件においても 効果的な非プロ ト ン極性溶剤は、 1 , 3 — ジメ チルー 2 —イ ミ ダゾリ ジノ ン、 テ ト ラメ チレンスルフ ォ ン、 または 1 , 3 —ジメ チルー 2 — ィ ミ ダゾリ ジノ ンとテ トラメ チ レンスルフ ォ ンとの混合物である。 これらの非プロ ト ン極性溶剤は、 工業的に比較的よ く 用いられる こ とから、 市販されているので、 容易に入手でき る。 また、 これらの非 プロ ト ン極性溶剤は、 毒性および危険性の少ないものであるこ とに加 えて、 ハロゲン化芳香族化合物をよ く 溶解するこ とに特に注目すべき である。 さ らに、 従来の方法では、 ハロゲン化芳香族化合物が少量、 たとえば、 p p mオーダ一にまで減少すると、 ハロゲン化芳香族化合 物とアルカ リ物質との反応速度が著し く 低下する こ とが自明であった が、 前記の非プロ ト ン極性溶剤を用いたと ころ、 ハロゲン化芳香族化 合物を数 p p mの濃度からさ らに検出限界値以下 ( 0 . 5 p p b以下) にまで分解し、 実質的に消失させる こ とが確認できた。  In the present invention, there is a slight difference in the effect of decomposing the halogenated aromatic compound depending on the type of the non-proton polar solvent, and the effective non-proton polar solvent is 1, 3 under any conditions. — Dimethyl 2 — imidazolidinone, tetramethylene sulfone, or 1,3 — Dimethyl 2 — imidazolidinone and a mixture of tetramethylen sulfone. These non-proton polar solvents are readily available because they are commercially available because they are used relatively industrially. Of particular note is that these non-proton polar solvents, in addition to being less toxic and less dangerous, also better dissolve halogenated aromatics. Furthermore, in the conventional method, when the amount of the halogenated aromatic compound is reduced to a small amount, for example, to the order of ppm, the reaction rate between the halogenated aromatic compound and the alkali substance may be significantly reduced. Although it was obvious, when the non-proton polar solvent was used, the halogenated aromatic compound was decomposed from a concentration of several ppm to a value lower than the detection limit (less than 0.5 ppb). However, it was confirmed that they were substantially eliminated.
また、 非プロ ト ン極性溶剤と しては、 1 , 3 — ジメ チル— 2 —イ ミ ダゾリ ジノ ン (以下、 D M I と略す。 ) 、 テ ト ラ メ チ レンスルフ ォ ン、 及び 1 . 3 — ジメ チル一 2 —イ ミ ダゾリ ジノ ンとテ 卜 ラ メ チ レンスル フ ォ ンとの混合物からなる群から選択した溶剤を主成分と し、 ジメ チ ルスルフ ォキシ ド、 N — メ チルピロ リ ドン、 テ ト ラ メ チル尿素、 ジェ チ レンダリ コール、 及びポ リ エチ レ ングリ コールジメ チルエーテルか ら選択した一つの極性溶剤、 またはこの群から選択した二以上の極性 溶剤を 3 5 %以下の濃度で含む混合物を用いても、 ハロゲン化芳香族 化合物を効果的に分解することができる。 Also, non-proton polar solvents include 1,3-dimethyl-2-imidazolidinone (hereinafter abbreviated as DMI), tetramethylethylene sulfone, and 1.3— Dimethyl-1 2—Imidazolidinone and tetramethylene sulfonate, the main component of which is a solvent selected from the group consisting of a mixture of dimethyl sulfoxide, N-methylpyrrolidone, Is it possible to use methyl urea, methyl blend liquor, and polyethylene glycol dimethyl ether? The halogenated aromatic compound can be effectively decomposed even when one polar solvent selected from the above or a mixture containing two or more polar solvents selected from this group at a concentration of 35% or less is used.
〔発明を実施するための最良の形態〕  [Best mode for carrying out the invention]
表 1 には、 本発明の実施例、 および比較例について、 その処理条件 と、 処理後の残存 P C B量とを示してある。 なお、 表 1 において、 残 存 P C B量が検出限界以下の場合には、 残存 P C B量の欄には、 N. D . と表してある。  Table 1 shows the processing conditions and the amount of residual PCB after the processing for the examples and comparative examples of the present invention. In Table 1, when the amount of residual PCB is below the detection limit, the column of residual PCB is indicated as ND.
実施例 1  Example 1
表 1 に示すとおり、 約 8 0 p p mの P C Bを含む絶縁油 5 0 g (非 芳香族系の炭化水素を主成分とする炭化水素油) と、 1 0 0 gの DM I と、 2 gの粉末状の N a O Hとをフラスコ中で混ぜ合わせた後、 そ れらをよく攪拌しながら、 2 0 0での温度に約 6時間保つ。 次に、 室 温にまで冷却した後に、 下層の D M I層を取り除く。 しかる後に、 油 層の P C Bをガスクロマ トダフィ ー質量分析計 (以下、 G C— M Sと 略す。 ) で分析した結果、 G C— M Sの検出限界値以下、 すなわち、 0. 5 p p b ( 0. 5 g Z k g ) 以下にまで減少していることが確 認できた。 この条件では、 反応系全体に対するアルカ リ物質の初期配 合比が 1 3, O O O m gZk gに相当する。 また、 この条件では、 P C B中の塩素量に対するアル力 リ比 (アル力 リ物質のモル数 Z塩素の モル数) がモル比で 8 0 0 に相当する。  As shown in Table 1, 50 g of insulating oil containing about 80 ppm of PCB (hydrocarbon oil mainly containing non-aromatic hydrocarbons), 100 g of DMI, and 2 g of After mixing the powdered NaOH with the flask, keep them at a temperature of 200 for about 6 hours with good stirring. Next, after cooling to room temperature, the lower DMI layer is removed. After that, the PCB in the oil layer was analyzed using a gas chromatography-duffy mass spectrometer (GC-MS), which showed that it was below the detection limit of GC-MS. kg). Under these conditions, the initial combination ratio of the alkaline substance to the whole reaction system is equivalent to 13, OOOmgZkg. Under these conditions, the molar ratio of the chlorine in the PCB to the amount of chlorine (the number of moles of the zinc and the number of moles of chlorine) is equivalent to 800 in molar ratio.
なお、 同じ条件で約 2時間処理を行なっただけでも、 油層の P C B .濃度が 7 0 p p bにまで減少していることが確認できた。  In addition, it was confirmed that the concentration of PCB in the oil layer was reduced to 70 ppb even when the treatment was performed for about 2 hours under the same conditions.
実施例 2 Example 2
表 1 に示すとおり、 約 8 O p p mの P C Bを含む絶縁油 5 O gと、 5 0 ^:の01^ 1 と、 2. 5 gの粉末状の K O Hとをフラスコ中で混ぜ 合わせた後、 実施例 1 と同様、 それらをよく攪拌しながら、 2 0 0 °C の温度に約 6時間保つ。 次に、 室温にまで冷却した後に、 下層の DM I層を取り除く。 しかる後に、 油層の P C Bを G C— M Sで分析した 結果、 G C— M Sの検出限界値以下にまで減少していることが確認で きた。 この条件では、 反応系全体に対するアルカ リ物質の初期配合比 が 2 5, 0 0 0 m g Z k gに相当し、 P C B中の塩素量に対するアル カ リ比は、 モル比で 7 2 0に相当する。 なお、 同じ条件で約 2時間の 処理を行なっただけでも、 油層の P C B濃度が 9 0 p p bにまで減少 していることが確認できた。 As shown in Table 1, 5 Og of insulating oil containing about 8 Oppm of PCB, 01 ^ 1 of 50 ^ :, and 2.5 g of powdered KOH were mixed in a flask. After combining, as in Example 1, they are kept at a temperature of 200 ° C. for about 6 hours with good stirring. Next, after cooling to room temperature, the lower DMI layer is removed. After that, the PCB in the oil layer was analyzed by GC-MS, and it was confirmed that the PCB had decreased to below the detection limit of GC-MS. Under these conditions, the initial compounding ratio of the alkali substance to the whole reaction system is equivalent to 25,000 mg Z kg, and the alcohol ratio to the chlorine amount in the PCB is equivalent to 720 in molar ratio. . In addition, it was confirmed that the PCB concentration in the oil layer was reduced to 90 ppb even if the treatment was performed for about 2 hours under the same conditions.
