WO1995022055A1 - Ammoniaksensor - Google Patents

Ammoniaksensor Download PDF

Info

Publication number
WO1995022055A1
WO1995022055A1 PCT/CH1994/000231 CH9400231W WO9522055A1 WO 1995022055 A1 WO1995022055 A1 WO 1995022055A1 CH 9400231 W CH9400231 W CH 9400231W WO 9522055 A1 WO9522055 A1 WO 9522055A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor according
ammonia sensor
electrolyte
ammonia
electrode
Prior art date
Application number
PCT/CH1994/000231
Other languages
English (en)
French (fr)
Inventor
Christian Huggenberger
Original Assignee
Christian Huggenberger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4185784&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1995022055(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Christian Huggenberger filed Critical Christian Huggenberger
Priority to DE59409251T priority Critical patent/DE59409251D1/de
Priority to EP95901310A priority patent/EP0693180B1/de
Publication of WO1995022055A1 publication Critical patent/WO1995022055A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0054Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to a perometric ammonia sensor according to the preamble of claim 1.
  • perometric gas sensors For the detection of toxic gases, perometric gas sensors have proven their worth in many applications, the mode of operation of which is based on direct electrochemical oxidation or reduction of the gas to be measured.
  • the cell flow maintained by gas diffusion is a function of the gas concentration and proves to be linear in good nutrition. Since ammonia is difficult to oxidize electrocatalytically under normal conditions, simple detection in this way is not possible.
  • amperometric ammonia sensors which are designed as concentration cells (H. Komiya, Bionics Instrument Co., Ldt., The 1984 International Chemical Congress of Pacific Basin Societies): measuring electrode and counter electrode are made of silver and are located in a silver nitrate electrolyte. Ammonia gas passes through a gas-permeable membrane to the measuring electrode, where the following reaction takes place:
  • the disadvantage is that the silver electrode is constantly used up when fumigated with ammonia.
  • the electrolyte is unstable in the air and decomposes to form a brown precipitate. Due to the limited life, the membrane, electrolyte and electrode often need to be replaced or cleaned. 1
  • the electrolyte contains a dissolved ammonium salt which, in the presence of ammonia, reacts to form an easily oxidizable amine.
  • the electrolyte By applying a potential between the electrodes, the amine is oxidized to a radical cation, which is involved in subsequent reactions.
  • the measuring current is a function of the ammonia concentration. With each fumigation, however, the electrolyte is used irreversibly. A bias voltage must also be applied.
  • the object of the invention is to find a compact sensor suitable for monitoring ammonia or its derivatives in the ambient air as well as for determining ammonia in liquid measurement samples without cross-sensitivity to carbon monoxide. Furthermore, the sensor sought should keep itself in operation without bias voltage, also detect higher ammonia gas concentrations and be exposed to a long exposure to ammonia gas.
  • the proposed sensor is designed as an amperometric sensor, which can be designed as a 2-electrode as well as a multi-electrode version.
  • a Co (II) salt in an aqueous solution which preferably contains a hygroscopic additive, serves as the electrolyte in order to prevent evaporation, the cobalt (II) ion which cannot be oxidized by atmospheric oxygen in aqueous solution being complex with ammonia by means of oxygen forms oxidizable ion.
