WO1995016136A1 - Swinging rotary compressor - Google Patents

Swinging rotary compressor Download PDF

Info

Publication number
WO1995016136A1
WO1995016136A1 PCT/JP1994/002020 JP9402020W WO9516136A1 WO 1995016136 A1 WO1995016136 A1 WO 1995016136A1 JP 9402020 W JP9402020 W JP 9402020W WO 9516136 A1 WO9516136 A1 WO 9516136A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
roller
chamber
cylinder
oil
Prior art date
Application number
PCT/JP1994/002020
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Yamamoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to KR1019950703289A priority Critical patent/KR100322269B1/en
Priority to DK95902284T priority patent/DK0683321T3/en
Priority to EP95902284A priority patent/EP0683321B1/en
Priority to DE69427186T priority patent/DE69427186T2/en
Priority to US08/500,847 priority patent/US5577903A/en
Publication of WO1995016136A1 publication Critical patent/WO1995016136A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to an oscillating rotary compressor mainly used for a refrigeration system.
  • a blade for partitioning a cylinder chamber into a suction chamber and a compression chamber is provided.
  • the blade is integrally protruded from the roller inserted into the eccentric part of the drive, and the blade is swingably supported in the receiving groove of the support rotatably arranged on the cylinder to expose the roller.
  • an apparatus that compresses a gas fluid That is, as shown in FIG. 1, the conventional rotary compressor of the conventional type has a radially outward direction in a cylinder chamber A1 of a cylinder A in which a front and a head are contacted on both axial sides.
  • a roller B integrally provided with a protruding blade B 1 is disposed such that both upper and lower end surfaces of the roller B and the blade B 1 are in sliding contact with the fusing surfaces of the respective heads.
  • a cylindrical support C which is slidably contacted with each of the above-mentioned heads is rotatably supported inside the cylinder A, and a receiving groove C1 formed in the support C is provided at a tip end of the blade B1. Oscillates and advances and retreats, thereby partitioning the interior of the cylinder chamber A1 into a compression chamber X and a suction chamber Y via the roller B and the blade B1, while being driven by the roller B.
  • the eccentric part of the shaft is inserted and the roller B is By revolving driven by Da chamber A within 1 sucks the gaseous fluid into the suction chamber Y, also, the pressure The compression of the gas fluid is performed in the contraction chamber X.
  • the pressure between the pressure on the inner circumferential surface side of the roller B and the compression chamber X is higher or lower.
  • a pressure difference is generated, and a height difference pressure is also generated between the suction chamber Y and the compression chamber X.
  • a pressure difference between the roller 1B and the eccentric portion is obtained.
  • An object of the present invention is to provide an oscillating rotary compressor capable of reliably lubricating the entire surfaces of both ends in the axial direction of a roller and a blade and improving reliability.
  • an oscillating rotary compressor of the present invention includes: a cylinder having a cylinder chamber formed therein;
  • a support having a receiving groove, which is swingably disposed in the cylinder, and which freely receives a protruding end portion of the blade to advance and retreat;
  • the lubricating oil supplied to the inner peripheral side of the roller flows through the oil groove due to the centrifugal force acting on the roller at the time of its orbital drive, and flows toward the tip end of the blade. Is forcibly guided.
  • the lubricating oil flowing through the oil groove is supplied from the oil groove to the axial end face of the blade projecting base portion of the roller and the axial end face of the blade by the revolution drive of the roller. is there. Therefore, the entire end face of the roller and the blade in the direction of the cross section is formed by the inner peripheral surface of the roller and the compression chamber and the suction chamber.
  • a high-pressure chamber closed to the outside of the cylinder is formed on the back side of the blade in the receiving groove of the support.
  • a high-pressure chamber communicating with the inner peripheral side of the roller 1 through the oil groove is formed on the back side of the blade. Therefore, the lubricating oil introduced from the oil groove into the high-pressure chamber can be filled in the high-pressure chamber during the revolution IE of the roller, and therefore, the suction chamber maintained in a low-pressure state with respect to the high-pressure chamber.
  • the pressure can be caused to flow by the differential pressure along the suction chamber-side outer peripheral portion of the support supported in the cylinder and the suction chamber side wall of the blade.
  • the lubricating oil in the high pressure chamber is compressed by the differential pressure of the support until the gas fluid compressed therein becomes equal to the internal pressure of the high pressure chamber.
  • the air can be flowed to the compression chamber along the outer peripheral portion on the chamber side or along the side wall of the compression chamber of the blade. As a result, it is possible to effectively lubricate the outer peripheral portion and both end surfaces of the support and the receiving groove.
  • FIG. 1 is a perspective view of a conventional roller integrally formed with a blade.
  • FIG. 2 is a perspective view showing a compression element including a roller 1 in the oscillating rotary compressor according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing a main part of the first embodiment.
  • FIG. 4 is a plan view showing a main part of the second embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view showing the overall structure of a horizontal rotary compressor according to a third embodiment of the present invention.
  • FIG. 6 is a sectional view showing a main part of the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 2 and 3 show only the compression element portion of the oscillating rotary compression contact of the first embodiment, which is closed by the face surfaces of the front and rear heads (not shown).
  • a roller 2 integrally provided with a blade 21 protruding radially outward in the cylinder chamber 11 of the cylinder 1 is attached to the roller 2 and the upper and lower end surfaces of the blade 21 with the above-mentioned respective heads.
  • the eccentric part 31 of the drive shaft 3 is inserted into the roller 2 while being slidably in contact with the fuser surface, and the roller 2 is rotated with the rotation of the drive shaft 3 so that the outer peripheral surface of the roller 2 is rotated.
  • the revolving drive is performed while making contact with the inner wall surface of the cylinder chamber 11.
  • an intermediate portion between the discharge port 12 and the suction hole 13 provided in the cylinder 1 is provided inside the cylinder chamber 11.
  • a circular support hole 14 communicating with the support hole 14 is formed.
  • the support 4 slidably in contact with each of the above-mentioned heads is rotatably supported, and the receiving groove 41 provided in the support 4 supports the distal end side of the blade 21 so as to swing and advance and retreat. ing.
  • the support 4 is formed of two semi-cylindrical members 4A and 4B, and the flat portion between the flat surfaces of the members 4A and 4B is defined as the receiving groove 41. The leading end of the blade 21 is inserted into the receiving groove 41.
  • the cylinder chamber 1 When the roller 2 is driven to revolve, the cylinder chamber 1 surrounded by a contact whose outer peripheral surface is in contact with the inner wall surface of the cylinder chamber 11 and the front wall surface of the blade 2 1 in the revolving direction of the roller 2.
  • the interior space 1 is not provided with the suction chamber Y communicating with the suction hole 13, and the inside of the cylinder chamber 11 is surrounded by the contact point and the rear wall surface of the blade 2 2 in the revolving direction of the roller 2.
  • an oil supply passage 32 communicating with the oil supply pump is formed inside the center of the drive shaft 3 and extends outward from the lined oil passage 3 2 in the eccentric portion 31 of the IS drive shaft 3 in the strange direction.
  • a branch passage 33 is provided, and high-pressure lubricating oil pumped into the lined oil passage 32 is passed through the branch passage 33 between the inner peripheral surface of the roller 2 and the outer peripheral surface of the eccentric portion 31. Oil is supplied to the sliding contact area.