実施例 3  Example 3
表 1 に示すとおり、 約 8 O p p mの P C Bを含む絶縁油 5 0 gと、 1 0 0 gの DM I と、 1. 5 gの粉末状の N a O Hと、 1. O gの粉 末状の C a Oとをフラスコ中で混ぜ合わせた後、 実施例 1 と同様、 そ れらをよく攢拌しながら、 2 1 0 °Cの温度に約 6時間保つ。 なお、 C a 0も、 アルカ リ物質と して作用する。 次に、 室温にまで冷却した後 に、 下層の D M I 層を取り除く。 しかる後に、 油層の P C Bを G C _ M Sで分析した結果、 G C— M Sの検出限界値以下にまで減少してい ることが確認できた。 この条件では、 反応系全体に対するアルカ リ物 質の初期配合比が 1 7 , 0 0 O m gZk gに相当し、 P C B中の塩素 量に対するアルカ リ比は、 モル比で 9 0 に相当する。 なお、 同じ条件 で約 2時間の処理を行なっただけでも、 油層の P C B濃度が 8 0 p p bにまで減少していることが確認できた。  As shown in Table 1, 50 g of insulating oil containing about 8 O ppm of PCB, 100 g of DM I, 1.5 g of powdered NaOH, and 1.O g of powder After mixing with the CaO in a flask, the mixture is kept at a temperature of 210 ° C. for about 6 hours while thoroughly stirring them as in Example 1. C a0 also acts as an alkaline substance. Next, after cooling to room temperature, the lower DMI layer is removed. Thereafter, the PCB of the oil reservoir was analyzed by GC_MS, and it was confirmed that the PCB was reduced to below the detection limit of GC-MS. Under these conditions, the initial compounding ratio of the alkaline substance to the entire reaction system is equivalent to 17,000 mg / kg, and the alkaline ratio to the chlorine amount in PCB is equivalent to 90 molar ratio. In addition, it was confirmed that the PCB concentration in the oil reservoir was reduced to 80 ppb even if the treatment was performed for about 2 hours under the same conditions.
実施例 4  Example 4
表 1 に示すとおり、 約 8, 0 0 O p p mの P C Bを含む絶縁油 5 0 gと、 1 5 0 gの DM I と、 2. 5 gの粉末状の K O Hとをフラスコ 中で混ぜ合わせた後、 実施例 1 と同様、 それらをよく攪拌しながら、 2 1 0 °Cの温度に約 4時間保つ。 次に、 室温にまで冷却した後に、 下 層の DM I 層を取り除く。 しかる後に、 油層の P C Bを G C— M Sで 分析した結果、 G C— M Sの検出限界値以下にまで減少していること が確認できた。 この条件では、 反応系全体に対するアルカ リ物質の初 期配合比が 1 2. 5 0 0 m g / k gに相当し、 P C B中の塩素量に対 するアルカ リ比は、 モル比で 7に相当する。 なお、 同じ条件で約 2時 間の処理を行なっただけでも、 油層の P C B濃度が 5 0 p p bにまで 減少していることが確認できた。 As shown in Table 1, 50 g of insulating oil containing about 800 ppm of PCB, 150 g of DMI, and 2.5 g of powdered KOH were mixed in a flask. Later, as in Example 1, while stirring them well, Hold at a temperature of 210 ° C for about 4 hours. Next, after cooling to room temperature, the lower DMI layer is removed. Thereafter, the PCB in the oil layer was analyzed by GC-MS, and as a result, it was confirmed that it was reduced to below the detection limit of GC-MS. Under these conditions, the initial blending ratio of alkaline substance to the entire reaction system is 12.500 mg / kg, and the alkaline ratio to the chlorine amount in the PCB is 7 in molar ratio. . In addition, it was confirmed that the PCB concentration in the oil layer was reduced to 50 ppb even if the treatment was performed for about 2 hours under the same conditions.
実施例 5  Example 5
表 1 に示すとおり、 約 8, O O O p p mの P C Bを含む絶縁油 5 0 gと、 5 0 gの DM I と、 2. 8 gの粉末状の C a Oと、 2. O gの 粉末状の N a O Hとをフラスコ中で混ぜ合わせた後、 実施例 1 と同様. それらをよく攪拌しながら、 1 9 0 °Cの温度に約 5時間保つ。 次に、 室温にまで冷却した後に、 下層の D M I 層を取り除く。 しかる後に、 油層の P C Bを G C— M Sで分析した結果、 G C— M Sの検出限界値 以下にまで減少していることが確認できた。 この条件では、 反応系全 体に対するアルカ リ物質の初期配合比が 4 8 , 0 0 O m g /k gに相 当し、 P C B中の塩素量に対するアルカ リ比は、 モル比で 1 6に相当 する。 なお、 同じ条件で約 3時間の処理を行なっただけでも、 油層の P C B濃度が 4 0 p p bにまで減少していることが確認できた。  As shown in Table 1, 50 g of insulating oil containing PCB of about 8, OOO ppm, 50 g of DMI, 2.8 g of powdered CaO, and 2. Og of powdered After mixing in a flask with NaOH, as in Example 1. Keep them at a temperature of 190 ° C. for about 5 hours with good stirring. Next, after cooling to room temperature, the lower DMI layer is removed. Thereafter, the PCB of the oil layer was analyzed by GC-MS, and as a result, it was confirmed that the PCB was reduced to below the detection limit of GC-MS. Under these conditions, the initial compounding ratio of the alkaline substance to the entire reaction system is equivalent to 48,000 mg / kg, and the alkaline ratio to the chlorine amount in the PCB is equivalent to 16 in molar ratio. . In addition, it was confirmed that the PCB concentration in the oil reservoir was reduced to 40 ppb even after the treatment was performed for about 3 hours under the same conditions.
実施例 6 ―  Example 6 ―
表 1 に示すとおり、 約 8 O p p mの P C Bを含む絶縁油 5 0 gと、 1 5 0 2の0^1 1 と、 3. 8 gの粉末状の N a O Hとをフラスコ中で 混ぜ合わせた後、 実施例 1 と同様、 それらをよく攪拌しながら、 2 1 0 °Cの温度に約 5時間保つ。 次に、 室温にまで冷却した後に、 下層の DM I 層を取り除く。 しかる後に、 油層の P C Bを G C— M Sで分析 した結果、 G C— M Sの検出限界値以下にまで減少していることが確 認できた。 この条件では、 反応系全体に対するアルカ リ物質の初期配 合比が 1 9 , 0 0 0 m g/k gに相当し、 P C B中の塩素量に対する アルカ リ比は、 モル比で 1 5 0 0に相当する。 なお、 同じ条件で約 2 時間の処理を行なっただけでも、 油層の P C B濃度が 3 0 p p bにま で減少していることが確認できた。 As shown in Table 1, 50 g of insulating oil containing about 8 ppm of PCB, 0 ^ 11 of 1502, and 3.8 g of NaOH powder were mixed in a flask. After that, as in Example 1, they are kept at a temperature of 210 ° C. for about 5 hours with good stirring. Next, after cooling to room temperature, the lower DMI layer is removed. After that, analyze the PCB of the oil layer by GC-MS As a result, it was confirmed that the amount decreased to below the detection limit of GC-MS. Under these conditions, the initial combination ratio of alkali substances to the entire reaction system was 19,000 mg / kg, and the alkali ratio to the chlorine amount in the PCB was 150,000 in molar ratio. I do. In addition, it was confirmed that the PCB concentration in the oil layer was reduced to 30 ppb even when the treatment was performed for about 2 hours under the same conditions.
