WO1995017690A1 - Reseau de filtres couleur - Google Patents

Reseau de filtres couleur Download PDF

Info

Publication number
WO1995017690A1
WO1995017690A1 PCT/US1994/014120 US9414120W WO9517690A1 WO 1995017690 A1 WO1995017690 A1 WO 1995017690A1 US 9414120 W US9414120 W US 9414120W WO 9517690 A1 WO9517690 A1 WO 9517690A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
filter array
color
filters
layer
Prior art date
Application number
PCT/US1994/014120
Other languages
English (en)
Inventor
James C. Lee
Original Assignee
Honeywell Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Inc. filed Critical Honeywell Inc.
Priority to JP7517457A priority Critical patent/JPH08508114A/ja
Publication of WO1995017690A1 publication Critical patent/WO1995017690A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133521Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type

Definitions

  • the present invention relates to color filter arrays, and more specifically to color filters using interference filters.
  • Liquid crystal mosaic display technology is being developed as a possible successor to color cathode ray tubes (CRT's) in many applications. This technology offers important advantages such as higher reliability along with reduced power, size and weight.
  • CRT's color cathode ray tubes
  • a transparent common electrode is formed inside the defined cavity on one of the glass panels.
  • Individual electrodes, also on the inside of the defined cavity, are formed on the other glass panel.
  • Each of the individual electrodes has a surface area corresponding to the area of one, or part of one, picture element. Each picture element is too small to be easily seen by the unaided human eye.
  • the device If the device is to have color capabilities, it must also include color filters with red, green and blue color areas. Each color area is aligned with one of the electrodes. Each set of red, green, and blue color areas is grouped into a triad, repetitive stripe, or other consistent pattern within the picture element.
  • each of the individual electrodes can be addressed by means of a thin film transistor.
  • one or more of the electrodes is energized during the display operation to allow full light, no light, or partial light to be transmitted through the color filter area associated with the electrode.
  • the image perceived by the user is a blending of colors formed by the transmission of light through adjacent color filter areas.
  • the LCD may be backlighted by locating a light source on the opposite side of the display, away from the viewer.
  • the display may include a reflective layer at its rear surface and rely on the light source located on the same side of the display as the viewer.
  • Color filters for use on such devices have been fabricated using a number of different approaches.
  • One approach has been to spin or deposit a light sensitized adhesive film onto the glass panel. The film is then patterned in three sequential steps. During each step, dye of a specific color is applied to the predetermined regions of the film.
  • organic pigments are deposited by vacuum evaporation. These pigments are then photolithographically patterned by conventional lift-off techniques.
  • a dyed and patterned stretched film material is used to create an internal color polarizing filter.
  • Another type of color filter is of the interference type.
  • Optimum performance is obtained using multilayer thin film dielectric color filters, which are more efficient than the alternative dye filters, do not bleach or degrade with time, and are relatively hard.
  • the conventional method for producing patterned filters of this type is to use a lift-off technique to pattern two or more thin film dielectric stacks of well-defined transmission characteristics.
  • the stacks are typically made of dielectric materials such as ZnS/MgF2 or the harder, more durable, and optically stable materials Si ⁇ 2/Ti ⁇ 2-
  • the dielectric materials are assembled according to a precise design which specifies each layer thickness and refractive index.
  • filter stacks are deposited sequentially and uniformly over a glass substrate.
  • a selective etching or lift-off procedure is then performed on the filter stacks to separate the stack filters and thus define pixel color location. While this sequence is simpler and less expensive to produce than brute force separate mapping of discrete filter designs in pixel zones, it does not appear possible to achieve the true color separation filters necessary in LCD displays for full range color gamut.
  • the invention herein is a mosaic color filter array for use in such devices as a liquid crystal display.
  • An array of interference filters is disclosed which achieves color separation through the use of single cavity Fabry-Perot type filters.