  • the high-pressure lubricating oil pumped up by the oil supply pump is supplied to the inner peripheral side of the roller 2 to have a high pressure. Therefore, the inner peripheral side of the roller 2 And a predetermined pressure difference is always generated between the suction chamber Y and the compression chamber X. On the compression chamber X side, the gas fluid flows in the compression chamber X with the pressure on the inner peripheral side of the roller 2. Until compressed to the same pressure, a predetermined height differential pressure is generated between the inner peripheral portion and the inner peripheral portion.
  • the high-pressure lubricating oil supplied to the inner peripheral portion of the roller 2 is supplied from the inner peripheral side of the roller 2 to the compression chamber X and the suction chamber Y as shown by a solid line arrow n in FIGS.
  • the lubricating oil is introduced into the compression chamber X and the suction chamber Y through the upper and lower ends of the roller 2, the lubricating oil is supplied to the upper and lower ends of the roller 2 as the roller 2 revolves.
  • one end of the roller 2 is attached to the upper and lower end surfaces of the blade protruding base and the upper and lower end surfaces of the blade 21.
  • a linear oil groove 22 was formed on the peripheral surface, and the other end was released toward the protruding tip side of the blade 21.
  • the lubricating oil that has been supplied to the sliding contact area between the roller 2 and the eccentric part 3 1 from above is the centrifugal force generated when the roller 2 revolves.
  • the lubricating oil that is forcibly guided along the oil grooves 22 to the protruding tip side of the blade 21 and flows through the oil grooves 22 is revolved by the rollers 2 so that the lubricating oil flows out of the oil grooves 22. Oil is supplied to the upper and lower end surfaces of the roller 2 at the protruding base of the blade and the upper and lower end surfaces of the blade 21.
  • the entire upper and lower end surfaces of the roller 2 and the blade 21 can be reliably lubricated, and the reliability can be improved.
  • the protruding tip side of the blade 21 in the receiving groove 41 of the support 4 is opened, but it is closed to the outside of the cylinder 1. In any case, the entire upper and lower end surfaces of the roller 2 and the blade 21 can be surely lubricated.
  • the second embodiment shown in FIG. 4 is characterized in that the two members 4 A, 4 B
  • the high-pressure chamber 15 continuous with the receiving groove 41 formed therebetween and communicating with the inner peripheral side of the roller 2 via the oil groove 22 provided in the blade 21 is formed as described above. It is formed in a closed shape to the outside of the cylinder 1.
  • the lubricating oil in the high-pressure chamber 15 is subjected to a differential pressure until the gas fluid compressed therein becomes equal to or higher than the internal pressure of the high-pressure chamber 15. It flows to the compression chamber X along the compression chamber-side outer peripheral portion of the support 4 and the compression chamber side wall of the blade 21, and thus flows from the high-pressure chamber 14 to the compression chamber X and the suction chamber Y. Oil can be supplied to the outer peripheral portion, upper and lower end surfaces, and the receiving groove 41 of the support 4 by the oil flow due to the differential pressure of the above, and the outer peripheral portion, upper and lower end surfaces of the support 4 and the blade 21 slide. Lubrication of the receiving groove 41 can also be effectively performed.
  • FIG. 5 shows the overall structure of a high-pressure dome-shaped horizontal rotary compressor according to a third embodiment, which is located on one side in the longitudinal direction inside a horizontal casing 101 having an oil sump 0 at the inner bottom.
  • a motor 102 composed of a stay 1 2 1 and a rotor 1 2 2 is provided, and a drive shaft 10 extending from the opening 1 2 2 is provided on the other side inside the casing 101.
  • a compression element 104 driven by 3 is provided.
  • This compression element 104 is composed of a cylinder 105 having a cylinder chamber 15 1 therein, a front head 106 and a rear head 1 disposed on both axial sides of the cylinder 105. 07.
  • the cylinder chamber 150 of the cylinder 105 has a cylindrical roller 108 into which the eccentric part 131 of the driving vehicle 103 is inserted.
  • a blade 109, which is defined as Y, is integrally protruded radially outward from an outer peripheral surface of the roller 108, and the blade 109 is rotatably provided on the cylinder 105. It is swingably supported on the support 110.
  • the roller 108 is rotated. Revolving in the cylinder chamber 151, the fluid gas introduced from the suction pipe 10la connected to the suction port 1553 is sucked into the suction chamber Y, compressed in the compression chamber X, The compressed gas is discharged from the discharge port 152 to the internal space of the casing 101 through the inside of the muffler 161, which is provided outside the front head 106, and A discharge pipe 10 lb opened to the motor 102 side inside the thing 101 is discharged to the outside.
  • the blade 109 is disposed obliquely on the upper side of the cylinder 105 away from the oil reservoir 0 of the casing 101.
  • an oil chamber 154 serving as a closed space for supplying oil to the blade 109 is formed on the back side of the blade 109, and the high-pressure oil lined up in the compression chamber X is supplied to the above-described high-pressure oil. Due to the pressure difference between the suction chamber Y and the suction chamber Y, the oil is introduced into the oil chamber 154 through a gap formed between the blade 109 and the support 110, and is introduced into the oil chamber 154. The introduced oil is further led to the suction chamber Y through a gap formed between the blade 109 and the support 110, and the oil is introduced and led to slide the blade 109. The parts are lubricated.
  • the oil supply to the blade 109 can be performed from the oil chamber 154 provided on the back side of the blade 109, so that the blade 109 does not need to be moved to the oil reservoir 0.
  • the blade 109 can be set at an arbitrary position of the cylinder 105. As a result, as shown in FIG. 5, the blade 109 can be disposed on the upper side of the cylinder 105 separated from the oil reservoir 0.
  • the discharge port 152 and the suction port 1553 provided in the vicinity of the blade 109 can also be formed at a position separated from the oil reservoir 0, and the high-temperature oil in the oil reservoir 0 It is possible to prevent the suction gas sucked from the suction port 153 from being overheated, so that a decrease in volumetric efficiency can be reduced and the performance can be improved.
  • the blade 109 is connected to the cylinder 1 By disposing the suction port on the upper side of the oil reservoir 0 in the cylinder 105, the suction port 153 can be formed above the oil reservoir 0.
  • the suction pipe 101a can be easily connected from one side in the lateral direction of the casing 101, and the assembling workability can be improved. There is no need to separately secure a space for connecting the suction pipe 101a to the side, and the mounting height of the casing 101 can be reduced.
  • one end in the length direction is opened to the inner peripheral surface of the roller 108, and the other end is opened to the upper and lower end surfaces of the blade protruding base of the upper blade 109 and the roller 108, respectively.
  • An oil groove 111 is formed in the oil chamber 154 provided on the back side of the blade 109 so as to open in a radial direction and extend in a radial direction.
  • the oil chamber 154 can be positively refilled with oil through the step 111, the oil chamber 154 can always be filled with high-pressure oil, so that there is no shortage of oil.
  • the oil chamber 154 can always be set at a high pressure with high-pressure oil, the oil chamber 154 is supported in the cylinder 105 on the suction chamber Y side maintained at a low pressure state with respect to the oil chamber 154.
  • the lubricating oil can be caused to flow by the differential pressure through the gap between the support 110 and the blade 109, and the gas fluid compressed inside the compression chamber X is compressed by the oil in the compression chamber X side.
  • the oscillating rotary compressor of the present invention is mainly used for a refrigeration system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