実施例 7  Example 7
表 1 に示すとおり、 約 8 , 0 0 0 p p mの P C Bを含む絶縁油 5 0 gと、 1 5 0 gの DM I と、 5. 5 gの粉末状の K 0 Hとをフラスコ 中で混ぜ合わせた後、 実施例 1 と同様、 それらをよく攪拌しながら、 2 0 0 °Cの温度に約 3時間保つ。 次に、 室温にまで冷却した後に、 下 層の DM I層を取り除く。 しかる後に、 油層の P C Bを G C— M Sで 分析した結果、 G C— M Sの検出限界値以下にまで減少していること が確認できた。 この条件では、 反応系全体に対するアルカ リ物質の初 期配合比が 2 7 , 5 0 0 m g/k gに相当し、 P C B中の塩素量に対 するアルカ リ比は、 モル比で 1 6に相当する。 なお、 同じ条件で約 2 時間の処理を行なつただけでも、 油層の P C B濃度が 2 0 p p bにま で減少していることが確認できた。  As shown in Table 1, 50 g of insulating oil containing about 8000 ppm PCB, 150 g of DMI, and 5.5 g of powdered KOH were mixed in a flask. After combining, as in Example 1, they are kept at a temperature of 200 ° C. for about 3 hours with good stirring. Next, after cooling to room temperature, the lower DMI layer is removed. Thereafter, the PCB of the oil reservoir was analyzed by GC-MS, and it was confirmed that the PCB was reduced to below the detection limit of GC-MS. Under these conditions, the initial blending ratio of alkaline substances to the whole reaction system is equivalent to 27,500 mg / kg, and the alkaline ratio to the chlorine amount in the PCB is equivalent to 16 by molar ratio. I do. In addition, it was confirmed that the PCB concentration in the oil reservoir was reduced to 20 ppb even after the treatment was performed for about 2 hours under the same conditions.
比較例 1 Comparative Example 1
これに対し、 実施例 1 ないし実施例 7に対する比較例 1 と して、 以 下の検討を行なった。 まず、 表 1 に示すように、 約 8 0 p p mの P C Bを含む絶縁油 5 0 gと、 1 0 0 gの DM I と、 0. 3 gの粉末状の N a O Hとをフラスコ中で混ぜ合わせた後、 実施例 1 と同様、 それら をよく攪拌しながら、 2 1 0 °Cの温度に約 6時間保つ。 次に、 室温に まで冷却した後に、 下層の D M I 層を取り除く。 しかる後に、 油層の P C Bを G C— M Sで分析した結果、 P C Bは、 4 , O O O p p m残 存していた。 また、 同じ条件で約 4時間の処理を行なっただけでは、 P C Bが 5 0 0 O p p b残存していた。 In contrast, the following study was performed as Comparative Example 1 with respect to Examples 1 to 7. First, as shown in Table 1, 50 g of insulating oil containing about 80 ppm of PCB, 100 g of DMI, and 0.3 g of powdered NaOH were mixed in a flask. After the combination, as in Example 1, they are kept at a temperature of 210 ° C. for about 6 hours while stirring them well. Next, after cooling to room temperature, the lower DMI layer is removed. After that, the PCB in the oil layer was analyzed by GC-MS. Existed. Also, when the treatment was performed for about 4 hours under the same conditions, 500 O ppb of the PCB remained.
このように、 P C B中の塩素量に対するアルカ リ比がモル比で 1 2 0であり、 実施例 1 ないし 7 と比較して同等以上であるにもかかわら ず、 高濃度の P C Bが残存している理由は、 P C Bに対して N a O H を過剰にしているにもかかわらず、 実施例 1 ないし 7 と相違して、 反 応系全体に対するアルカ リ物質の初期配合比が 2 , 0 0 0 m g / k g と低いからである。  As described above, the alkali ratio to the chlorine amount in the PCB is 120 in molar ratio, which is higher than or equal to that of Examples 1 to 7, but high concentration of PCB remains. The reason is that, unlike in Examples 1 to 7, the initial compounding ratio of the alkaline substance to the whole reaction system was 2, 000 mg / day despite the excess of NaOH relative to the PCB. kg.
実施例 8  Example 8
実施例 1 ないし実施例 7では、 P C Bを含有する絶縁油を反応系に 5 0 g加えた場合について説明したが、 実施例 8ないし実施例 1 0で は、 P C Bを含有する絶縁油を反応系に極めて少量加えた場合につい て説明する。 これの場合には、 絶縁油が少量であるため、 絶縁油自身 が D M I 層に溶け込んでしまうので、 反応後には、 D M I 層中の P C B濃度を G C— M Sで分析する。  In Examples 1 to 7, the case where 50 g of insulating oil containing PCB was added to the reaction system was explained.In Examples 8 to 10, the insulating oil containing PCB was added to the reaction system. The case where a very small amount is added to the above is described. In this case, since the amount of insulating oil is small, the insulating oil itself dissolves into the DMI layer. After the reaction, the PCB concentration in the DMI layer is analyzed by GC-MS.
まず、 表 1 に示すとおり、 P C Bを含む絶縁油 3 gと、 9 0 gの D M l と、 1 3 gの粉末状の N a O Hとをフラスコ中で混ぜ合わせた後. 実施例 1 と同様、 それらをよく攪拌しながら、 2 0 0 °Cの温度に約 5 時間保つ。 次に、 室温にまで冷却した後に、 D M I 層の P C Bを G C 一 M Sで分析する。 その結果、 初期的には反応系全体に対して濃度が 7 0 , O O O p p mであった P C Bは、 G C— M Sの検出限界値以下 にまで減少していることが確認できた。 この条件では、 アルカ リ物質 の初期配合比が 1 3 0 , 0 0 O m gZk gに相当し、 P C B中の塩素 量に対するアルカ リ比は、 モル比で 3 に相当する。 なお、 同じ条件で 約 2時間の処理を行なっただけでも、 P C Bが 7 0 p p bにまで減少 していることが確認できた。 実施例 9 First, as shown in Table 1, 3 g of insulating oil containing PCB, 90 g of DMl, and 13 g of powdered NaOH were mixed in a flask. As in Example 1. Keep them at a temperature of 200 ° C for about 5 hours, stirring them well. Next, after cooling to room temperature, the PCB of the DMI layer is analyzed by GC-MS. As a result, it was confirmed that the concentration of PCB, which was initially 70, OOO ppm in the entire reaction system, decreased to below the detection limit of GC-MS. Under these conditions, the initial blending ratio of the alkaline substance is equivalent to 130,000 mg / kg, and the alkaline ratio to the chlorine amount in the PCB is equivalent to 3 in molar ratio. In addition, it was confirmed that the PCB was reduced to 70 ppb even when the treatment was performed for about 2 hours under the same conditions. Example 9