  • common broadband dielectric mirrors are used for all the color filters with tuned spacer layers positioned between the mirrors in order to control the transmission of a particular wavelength of light.
  • the method of fabricating the filter array comprises the steps of first providing a transparent glass substrate. On the substrate a first layer sequence, Ml, of predetermined reflectance is deposited. Ml is comprised of alternating layers of high (e.g., Ti ⁇ 2) and low (e.g., Si ⁇ 2) index of refraction dielectric materials.
  • a transparent spacing layer of known index of refraction is then deposited over Ml and its thickness is tuned at individual pixel positions for a mosaic layout of red, green and blue filters.
  • a second reflective layer, sequence M2 which may be similar but not necessarily identical to Ml , is then deposited over all the pixel positions, thus creating an array of single cavity Fabry-Perot type filters.
  • the bandwidth and peak transmittance properties of these Fabry-Perot filters are determined by the reflectance properties of Ml and M2, while their tuning (i.e., center wavelength) is determined by the optical thickness of the spacer layer.
  • Figure 1 is a cross section of an embodiment of a liquid crystal display.
  • Figure 2 is a possible pattern for mapping pixels positions.
  • Figure 3 is a cross section of a portion of the color filter array.
  • Figure 4 is a graph showing the spectral characteristics of the red filter.
  • Figure 5 is a graph showing the spectral characteristics of the green filter.
  • Figure 6 is a graph showing the spectral characteristics of the blue filter.
  • Figure 7 is a graph showing the spectral characteristics of a second embodiment of the color filter array.
  • Figure 8 is a graph showing the spectral characteristics of a third embodiment of the color filter array.
  • Figures 9a-9d show the sequence of depositing reflective layers, photolithographic masking, and transparent space tuning layers.
  • Figures 10a and 10b show the creation of the color filter array using standard lift-off technique.
  • FIG. 1 is a cross section of an embodiment of a liquid crystal display in which the present color filter array could be incorporated.
  • the LCD includes a backlight 12 which transmits white light to components which are positioned between rearward glass panel 11 and forward glass panel 22. These components include the color filter array 14, thin film transistor 16, liquid crystal 18, and absorptive filters 20.
  • the color filter array 14 acts to allow passage of light of a particular wavelength while retroreflecting light of all other wavelengths into a chamber which encloses the backlight 10.
  • the liquid crystal in combination with the thin film transistors act as an on/off switch for the passage of light so that when the switch is on, the liquid crystal is transparent and allows all wavelengths of light to pass. When it is off it is opaque allowing no wavelengths to pass.
  • the absorptive filters 20 absorb all wavelengths of light except those of a particular pass band.
  • the combination of the reflective color filter array with the absorptive color filters acts to improve color saturation of the display conserve light energy normally lost by absorption in conventional construction, and maintain good color at off normal viewing angles. This combination of color filters is described in more depth in international patent application number PCT/US94/02668, entitled “Patterned Dichroic Filters for Color Liquid Crystal Display Chromaticity Enhancements", which is hereby incorporated by reference.
  • FIG 1 A plan view of color pixels in a typical color filter array are shown in Figure 2. This typical mosaic layout allows for the viewing of full color in liquid crystal displays. As is seen the array is laid out in separate Blue 30, Red 32, and Green 36 pixel positions.
  • the invention herein is focused on color filter array 14.
  • the design of such optical interference filters is common in the optics industry.
  • the filters can be fabricated from a variety of refractory inorganic evaporated or sputtered thin films.
  • the filter typically consists of three layers, the second layer interposed between a first and third layer.
  • the first and third layers are highly reflective, slightly transmitting film such as silver.
  • the second or spacer layer is a dielectric layer such as zinc sulfide.
  • the thickness of the spacer layer determines the wavelength of the output light and hence the color.
  • This type of filter is more commonly known as a Fabry-Perot optical interference filter with the spacer layer thickness of the filter adjusted to provide transmission of a particular color.
  • the reflecting layer should have a reflectivity close to unity.