A swinging rotary compressor comprising a cylinder (1) having therein a cylinder chamber (11), a roller (2) fitted in an eccentric shaft portion (31) of a driving shaft (3) and installed in the cylinder chamber (11), a blade (21) provided integrally with the roller (2) in such a manner as to protrude therefrom so as to divide the cylinder chamber (11) into a compression chamber (X) and a suction chamber (Y) and a supporting body (4) disposed in the cylinder (1) so as to freely swing therein and having a receiving groove (41) for receiving retractably the leading end of the blade (21), wherein an oil groove (22) is formed in the blade (21) and the axial end surfaces of a base portion of the roller (2) from which the blade protrudes in such a manner that the groove is open to the inner circumferential surface of the roller (2) at one end and to the protruding leading end of the blade (21) at the other end thereof, wherein a high pressure chamber (15) closed relative to the outside of the cylinder (1) is formed in the receiving groove (41) of the supporting body (4) on the back side of the blade (21), whereby sliding contact portions between the upper and lower end surfaces of the blade (21) and the roller (2), as well as between the blade (21) and the supporting body (4) for supporting the blade are positively lubricated to thereby improve the reliability.

Description

明 細 書 揺動型ロータリー圧縮機 技術分野  Description Oscillating rotary compressor Technical field
本発明は、 主に冷凍装置に使用される揺動型ロータリ一圧縮機に関する。 背景技術  The present invention relates to an oscillating rotary compressor mainly used for a refrigeration system. Background art
従来、 揺動型ロータリー圧縮機としては、 例えば特開平 5— 2 0 2 8 7 4号公報に記載されているように、 シリンダ室内を吸入室と圧縮室とに区 画するためのブレードを、 駆動ま由の偏心部に挿嵌されるローラーに一体に 突設して、 このブレードをシリンダに回転可能に配設した支持体の受入溝 に揺動可能に支持することにより、 ローラーを公 させながらガス流体を 圧縮するようにしたものが知られている。 即ち、 従来の摇動型ロータリー 圧縮機は、 図 1に示すように、 軸方向両側にフロント及びリャへッ ドが対 接されるシリンダ Aのシリンダ室 A 1内に、 径方向外方に向けて突出する ブレード B 1を一体に設けたローラー Bを、 これらローラー B及びブレー ド B 1の上下両端面が上記各へッ ドのフ —ス面に摺接されるように配設 すると共に、 上記シリンダ Aの内部に上記各へッ ドに摺接される円柱状の 支持体 Cを回転可能に支持して、 この支持体 Cに形成した受入溝 C 1に上 記ブレード B 1の先端側を揺動及び進退出可能に支持させることにより、 上記ローラー B及びブレード B 1を介して上記シリンダ室 A 1の内部を圧 縮室 Xと吸入室 Yとに区画する一方、 上記ローラー Bに駆動軸の偏心部を 挿嵌させて、 この駆動軸で上記ローラー Bを上記シリンダ室 A 1内で公転 駆動させることにより、 上記吸入室 Yにガス流体を吸入し、 また、 上記圧 縮室 Xでガス流体の圧縮を行うようにしている。 Conventionally, as a swing type rotary compressor, for example, as described in Japanese Patent Application Laid-Open No. 5-220874, a blade for partitioning a cylinder chamber into a suction chamber and a compression chamber is provided. The blade is integrally protruded from the roller inserted into the eccentric part of the drive, and the blade is swingably supported in the receiving groove of the support rotatably arranged on the cylinder to expose the roller. There is known an apparatus that compresses a gas fluid. That is, as shown in FIG. 1, the conventional rotary compressor of the conventional type has a radially outward direction in a cylinder chamber A1 of a cylinder A in which a front and a head are contacted on both axial sides. A roller B integrally provided with a protruding blade B 1 is disposed such that both upper and lower end surfaces of the roller B and the blade B 1 are in sliding contact with the fusing surfaces of the respective heads. A cylindrical support C which is slidably contacted with each of the above-mentioned heads is rotatably supported inside the cylinder A, and a receiving groove C1 formed in the support C is provided at a tip end of the blade B1. Oscillates and advances and retreats, thereby partitioning the interior of the cylinder chamber A1 into a compression chamber X and a suction chamber Y via the roller B and the blade B1, while being driven by the roller B. The eccentric part of the shaft is inserted and the roller B is By revolving driven by Da chamber A within 1 sucks the gaseous fluid into the suction chamber Y, also, the pressure The compression of the gas fluid is performed in the contraction chamber X.
以上の圧縮機では、 上記ローラー B及びブレー K B 1の上下両端面が上 記各へッ ドに摺接されるため、 上記ローラー B及びブレー K B 1の上下両 端面に潤滑油を供袷して潤滑する必要がある。 このため従来では、 上記駆 動軸の偏心部と上記ローラー Bの内周面との間の摺接部位に給油された高 圧の潤滑油を、 上記ローラー Bの内周側と上記吸入室 Y及び圧縮過程の圧 縮室 Xとの間の高低差圧、 並びに上記吸入室 Yと圧縮室 Xとの間の高低差 圧を利用して袷油するようにしている。  In the above compressor, since the upper and lower end surfaces of the roller B and the breaker KB 1 are in sliding contact with the respective heads, lubricating oil is supplied to the upper and lower end surfaces of the roller B and the breaker KB 1. Requires lubrication. Therefore, conventionally, high-pressure lubricating oil supplied to a sliding contact portion between the eccentric portion of the drive shaft and the inner peripheral surface of the roller B is supplied to the inner peripheral side of the roller B and the suction chamber Y. The liner oil is made using the pressure difference between the compression chamber X in the compression process and the pressure difference between the suction chamber Y and the compression chamber X.
即ち、 吸入室 Yは勿論、 上記圧縮室 Xにおいても、 該圧縮室 Xでガス流 体が所定圧力に圧縮される以前の段階までは上記ローラー Bの内周面側の 圧力との間に高低差圧が生ずるし、 また、 吸入室 Yと圧縮室 Xとの間にも 高低差圧が生ずるのであって、 これらの高低差圧を利用して、 上記ローラ 一 Bと上記偏心部との間を潤滑した後の高圧潤滑油を、 図 1の実線矢印 n で示すように、 上記ローラー Bの内周側から上記圧縮室 X及び吸入室 Yへ と上記ローラー Bの上下両端面を経て導入させたり、 上記圧縮室 Xから吸 入室 Yへと上記ブレード B 1の上下両端面を経て導入させることにより、 上記ローラー B並びにブレード B 1の上下両端面を潤滑するようにしてい る o  That is, not only in the suction chamber Y but also in the compression chamber X, up to the stage before the gas fluid is compressed to a predetermined pressure in the compression chamber X, the pressure between the pressure on the inner circumferential surface side of the roller B and the compression chamber X is higher or lower. A pressure difference is generated, and a height difference pressure is also generated between the suction chamber Y and the compression chamber X. By utilizing these height difference pressures, a pressure difference between the roller 1B and the eccentric portion is obtained. After lubricating the roller B, high-pressure lubricating oil is introduced from the inner peripheral side of the roller B into the compression chamber X and the suction chamber Y via the upper and lower end surfaces of the roller B as indicated by the solid arrow n in FIG. Or, the upper and lower ends of the roller B and the blade B1 are lubricated by being introduced from the compression chamber X to the suction chamber Y via the upper and lower ends of the blade B1.o