  • the electrodes are designed as membrane electrodes, the membrane carrier being a barrier to the electrolyte. As electrode materials 2 finely divided catalysts containing precious metals or carbon are used. The ammonia gas diffusing through the measuring electrode undergoes the following reaction on the catalyst surface:
  • Fig. La longitudinal section of a membrane electrode
  • the electrodes 5, 11, 12 preferably consist of a flat, porous PTFE (polytetrafluoroethylene) membrane carrier 3, which is provided with a porous sintered layer, which is a mixture of finely divided catalyst and PTFE powder contains.
  • the membrane carrier is a barrier for the electrolyte, on the other hand, it is permeable to the measuring gas.
  • the catalyst layer is in contact with the electrolyte and is penetrated by it.
  • Gold is preferably used as the catalyst for the measuring electrode 5, and graphite is preferably used for the reference and counter electrodes 11 and 12, since in this case the signal sensitivity, signal stability and response time are particularly good and there is no cross-sensitivity to carbon monoxide.
  • the electrode structure is designed identically for all electrodes, but at least for measuring and reference electrodes: 3 is a porous PTFE membrane, 17 is a first porous sintered catalyst layer made from a mixture of finely divided gold and PTFE powder and 18 is a second porous sintered catalyst layer made from finely divided graphite and PTFE powder. Because of the counter-reaction at the second layer 18 of the measuring electrode 5, a portion of the detectable measuring current is lost, but if the internal resistance between the measuring and reference electrodes 5 and 11 is sufficiently small, the signal is still strong.
  • Measuring electrode 5 made of gold and a reference or counter electrode 11 or 12 made of graphite are used.
  • the gas-side cover 2 was provided with 4 holes, each with a diameter of 2 mm and a length of 2 mm.
  • mixtures 17 of finely divided gold and PTFE powder or mixtures 18 of finely divided graphite and PTFE powder were coated on porous PTFE membranes 3 and sintered in a heating cabinet at 360 ° C. 1,2-ethanediol (ethylene glycol) was used as a hygroscopic additive for the electrolyte.
  • CoCl 2 -6 H2O was chosen as the Co 2 * salt.
  • membrane electrodes 16 according to FIGS. 1 a and 1 b were used as measuring and reference electrodes 5 and 11, respectively.
  • the gas-side cover 2 was provided with 4 holes, each with a diameter of 1.5 mm and a length of 2 mm.
  • the counter electrode 12 was the same as in the first embodiment.
  • the two-layer membrane electrodes 16 were produced as follows: In a first step, a mixture 17 of finely divided gold and PTFE powder was coated on a porous PTFE membrane 3. In a second step, a mixture 18 of finely divided graphite and PTFE powder was coated on this layer 17. The membrane 3 was then sintered in a heating cabinet at 360 ° C. Ethylene glycol also served as a hygroscopic additive.
  • the ammonia sensor described which can be produced in a small, compact design, is particularly suitable for monitoring ammonia or its derivatives in the ambient air, but can also be used for the determination of ammonia in liquid measurement samples.
  • the sensor can be exposed to ammonia gas for a long time and also detects higher ammonia gas concentrations. It has no cross-sensitivity to carbon monoxide. The sensor keeps itself in operation and does not require any bias voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