  • a higher performance alternative to single layer metal mirrors (which absorb some of the light) is to use low absorption all-dielectric layers arranged in properly designed thickness sequences to form the Fabry-Perot cavity mirrors.
  • the simplest all-dielectric mirror designs are just quarter wavelength tuned stacks (i.e., the optical thickness of each layer is a quarter wavelength of the wavelength for peak reflectance) of alternating high and low refractive indices.
  • the result of this is that alternating layers of materials such as titanium dioxide (Ti ⁇ 2) and silicon dioxide (Si ⁇ 2) can be used to manufacture the entire filter.
  • Shown in Figure 3 is a cross sectional view of the present color filter array. Shown in particular is the repeating nature of the red, green and blue filters for each pixel position within the array.
  • the filter is comprised of a transparent glass substrate
  • first mirror stack 42 is comprised of alternating layers of Ti ⁇ 2 and Si ⁇ 2- This first mirror stack has a uniform thickness for the entire filter array.
  • tuned spacer layers 43 and 44 both made of Si ⁇ 2- The tuned spacer thicknesses are dependent on the type of color filter desired.
  • second mirror stack 46 is on top of the first mirror stack 42 and tuned spacer layers 43. In this embodiment of the invention the second mirror stack 46 is of the same composition and thickness as the first mirror stack 42.
  • the basic design for each of the three color filters within the array is known as a single cavity Fabry-Perot filter.
  • a Fabry-Perot filter is simply a tuned cavity structure of two mirrors separated by a spacer layer. In this filter, resonance peaks occur when the spacer thickness is an integer multiple of one half the wavelength of resonant frequency. So if the same mirror stack is used for both mirrors, the basic filter designs are then of the form:
  • M 1.1(HLH).8(LH) 2
  • L denotes a quarter wave optical thickness (QWOT) of Si ⁇ 2 and H
  • QWOT quarter wave optical thickness
  • n a material of index refraction n
  • the red filter is obtained from a layer structure M/1.2L/M or 1.1(HLH).8(LH) 2 / 1.1(HLH)/1.1(HLH).8(LH) 2 .
  • a green filter is obtained from the layer structure M/2.5L/M, or 1.1(HLH).8(LH) 2 /2.5L1.1/(HLH).8(LH) 2 .
  • the harmonic spacer thickness is 1.2L and 2.5L, respectively.
  • the blue filter does not have the tuned spacer layer and is obtained from a structure that looks like 1.1(HLH).8(LH) 2 1.1(HLH).8(LH) 2 .
  • This design has the primary advantage of achieving color separation without optical absorption loss and thus greatly improved efficiency.
  • Figures 4-6 show the spectral characteristics for the red, green and blue filter designs, respectively.
  • a graph is shown of the transmissibility of a particular color filter versus the wavelength of light.
  • the passband is narrow enough to achieve true color separation, but wide enough to help mitigate the shift to shorter wavelengths with viewing angle, which all interference coatings are subject to.
  • the approach described herein offers the advantage of flexible adaptability. For example, if filters of narrower/wider spectral bandwidths are needed, the second embodiment of:
  • FIG. 9 shows the glass substrate 40 which the color filter is constructed upon.
  • the first mirror stack 42 is blanket coated over the whole substrate 40.
  • the mirror stacks are comprised of alternating layers of Si ⁇ 2 and ⁇ O2 using the thicknesses described above.
  • blue pixel locations are masked off photolithographically leaving areas open in the red and green pixel locations.
  • the blue photolithographic masking 60 is deposited right on the mirror stack 42.
  • a tuned spacing layer 44 made of Si ⁇ 2 is deposited over the blue masking 60 and the first mirror stack 42 at the red tuning thickness.
  • a spacing layer is deposited over the mirror stack at the green tuning thickness before masking is laid.
  • pixel areas are masked off for the red filters with masking 62 leaving only the green pixel areas exposed.
  • a second spacing layer 44 is disposed over the red masking 62 and the first spacing layer 43. The combined thicknesses of layers 44 and 43 are sufficient to create the Fabry-Perot cavity for green light once the filter array is fully constructed.
  • Figures 10a and 10b show the final steps in the lift-off process.
  • the red photorestive coating r the bl; .:. and red filters swell and portions of the tuned spacer layer are removed.
  • a second filter stack 46 is then formed over the entire substrate 44 using a vacuum deposition process. As can be seen, three distinct filter thicknesses have been created in a repetitive fashion. The first area has only spacer layer 43, the second area has the combination of spacer layer 43 and 44, and the last area has neither spacer layer 44 or 43.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)