ところ力 従来では上記したように、 上記フロントへッ ド及びリャへッ ドと、 これらへッ ドのフェース面に摺接する上記ローラー B及びブレード B 1の上下端面との給油は、 高低差圧を利用し、 上記フェース面との隙間 を介して給油するようにしていたため、 図 1に示す斜線で囲んだ部分 D, E、 即ち、 上記ローラ一 Bにおけるブレード突設基部の上下両端面部分 D と、 上記支持体 Cの受入溝 C 1に介入している上記ブレード B 1の突出先 端側上下端面部分 Eとには高低差圧が発生し難いことから、 潤滑油の流れ が生じず、 これら部分 D , Eにおいては潤滑不良が生じ、 従って、 上記口 —ラー B及びブレー B 1の上記フユース面との摺接部を確実に潤滑する ことができず信頼性が低くなる問題があつた。 However, as described above, the lubrication between the front and rear heads and the upper and lower end surfaces of the roller B and the blade B1 that slides on the face surfaces of the heads, as described above, requires a high-low pressure difference. Because of this, the oil was supplied through the gap between the face and the face.Therefore, the parts D and E enclosed by oblique lines shown in FIG. Since the pressure difference between the upper and lower end surfaces E of the projecting end of the blade B 1 intervening in the receiving groove C 1 of the support C is unlikely to occur, the flow of the lubricating oil And lubrication failure occurs in these portions D and E, and therefore, the sliding contact portions of the above-mentioned opening rollers B and B1 with the above-mentioned fusing surfaces cannot be reliably lubricated, resulting in low reliability. There was a problem.
発明の開示  Disclosure of the invention
本発明の目的は、 ローラー及びブレードの軸方向両端面における全面を 確実に潤滑でき、 信頼性を向上することができる揺動型ロータリー圧縮機 を提供することにある。  An object of the present invention is to provide an oscillating rotary compressor capable of reliably lubricating the entire surfaces of both ends in the axial direction of a roller and a blade and improving reliability.
上記目的を達成するため、 本発明の揺動型ロータリー圧縮機は、 内側に シリンダ一室が形成されたシリンダ一と、  In order to achieve the above object, an oscillating rotary compressor of the present invention includes: a cylinder having a cylinder chamber formed therein;
駆動由の偏心部に嵌合され、 上記シリンダ室内に公転可能に内装される ローラーと、  A roller fitted into the eccentric part of the driving mechanism and rotatably mounted inside the cylinder chamber;
上記ローラーに一体に突設され、 上記シリンダ室を圧縮室と吸入室とに 区画するブレードと、  A blade protruding integrally with the roller and dividing the cylinder chamber into a compression chamber and a suction chamber;
上記シリンダ内に揺動可能に配設されると共に、 上記ブレードの突出先 端部分を進退出自由に受け入れる受入溝を有する支持体と、  A support having a receiving groove, which is swingably disposed in the cylinder, and which freely receives a protruding end portion of the blade to advance and retreat;
上記ブレード及び上記口—ラーのブレード突設基部の軸方向端面に形成 されると共に、 一端が上記ローラーの内周面に開放され、 他端が上記ブレ 一ドの突出先端に開放される油溝とを備えている。  An oil groove formed on the axial end surface of the blade and the blade protruding base of the mouth, one end of which is open to the inner peripheral surface of the roller, and the other end of which is open to the protruding end of the blade. And
上記構成のロータリ一圧縮機においては、 上記ローラーの内周側に給油 された潤滑油が、 その公転駆動時に上記ローラーに作用する遠心力により、 上記油溝を流れて上記ブレードの突出先端側へと強制的に案内される。 こ のとき、 上記油溝を流れる潤滑油は、 上記ローラーの公転駆動により、 こ の油溝から、 上記ローラーのブレード突設基部における軸方向端面及び上 記ブレードの軸方向端面に給油されるのである。 従って、 上記ローラー及 びブレードのま由方向端面全体が上記ローラー内周面と圧縮室、 吸入室との 間に生じる差圧を利用した差圧給油と相俟って、 確実に潤滑でき、 その信 頼性を向上できるのである。 In the rotary compressor having the above configuration, the lubricating oil supplied to the inner peripheral side of the roller flows through the oil groove due to the centrifugal force acting on the roller at the time of its orbital drive, and flows toward the tip end of the blade. Is forcibly guided. At this time, the lubricating oil flowing through the oil groove is supplied from the oil groove to the axial end face of the blade projecting base portion of the roller and the axial end face of the blade by the revolution drive of the roller. is there. Therefore, the entire end face of the roller and the blade in the direction of the cross section is formed by the inner peripheral surface of the roller and the compression chamber and the suction chamber. Combined with differential pressure lubrication utilizing the differential pressure generated between them, lubrication can be ensured and its reliability can be improved.
本発明の一実施例においては、 上記支持体の受入溝における上記ブレー ドの背面側に、 上記シリンダの外部に対して閉鎮された高圧室が形成され ている。 つまり、 上記ブレードの背面側に、 上記油溝を介して上記ローラ 一の内周部側に連通する高圧室を形成している。 したがって上記ローラー の公転 IE動時に、 上記油溝から高圧室内に導入された潤滑油を、 該高圧室 に充満させることができ、 従って、 この高圧室に対して低圧状態に保持さ れる上記吸入室側に、 上記シリンダ内に支持された上記支持体の吸入室側 外周部や上記ブレードの吸入室側壁部に沿って差圧により流通させること ができる。 一方、 上記圧縮室側においては、 その内部で圧縮されるガス流 体が上記高圧室の内部圧力と同等となるまでは、 この高圧室内の涠滑油を、 その差圧により上記支持体の圧縮室側外周部や前記ブレードの圧縮室側壁 部に沿って上記圧縮室へと流通させることができる。 この結果、 上記支持 体の外周部及び両端面、 さらに、 上記受入溝に対しても、 潤滑を有効にで きるのである。  In one embodiment of the present invention, a high-pressure chamber closed to the outside of the cylinder is formed on the back side of the blade in the receiving groove of the support. In other words, a high-pressure chamber communicating with the inner peripheral side of the roller 1 through the oil groove is formed on the back side of the blade. Therefore, the lubricating oil introduced from the oil groove into the high-pressure chamber can be filled in the high-pressure chamber during the revolution IE of the roller, and therefore, the suction chamber maintained in a low-pressure state with respect to the high-pressure chamber. On the other hand, the pressure can be caused to flow by the differential pressure along the suction chamber-side outer peripheral portion of the support supported in the cylinder and the suction chamber side wall of the blade. On the other hand, on the compression chamber side, the lubricating oil in the high pressure chamber is compressed by the differential pressure of the support until the gas fluid compressed therein becomes equal to the internal pressure of the high pressure chamber. The air can be flowed to the compression chamber along the outer peripheral portion on the chamber side or along the side wall of the compression chamber of the blade. As a result, it is possible to effectively lubricate the outer peripheral portion and both end surfaces of the support and the receiving groove.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1はブレードが一体に形成された従来のローラーの斜視図である。 図 2は本発明の第 1の実施例の揺動型ロータリ一圧縮機におけるローラ 一を含む圧縮要素を示す斜視図である。  FIG. 1 is a perspective view of a conventional roller integrally formed with a blade. FIG. 2 is a perspective view showing a compression element including a roller 1 in the oscillating rotary compressor according to the first embodiment of the present invention.
図 3は上記第 1の実施例の要部を示す平面図である。  FIG. 3 is a plan view showing a main part of the first embodiment.
図 4は本発明の第 2の実施例の要部を示す平面図である。  FIG. 4 is a plan view showing a main part of the second embodiment of the present invention.
図 5は本発明の第 3の実施例に係る横形ロータリ一圧縮機の全体構造を 示す縱断面図である。  FIG. 5 is a longitudinal sectional view showing the overall structure of a horizontal rotary compressor according to a third embodiment of the present invention.