Zur Detektion von Ammoniak wurde ein elektrochemiser Sensor entwickelt, der amperometrisch betrieben wird und ohne angelegte Bias-Spannung auskommt. Der verwendete Elektrolyt enthält ein gelöstes Co2+-Salz, das in einem ersten Schritt in Gegenwart von Ammoniak komplexiert und unter Mitwirkung geeigneter Katalysatoren sofort zum Co3+-Komplex oxidiert wird. Zur Reduzierung des Nullstromes und dessen Temperaturabhängigkeit werden vorzugsweise gleichartige Membranelektroden (16) mit zwei verschiedenen Katalysatorschichten (17, 18) verwendet. Der Messtrom zeigt eine lineare Abhängigkeit von der Ammoniakgas-Konzentration.

Description

AMMONIAKSENSOR
Die Erfindung betrifft einen a perometrischen Ammoniak- Sensor gemäss dem Oberbegriff des Patentanspruches 1.
Zur Detektion von toxischen Gasen haben sich in vielen An¬ wendungen a perometrisch arbeitende Gassensoren bewährt, deren Wirkungsweise auf einer direkten elektrochemischen Oxidation oder Reduktion des zu messenden Gases beruht. Der durch Gasdiffusion aufrechterhaltene Zellenstrom ist eine Funktion der Gaskonzentration und erweist sich in guter Nährung als linear. Da sich Ammoniak elektro- katalytisch unter Normalbedingungen nur schwer oxidieren lässt, ist eine einfache Detektion auf diesem Wege nicht möglich.
Gemäss dem heutigen Stand der Technik sind amperometrische Ammoniaksensoren bekannt, die als Konzentrationszellen konzipiert sind (H. Komiya, Bionics Instrument Co., Ldt., The 1984 International Chemical Congress of Pacific Basin Societies) : Messelektrode und Gegenelektrode bestehen aus Silber und befinden sich in einem Silbernitrat- Elektrolyten. Ammoniakgas gelangt durch eine gaspermeable Membran zur Messelektrode, wo folgende Reaktion stattfindet:
Ag+ + 2 NH3 ^=^ Ag(NH3)2 + Ag ^. Ag+ + e"
Der Nachteil besteht nun darin, dass sich bei Begasung mit Ammoniak die Silberelektrode ständig verbraucht. Zudem ist der Elektrolyt an der Luft instabil und zersetzt sich unter Bildung einer braunen Fällung. Infolge der begrenzten Lebensdauer müssen die Membran, der Elektrolyt und die Elektrode häufig ersetzt oder gereinigt werden. 1
Die Offenlegungsschrift DE 38 41 622 (Offenlegungstag 13.06.1990) beschreibt einen anderen amperometrischen Gassensor, der nach folgendem Prinzip arbeitet: Der Elektrolyt enthält ein gelöstes Ammoniumsalz, das in Gegenwart von Ammoniak zu einem leicht oxidierbaren Amin reagiert. Durch Anlegen eines Potentials zwischen den Elektroden wird das Amin zu einem Radikalkation oxidiert, das in Folgereaktionen involviert ist. Der Messstrom ist eine Funktion der Ammoniakkonzentration. Bei jeder Begasung wird allerdings der Elektrolyt irreversibel verbraucht. Zudem muss eine Bias-Spannung angelegt werden.
Die Erfindung stellt sich nun die Aufgabe, einen kompakt gebauten, sowohl für die Überwachung von Ammoniak oder dessen Derivaten in der Umgebungsluft als auch für die Bestimmung von Ammoniak in flüssigen Messproben geeigneten Sensor ohne Querempfindlichkeit für Kohlenmonoxid zu finden. Im weiteren soll der gesuchte Sensor sich selber ohne Bias-Spannung in Betrieb halten, auch höhere Ammoniakgaskonzentrationen detektieren und einer langen Ammoniakgas-Exposition ausgesetzt werden können.
Die Aufgabe wird mit den erfindungsgemässen Merkmalen nach dem kennzeichnenden Teil des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.