Abstract

Réseau de filtres couleur destinés notamment à être utilisés dans les affichages à cristaux liquides. Le filtre est de type interférentiel à cavité unique de Fabry-Pérot. Pour chaque pixel, des filtres sont créés pour le rouge, le vert et le bleu, chacun d'eux partageant un miroir diélectrique commun à large bande. Les différences entre les filtres résident dans l'épaisseur de syntonisation entre les miroirs de chacun des filtres. L'utilisation d'un miroir diélectrique commun à large bande simplifie le traitement nécessaire à la fabrication des réseaux mosaïques des filtres RVB ces derniers partagent des piles de miroirs à structure modulaire commune qui peuvent s'appliquer comme revêtements couverture, les motifs des mosaïques de pixels et la syntonisation des filtres étant obtenus par définition de l'épaisseur et des limites d'une couche centrale de séparation.
PCT/US1994/014120 1993-12-23 1994-12-08 Reseau de filtres couleur WO1995017690A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7517457A JPH08508114A (ja) 1993-12-23 1994-12-08 カラーフィルタ・アレイ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17266593A 1993-12-23 1993-12-23
US08/172,665 1993-12-23

Publications (1)

Publication Number Publication Date
WO1995017690A1 true WO1995017690A1 (fr) 1995-06-29

Family

ID=22628673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/014120 WO1995017690A1 (fr) 1993-12-23 1994-12-08 Reseau de filtres couleur

Country Status (2)