図 6は上記第 3の実施例の要部を示す断面図である。 発明を実施するための最良の形態 FIG. 6 is a sectional view showing a main part of the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
図 2及び図 3は第 1の実施例の揺動型ロータリ一圧縮接の圧縮要素部分 のみを示しており、 この圧縮要素は、 フロント及びリャヘッ ド(図示せず) のフェース面で閉鎖されるシリンダ 1のシリンダ室 1 1内に、 径方向外方 に向けて突出するブレード 2 1を一体に設けたローラー 2を、 これらロー ラー 2及びブレード 2 1の上下両端面が上記各へッ ドのフユース面に摺接 されるように配設すると共に、 上記ローラー 2内に駆動軸 3の偏心部 3 1 を挿嵌させて、 該駆動軸 3の回転に伴い上記ローラー 2を、 その外周面を 上記シリンダ室 1 1の内壁面に接触させながら公転駆動させるようになす —方、 上記シリンダ 1に設けた吐出口 1 2と吸入孔 1 3との中間部位には、 上記シリンダ室 1 1の内部と連通する円形状の支持孔 1 4を形成し、 この 支持孔 1 4に上記各へッ ドに摺接される支持体 4を回転可能に支持して、 この支持体 4に設けた受入溝 4 1に上記ブレード 2 1の先端側を揺動及び 進退出可能に支持させている。 尚、 上記支持体 4は、 半円柱形状とされた 2つの部材 4 A, 4 Bで形成しており、 上記各部材 4 A, 4 Bのフラッ 卜な 対向面間を上記受入溝 4 1として、 該受入溝 4 1に上記ブレード 2 1の先 端側を挿入させている。  FIGS. 2 and 3 show only the compression element portion of the oscillating rotary compression contact of the first embodiment, which is closed by the face surfaces of the front and rear heads (not shown). A roller 2 integrally provided with a blade 21 protruding radially outward in the cylinder chamber 11 of the cylinder 1 is attached to the roller 2 and the upper and lower end surfaces of the blade 21 with the above-mentioned respective heads. The eccentric part 31 of the drive shaft 3 is inserted into the roller 2 while being slidably in contact with the fuser surface, and the roller 2 is rotated with the rotation of the drive shaft 3 so that the outer peripheral surface of the roller 2 is rotated. The revolving drive is performed while making contact with the inner wall surface of the cylinder chamber 11. On the other hand, an intermediate portion between the discharge port 12 and the suction hole 13 provided in the cylinder 1 is provided inside the cylinder chamber 11. A circular support hole 14 communicating with the support hole 14 is formed. The support 4 slidably in contact with each of the above-mentioned heads is rotatably supported, and the receiving groove 41 provided in the support 4 supports the distal end side of the blade 21 so as to swing and advance and retreat. ing. The support 4 is formed of two semi-cylindrical members 4A and 4B, and the flat portion between the flat surfaces of the members 4A and 4B is defined as the receiving groove 41. The leading end of the blade 21 is inserted into the receiving groove 41.
そして、 上記ローラー 2の公転駆動時に、 その外周面が上記シリンダ室 1 1の内壁面に接触される接点と、 上記ブレード 2 1におけるローラー 2 の公転方向前方側壁面とで囲まれる上記シリンダ室 1 1の内部空間を上記 吸入孔 1 3に連通する吸入室 Yとなし、 かつ、 上記接点と上記ブレード 2 2における上記ローラー 2の公転方向後方側壁面とで囲まれる上記シリン ダ室 1 1の内部空間を上記吐出□ 1 2に連通する圧縮室 Xとして、 上記駆 動軸 3の駆動に伴い上記ローラー 2の接点を上記シリンダ室 1 1の内壁面 に沿って接触させながら移動させることにより、 上記吸入孔 1 3から上記 吸入室 Y内にガスを吸入し、 また、 上記圧縮室 X内でガスを圧縮して上記 吐出口 1 2力、ら吐出し、 これらガスの吸入と圧縮とを緣り返すようにして いる。 When the roller 2 is driven to revolve, the cylinder chamber 1 surrounded by a contact whose outer peripheral surface is in contact with the inner wall surface of the cylinder chamber 11 and the front wall surface of the blade 2 1 in the revolving direction of the roller 2. The interior space 1 is not provided with the suction chamber Y communicating with the suction hole 13, and the inside of the cylinder chamber 11 is surrounded by the contact point and the rear wall surface of the blade 2 2 in the revolving direction of the roller 2. As the compression chamber X communicating the space with the discharge □ 12, by moving the contact point of the roller 2 along the inner wall surface of the cylinder chamber 11 while driving the drive shaft 3, Above suction hole 13 The gas is sucked into the suction chamber Y, and the gas is compressed in the compression chamber X and discharged from the discharge port 12 so that the suction and compression of these gases are repeated.
また、 上記駆動铀 3の铀心内部には給油ポンプに連通する給油通路 3 2 を形成すると共に、 上記 IS動軸 3の偏心部 3 1に上記袷油通路 3 2から怪 方向外方に延びる分岐通路 3 3を設けて、 上記袷油通路 3 2に汲み上げら れた高圧の潤滑油を上記分岐通路 3 3を介して上記ローラー 2の内周面と 上記偏心部 3 1の外周面との摺接部位に給油するようにしている。  Further, an oil supply passage 32 communicating with the oil supply pump is formed inside the center of the drive shaft 3 and extends outward from the lined oil passage 3 2 in the eccentric portion 31 of the IS drive shaft 3 in the strange direction. A branch passage 33 is provided, and high-pressure lubricating oil pumped into the lined oil passage 32 is passed through the branch passage 33 between the inner peripheral surface of the roller 2 and the outer peripheral surface of the eccentric portion 31. Oil is supplied to the sliding contact area.
また、 上記ローラー 2の内周部側は、 該ローラー 2の公転駆動時、 上記 給油ポンプで汲み上げられた高圧潤滑油が給油されて高圧となるのであり、 従って、 このローラー 2の内周部側と上記吸入室 Yとの間には、 常に所定 の高低差圧が発生するし、 また、 上記圧縮室 X側においては、 該圧縮室 X でガス流体が上記ローラー 2の内周側の圧力と同等圧力に圧縮されるまで は、 上記内周部側との間に所定の高低差圧が発生することになる。 この結 果、 上記ローラー 2の内周部に給油される高圧潤滑油は、 図 2 , 3の実線 矢印 n で示すように、 上記ローラー 2の内周部側から上記圧縮室 X及び 吸入室 Yへと上記ローラー 2の上下両端面を経て導入され、 これら圧縮室 X及び吸入室 Yへと潤滑油が導入されるとき、 上記ローラー 2の公転駆動 に伴いその上下両端面に給油される。  When the roller 2 revolves, the high-pressure lubricating oil pumped up by the oil supply pump is supplied to the inner peripheral side of the roller 2 to have a high pressure. Therefore, the inner peripheral side of the roller 2 And a predetermined pressure difference is always generated between the suction chamber Y and the compression chamber X. On the compression chamber X side, the gas fluid flows in the compression chamber X with the pressure on the inner peripheral side of the roller 2. Until compressed to the same pressure, a predetermined height differential pressure is generated between the inner peripheral portion and the inner peripheral portion. As a result, the high-pressure lubricating oil supplied to the inner peripheral portion of the roller 2 is supplied from the inner peripheral side of the roller 2 to the compression chamber X and the suction chamber Y as shown by a solid line arrow n in FIGS. When the lubricating oil is introduced into the compression chamber X and the suction chamber Y through the upper and lower ends of the roller 2, the lubricating oil is supplied to the upper and lower ends of the roller 2 as the roller 2 revolves.
図 2. 3に示した実施例は、 以上の構成において、 上記ローラー 2の上 記ブレード突設基部における上下両端面と、 上記ブレード 2 1の上下両端 面とに、 一端が上記ローラー 2の内周面に開放され、 かつ、 他端が上記ブ レード 2 1の突出先端側に関放される直線状の油溝 2 2をそれぞれ形成し たのである。  In the embodiment shown in FIG. 2.3, in the above configuration, one end of the roller 2 is attached to the upper and lower end surfaces of the blade protruding base and the upper and lower end surfaces of the blade 21. A linear oil groove 22 was formed on the peripheral surface, and the other end was released toward the protruding tip side of the blade 21.