Der vorgeschlagene Sensor ist als amperometrischer Sensor konzipiert, der sowohl als 2-Elektroden- als auch Mehrelektrodenausführung ausgelegt werden werden kann. Als Elektrolyt dient ein Co(II)-Salz in einer wässrigen Lösung, die vorzugsweise einen hygroskopischen Zusatz enthält, um einem Verdunsten vorzubeugen, wobei das durch Luft¬ sauerstoff in wässriger Lösung nicht oxidierbare Cobalt(II)-Ion mit Ammoniak ein komplexes durch Sauerstoff oxidierbares Ion bildet. Die Elektroden sind als Membran¬ elektroden konzipiert, wobei der Membranträger eine Sperre für den Elektrolyten darstellt. Als Elektrodenmaterialien 2 werden feinverteilte edelmetall- oder kohlenstoffhaltige Katalysatoren verwendet. Das durch die Messelektrode diffundierende Ammoniakgas geht an der Katalysatorober¬ fläche folgende Reaktion ein:
2+ + 6 NH3 \ Cθ(NH3)6 2+ Cθ(NH3)62+ ^ ^ Cθ(NH3)63+ + e~
An der Gegenelektrode kommt folgende Reaktion in Gang:
02 + 4 H3θ+ + 4 e- ^ 6 H20
Da es sich um Gleichgewichtsreaktionen handelt, kehrt das System nach dem Absetzen der Begasung allmählich wieder in den Ausgangszustand zurück, wobei sich der Elektrolyt regeneriert. Zwischen den niederohmig verbundenen Elektroden fliesst infolge der Redox-Reaktion ein Strom, der eine Funktion der Ammoniakgaskonzentration ausserhalb des Sensors ist.
Die Erfindung ist unter anderem in den Zeichnungen erläutert. Es zeigen:
Fig. la Längsschnitt einer Membranelektrode;
I
Fig. lb Membranelektrode, von unten gesehen;
Fig. 2 Längsschnitt eines Ammoniaksensors , mit folgenden Einzelteilen: Befestigungsschraube 1 , säurebeständigem Kunststoff -O-Ring 4 , unge¬ sintertem PTFE-Band 6 , aus Polycarbonat-Kunst- stoff gefertigtem Zentralkörper 7 , Kontaktfeder 8, aus einer Folie der Stärke 0.025 mm geschnittenem Platinband 9 , Tampon aus Glas¬ faser-Filter-Material 10 , Körper für den Druckausgleich aus Polycarbonat-Kunststoff 13 , Deckel aus Polycarbonat-Kunststoff mit einem Loch für den Druckausgleich 14 , Bohrung mit einem Gewinde für eine Befestigungsschraube 15, Druckausgleichsöffnung mit einem Durchmesser von ca. 0.5 mm und einer Kapillarlänge von ca. 5 mm 20.
Die Elektroden 5, 11, 12 (Fig. 2) bestehen vorzugsweise aus einem flachen, porösen PTFE-(Polytetrafluorethylen)- Membran-Träger 3, der mit einer porösen gesinterten Schicht versehen ist, die ein Gemisch von feinverteiltem Katalysator- und PTFE-Pulver enthält. Der Membranträger stellt einerseits eine Sperre für den Elektrolyten dar, andererseits ist er für das Messgas permeabel. Die Katalysatorschicht steht in Kontakt zum Elektrolyten und wird von diesem penetriert. Für die Messelektrode 5 wird als Katalysator vorzugsweise Gold, für Referenz- und Gegen¬ elektroden 11 bzw. 12 vorzugsweise Grafit verwendet, da in diesem Fall die Signalempfindlichkeit, Signalstabilität und Ansprechzeit besonders gut sind und eine Querempfindlich¬ keit auf Kohlenmonoxid unterbleibt. Aufgrund der Potential¬ differenz zwischen unterschiedlichen Elektroden entsteht allerdings im Leerbetrieb an der Umgebungsluft ein ange¬ hobener Nullstrom, der temperaturabhängig ist. Dieser Effekt kann vorteilhaft unter Beibehaltung der übrigen guten Eigenschaften dadurch kompensiert werden, dass gemäss den Figuren la und lb der Elektrodenaufbau für sämtliche Elektroden, mindestens aber für Mess- und Referenz¬ elektrode, identisch konzipiert wird: 3 ist eine poröse PTFE-Membran, 17 ist eine erste poröse gesinterte Katalysatorschicht aus einem Gemisch von feinverteiltem Gold- und PTFE-Pulver und 18 ist eine zweite poröse gesinterte Katalysatorschicht aus feinverteiltem Grafit- und PTFE-Pulver. Durch die Gegenreaktion an der 2. Schicht 18 der Messelektrode 5 geht zwar ein Anteil des erfassbaren Messstromes verloren, aber bei genügend kleinem Innenwider¬ stand zwischen Mess- und Referenzelektrode 5 bzw. 11 ist das Signal immer noch kräftig.