Country Link
JP (1) JPH08508114A (fr)
WO (1) WO1995017690A1 (fr)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077566A1 (fr) * 1999-06-14 2000-12-21 Augusto Carlos J R P Dispositif d'affichage ou imageur avec filtre de longueur d'onde integre
US6384458B1 (en) * 1999-05-04 2002-05-07 Soft Imaging System Gmbh Semiconductor system for registering spectra, color signals, color signals, color images and the like
DE10018444B4 (de) * 1999-05-04 2006-01-26 Soft Imaging System Gmbh Halbleitersystem zur Registrierung von Spektren, Farbsignalen, Farbbildern und dergleichen
US7106516B2 (en) 2002-02-04 2006-09-12 Applied Films Gmbh & Co. Kg Material with spectrally selective reflection
WO2007044107A2 (fr) * 2005-10-05 2007-04-19 Hewlett-Packard Development Company, L.P. Couche multiniveaux
DE102006039071A1 (de) * 2006-08-09 2008-02-21 Universität Kassel Optisches Filter und Verfahren zu seiner Herstellung
WO2009040498A1 (fr) * 2007-09-26 2009-04-02 Eastman Kodak Company Procédé de fabrication d'un réseau de filtre coloré
WO2009137535A1 (fr) * 2008-05-07 2009-11-12 Qualcomm Mems Technologies, Inc. Dispositif d’affichage interférométrique fixe et procédé pour fournir un tel dispositif
US7648808B2 (en) * 2004-01-12 2010-01-19 Ocean Thin Films, Inc. Patterned coated dichroic filter
US7759679B2 (en) 2004-01-15 2010-07-20 Panasonic Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, and camera employing same
US7811725B2 (en) 2006-03-16 2010-10-12 Wintek Corporation Color filter substrate
CN101923246A (zh) * 2009-06-16 2010-12-22 江苏丽恒电子有限公司 彩色液晶显示器
US7940463B2 (en) 2008-04-15 2011-05-10 Qualcomm Mems Technologies, Inc. Fabricating and using hidden features in an image
WO2011089646A1 (fr) * 2010-01-21 2011-07-28 株式会社 東芝 Substrat avec couche de filtre d'interférence et dispositif d'affichage le comprenant
WO2012159397A1 (fr) * 2011-05-25 2012-11-29 苏州大学 Procédé de réalisation d'une image en couleur et filtre coloré fabriqué à l'aide de ce procédé
US20130021550A1 (en) * 2011-07-19 2013-01-24 Hajime Watakabe Liquid crystal display device
US8629986B2 (en) 2006-08-09 2014-01-14 Biozoom Technologies, Inc. Optical filter and method for the production of the same, and device for the examination of electromagnetic radiation
US8664021B2 (en) 2010-11-17 2014-03-04 Samsung Display Co., Ltd. Organic light-emitting display device and foldable display device including the same
JP2014238588A (ja) * 2014-07-08 2014-12-18 株式会社東芝 干渉型フィルタ層付基板及びそれを用いた表示装置
US9443993B2 (en) 2013-03-28 2016-09-13 Seiko Epson Corporation Spectroscopic sensor and method for manufacturing same
EP3182079A1 (fr) * 2015-12-14 2017-06-21 ams AG Dispositif de détection optique et procédé de fabrication d'un tel appareil
EP3206060A1 (fr) * 2016-02-12 2017-08-16 Viavi Solutions Inc. Réseau de filtre optique
WO2019239139A1 (fr) * 2018-06-14 2019-12-19 Cambridge Enterprise Limited Filtre de couleur lithographique en une seule étape
US11880054B2 (en) 2017-05-22 2024-01-23 Viavi Solutions Inc. Multispectral filter
US11892664B2 (en) 2018-11-02 2024-02-06 Viavi Solutions Inc. Stepped structure optical filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457156B2 (ja) * 2009-12-09 2014-04-02 パナソニック株式会社 発色構造を備えた製品
JP5624522B2 (ja) * 2011-07-19 2014-11-12 株式会社東芝 表示装置及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769111A (en) * 1951-07-25 1956-10-30 Philco Corp Optical system
US4534620A (en) * 1983-07-11 1985-08-13 Rca Corporation Standardized multi-stack dielectric-layer filter blank and method for fabricating color-encoding filter therefrom
US4822998A (en) * 1986-05-15 1989-04-18 Minolta Camera Kabushiki Kaisha Spectral sensor with interference filter
JPH0268501A (ja) * 1988-09-05 1990-03-08 Matsushita Electric Ind Co Ltd ソリッドエタロン
US4979803A (en) * 1989-02-02 1990-12-25 Eastman Kodak Company Color filter array for area image sensors
WO1994020879A1 (fr) * 1993-03-04 1994-09-15 Honeywell Inc. Filtres dichroïques a motifs pour ameliorer la chromaticite d'un afficheur a cristaux liquides couleur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769111A (en) * 1951-07-25 1956-10-30 Philco Corp Optical system
US4534620A (en) * 1983-07-11 1985-08-13 Rca Corporation Standardized multi-stack dielectric-layer filter blank and method for fabricating color-encoding filter therefrom
US4822998A (en) * 1986-05-15 1989-04-18 Minolta Camera Kabushiki Kaisha Spectral sensor with interference filter
JPH0268501A (ja) * 1988-09-05 1990-03-08 Matsushita Electric Ind Co Ltd ソリッドエタロン
US4979803A (en) * 1989-02-02 1990-12-25 Eastman Kodak Company Color filter array for area image sensors
WO1994020879A1 (fr) * 1993-03-04 1994-09-15 Honeywell Inc. Filtres dichroïques a motifs pour ameliorer la chromaticite d'un afficheur a cristaux liquides couleur