表 1 に示すとおり、 P C Bを含む絶縁油 3 gと、 9 0 £の01 1 と. 1 6 gの粉末状の K O Hとをフラスコ中で混ぜ合わせた後、 実施例 8 と同様、 それらをよ く攪拌しながら、 2 0 0 °Cの温度に約 4時間保つ, 次に、 室温にまで冷却した後に、 DM I層の P C Bを G C— M Sで分 析する。 その結果、 初期的には反応系全体に対して濃度が 7 0 , 0 0 0 p p mであつた P C Bは、 G C— M Sの検出限界値以下にまで減少 していることが確認できた。 この条件では、 アルカ リ物質の初期配合 比が 1 6 0 , 0 0 O m gZk gに相当し、 P C B中の塩素量に対する アルカ リ比は、 モル比で 2. 6に相当する。 なお、 同じ条件で約 2時 間の処理を行なっただけでも、 P C Bが 2 5 p p bにまで減少してい ることが確認できた。  As shown in Table 1, 3 g of insulating oil containing PCB, 90 £ of 011, and 16 g of powdered KOH were mixed in a flask, and then mixed as in Example 8. Maintain the temperature at 200 ° C for about 4 hours while stirring well. After cooling to room temperature, analyze the PCB of the DMI layer by GC-MS. As a result, it was confirmed that the concentration of PCB, which was initially 70,000 ppm in the entire reaction system, was reduced to below the detection limit of GC-MS. Under these conditions, the initial compounding ratio of the alkaline substance is equivalent to 160,000 Omg / kg, and the alkaline ratio to the chlorine amount in PCB is equivalent to 2.6 in molar ratio. In addition, it was confirmed that PCB was reduced to 25 ppb even if the treatment was performed for about 2 hours under the same conditions.
実施例 1 0  Example 10
表 1 に示すとおり、 P C Bを含む絶縁油 0. 3 gと、 9 9 gの DM I と、 1. 5 gの粉末状の K O Hと、 1. 0 gの粉末状の C a Oとを フラスコ中で混ぜ合わせた後、 実施例 8 と同様、 それらをよく攪拌し ながら、 2 1 0 °Cの温度に約 5時間保つ。 次に、 室温にまで冷却した 後に、 DM I層の P C Bを G C— M Sで分析する。 その結果、 初期的 には反応系全体に対して濃度が 7, 0 0 0 p p mであった P C Bは、 G C— M Sの検出限界値以下にまで減少していることが確認できた。 この条件では、 アルカ リ物質の初期配合比が 2 5 , 0 0 0 m g / k g に相当し、 P C B中の塩素量に対するアルカ リ比は、 モル比で 4 に相 当する。 なお、 同じ条件で約 2時間の処理を行なっただけでも、 P C Bが 6 0 p p bにまで減少していることが確認できた。  As shown in Table 1, 0.3 g of insulating oil containing PCB, 99 g of DMI, 1.5 g of powdered KOH, and 1.0 g of powdered CaO in a flask After mixing in the same manner as in Example 8, they are kept at a temperature of 210 ° C. for about 5 hours while stirring them well. Next, after cooling to room temperature, the PCB of the DMI layer is analyzed by GC-MS. As a result, it was confirmed that PCB, which initially had a concentration of 7,000 ppm in the entire reaction system, was reduced to below the detection limit of GC-MS. Under these conditions, the initial blending ratio of the alkaline substance is equivalent to 25,000 mg / kg, and the alkaline ratio to the chlorine amount in PCB is equivalent to 4 in molar ratio. In addition, it was confirmed that PCB was reduced to 60 ppb even when the treatment was performed for about 2 hours under the same conditions.
実施例 1 1  Example 1 1
実施例 1 ないし実施例 1 0では、 P C Bを含有する絶縁油を反応系 に加えた場合について説明したが、 実施例 1 1 ないし実施例 1 4では P C Bを反応系に直接加える代わりに、 絶縁油を加えない場合につい て説明する。 これらの場合にも、 反応後には、 DM I 層中の P C B濃 度を G C— M Sで分析する。 In Examples 1 to 10, the insulating oil containing PCB was used in the reaction system. Example 11 to Example 14 described the case where insulating oil was not added instead of adding PCB directly to the reaction system. In these cases, too, after the reaction, the concentration of the PCB in the DMI layer is analyzed by GC-MS.
まず、 表 1 に示すとおり、 1 0 0 2の0^1 1 と、 1. 9 gの粉末状 の N a O Hと、 反応系全体に対する濃度で 1 0 , 0 0 O p p mになる 量の P C Bとをフラスコ中で混ぜ合わせた後、 実施例 8 と同様、 それ らをよく攪拌しながら、 2 0 0 の温度に約 5時間保つ。 次に、 室温 にまで冷却した後に、 D M I 層の P C Bを G C— M Sで分析する。 そ の結果、 P C Bは、 G C— M Sの検出限界値以下にまで減少している ことが確認できた。 この条件では、 アルカ リ物質の初期配合比が 1 9 , O O O m gZk gに相当し、 P C B中の塩素量に対するアルカ リ比は モル比で 3に相当する。 なお、 同じ条件で約 2時間の処理を行なった だけでも、 P C Bが 3 5 p p bにまで減少していることが確認できた, 実施例 1 2  First, as shown in Table 1, 0 ^ 11 of 1002, 1.9 g of powdery NaOH, and an amount of PCB with a concentration of 100,000 ppm in total reaction system After mixing them in a flask, they are kept at a temperature of 200 for about 5 hours, with good stirring, as in Example 8. Next, after cooling to room temperature, the PCB of the DMI layer is analyzed by GC-MS. As a result, it was confirmed that PCB decreased to below the detection limit of GC-MS. Under these conditions, the initial blending ratio of the alkaline substance is 19, OOOmgZkg, and the alkaline ratio to the chlorine amount in PCB is 3 in molar ratio. In addition, it was confirmed that PCB was reduced to 35 ppb even when the treatment was performed for about 2 hours under the same conditions, Example 12
表 1 に示すとおり、 1 0 0 2の01^ 1 と、 2. 6 gの粉末状の K O Hと、 反応系全体に対する濃度で 1 0 , 0 0 0 p p mになる量の P C Bとをフラスコ中で混ぜ合わせた後、 実施例 8 と同様、 それらをよく 攪拌しながら、 2 0 0 °Cの温度に約 4時間保つ。 次に、 室温にまで冷 却した後に、 DM I 層の P C Bを G C— M Sで分析する。 その結果、 P C Bは、 G C— M Sの検出限界値以下にまで減少していることが確 認できた。 この条件では、 アル力 リ物質の初期配合比が 2 6 , 0 0 0 m gZk gに相当し、 P C B中の塩素量に対するアルカ リ比は、 モル 比で 3 に相当する。 なお、 同じ条件で約 2時間の処理を行なっただけ でも、 P C B力 3 0 p p bにまで減少していることが確認できた。 表 1 に示すとおり、 1 0 0 gの DM I と、 1. O gの粉末状の N a O Hと、 1. 0 gの粉末状の C a 0と、 反応系全体に対する濃度で 1 0 , 0 0 0 p p mになる量の P C Bとをフラスコ中で混ぜ合わせた後 実施例 8 と同様、 それらをよく攪拌しながら、 2 0 0 °Cの温度に約 6 5 時 ¾保つ。 次に、 室温にまで冷却した後に、 0¾4 1 層の?じ 8を〇じ — M Sで分析する。 その結果、 P C Bは、 G C— M Sの検出限界値以 下にまで減少していることが確認できた。 この条件では、 アルカ リ物 質の初期配合比が 2 0 , O O O m gZk gに相当し、 P C B中の塩素 量に対するアルカ リ比は、 モル比で 2. 8 に相当する。 なお、 同じ条 > 0 件で約 2時間の処理を行なつただけでも、 P C Bが 4 0 p p bにまで 減少していることが確認できた。 As shown in Table 1, 01 ^ 1 of 1002, 2.6 g of powdered KOH, and an amount of PCB of 100,000 ppm in total concentration in the reaction system were placed in a flask. After mixing, as in Example 8, they are kept at a temperature of 200 ° C. for about 4 hours with good stirring. Next, after cooling to room temperature, the PCB of the DMI layer is analyzed by GC-MS. As a result, it was confirmed that the PCB was reduced to below the detection limit of GC-MS. Under these conditions, the initial compounding ratio of the alkaline substance is equivalent to 26,000 mg / Zkg, and the alkaline ratio to the chlorine amount in the PCB is equivalent to 3 in molar ratio. In addition, it was confirmed that the PCB power was reduced to 30 ppb even if the treatment was performed for about 2 hours under the same conditions. As shown in Table 1, 100 g of DM I, 1.0 Og of powdered NaOH, 1.0 g of powdered Ca0, and a concentration of 10, After mixing in a flask with the amount of PCB which becomes 0.000 ppm, as in Example 8, they are kept at a temperature of 200 ° C. for about 65 hours while stirring them well. Next, after cooling to room temperature, Step 8 — Analyze by MS. As a result, it was confirmed that the PCB was reduced to below the detection limit of GC-MS. Under these conditions, the initial compounding ratio of the alkali substance is equivalent to 20, OOO mggZkg, and the alkali ratio to the chlorine amount in the PCB is equivalent to 2.8 in molar ratio. In addition, it was confirmed that the PCB was reduced to 40 ppb even if the treatment was performed for about 2 hours under the same condition> 0 cases.