In einer ersten Ausbildungsart gemäss Fig. 2 wurde eine Messelektrode 5 aus Gold und eine Referenz- bzw. Gegen¬ elektrode 11 bzw. 12 aus Grafit eingesetzt. Der gasseitige Deckel 2 war mit 4 Löchern von einem Durchmesser von je 2 mm und einer Länge von je 2 mm versehen. Zur Herstellung der Membranelektroden 16 wurden Gemische 17 von feinver¬ teiltem Gold- und PTFE-Pulver bzw. Gemische 18 von feinver¬ teiltem Grafit- und PTFE-Pulver auf poröse PTFE-Membranen 3 beschichtet und in einem Wärmeschrank bei 360 °C gesintert. Als hygroskopischer Zusatz für den Elektrolyten wurde 1,2-Ethandiol (Ethylenglycol) verwendet. Als Co2*- Salz wurde CoCl2-6 H2O gewählt. Die Konzentration von C0CI2.6 H2O in einem Gemisch von 20 Mass.-% Wasser und 80 Mass.-% Ethylenglycol war 0.01 olal. Rückseitig wurde soviel Elektrolyt in die Elektrolytkammer 19 eingefült, bis der Glasfaser-Tampon 10 gesättigt war. Nach einer Woche bei kurzgeschlossener Mess- und Referenzelektrode hatte sich der Nullstrom zwischen den Elektroden 5, 11 auf 0.5 μA stabilisiert. Beim Begasen mit 150 ppm NH3 stieg der Strom zwischen Mess- und Referenzelektrode 5, 11 innert weniger Minuten auf ein stabiles, reproduzierbares Plateau von 3.7 μA. Nach dem Absetzen der Begasung sinkt der Strom innert weniger Minuten wieder auf den Ausgangswert des Nullstromes. Beim Begasen mit 200 ppm Kohlenmonoxid wurde keine Querempfindlichkeit festgestellt.
In einer zweiten Ausbildungsart gemäss Fig. 2 wurden als Mess- und Referenzelektrode 5 bzw. 11 Membranelektroden 16 gemäss den Figuren la und lb eingesetzt. Der gasseitige Deckel 2 war mit 4 Löchern von einem Durchmesser von je 1.5 mm und einer Länge von je 2 mm versehen. Die Gegenelektrode 12 war die gleiche wie in der ersten Ausbildungsart. Die Herstellung der zweischichtigen Membranelektroden 16 erfolgte folgendermassen: In einem ersten Schritt wurde ein Gemisch 17 von feinverteiltem Gold- und PTFE-Pulver auf eine poröse PTFE-Membran 3 beschichtet. In einem zweiten Schritt wurde auf diese Schicht 17 ein Gemisch 18 von feinverteiltem Grafit- und PTFE-Pulver beschichtet. Die Membran 3 wurde anschliessend in einem Wärmeschrank bei 360 °C gesintert. Als hygro¬ skopischer Zusatz diente ebenfalls Ethylenglycol. Ebenso wurde C0CI2.6 H2O verwendet. Die Konzentration in einem Gemisch von 20 Mass.-% Wasser und 80 Mass.-% Ethylenglycol war diesmal 0.1 molal. Die Elektrolytkammer 19 wurde auf die gleiche Weise befüllt. Der Nullstrom zwischen Mess- und Referenzelektrode hatte sich bereits nach einem Tag auf 0.02 uA stabilisiert. Beim Begasen mit 150 ppm NH3 stieg der Strom zwischen Mess- und Referenzelektrode 5 bzw. 11 innert weniger Minuten, aber deutlich schneller als in der ersten Ausbildungsart auf ein stabiles, reproduzierbares Plateau von 1.0 μA. Nach dem Absetzen der Begasung sinkt der Messstrom erheblich schneller als in der ersten Ausbildungsart wiederum auf den Ausgangswert des Null¬ stromes. Beim Begasen mit 200 ppm Kohlenmonoxid wurde ebenfalls keine Querempfindlichkeit festgestellt.
Beide Ausbildungsarten zeigen eine gute lineare Abhängigkeit des Messstromes von der Ammoniakkonzentration.
Der beschriebene Ammoniaksensor, der in einer kleinen, kompakten Bauweise hergestellt werden kann, eignet sich besonders für die Ueberwachung von Ammoniak oder dessen Derivaten in der Umgebungsluft, kann aber auch für die Bestimmung von Ammoniak in flüssigen Messproben eingesetzt werden. Der Sensor kann einer langen Ammoniakgas-Exposition ausgesetzt werden und detektiert auch höhere Ammoniakgas- Konzentrationen. Er besitzt keine Querempfindlichkeit gegenüber Kohlenmonoxid. Der Sensor hält sich selber in Betrieb und benötigt keine Bias-Spannung.