従って、 上記駆動軸 3の給油通路 3 2に汲み上げられて上記分岐通路 3 3からローラー 2と上記偏心部 3 1との摺接部位に給油された後の潤滑油 は、 図 2. 3の実線矢印 p で示すように、 上記ローラー 2の公転駆動時に 発生する遠心力で上記各油溝 2 2に沿って上記ブレード 2 1の突出先端側 へと強制的に案内され、 これら各油溝 2 2を流れる潤滑油が上記ローラー 2の公転駆動により、 上記油溝 2 2から、 上記ローラー 2のブレード突設 基部における上下両端面と、 上記ブレード 2 1における上下両端面とに給 油されるのである。 Therefore, it is pumped into the oil supply passage 32 of the drive shaft 3 and the branch passage 3 As shown by the solid arrow p in Fig. 2.3, the lubricating oil that has been supplied to the sliding contact area between the roller 2 and the eccentric part 3 1 from above is the centrifugal force generated when the roller 2 revolves. The lubricating oil that is forcibly guided along the oil grooves 22 to the protruding tip side of the blade 21 and flows through the oil grooves 22 is revolved by the rollers 2 so that the lubricating oil flows out of the oil grooves 22. Oil is supplied to the upper and lower end surfaces of the roller 2 at the protruding base of the blade and the upper and lower end surfaces of the blade 21.
この結果、 上記ローラー 2及びブレード 2 1の上下両端面全体を確実に 潤滑できるようになり、 信頼性に優れたものとなし得るのである。 尚、 前 述した図 2 , 3の実施例においては、 上記支持体 4の受入溝 4 1における 上記ブレード 2 1の突出先端側を開放したが、 上記シリンダ 1の外部側に 対し閉鑌させてもよく、 何れの場合でも、 上記ローラー 2及びブレード 2 1の上下両端面全体を確実に潤滑できるのである。  As a result, the entire upper and lower end surfaces of the roller 2 and the blade 21 can be reliably lubricated, and the reliability can be improved. In the embodiment of FIGS. 2 and 3 described above, the protruding tip side of the blade 21 in the receiving groove 41 of the support 4 is opened, but it is closed to the outside of the cylinder 1. In any case, the entire upper and lower end surfaces of the roller 2 and the blade 21 can be surely lubricated.
また、 図 4に示した第 2の実施例は、 上記ンリンダ 1における上記支持 孔 1 4のブレード突出先端側となる外方位置に、 上記支持体 4を構成する 2つの部材 4 A, 4 B間に形成される受入溝 4 1と連続し、 かつ、 上記ブ レード 2 1に設けた上記油溝 2 2を介して上記ローラー 2の内周部側に連 通する高圧室 1 5を、 上記シリンダ 1の外部側に対し閉鑌状に形成したも のである。  Further, the second embodiment shown in FIG. 4 is characterized in that the two members 4 A, 4 B The high-pressure chamber 15 continuous with the receiving groove 41 formed therebetween and communicating with the inner peripheral side of the roller 2 via the oil groove 22 provided in the blade 21 is formed as described above. It is formed in a closed shape to the outside of the cylinder 1.
以上の構成とするときは、 ブレード 2 1が上記高圧室 1 5に対し進出す る方向に上記ローラー 2が公転させられるとき、 上記ローラー 2の遠心力 により、 該ローラー 2の内周部に給油された高圧の潤滑油が上記油溝 2 2 を介して上記高圧室 1 5へと導入されて充満することになり、 このため、 図 4の点線矢印 q で示したように、 上記ブレード 2 1の移動に伴い上記高 圧室 1 5内の潤滑油が、 差圧によって、 上記支持孔 1 4に支持された上記 支持体 4の吸入室側外周部や上記ブレード 2 1の吸入室側壁部に沿って上 記吸入室 Y側へ流れる。 また一方、 上記圧縮室 X側においては、 その内部 で圧縮されるガス流体が上記高圧室 1 5の内部圧力と同圧以上となるまで は、 この高圧室 1 5内の潤滑油が差圧により上記支持体 4の圧縮室側外周 部や上記ブレード 2 1の圧縮室側壁部に沿って上記圧縮室 Xへと流れるの であり、 従って、 上記高圧室 1 4から圧縮室 X及び吸入室 Yへの差圧によ る油流れにより、 上記支持体 4の外周部や上下端面及び受入溝 4 1に給油 でき、 上記支持体 4の外周部及び上下端面、 さらに、 上記ブレード 2 1が 摺動する上記受入溝 4 1の潤滑も有効に行うことができるのである。 In the above configuration, when the roller 2 revolves in the direction in which the blade 21 advances to the high-pressure chamber 15, the inner peripheral portion of the roller 2 is lubricated by the centrifugal force of the roller 2. The high-pressure lubricating oil thus introduced is introduced into the high-pressure chamber 15 via the oil groove 22 and is filled with the high-pressure lubricating oil. Therefore, as shown by a dotted arrow q in FIG. The lubricating oil in the high-pressure chamber 15 is moved by the differential pressure, The gas flows toward the suction chamber Y along the suction chamber-side outer periphery of the support 4 and the suction chamber side wall of the blade 21. On the other hand, in the compression chamber X, the lubricating oil in the high-pressure chamber 15 is subjected to a differential pressure until the gas fluid compressed therein becomes equal to or higher than the internal pressure of the high-pressure chamber 15. It flows to the compression chamber X along the compression chamber-side outer peripheral portion of the support 4 and the compression chamber side wall of the blade 21, and thus flows from the high-pressure chamber 14 to the compression chamber X and the suction chamber Y. Oil can be supplied to the outer peripheral portion, upper and lower end surfaces, and the receiving groove 41 of the support 4 by the oil flow due to the differential pressure of the above, and the outer peripheral portion, upper and lower end surfaces of the support 4 and the blade 21 slide. Lubrication of the receiving groove 41 can also be effectively performed.
図 5は第 3の実施例である高圧ドーム型とした横形ロータリー圧縮機の 全体構造を示しており、 内底部に油溜 0をもった横形ケーシング 1 0 1の 内部で長手方向一側に、 ステ一夕 1 2 1とロータ 1 2 2とから成るモータ 1 0 2を配設すると共に、 上記ケーシング 1 0 1の内方他側には、 上記口 一夕 1 2 2から延びる駆動軸 1 0 3で駆動される圧縮要素 1 0 4を配設し ている。 この圧縮要素 1 0 4は、 内部にシリンダ室 1 5 1をもつシリンダ 1 0 5と、 該シリンダ 1 0 5の軸方向両側に配設されたフロントへッ ド 1 0 6とリャへッ ド 1 0 7とを備える。  FIG. 5 shows the overall structure of a high-pressure dome-shaped horizontal rotary compressor according to a third embodiment, which is located on one side in the longitudinal direction inside a horizontal casing 101 having an oil sump 0 at the inner bottom. A motor 102 composed of a stay 1 2 1 and a rotor 1 2 2 is provided, and a drive shaft 10 extending from the opening 1 2 2 is provided on the other side inside the casing 101. A compression element 104 driven by 3 is provided. This compression element 104 is composed of a cylinder 105 having a cylinder chamber 15 1 therein, a front head 106 and a rear head 1 disposed on both axial sides of the cylinder 105. 07.
上言己シリンダ 1 0 5のシリンダ室 1 5 1には、 図 6に示すように、 上記 駆動車由 1 0 3の偏心部 1 3 1が挿嵌される筒状のローラー 1 0 8を内装し、 該ローラー 1 0 8に、 上記シリンダ室 1 5 1の内部を、 上記シリンダ 1 0 5に設けた吐出口 1 5 2に連通する圧縮室 Xと、 吸入口 1 5 3に連通する 吸入室 Yとに画成するブレード 1 0 9を該ローラー 1 0 8の外周面から径 方向外方に向けて一体に突設して、 上記ブレード 1 0 9を上記シリンダ 1 0 5に回転可能に設けた支持体 1 1 0に揺動可能に支持している。  As shown in FIG. 6, the cylinder chamber 150 of the cylinder 105 has a cylindrical roller 108 into which the eccentric part 131 of the driving vehicle 103 is inserted. The compression chamber X communicating with the discharge port 15 2 provided in the cylinder 105 and the suction chamber communicating with the suction port 15 3 A blade 109, which is defined as Y, is integrally protruded radially outward from an outer peripheral surface of the roller 108, and the blade 109 is rotatably provided on the cylinder 105. It is swingably supported on the support 110.