実施例 1 4  Example 14
表 1 に示すとおり、 1 0 0 2の0¾11 と、 3 9 gの粉末状の K O H と、 反応系全体に対する濃度で 1 0 , 0 0 O p p mになる量の P C B As shown in Table 1, 0¾11 of 1002, 39 g of KOH in powder form, and PCB with an amount of 10
1 5 とをフラスコ中で混ぜ合わせた後、 実施例 8 と同様、 それらをよく攪 拌しながら、 2 0 0 °Cの温度に約 3時間保つ。 次に、 室温にまで冷却 した後に、 DM I 層の P C Bを G C— M Sで分析する。 その結果、 P C Bは、 G C— M Sの検出限界値以下にまで減少していることが確認 できた。 この条件では、 アルカ リ物質の初期配合比が 3 9 0 , 0 0 0After mixing 15 and 15 in a flask, as in Example 8, they are kept at a temperature of 200 ° C. for about 3 hours with good stirring. Next, after cooling to room temperature, the PCB of the DMI layer is analyzed by GC-MS. As a result, it was confirmed that PCB was reduced to below the detection limit of GC-MS. Under these conditions, the initial compounding ratio of the alkaline substances is 390, 000
2 0 m g Z k gに相当し、 P C B中の塩素量に対するアルカ リ比は、 モル 比で 4. 5 に相当する。 なお、 同.じ条件で約 1 時間の処理を行なった だけでも、 P C Bが 1 0 0 p p bにまで減少していることが確認でき た。 This corresponds to 20 mg Z kg, and the alkali ratio to the chlorine amount in PCB is equivalent to 4.5 in molar ratio. In addition, it was confirmed that PCB was reduced to 100 ppb even when the treatment was performed for about 1 hour under the same conditions.
比較例 2  Comparative Example 2
2 = これに対し、 実施例 8ないし実施例 1 4 に対する比較例 2 と して、 以下の検討を行なった。 まず、 表 1 に示すように、 1 0 0 £の01\ 1 と、 0. 4 gの粉末状の N a 0 Hと、 反応系全体に対する濃度で 1 0 , 0 0 O p p mになる量の P C Bとをフラスコ中で混ぜ合わせた後、 実 施例 8 と同様、 それらをよく攪拌しながら、 2 0 0 °Cの温度に約 6時 間保つ。 次に、 室温にまで冷却した後に、 D M I層の P C Bを G C— M Sで分析した結果、 P C Bは、 2 , 0 0 0 p p m残存した。 なお、 同じ条件で約 2時間の処理を行なっただけでは、 P C Bが 8 , 0 0 0 P P b残存していた。 2 = On the other hand, the following study was performed as Comparative Example 2 with respect to Examples 8 to 14. First, as shown in Table 1, 100 £ 01 \ 1 And 0.4 g of powdered Na0H in a flask with a PCB amount of 100,000 ppm in total concentration in the reaction system, and then the same as in Example 8. Keep them at a temperature of 200 ° C for about 6 hours, stirring them well. Next, after cooling to room temperature, the PCB of the DMI layer was analyzed by GC-MS, and as a result, 2,000 ppm of the PCB remained. It should be noted that PCBs remained at 8,000 PPb after only about 2 hours of treatment under the same conditions.
このような高濃度の P C Bが残存した理由は、 P C B中の塩素量に 対するアルカ リ比がモル比で 0. 6 と小さいからというよりは、 実施 例 8ないし 1 4 と相違して、 反応系全体に対するアル力 リ物質の初期 配合比が 4 , O O O m gZk gと低いからである。  The reason why such a high concentration of PCB remained was that the reaction system was different from Examples 8 to 14, rather than the fact that the molar ratio of chlorine to the amount of chlorine in the PCB was as small as 0.6. This is because the initial compounding ratio of the alkaline substance to the whole is as low as 4, OOO mg gZ kg.
実施例の効果 Effects of the embodiment
以上のとおり、 比較例 1 、 2では、 P C Bが 1 p p m以下にまで減 少しないのに対し、 実施例 1 ないし 1 4では、 P C B力《 1 p p m以下. さ らには検出限界値以下にまで分解されることが確認できた。  As described above, in Comparative Examples 1 and 2, the PCB did not decrease to 1 ppm or less, whereas in Examples 1 to 14, the PCB force was less than 1 ppm. It was confirmed that it was decomposed.
その他の実施例 Other embodiments
P C Bとアルカ リ物質とを非プロ ト ン極性溶剤中で接触させて P C Bを分解する際の条件については、 上記の実施例の他にも、 アルカ リ 物質の反応開始時における添加量、 P C Bとアルカ リ物質との接触温 度、 およびそれらの接触時間を変えて検討を行なった。 その結果、 P C Bとアルカ リ物質との接触温度を約 1 5 0 °Cから約 3 0 0 °Cまでの 範囲と し、 その接触時間を約 1 時間から約 1 0時間までの範囲と し、 かつ、 反応系全体に対するアル力 リ物質の反応開始時における配合比 を 5 , 0 0 0 m g/k g以上とすれば、 P C Bを検出限界以下にまで 確実に分解できることが確認できた。 また、 反応系全体に対するアル カ リ物質の反応開始時における配合比を 7, 0 0 0 m g k g以上と すれば、 P C Bを検出限界以下にまでより確実に分解でき る こ とが確 認できた。 The conditions for decomposing the PCB by bringing the PCB and the alkaline substance into contact with each other in a non-proton polar solvent are, in addition to the above examples, the amount of the alkaline substance added at the start of the reaction, The study was conducted by changing the contact temperature with the alkaline substance and the contact time. As a result, the contact temperature between the PCB and the alkaline substance is set in a range from about 150 ° C to about 300 ° C, and the contact time is set in a range from about 1 hour to about 10 hours. In addition, it was confirmed that if the mixing ratio of the alkaline substance to the entire reaction system at the start of the reaction was 5,000 mg / kg or more, the PCB could be reliably decomposed to below the detection limit. Also, the mixing ratio of the alkaline substance to the entire reaction system at the start of the reaction was set to 7.0000 mg kg or more. By doing so, it was confirmed that the PCB could be more reliably decomposed to below the detection limit.
また、 P C Bに代えて、 その他のハロゲン化芳香族化合物について も同じ方法で分解可能であり、 たとえば、 ポ リ塩化ターフ ヱニル、 ポ Instead of PCB, other halogenated aromatic compounds can be decomposed in the same manner. For example, polychlorinated terphenyls,
5 リ臭化ビフエニール、 またはそれらの類縁化合物についても、 検出限 界以下にまで分解でき る。 5 Biphenyl bromide or related compounds can be decomposed to below the detection limit.
本発明において、 アルカ リ物質と しては、 N a OH、 K O H、 C a O H、 C a Oの他にも、 N a Oや M g (O H) 2 なども用いる こ とが でき る。 In the present invention, in addition to NaOH, KOH, CaOH, and CaO, NaO, Mg (OH) 2, and the like can be used as the alkaline substance.