Claims

PATENTANSPRÜCHE
1. Ammoniaksensor auf amperometrischer Basis, der min¬ destens zwei Elektroden (5,12) in einer mit einem Elektrolyten gefüllten Elektrolytkammer (19) umfasst, die zur Messprobe hin durch eine für Ammoniak permeable Membran (3) abgeschlos¬ sen ist, dadurch gekennzeichnet, dass der Elektrolyt ein von Luftsauerstoff in wässriger Lö¬ sung nicht oxidierbares Metall-Ion enthält, das mit Ammoniak ein komplexes, mit Sauerstoff oxidierbares Metall-Ion bildet.
2. Ammoniaksensor nach Anspruch 1, dadurch gekennzeich¬ net, dass der Elektrolyt ein Co(II)-Salz in wässriger Lösung umfasst.
3. Ammoniaksensor nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, dass als Cobaltsalz Cobaltdichlorid verwendet wird.
4. Ammoniaksensor nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass der Elektrolyt einen hygroskopischen Zusatz enthält.
5. Ammoniaksensor nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass der hygroskopische Zusatz 1,2-Ethandiol umfasst.
6. Ammoniaksensor nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass der Anteil des hygroskopischen Zusatzes am Elektrolyten zwischen 1 und 99 Mass.-% beträgt.
7. Ammoniaksensor nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass der Anteil des hygroskopischen Zusatzes zwischen 70 und 90 Mass.-% beträgt.
8. Ammoniaksensor nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass die Konzentration des Cobaltsalzes im Elektrolyten im Bereich 0,001 - 1 molal liegt.
9. Ammoniaksensor nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, dass die Konzentration des Cobaltsalzes im Elektrolyten im Bereich 0,01 - 0,1 molal liegt.
10. Ammoniaksensor nach einem der Ansprüche 1 - 9, dadurch gekennzeichnet, dass zusätzlich eine Referenzelektrode (11) vorgesehen ist.
11. Ammoniaksensor nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass die Messelektrode (5) aus Gold und die Referenz- bzw. Gegenelektrode (11 bzw. 12) aus Grafit bestehen.
12. Ammoniaksensor nach einem der Ansprüche 1 - 11, dadurch gekennzeichnet, dass jeweils eine PTFE-Membran (3) für die Messelektrode (5) mit einem Gemisch (17) aus feinverteiltem Gold- und PTFE-Pulver bzw. für die Referenz- bzw. Gegenelek¬ trode (11 bzw. 12) mit einem Gemisch (18) aus feinverteil em Grafit- und PTFE-Pulver beschichtet und anschliessend in einem Wärmeschrank gesintert wird.
13. Ammoniaksensor nach einem der Ansprüche 1 - 11, dadurch gekennzeichnet, dass jeweils eine PTFE-Membran (3) für die Messelektrode (5) sowie die Referenzelektrode (11) mit einem Gemisch (17) aus feinverteiltem Gold- und PTFE-Pulver, sodann mit einem Gemisch aus feinverteiltem Grafit- und PTFE-Pulver (18) beschichtet und anschließend in einem Wärmeschrank ge¬ sintert wird.
14. Ammoniaksensor nach einem der Ansprüche 1 - 13, dadurch gekennzeichnet, dass die Elektrolytkammer (19) gasseitig mit einer für Ammoniak durchlässigen Membran (3), radial von einem zylindrischen Zentralkörper (7) sowie rückseitig von einem Druckausgleichskörper (13) mit einem mit einer Druckausgleichsöffnung (20) versehenen Deckel
(14) begrenzt ist.
15. Ammoniaksensor nach einem der Ansprüche 1 - 14, dadurch gekennzeichnet, dass Kontaktfedern (8), Platin¬ bänder (9) und mit Elektrolyt getränkte Glasfaser-Tampons (10) zwecks Kontaktierung der Elektroden (5,11,12), O-Ringe (4) und Schrauben (1) für entsprechende Gewindebohrungen
(15) zwecks Verschliessung der Elektrolytkammer (19) sowie Abschnitte (6) aus ungesintertem PTFE-Band zwecks Ab¬ dichtung der Elektrolytkammer (19) vorgesehen sind.
PCT/CH1994/000231 1994-02-09 1994-12-01 Ammoniaksensor WO1995022055A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE59409251T DE59409251D1 (de) 1994-02-09 1994-12-01 Ammoniaksensor
EP95901310A EP0693180B1 (de) 1994-02-09 1994-12-01 Ammoniaksensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00384/94A CH686981A5 (de) 1994-02-09 1994-02-09 Ammoniaksensor.
CH384/94-2 1994-02-09

Publications (1)

Publication Number Publication Date
WO1995022055A1 true WO1995022055A1 (de) 1995-08-17

Family

ID=4185784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1994/000231 WO1995022055A1 (de) 1994-02-09 1994-12-01 Ammoniaksensor

Country Status (4)

Country Link
EP (1) EP0693180B1 (de)
CH (1) CH686981A5 (de)
DE (1) DE59409251D1 (de)
WO (1) WO1995022055A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068676A1 (en) * 1999-05-12 2000-11-16 Advanced Technology Materials, Inc. Electrochemical toxic component sensor
EP2871472A1 (de) * 2013-11-06 2015-05-13 Life Safety Distribution AG Träger für Elektrodenstapel und Einrichtung zur Entlüftung eines Gassensor mittels intern montierter Auflage
RU2617896C1 (ru) * 2013-09-09 2017-04-28 Дрегер Сэйфти Аг Унд Ко. Кгаа Жидкий электролит для электрохимического газового датчика
CN109997035A (zh) * 2016-12-19 2019-07-09 霍尼韦尔国际公司 氧传感器的排气方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH697047A5 (de) * 2004-05-27 2008-03-31 Membrapor Ag Ammoniaksensor.
DE102012211215A1 (de) 2012-06-28 2014-04-10 Msa Auer Gmbh Verfahren und Vorrichtung zur Detektion der Konzentration mindestens einer gasförmigen Zielsubstanz und Verwendung einer Vorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225859A (en) * 1988-12-10 1990-06-13 Draegerwerk Ag Electrochemical measuring cell for determining ammonia and its derivatives.
EP0395927A1 (de) * 1989-04-29 1990-11-07 Drägerwerk Aktiengesellschaft Elektrochemische Messzelle zur Bestimmung des Ammoniak oder Hydrazin in einer Messprobe
EP0496527A1 (de) * 1991-01-25 1992-07-29 The Governor And Company Of The Bank Of Scotland Gassensor
EP0556558A2 (de) * 1992-02-20 1993-08-25 Drägerwerk Aktiengesellschaft Elektrochemische Messzelle zur Bestimmung von Ammoniak, Aminen, Hydrazin und Hydrazinderivaten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225859A (en) * 1988-12-10 1990-06-13 Draegerwerk Ag Electrochemical measuring cell for determining ammonia and its derivatives.
DE3841622A1 (de) * 1988-12-10 1990-06-13 Draegerwerk Ag Elektrochemische messzelle zur amperometrischen bestimmung von ammoniak und dessen derivate
EP0395927A1 (de) * 1989-04-29 1990-11-07 Drägerwerk Aktiengesellschaft Elektrochemische Messzelle zur Bestimmung des Ammoniak oder Hydrazin in einer Messprobe
EP0496527A1 (de) * 1991-01-25 1992-07-29 The Governor And Company Of The Bank Of Scotland Gassensor
EP0556558A2 (de) * 1992-02-20 1993-08-25 Drägerwerk Aktiengesellschaft Elektrochemische Messzelle zur Bestimmung von Ammoniak, Aminen, Hydrazin und Hydrazinderivaten