そして、 上記駆動軸 1 0 3の回転駆動に伴って、 上記ローラー 1 0 8が 上記シリンダ室 1 5 1内で公転駆動し、 上記吸入ロ1 5 3に接続した吸入 管 1 0 l aから導入される流体ガスを上記吸入室 Yに吸入し、 上記圧縮室 Xで圧縮して、 この圧縮ガスを上記吐出口 1 5 2から上記フロントへッ ド 1 0 6の外側部に設けたマフラ一 1 6 1の内部を経て上記ケーシング 1 0 1の内部空間へと吐出させ、 該ケ一シング 1 0 1の内部で上記モータ 1 0 2側に開口させた吐出管 1 0 l bから外部に吐出させるようにしている。 本実施例の横形ロータリー圧縮機では、 上記ブレード 1 0 9を、 上記ケ 一シング 1 0 1の油溜 0から離れた上記シリンダ 1 0 5の上部側に斜め方 向に配設している。 そして、 上記ブレード 1 0 9の背面側に該ブレード 1 0 9に給油するための閉鎖空間とされた油室 1 5 4を形成して、 上記圧縮 室 Xに袷油された高圧の油を上記吸入室 Yとの差圧によって該油室 1 5 4 の内部に上記ブレード 1 0 9と支持体 1 1 0との間に形成される隙間を経 て導入し、 この油室 1 5 4内に導入された油をさらに上記ブレード 1 0 9 と支持体 1 1 0との間に形成される隙間を経て上記吸入室 Yに導出し、 こ の油の導入、 導出によりブレード 1 0 9の摺動部を潤滑するようにしてい る。 このように、 ブレード 1 0 9への給油を、 このブレー ド 1 0 9の背面 側に設けた油室 1 5 4から行えるので、 ブレード 1 0 9を上記油溜 0に望 ませる必要がなく、 上記シリンダ 1 0 5の任意位置にブレード 1 0 9を設 定することが可能となる。 この結果、 図 5に示すように、 ブレード 1 0 9 を油溜 0から離間したシリンダ 1 0 5の上部側に配設することができるの である。 この結果、 ブレード 1 0 9に近接して設けられる上記吐出口 1 5 2及び吸入口 1 5 3も上記油溜 0から離間した位置に形成できることとなつ て、 油溜 0内の高温の油によって吸入口 1 5 3から吸入される吸入ガスが 過熱されるのを阻止でき、 したがって、 容積効率の低下を少なくでき、 能 力を向上できるのである。 しかも、 上記ブレード 1 0 9を上記シリンダ 1 0 5の上部側に配設することによって、 このシリンダ 1 0 5における油溜 0の上方側に上記吸入口 1 5 3を形成することが可能となるため、 該吸入 口 1 5 3に吸入管 1 0 1 aを接続するにあたって、 該吸入管 1 0 1 aをケ 一シング 1 0 1の横方向一側から簡単に接続でき、 組付作業性を高め得る c さらに、 ケーンング 1 0 1の下部側に上記吸入管 1 0 1 aを接続するため のスペースを別途確保する必要がなくなり、 上記ケーシング 1 0 1の組付 高さを低くすることもできる。 Then, with the rotation of the drive shaft 103, the roller 108 is rotated. Revolving in the cylinder chamber 151, the fluid gas introduced from the suction pipe 10la connected to the suction port 1553 is sucked into the suction chamber Y, compressed in the compression chamber X, The compressed gas is discharged from the discharge port 152 to the internal space of the casing 101 through the inside of the muffler 161, which is provided outside the front head 106, and A discharge pipe 10 lb opened to the motor 102 side inside the thing 101 is discharged to the outside. In the horizontal rotary compressor of the present embodiment, the blade 109 is disposed obliquely on the upper side of the cylinder 105 away from the oil reservoir 0 of the casing 101. Then, an oil chamber 154 serving as a closed space for supplying oil to the blade 109 is formed on the back side of the blade 109, and the high-pressure oil lined up in the compression chamber X is supplied to the above-described high-pressure oil. Due to the pressure difference between the suction chamber Y and the suction chamber Y, the oil is introduced into the oil chamber 154 through a gap formed between the blade 109 and the support 110, and is introduced into the oil chamber 154. The introduced oil is further led to the suction chamber Y through a gap formed between the blade 109 and the support 110, and the oil is introduced and led to slide the blade 109. The parts are lubricated. As described above, the oil supply to the blade 109 can be performed from the oil chamber 154 provided on the back side of the blade 109, so that the blade 109 does not need to be moved to the oil reservoir 0, The blade 109 can be set at an arbitrary position of the cylinder 105. As a result, as shown in FIG. 5, the blade 109 can be disposed on the upper side of the cylinder 105 separated from the oil reservoir 0. As a result, the discharge port 152 and the suction port 1553 provided in the vicinity of the blade 109 can also be formed at a position separated from the oil reservoir 0, and the high-temperature oil in the oil reservoir 0 It is possible to prevent the suction gas sucked from the suction port 153 from being overheated, so that a decrease in volumetric efficiency can be reduced and the performance can be improved. Moreover, the blade 109 is connected to the cylinder 1 By disposing the suction port on the upper side of the oil reservoir 0 in the cylinder 105, the suction port 153 can be formed above the oil reservoir 0. When connecting 101a, the suction pipe 101a can be easily connected from one side in the lateral direction of the casing 101, and the assembling workability can be improved. There is no need to separately secure a space for connecting the suction pipe 101a to the side, and the mounting height of the casing 101 can be reduced.
また、 上 Ϊ己ブレード 1 0 9及びローラー 1 0 8のブレード突設基部にお ける上下両端面には、 それぞれ長さ方向一端が上記ローラー 1 0 8の内周 面に開放され、 他端が上記ブレード 1 0 9の背面側に設けた上記油室 1 5 4に開放された径方向に貫通状に延びる油溝 1 1 1を形成している。 この 油溝 1 1 1を設けたことにより、 上記油溜 0から上記ローラー 1 0 8の摺 動部に給油された潤滑油を、 このローラー 1 0 8の公転駆動に伴う遠心力 により上記油溝 1 1 1を経て上記油室 1 5 4内に積極的に給油できるため、 該油室 1 5 4内を常に高圧の油で充満できるので、 油不足を招くことがな い。 しかも、 この油室 1 5 4を高圧の油で常に高圧にできるから、 この油 室 1 5 4に対して低圧状態に保持される上記吸入室 Y側に、 上記シリンダ 1 0 5内に支持された上記支持体 1 1 0と上記ブレード 1 0 9との隙間を 介して差圧により潤滑油を流通させられると共に、 上記圧縮室 X側におい ては、 その内部で圧縮されるガス流体が上記油室 1 5 4の内部圧力と同等 となるまでは、 この油室 1 5 4内の濶滑油を、 その差圧により上記支持体 1 1 0と上記ブレード 1 0 9との間の隙間を介して上記圧縮室 Xへも流通 させられるのである。 この結果、 上記ブレード 1 0 9の潤滑をより確実に 行うことができるので、 該ブレード 1 0 9の潤滑性能を高めることができ るのである。 産業上の利用可能性 In addition, one end in the length direction is opened to the inner peripheral surface of the roller 108, and the other end is opened to the upper and lower end surfaces of the blade protruding base of the upper blade 109 and the roller 108, respectively. An oil groove 111 is formed in the oil chamber 154 provided on the back side of the blade 109 so as to open in a radial direction and extend in a radial direction. By providing the oil groove 111, the lubricating oil supplied from the oil reservoir 0 to the sliding portion of the roller 108 is moved by the centrifugal force generated by the revolution of the roller 108. Since the oil chamber 154 can be positively refilled with oil through the step 111, the oil chamber 154 can always be filled with high-pressure oil, so that there is no shortage of oil. In addition, since the oil chamber 154 can always be set at a high pressure with high-pressure oil, the oil chamber 154 is supported in the cylinder 105 on the suction chamber Y side maintained at a low pressure state with respect to the oil chamber 154. The lubricating oil can be caused to flow by the differential pressure through the gap between the support 110 and the blade 109, and the gas fluid compressed inside the compression chamber X is compressed by the oil in the compression chamber X side. Until the internal pressure of the chamber 154 becomes equal to the internal pressure, the wide lubricating oil in the oil chamber 154 is released by the pressure difference through the gap between the support 110 and the blade 109. Thus, it is also circulated to the compression chamber X. As a result, since the lubrication of the blade 109 can be performed more reliably, the lubrication performance of the blade 109 can be enhanced. Industrial applicability
本発明の揺動型ロータリ一圧縮機は主に冷凍装置に用いられるものであ る。  The oscillating rotary compressor of the present invention is mainly used for a refrigeration system.