, ο また、 上記の実施例では、 非プロ ト ン極性溶剤と して DM I を用い た例を説明したが、 その他にも、 テ ト ラメ チ レンスルフ ォ ン、 または DM I とテ ト ラメ チ レンスルフ ォ ンとの混合物を用いる こ とができ る < さ らに、 これらの溶剤と、 ジメ チルスルフ ォキシ ド、 N—メ チルピロ リ ドン、 テ ト ラメ チル尿素、 ジエチ レングリ コール、 またはポ リ ェチ , ο In the above embodiment, an example was described in which DMI was used as the non-proton polar solvent. However, other examples include tetramethylbenzene sulfonate, or DMI and tetramethyl. Mixtures with lensulfone can be used <
, 5 レングリ コールジメ チルエーテルとの混合物を用いてもよ く 、 この場 合には、 高温度下での耐アルカ リ性の観点から、 ジメ チルスルフ ォキ シ ド、 N—メ チルピロ リ ドン、 テ トラメ チル尿素、 ジエチ レ ングリ コ ール、 またはポ リ エチ レングリ コールジメ チルェ一テルなどの配合比 を 3 5 %以下とする ことが好ま しい。 , 5 A mixture with lenglycol dimethyl ether may be used. In this case, dimethyl sulfoxide, N-methylpyrrolidone, and tetramethyl are preferred from the viewpoint of alkali resistance at high temperatures. It is preferable that the blending ratio of tyl urea, polyethylene glycol, or polyethylene glycol dimethyl ether is 35% or less.
表一 1 (その 1 ) Table 1 (Part 1)
P C B含有 非プロトン アル力 リ 処理 処 残存 条件 の絶縁油量 極性溶 物質量 [g] に対 温度 理 PCB PCB-containing non-proton Aluminium re-treatment Treatment Insulation oil amount under remaining conditions Polar soluble matter amount [g] vs. temperature control PCB
[g] 剤 する 。C 時 量 ( ) 内は ( ) 内 ( ) 内は ァル 間 [ppb] 絶縁油中の は溶剤 その全濃度 力 リ [Hr] P C B濃度 の量 [mg/kg] 比  [g] agent. C hourly volume () in () () in () is between oils [ppb] Insulating oil is solvent Total concentration Power [Hr] PCB concentration amount [mg / kg] Ratio
LPPm] [g] モル比  LPPm] [g] molar ratio
1 50 DMI NaOH 800 200 2 70 ( 80 ) (100) 2.0  1 50 DMI NaOH 800 200 2 70 (80) (100) 2.0
( 13.000 ) 6 N. D. (13.000) 6 N.D.
2 50 DMI KOH 720 200 2 90 ( 80 ) ( 50) 2.0 2 50 DMI KOH 720 200 2 90 (80) (50) 2.0
( 25,000 ) 6 N. D. (25,000) 6 N.D.
3 50 DMI NaOH 2 80 施 ( 800 ) (100) 1.5 90 210 3 50 DMI NaOH 2 80 Application (800) (100) 1.5 90 210
CaO  CaO
1.0 6 N. D. 1.0 6 N.D.
( 17, 000 ) (17, 000)
An example
4 50 DMI KOH 2 50 4 50 DMI KOH 2 50
( 8,000 ) (150) 2.5 7 210 (8,000) (150) 2.5 7 210
( 12, 500 ) 4 N. D. (12, 500) 4 N.D.
5 50 DMI CaO 3 405 50 DMI CaO 3 40
( 8,000 ) ( 50) 2.8 16 190 (8,000) (50) 2.8 16 190
NaOH  NaOH
2.0 5 N. D. 2.0 5 N.D.
( 48, 000 ) (48,000)
6 50 DMI NaOH 2 30 ( 80 ) (150) β g 1500 210  6 50 DMI NaOH 2 30 (80) (150) β g 1500 210
( 19:000 ) 5 N. D. (19: 000) 5 N.D.
7 50 DMI KOH 2 207 50 DMI KOH 2 20
( 8,000 ) (150) 5, 5 16 200 (8,000) (150) 5, 5 16 200
( 27, 500 ) 3 N. D. 比較例 50 DMI NaOH 120 210 4 5, 000 (27, 500) 3 N.D.Comparative Example 50 DMI NaOH 120 210 4 5,000
1 ( 80 ) (100) 0.3 1 (80) (100) 0.3
( 2,000 ) 6 4, 000 表一 1 (その 2 ) (2,000) 64,000 Table 1 (Part 2)
P C B含有 非プ Dトン アル力 リ inn ^¾ 処理 処 残存 条件 の絶縁油量 極性溶 物質量 [g] に対 温度 理 PCB  Insulation oil amount under residual conditions PB containing non-p-ton D ton temperature R
Eg] 剤 する 。C 時 量 ( ) 内は ( ) 内 ( ) 内は ァル 間 [ppb] 系全体中の は溶剤 その全濃度 力 リ [Hr] P C B濃度 の量 [mg/kg] 比  Eg] agent. C hourly volume () is in () is in () is in the space [ppb] is the solvent in the entire system is the total concentration power [Hr] The amount of PCB concentration [mg / kg] ratio
[ppm] [g] モル比  [ppm] [g] molar ratio
8 3 DMI NaOH 3 200 2 70 8 3 DMI NaOH 3 200 2 70
( 70, 000 ) ( 90) 13 (70, 000) (90) 13
(130,000 ) 5 N. D. (130,000) 5 N.D.
9 3 DMI KOH 2.6 200 2 259 3 DMI KOH 2.6 200 2 25
( 70, 000 ) ( 90) 16 (70,000) (90) 16
施 (160,000 ) 4 N. D. Al (160,000) 4 N.D.
10 0.3 DMI KOH 2 60 例 ( 7, 000 ) ( 99) 1.5 4 210  10 0.3 DMI KOH 2 60 cases (7,000) (99) 1.5 4 210
CaO  CaO
1.0 5 N. D. 1.0 5 N.D.
( 25,000 ) (25,000)
表— 1 (その 3 ) 系全体に 非プ 0トン アル力 リ 処理 処 残存 条件 対する 極性溶 物質量 [g] に対 温度 理 PCB Table 1 (Part 3) Non-pton tonality treatment for the entire system Residual conditions Polar solvent content [g] vs. temperature PCB
P C Bの 剤 する °C 時 量 添加濃度 ( ) 内 ( ) 内は アル 間 [ppb] Lopm] は溶剤 その全濃度 力 リ [Hr]  Addition of PCB in ° C hours Addition concentration () In () is between Al [ppb] Lopm] is the total concentration of solvent [Hr]
の量 [mg/kg] 比  Amount [mg / kg] ratio
[g] モル比  [g] molar ratio
11 10.000 DMI NaOH 3 200 2 35  11 10.000 DMI NaOH 3 200 2 35
(100) 1.9  (100) 1.9
( 19 000 ) 5 K D  (19 000) 5 K D
12 10, 000 DMI KOH 3 200 0 o yj 12 10,000 DMI KOH 3 200 0 o yj
(100) 2.6  (100) 2.6
施 ( 9fi 000 A H I . u Π . (9fi 000 A H I.
13 10, 000 DMI NaOH 2 40 例 (100) 1.0 2.8 200  13 10,000 DMI NaOH 2 40 cases (100) 1.0 2.8 200
CaO  CaO
1.0 6 N. D. 1.0 6 N.D.
( 20, 000 ) (20, 000)
14 100, 000 DMI KOH 4.5 200 1 100  14 100,000 DMI KOH 4.5 200 1 100
(100)  (100)
(390.000 ) 3 N. D. 比較例 10, 000 DMI NaOH 0.6 200 2 8, 000 (390.000) 3 N.D.Comparative Example 10,000 DMI NaOH 0.6 200 2 8,000
2 (100) 0.4 2 (100) 0.4
( 4, 000 ) 6 2, 000 (4,000) 62,000
〔産業上の利用可能性〕 [Industrial applicability]
以上のとおり、 本発明においては、 ハロゲン化芳香族化合物とアル 力 リ物質とを非プロ ト ン極性溶剤中で約 1 5 0 °Cから約 3 0 0 °Cまで の温度で約 1時間から約 1 0時間接触させるとともに、 反応系全体に 対するアルカ リ物質の反応開始時における配合比を 5 , 0 0 0 m g / k g以上に設定することに特徴を有する。 従って、 本発明によれば、 少量であっても人体に直接的に害を与える P C Bなどのハロゲン化芳 香族化合物を実質的に害のない状態にまで確実にかつ安全に除去する ことが可能である。 それ故、 P C Bを含有する炭化水素油などを実質 的に害のない状態にまで処理することが可能である。  As described above, in the present invention, the halogenated aromatic compound and the alkali substance are mixed in a non-proton polar solvent at a temperature of about 150 ° C. to about 300 ° C. for about 1 hour. It is characterized in that it is brought into contact for about 10 hours and the mixing ratio of the alkaline substance to the whole reaction system at the start of the reaction is set to 5,000 mg / kg or more. Therefore, according to the present invention, even small amounts of halogenated aromatic compounds such as PCBs that directly harm the human body can be reliably and safely removed to a substantially harmless state. It is. Therefore, it is possible to treat hydrocarbon oil containing PCB to a substantially harmless state.