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068676A1 (en) * 1999-05-12 2000-11-16 Advanced Technology Materials, Inc. Electrochemical toxic component sensor
US6248224B1 (en) * 1999-05-12 2001-06-19 Mst Analytics Inc. Toxic sensor and method of manufacture
EP2278322A1 (de) * 1999-05-12 2011-01-26 MST Technology GmbH Sensor zum Messen einer Zielkomponente in gasförmigen oder flüssigen Proben
EP2278321A1 (de) * 1999-05-12 2011-01-26 MST Technology GmbH Sensor zum Messen einer Zielkomponente in gasförmigen oder flüssigen Proben
RU2617896C1 (ru) * 2013-09-09 2017-04-28 Дрегер Сэйфти Аг Унд Ко. Кгаа Жидкий электролит для электрохимического газового датчика
US10883958B2 (en) 2013-09-09 2021-01-05 Dräger Safety AG & Co. KGaA Liquid electrolyte for an electrochemical gas sensor
EP2871472A1 (de) * 2013-11-06 2015-05-13 Life Safety Distribution AG Träger für Elektrodenstapel und Einrichtung zur Entlüftung eines Gassensor mittels intern montierter Auflage
CN104634835A (zh) * 2013-11-06 2015-05-20 生命安全销售股份公司 使用内部安装台支撑电极堆栈和为气体传感器提供通风
US9874540B2 (en) 2013-11-06 2018-01-23 Life Safety Distribution Ag Support for electrode stack and provision for venting of a gas sensor using an internally mounted table
CN109997035A (zh) * 2016-12-19 2019-07-09 霍尼韦尔国际公司 氧传感器的排气方法
US10996189B2 (en) 2016-12-19 2021-05-04 Honeywell International Inc. Method of venting oxygen sensors

Also Published As

Publication number Publication date
DE59409251D1 (de) 2000-05-04
CH686981A5 (de) 1996-08-15
EP0693180B1 (de) 2000-03-29
EP0693180A1 (de) 1996-01-24

Similar Documents

Publication Publication Date Title
DE19939011C1 (de) Elektrochemischer Gassensor mit diamantartigen Kohlenstoffelektroden
DE69430231T2 (de) Biosensor zum Messen der Alkoholkonzentration, Verfahren zur Herstellung des Biosensors, und den Biosensor benutzendes Betrunkenheitsmessgerät
DE3203362C3 (de) Elektrochemischer Gassensor
DE10119036C1 (de) Tauchsensor zur Messung der Konzentration eines Analyten mit Hilfe einer Oxidase
EP1600768B1 (de) Ammoniaksensor
DE2006682C3 (de) Polarographie-MeBfühler
DE102008033828B4 (de) Elektrochemischer Gassensor
DE19882506B4 (de) Elektrochemischer Sensor zum Nachweis von Cyanwasserstoff und Verfahren zur Verwendung des elektrochemischen Sensors
EP3022551B1 (de) Galvanischer sauerstoffsensor für die messung in gasgemischen
DE102004062052B4 (de) Elektrochemischer Sensor
Kroll et al. Electrochemical sensors for hydrogen and hydrogen sulfide determination
DE4025635A1 (de) Elektrochemischer gasfuehler
DE2951650C2 (de) Elektrochemische Zelle zum Nachweis von Chlorgas
DE19681487B3 (de) Elektrochemischer Sensor zum Aufspüren von Stickstoffdioxid
EP0693180B1 (de) Ammoniaksensor
EP0395927B1 (de) Elektrochemische Messzelle zur Bestimmung des Ammoniak oder Hydrazin in einer Messprobe
DE2039924C3 (de) Sauerstoff-Sensor
EP0721583A1 (de) Elektrochemischer gassensor mit reduzierter querempfindlichkeit
EP0526479A1 (de) Verfahren zur bestimmung von gaskonzentrationen und gassensor mit festem elektrolyten.
DE3686855T2 (de) Polarographische elektrodenmessvorrichtung.
DE4205157C2 (de) Elektrochemische Meßzelle zur Bestimmung von Ammoniak, Aminen, Hydrazin und Hydrazinderivaten
DE4231256A1 (de) Elektrochemischer Sauerstoffsensor mit einer Luftsauerstoffelektrode als Bezugselektrode
EP0560469B1 (de) Sandwich-Membran für Biosensoren und deren Verwendung
DE4431875C2 (de) Sensorelement
Allen An absolute galvanic detector for nitrogen dioxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995901310

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 535076

Date of ref document: 19951228

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1995901310

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995901310

Country of ref document: EP