Claims

請求の IS囲 Billing IS box
1. 内側にシリンダ一室(11, 151)が形成されたシリンダー(1.1 05)と、 1. A cylinder (1.1 05) with a cylinder chamber (11, 151) formed inside,
駆動軸(3, 103)の偏心部(31, 131)に嵌合され、 上記シリンダ室 (11, 151)内に公転可能に内装されるローラ一(2, 108)と、  A roller (2, 108) fitted to the eccentric part (31, 131) of the drive shaft (3, 103) and revolving inside the cylinder chamber (11, 151);
上記ローラー(2, 108)に一体に突設され、 上記シリンダ室(11.1 51)を圧縮室(X)と吸入室(Y)とに区画するブレード(21, 109)と、 上記シリンダ(1.105)内に揺動可能に配設されると共に、 上記ブレ ード(21, 109)の突出先端部分を進退出自由に受け入れる受入溝(41) を有する支持体〔4, 110)と、  A blade (21, 109) integrally protruding from the roller (2, 108) and dividing the cylinder chamber (11.1 51) into a compression chamber (X) and a suction chamber (Y); and the cylinder (1.105) A support (4, 110) having a receiving groove (41) that is swingably disposed therein and that freely receives the protruding tip portion of the blade (21, 109).
上記ブレード(21.109)及び上記ローラー (2. 108) のブレー ド突設基部の軸方向端面に形成されると共に、 一端が上記ローラー(2, 1 08)の内周面に開放され、 他端が上記ブレード(21.109)の突出先端 に開放される油溝(22.111)とを備えた揺動型ロータリー圧縮機。  The blade (21.109) and the roller (2.108) are formed on the axial end surface of the blade projecting base, and one end is opened to the inner peripheral surface of the roller (2, 108) and the other end is formed. An oscillating rotary compressor having an oil groove (22.111) opened at the protruding tip of the blade (21.109).
2. 請求項 1記載の揺動型ロータリー圧縮機において、 2. In the oscillating rotary compressor according to claim 1,
上記支持体(4, 110)の受入溝(41)における上記ブレード(21, 1 09)の背面側に、 上記シリンダ (1, 105) の外部に対して閉鎖され た高圧室(15, 154)が形成されている揺動型ロータリー圧縮機。  In the receiving groove (41) of the support (4, 110), on the back side of the blade (21, 109), a high-pressure chamber (15, 154) closed to the outside of the cylinder (1, 105). Swing type rotary compressor in which is formed.
PCT/JP1994/002020 1993-12-08 1994-12-01 Swinging rotary compressor WO1995016136A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019950703289A KR100322269B1 (en) 1993-12-08 1994-12-01 Oscillating Rotary Compressor
DK95902284T DK0683321T3 (en) 1993-12-08 1994-12-01 Swing type rotary compressor
EP95902284A EP0683321B1 (en) 1993-12-08 1994-12-01 Swinging rotary compressor
DE69427186T DE69427186T2 (en) 1993-12-08 1994-12-01 SWINGING ROTATIONAL COMPRESSOR
US08/500,847 US5577903A (en) 1993-12-08 1994-12-01 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30792493A JP3473067B2 (en) 1993-12-08 1993-12-08 Swing type rotary compressor
JP5/307924 1993-12-08

Publications (1)

Publication Number Publication Date
WO1995016136A1 true WO1995016136A1 (en) 1995-06-15

Family

ID=17974812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002020 WO1995016136A1 (en) 1993-12-08 1994-12-01 Swinging rotary compressor

Country Status (10)

Country Link
EP (1) EP0683321B1 (en)
JP (1) JP3473067B2 (en)
KR (1) KR100322269B1 (en)
CN (1) CN1041453C (en)
DE (1) DE69427186T2 (en)
DK (1) DK0683321T3 (en)
ES (1) ES2158069T3 (en)
MY (1) MY119158A (en)
SG (1) SG43887A1 (en)
WO (1) WO1995016136A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788017A (en) * 2012-07-03 2012-11-21 邵阳学院 Portable inflator

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569347B1 (en) 1995-12-28 2003-05-27 Daikin Industries, Ltd. Refrigerating machine oil and refrigerator using the same
US6336336B1 (en) 2000-03-20 2002-01-08 Hitachi, Ltd. Rotary piston compressor and refrigerating equipment
JP3731127B2 (en) * 2004-01-22 2006-01-05 ダイキン工業株式会社 Swing compressor
JP4961961B2 (en) * 2006-11-13 2012-06-27 ダイキン工業株式会社 Rotary fluid machine
JP2010025103A (en) * 2008-06-16 2010-02-04 Daikin Ind Ltd Rotary compressor
CN101328891B (en) * 2008-07-22 2012-08-08 温岭市鑫磊空压机有限公司 Dual rotors translation type rotary compressing device
KR101499977B1 (en) * 2008-07-22 2015-03-10 엘지전자 주식회사 compressor
JP5861456B2 (en) * 2011-12-28 2016-02-16 ダイキン工業株式会社 Rotary compressor
JP5948209B2 (en) * 2012-10-11 2016-07-06 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
CN104595195B (en) * 2014-12-04 2016-06-29 广东美芝制冷设备有限公司 Low backpressure rotary compressor
CN108463635B (en) * 2016-02-23 2020-11-06 大金工业株式会社 Oscillating piston type compressor
JP6520999B2 (en) * 2017-07-31 2019-05-29 ダイキン工業株式会社 Production control system and production control method
CN116906328B (en) * 2023-08-08 2024-03-15 广州市德善数控科技有限公司 Integral type swing rotor formula pump body subassembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4216099B1 (en) * 1964-03-11 1967-09-02
JPS48113011U (en) * 1972-03-28 1973-12-25
JPH05202874A (en) * 1991-09-24 1993-08-10 Daikin Ind Ltd Rotary compressor
JPH05248380A (en) * 1992-03-04 1993-09-24 Daikin Ind Ltd Rotary compressor
JPH05306691A (en) * 1992-04-28 1993-11-19 Daikin Ind Ltd Rotary compressor
JPH05312169A (en) * 1992-05-11 1993-11-22 Daikin Ind Ltd Rotary compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR698476A (en) * 1928-11-27 1931-01-31 Thomson Houston Comp Francaise Improvements to rotary pumps
FR937086A (en) * 1946-10-07 1948-08-06 Rotary compressor
GB729281A (en) * 1952-11-22 1955-05-04 Vadim Stephane Makaroff Improvements in rotary fluid motors, compressors, pumps and the like
JP2576235B2 (en) * 1989-08-10 1997-01-29 ダイキン工業株式会社 Rotary compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4216099B1 (en) * 1964-03-11 1967-09-02
JPS48113011U (en) * 1972-03-28 1973-12-25
JPH05202874A (en) * 1991-09-24 1993-08-10 Daikin Ind Ltd Rotary compressor
JPH05248380A (en) * 1992-03-04 1993-09-24 Daikin Ind Ltd Rotary compressor
JPH05306691A (en) * 1992-04-28 1993-11-19 Daikin Ind Ltd Rotary compressor
JPH05312169A (en) * 1992-05-11 1993-11-22 Daikin Ind Ltd Rotary compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0683321A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788017A (en) * 2012-07-03 2012-11-21 邵阳学院 Portable inflator

Also Published As

Publication number Publication date
MY119158A (en) 2005-04-30
KR100322269B1 (en) 2002-06-20
DE69427186T2 (en) 2001-09-20
CN1117755A (en) 1996-02-28
CN1041453C (en) 1998-12-30
DE69427186D1 (en) 2001-06-13
KR960701306A (en) 1996-02-24
ES2158069T3 (en) 2001-09-01
JP3473067B2 (en) 2003-12-02
DK0683321T3 (en) 2001-05-28
EP0683321B1 (en) 2001-05-09
EP0683321A4 (en) 1996-05-15
JPH07158574A (en) 1995-06-20
EP0683321A1 (en) 1995-11-22
SG43887A1 (en) 1997-11-14

Similar Documents

Publication Publication Date Title
JP3874013B2 (en) Rotary compressor
KR101403231B1 (en) Scroll compressor
WO1995016136A1 (en) Swinging rotary compressor
JP2005330962A (en) Rotating fluid machine
JPH11241682A (en) Compressor for co2
JP3024743B2 (en) Rotary compressor
US5577903A (en) Rotary compressor
JPH07145785A (en) Trochoid type refrigerant compressor
CN100385117C (en) Suction mechanism of rotary compressor
WO2007046457A1 (en) Rotary compressor
JP3132328B2 (en) Scroll type fluid machine
JP4887790B2 (en) Rotary fluid machine
JP3132347B2 (en) Scroll type fluid machine
JP3742849B2 (en) Rotary compressor
JP3422744B2 (en) Scroll compressor
JP3724059B2 (en) Scroll compressor
JP3358307B2 (en) Scroll type fluid machine
CN216842199U (en) Scroll compressor shafting balance structure, scroll compressor and air conditioner
JPH0842474A (en) Rotary compressor
JP2006170213A5 (en)
JP3858578B2 (en) Scroll type fluid machine
KR20070072094A (en) Oil supply structure of high-pressure type scroll compressor
JP3564903B2 (en) Scroll compressor
JP3139429B2 (en) Scroll type fluid machine
JPH01134088A (en) Rotary compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08500847

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019950703289

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995902284

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995902284

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995902284

Country of ref document: EP