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AUFMUTH ET AL: "Berechnung und Herstellung von Sytemen dünner dielektrischer Schichten für optische Anwendungen", OPTIK, vol. 50, no. 4, 1978, STUTTGART DE, pages 329 - 340 *
GUY ET AL: "High Quality InP/InGaAs Fabry-Perot Etalons grown by AP MOCVD", SEMICONDUCTOR SCIENCE AND TECHNOLOGY, vol. 2, July 1987 (1987-07-01), LONDON GB, pages 466 - 467 *
PATENT ABSTRACTS OF JAPAN vol. 14, no. 258 (P - 1055) 4 June 1990 (1990-06-04) *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384458B1 (en) * 1999-05-04 2002-05-07 Soft Imaging System Gmbh Semiconductor system for registering spectra, color signals, color signals, color images and the like
DE10018444B4 (de) * 1999-05-04 2006-01-26 Soft Imaging System Gmbh Halbleitersystem zur Registrierung von Spektren, Farbsignalen, Farbbildern und dergleichen
WO2000077566A1 (fr) * 1999-06-14 2000-12-21 Augusto Carlos J R P Dispositif d'affichage ou imageur avec filtre de longueur d'onde integre
US7106516B2 (en) 2002-02-04 2006-09-12 Applied Films Gmbh & Co. Kg Material with spectrally selective reflection
US7648808B2 (en) * 2004-01-12 2010-01-19 Ocean Thin Films, Inc. Patterned coated dichroic filter
US7759679B2 (en) 2004-01-15 2010-07-20 Panasonic Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, and camera employing same
WO2007044107A3 (fr) * 2005-10-05 2007-11-22 Hewlett Packard Development Co Couche multiniveaux
WO2007044107A2 (fr) * 2005-10-05 2007-04-19 Hewlett-Packard Development Company, L.P. Couche multiniveaux
US8574823B2 (en) 2005-10-05 2013-11-05 Hewlett-Packard Development Company, L.P. Multi-level layer
US7811725B2 (en) 2006-03-16 2010-10-12 Wintek Corporation Color filter substrate
DE102006039071A1 (de) * 2006-08-09 2008-02-21 Universität Kassel Optisches Filter und Verfahren zu seiner Herstellung
US8629986B2 (en) 2006-08-09 2014-01-14 Biozoom Technologies, Inc. Optical filter and method for the production of the same, and device for the examination of electromagnetic radiation
US9244208B2 (en) 2006-08-09 2016-01-26 Biozoom Technologies, Inc. Optical filter and method for the production of the same, and device for the examination of electromagnetic radiation
DE102006039071B4 (de) * 2006-08-09 2012-04-19 Universität Kassel Optisches Filter und Verfahren zu seiner Herstellung
WO2009040498A1 (fr) * 2007-09-26 2009-04-02 Eastman Kodak Company Procédé de fabrication d'un réseau de filtre coloré
US7940463B2 (en) 2008-04-15 2011-05-10 Qualcomm Mems Technologies, Inc. Fabricating and using hidden features in an image
WO2009137535A1 (fr) * 2008-05-07 2009-11-12 Qualcomm Mems Technologies, Inc. Dispositif d’affichage interférométrique fixe et procédé pour fournir un tel dispositif
US7943202B2 (en) 2008-05-07 2011-05-17 Qualcomm Mems Technologies, Inc. Apparatus and methods for providing a static interferometric display device
CN101923246B (zh) * 2009-06-16 2011-12-28 江苏丽恒电子有限公司 彩色液晶显示器
CN101923246A (zh) * 2009-06-16 2010-12-22 江苏丽恒电子有限公司 彩色液晶显示器
WO2011089646A1 (fr) * 2010-01-21 2011-07-28 株式会社 東芝 Substrat avec couche de filtre d'interférence et dispositif d'affichage le comprenant
US8664021B2 (en) 2010-11-17 2014-03-04 Samsung Display Co., Ltd. Organic light-emitting display device and foldable display device including the same
WO2012159397A1 (fr) * 2011-05-25 2012-11-29 苏州大学 Procédé de réalisation d'une image en couleur et filtre coloré fabriqué à l'aide de ce procédé
US9885814B2 (en) 2011-05-25 2018-02-06 Soochow University Method for making color image and color filter manufactured with the method
US9001291B2 (en) 2011-07-19 2015-04-07 Japan Display Inc. Liquid crystal display device
US20130021550A1 (en) * 2011-07-19 2013-01-24 Hajime Watakabe Liquid crystal display device
US9412334B2 (en) 2011-07-19 2016-08-09 Japan Display Inc. Liquid crystal display device
US9443993B2 (en) 2013-03-28 2016-09-13 Seiko Epson Corporation Spectroscopic sensor and method for manufacturing same
JP2014238588A (ja) * 2014-07-08 2014-12-18 株式会社東芝 干渉型フィルタ層付基板及びそれを用いた表示装置
EP3182079A1 (fr) * 2015-12-14 2017-06-21 ams AG Dispositif de détection optique et procédé de fabrication d'un tel appareil
WO2017102312A1 (fr) * 2015-12-14 2017-06-22 Ams Ag Dispositif de détection optique et procédé de fabrication de dispositif de détection optique
US20180372546A1 (en) * 2015-12-14 2018-12-27 Ams Ag Optical sensing device and method for manufacturing an optical sensing device
EP3206060A1 (fr) * 2016-02-12 2017-08-16 Viavi Solutions Inc. Réseau de filtre optique
US10170509B2 (en) 2016-02-12 2019-01-01 Viavi Solutions Inc. Optical filter array
US11049893B2 (en) 2016-02-12 2021-06-29 Viavi Solutions Inc. Optical filter array
TWI788215B (zh) * 2016-02-12 2022-12-21 美商菲爾薇解析公司 光學濾光片陣列
US11880054B2 (en) 2017-05-22 2024-01-23 Viavi Solutions Inc. Multispectral filter
WO2019239139A1 (fr) * 2018-06-14 2019-12-19 Cambridge Enterprise Limited Filtre de couleur lithographique en une seule étape
US11892664B2 (en) 2018-11-02 2024-02-06 Viavi Solutions Inc. Stepped structure optical filter