Claims

請 求 の 範 囲 The scope of the claims
1 . ハロゲン化芳香族化合物とアル力 リ物質とを非プロ ト ン極性 溶剤中で接触させてハロゲン化芳香族化合物を分解する方法において ハロゲン化芳香族化合物とアルカ リ物質との接触温度は約 1 5 0でか ら約 3 0 0 °Cまでの範囲にあり、 その接触時間は約 1 時間から約 1 0 時間までの範囲にあり、 反応系全体に対する前記アルカ リ物質の反応 開始時における配合比は 5, 0 0 0 m / k g以上であることを特徴 とするハロゲン化芳香族化合物をアルカ リ物質により分解する方法。 1. In the method of decomposing a halogenated aromatic compound by contacting the halogenated aromatic compound with an alkali substance in a non-proton polar solvent, the contact temperature between the halogenated aromatic compound and the alkali substance is about The contact time is in the range of from about 1 hour to about 10 hours, and the mixing time at the start of the reaction of the alkali substance with respect to the entire reaction system is from 150 to about 300 ° C. A method for decomposing a halogenated aromatic compound with an alkali substance, wherein the ratio is 5,000 m / kg or more.
2 . 請求の範囲第 1項において、 反応系全体に対する前記アル力 リ物質の反応開始時における配合比は 7 , 0 0 O m g Z k g以上であ ることを特徴とするハロゲン化芳香族化合物をアルカ リ物質により分 解する方法。 2. The halogenated aromatic compound according to claim 1, wherein the compounding ratio of the alkaline compound to the whole reaction system at the start of the reaction is 7,000 mg or more. Decomposition by alkaline substances.
3 . 請求の範囲第 1項において、 前記ハロゲン化芳香族化合物は、 ポ リ塩化ビフヱニール、 ポ リ塩化ターフ ヱニル、 ポ リ臭化ビフ ヱ二一 ル、 およびそれらの類縁化合物からなる群から選択した一つのハロゲ ン化芳香族化合物、 またはこの群から選択した二以上のハロゲン化芳 香族化合物の混合物であることを特徵とするハロゲン化芳香族化合物 をアルカ リ物質により分解する方法。 . 請求の範囲第 1項において、 前記ハロゲン化芳香族化合物は. 主たる成分が非芳香族系の炭化水素である炭化水素油によって 2 p p mから 8 0 %までの濃度範囲に希釈された状態で前記非プロ ト ン極性 溶剤中に加えられたこ とを特徵とするハロゲン化芳香族化合物をアル 力 リ物質により分解する方法。 3. In claim 1, wherein the halogenated aromatic compound is selected from the group consisting of polychlorinated biphenyls, polychlorinated terphenyls, polybrominated biphenyls, and analogs thereof. A method of decomposing a halogenated aromatic compound, which is characterized by being one halogenated aromatic compound or a mixture of two or more halogenated aromatic compounds selected from this group, with an alkali substance. 2. The halogenated aromatic compound according to claim 1, wherein the halogenated aromatic compound is diluted with a hydrocarbon oil whose main component is a non-aromatic hydrocarbon to a concentration range of 2 ppm to 80%. Non-proton polarity A method of decomposing a halogenated aromatic compound, which is specially added to a solvent, with an alkaline substance.
5 . 請求の範囲第 1 項ないし第 4項のいずれかの項において、 前 記アル力 リ物質は、 水酸化ナ ト リ ウム、 水酸化力 リ ウム、 水酸化カル シゥム、 及び水酸化マグネシゥムからなる群から選択した一つのアル カ リ物質、 またはこの群から選択した二以上のアルカ リ物質の混合物 であるこ とを特徴とするハロゲン化芳香族化合物をアルカ リ物質によ り分解する方法。 5. In any one of Claims 1 to 4, the alkaline material may be sodium hydroxide, sodium hydroxide, calcium hydroxide, or magnesium hydroxide. A method for decomposing a halogenated aromatic compound with an alkali substance, wherein the halogenated aromatic compound is a single alkali substance selected from the group or a mixture of two or more alkali substances selected from the group.
6 . 請求の範囲第 1 項ないし第 4項のいずれかの項において、 前 記非プロ ト ン極性溶剤は、 1 , 3 — ジメ チルー 2 —イ ミ ダゾリ ジノ ン テ ト ラ メ チ レ ンスルフ ォ ン、 及び 1 , 3 — ジメ チル— 2 —イ ミ ダゾリ ジノ ンとテ ト ラメ チ レ ンスルフ ォ ンとの混合物からなる群から選択し た溶剤である こ とを特徴とするハロゲン化芳香族化合物をアルカ リ物 質によ り分解する方法。 6. In any one of claims 1 to 4, the non-proton polar solvent may be 1,3-dimethyl-2-imidazolidinone-tetramethylethylenesulfonic acid. , And a solvent selected from the group consisting of a mixture of 1,3-dimethyl-2, -imidazolidinone and tetramethylethylene sulfonate Is decomposed by alkaline substances.
7 . 請求の範囲第 1 項ない し第 4 項のいずれかの項において、 前 記非プ口 卜 ン極性溶剤は、 1 , 3 — ジメ チルー 2 —イ ミ ダゾリ ジノ ン テ ト ラ メ チ レ ンスルフ ォ ン、 及び 1 , 3 — ジメ チルー 2 —イ ミ ダゾリ ジノ ンとテ ト ラメ チ レ ンスルフ ォ ンとの混合物からなる群から選択し た溶剤を主成分と し、 ジメ チルスルフ ォキシ ド、 N—メ チルピロ リ ド ン、 テ ト ラ メ チル尿素、 ジエチ レ ングリ コール、 及びポ リ エチ レ ング リ コールジメ チルエーテルから選択した一つの極性溶剤、 またはこの 群から選択した二以上の極性溶剤を 3 5 %以下の濃度で配合した混合 物である ことを特徴とするハロゲン化芳香族化合物をアルカ リ物質に より分解する方法。 7. In any one of claims 1 to 4, the non-proton polar solvent may be 1,3-dimethyl-2-imidazolidinone tetramethyle. 1,3-dimethyl 2-, a solvent selected from the group consisting of a mixture of imidazolidinone and tetramethylene sulfonic acid, and dimethyl sulfoxide, N — A polar solvent selected from methyl pyrrolidone, tetramethyl urea, diethyl glycol, and polyethylene glycol dimethyl ether, or two or more polar solvents selected from this group. % Of halogenated aromatic compounds, which is a mixture blended at a concentration of less than How to decompose more.
PCT/JP1995/000785 1994-04-22 1995-04-20 Method of decomposing halogenated aromatic compound with alkaline substance WO1995028993A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95916026A EP0711580A1 (en) 1994-04-22 1995-04-20 Method of decomposing halogenated aromatic compound with alkaline substance
AU22672/95A AU2267295A (en) 1994-04-22 1995-04-20 Method of decomposing halogenated aromatic compound with alkaline substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/121690 1994-04-22
JP12169094A JP3247543B2 (en) 1994-04-22 1994-04-22 Alkali decomposition method for halogenated aromatic compounds

Publications (1)

Publication Number Publication Date
WO1995028993A1 true WO1995028993A1 (en) 1995-11-02

Family

ID=14817471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000785 WO1995028993A1 (en) 1994-04-22 1995-04-20 Method of decomposing halogenated aromatic compound with alkaline substance

Country Status (5)

Country Link
EP (1) EP0711580A1 (en)
JP (1) JP3247543B2 (en)
AU (1) AU2267295A (en)
TW (1) TW288009B (en)
WO (1) WO1995028993A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942856B2 (en) * 1996-10-09 1999-08-30 財団法人生産開発科学研究所 Cleaning and removal method for persistent chlorine compounds
JP4537539B2 (en) * 2000-06-20 2010-09-01 利夫 半谷 Decomposition treatment method and treatment equipment for hazardous substances
JP4913366B2 (en) * 2005-06-21 2012-04-11 株式会社ネオス Treatment method of persistent organic halogen compounds
KR101377105B1 (en) 2011-11-28 2014-03-28 안동대학교 산학협력단 Method for chemical treatment of Polybrominated diphenyl ether

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951804A (en) 1957-10-22 1960-09-06 Houdry Process Corp Purification of reformate charge stocks using activated alumina impregnated with alkali or alkaline earth metal hydroxides
JPS49126651A (en) * 1973-04-10 1974-12-04
CA1181771A (en) 1982-07-27 1985-01-29 Ontario Hydro Process for dehalogenation of organic halides
US4532028A (en) 1983-10-24 1985-07-30 Niagara Mohawk Power Corporation Method for reducing content of halogenated aromatics in hydrocarbon solutions
IT1206508B (en) 1983-07-22 1989-04-27 Sea Marconi Decontamin Srl CONTINUOUS PROCESS FOR THE DECOMPOSITION AND DECONTAMINATION OF ORGANIC COMPOUNDS AND HALOGENATED TOXIC AGENTS.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910353A (en) * 1983-02-07 1990-03-20 Transformer Service, Inc. Dehalogenation of polychlorinated biphenyls and other related compounds
JP2831869B2 (en) * 1991-12-27 1998-12-02 日本ペイント株式会社 Decomposition method of halogenated hydrocarbon
JP2611900B2 (en) * 1992-06-05 1997-05-21 財団法人生産開発科学研究所 Method for removing halogenated aromatic compounds from hydrocarbon oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951804A (en) 1957-10-22 1960-09-06 Houdry Process Corp Purification of reformate charge stocks using activated alumina impregnated with alkali or alkaline earth metal hydroxides
JPS49126651A (en) * 1973-04-10 1974-12-04
CA1181771A (en) 1982-07-27 1985-01-29 Ontario Hydro Process for dehalogenation of organic halides
IT1206508B (en) 1983-07-22 1989-04-27 Sea Marconi Decontamin Srl CONTINUOUS PROCESS FOR THE DECOMPOSITION AND DECONTAMINATION OF ORGANIC COMPOUNDS AND HALOGENATED TOXIC AGENTS.
US4532028A (en) 1983-10-24 1985-07-30 Niagara Mohawk Power Corporation Method for reducing content of halogenated aromatics in hydrocarbon solutions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0711580A4 *

Also Published As

Publication number Publication date
EP0711580A1 (en) 1996-05-15
JP3247543B2 (en) 2002-01-15
AU2267295A (en) 1995-11-16
EP0711580A4 (en) 1996-03-20
TW288009B (en) 1996-10-11
JPH07289656A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
EP1846111B1 (en) Decontaminant
US4602994A (en) Removal of PCBs and other halogenated organic compounds from organic fluids
EP0118858B1 (en) Process for the decomposition and decontamination of organic substances and halogenated toxic materials
JP2611900B2 (en) Method for removing halogenated aromatic compounds from hydrocarbon oil
WO1995028993A1 (en) Method of decomposing halogenated aromatic compound with alkaline substance
JP4514284B2 (en) Method for treating organohalogen compounds
EP0456457A1 (en) Process for dehalogenation
KR100367939B1 (en) Decomposition of Halogenated Aromatic Compounds
EP0524738A1 (en) Treatment of halogenated compounds
US6124519A (en) Method of decomposing polychlorobiphenyls
JP3418845B2 (en) Alkali decomposition method for halogenated aromatic compounds
JP3970277B2 (en) Contaminated oil treatment method
JP3408390B2 (en) Decomposition method of aromatic halogen compound
JP2001302554A (en) Method for decomposing organochlorine compound difficult to decompose with alkali
JPH10225667A (en) Method of decomposing aromatic halogenated compound
JP4668627B2 (en) Rapid decomposition of halogenated aromatic compounds contained in media
JPH08266888A (en) Method for decomposing aromatic halogen compound
JPS62192179A (en) Decomposition of polyhalogenated aromatic compound
JPH08141107A (en) Decomposing method for organic compound halide
JP2665575B2 (en) Reclaimed oil manufacturing method
JP2002065888A (en) Method of eliminating pollution from liquid polluted by low-level poly-halogenated aromatics and method for simultaneously decomposing high-level poly- halogenated aromatics
Tomlin A Study Of The Degradative Capabilities Of The Bimetallic System: Mg (pd/c) As Applied In The Destruction Of Decafluoropentane, An Environmental Contaminant
KR20060071566A (en) The treatment method of pcbs contained in transformer oil
JPH1190385A (en) Decomposition of aromatic halogen compound
JPH09249582A (en) Decomposition of halogen-containing organic compound

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995916026

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995916026

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1995916026

Country of ref document: EP