Also Published As

Publication number Publication date
JPH08508114A (ja) 1996-08-27

Similar Documents

Publication Publication Date Title
WO1995017690A1 (fr) Reseau de filtres couleur
US7907319B2 (en) Method and device for modulating light with optical compensation
US6055090A (en) Interferometric modulation
US6031653A (en) Low-cost thin-metal-film interference filters
US5566007A (en) Reflection type liquid crystal display device capable of color display
KR0163623B1 (ko) 컬러 액정표시장치
JP4812869B2 (ja) 干渉性変調
US6995890B2 (en) Interference display unit
US6951400B2 (en) High index coated light management films
EP0412921B1 (fr) Dispositif d'affichage à cristal liquide à transistor à couches minces comprenant des filtres optiques colorés interférentiels
US7834966B2 (en) Liquid crystal display device and display equipment using the same
EP1621915A2 (fr) Modulateur de lumière avec une couche absorbant la lumière
DE4444557A1 (de) Anzeigetafel und Anzeigevorrichtung unter Verwendung derselben
JP2005308871A (ja) 干渉カラーフィルター
JPH03121423A (ja) 液晶表示装置
EP0716335A2 (fr) Panneau à cristal liquide dispersé dans un polymère
KR100582009B1 (ko) 반투과형 컬러 액정표시장치
KR100367281B1 (ko) 반투과형 액정표시장치 및 그의 제조방법
JP2006509240A (ja) 高屈折率の被覆調光フィルム
JP2002023068A (ja) 光学多層構造体および光スイッチング素子、並びに画像表示装置
KR100523763B1 (ko) 콜레스테릭 액정 컬러 필터를 포함한 액정 표시 장치
KR890001077B1 (ko) 다중층 칼라필터와 그 제조방법
CN101387783A (zh) 液晶显示装置以及使用该装置的显示机器
JP2003186033A (ja) 液晶表示装置
KR100296274B1 (ko) 칼라액정표시장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA