JPH05202874A - Rotary compressor - Google Patents
Rotary compressorInfo
- Publication number
- JPH05202874A JPH05202874A JP4252750A JP25275092A JPH05202874A JP H05202874 A JPH05202874 A JP H05202874A JP 4252750 A JP4252750 A JP 4252750A JP 25275092 A JP25275092 A JP 25275092A JP H05202874 A JPH05202874 A JP H05202874A
- Authority
- JP
- Japan
- Prior art keywords
- roller
- blade
- chamber
- cylinder
- discharge port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、主に冷凍装置に使用す
るロータリー圧縮機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary compressor mainly used for refrigeration equipment.
【0002】[0002]
【従来の技術】従来、ロータリー圧縮機は、例えば実開
昭61−114082号公報に記載されている。この従
来の圧縮機は図16及び図17で示したように、密閉ケ
ーシング内にモータで駆動される圧縮要素Aを配設して
おり、この圧縮要素Aは、シリンダ室Bをもったシリン
ダCと、前記モータから延びる駆動軸Dの偏心軸部に挿
嵌され、該駆動軸Dの回転により前記シリンダ室B内を
公転するローラEと、前記シリンダCに設けた吸入口F
と吐出口Gとの中間部位に進退動可能に配設されたブレ
ードHとを備えており、このブレードHは、その背面側
に、前記吐出口Gから吐出された高圧ガスの一部を背圧
として作用させ、この背圧により前記ブレードHの先端
部を前記ローラEの外周面一部に常時接触させることに
より、前記シリンダ室Bを圧縮室Xと吸入室Yとに区画
するようにしている。また、前記吐出口Gには、その出
口周りに形成される弁座面に衝合して前記吐出口Gを開
閉する板状の弁体Iを設けている。2. Description of the Related Art Conventionally, a rotary compressor is described in, for example, Japanese Utility Model Laid-Open No. 61-114082. As shown in FIGS. 16 and 17, in this conventional compressor, a compression element A driven by a motor is arranged in a closed casing, and the compression element A has a cylinder C having a cylinder chamber B. And a roller E which is inserted into an eccentric shaft portion of a drive shaft D extending from the motor and revolves in the cylinder chamber B by the rotation of the drive shaft D, and an intake port F provided in the cylinder C.
And a discharge port G, and a blade H disposed so as to be movable back and forth at an intermediate position between the discharge port and the discharge port G. The blade H has a back surface side on which a part of the high-pressure gas discharged from the discharge port G is placed. The cylinder chamber B is partitioned into a compression chamber X and a suction chamber Y by causing the tip portion of the blade H to constantly contact the outer peripheral surface of the roller E by this back pressure. There is. Further, the discharge port G is provided with a plate-shaped valve body I that opens and closes the discharge port G by abutting a valve seat surface formed around the outlet port.
【0003】そして、前記駆動軸Dの回転により前記ロ
ーラEをシリンダ室B内で公転させながら、前記ブレー
ドHで画成されるシリンダ室B内の圧縮室Xでガスを圧
縮し、この圧縮行程を終了して吐出行程に移行したと
き、圧縮された高圧ガスを前記弁体Iの開動作で前記吐
出口Gからケーシング内へと吐出させ、また、吐出行程
を終了して吸入行程に移行するとき、前記弁体Iを閉動
作させて前記吐出口Gを閉鎖し、前記吸入口Fから前記
シリンダ室B内の前記ブレードHで画成される吸入室Y
へと低圧ガスを吸入して、前記圧縮行程と吐出行程とを
繰り返すのである。Then, while the roller E is revolved in the cylinder chamber B by the rotation of the drive shaft D, the gas is compressed in the compression chamber X in the cylinder chamber B defined by the blade H, and this compression stroke is performed. When the process is completed and the process moves to the discharge process, the compressed high-pressure gas is discharged from the discharge port G into the casing by the opening operation of the valve body I, and the discharge process is completed and the process proceeds to the intake process. At this time, the valve body I is closed to close the discharge port G, and the suction chamber Y defined by the blade H in the cylinder chamber B from the suction port F is closed.
The low-pressure gas is sucked in and the compression stroke and the discharge stroke are repeated.
【0004】[0004]
【発明が解決しようとする課題】所が、以上のように、
ブレードHをシリンダCに進退動可能に支持すると共に
背圧を作用させて、該ブレードHの先端をローラEの外
周面に接触させ、このブレードHとローラEとを相対移
動させるようにした場合、前記ブレードHには背圧を作
用させて該ブレードHの先端をローラ外周面に押圧し、
接触させる必要があり、しかも、ブレードHのローラ外
周面との接触は油が介在されずに金属接触になるから、
ブレードHとローラ外周面との摺動による摩擦損失が大
きいし、動力損失も大きい問題があった。その上、前記
ブレードHの背面に、吐出口Gから吐出された高圧ガス
による背圧をかけて、該ブレードHの先端部を前記ロー
ラEの外周面に接触させているため、前記ブレードHの
背面室の高圧ガスが、図16の矢印aで示したように、
ブレードHの側面とブレード摺動溝との間を経て前記吸
入室Yに漏れ、容積効率が低下する問題があったし、ま
た、前記圧縮室Xは、低圧から高圧まで変動するのであ
るから、前記圧縮室Xの内圧が背圧より低い場合には、
前記背面室に作用する高圧ガスが前記ブレードHの側面
とブレード摺動溝との間を経て圧縮室Xに洩れることに
なり、指示効率が低下する問題もあった。更に、前記ブ
レードHの先端部とローラEとの接触部位から図16の
矢印bで示したように、前記圧縮室Xで圧縮される高圧
ガスが前記吸入室Yに漏れることもあり、前記したブレ
ードH側面からの漏れと相俟って容積効率が更に低下す
る問題があった。[Problems to be Solved by the Invention] However, as described above,
When the blade H is supported in the cylinder C so as to be movable back and forth and a back pressure is applied to bring the tip of the blade H into contact with the outer peripheral surface of the roller E, so that the blade H and the roller E are relatively moved. , Back pressure is applied to the blade H to press the tip of the blade H against the outer peripheral surface of the roller,
It is necessary to bring the blades H into contact with each other, and the contact of the blade H with the outer circumferential surface of the roller H is a metal contact without interposing oil.
There is a problem that friction loss due to sliding between the blade H and the outer peripheral surface of the roller is large and power loss is large. In addition, a back pressure of the high-pressure gas discharged from the discharge port G is applied to the back surface of the blade H to bring the tip end of the blade H into contact with the outer peripheral surface of the roller E. The high pressure gas in the back chamber is as shown by the arrow a in FIG.
There is a problem of leakage into the suction chamber Y via the side surface of the blade H and the blade sliding groove, resulting in a decrease in volumetric efficiency, and the compression chamber X fluctuates from low pressure to high pressure. When the internal pressure of the compression chamber X is lower than the back pressure,
There is also a problem that the high-pressure gas acting on the back chamber leaks into the compression chamber X via the side surface of the blade H and the blade sliding groove, which lowers the indicating efficiency. Further, the high pressure gas compressed in the compression chamber X may leak from the contact portion between the tip of the blade H and the roller E to the suction chamber Y as shown by an arrow b in FIG. Along with the leakage from the side surface of the blade H, there was a problem that the volumetric efficiency was further reduced.
【0005】本発明は以上の問題点に鑑み発明したもの
で、目的は、ブレードのローラとの相対移動をなくし
て、摩擦損失及び動力損失を小さくでき、しかも、ブレ
ード背面室や圧縮室から吸入室へのガス洩れを少なくし
て容積効率及び指示効率を高めることができるようにす
る点にある。The present invention has been made in view of the above problems, and an object thereof is to eliminate the relative movement of the blade with respect to the roller to reduce friction loss and power loss, and moreover, suction from the blade rear chamber or compression chamber. The point is to reduce gas leakage into the chamber and improve volumetric efficiency and indicator efficiency.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明は、図1に明示するように、シリンダ室41
をもつシリンダ4と、前記シリンダ室41に内装され、
該シリンダ室41内を公転するローラ7及び、前記シリ
ンダ室41を圧縮室Xと吸入室Yとに区画するブレード
8とを備えた圧縮要素3をもち、吸入口3aから吸入し
たガス流体を圧縮して吐出口3bから吐出するようにし
たロータリー圧縮機において、前記ブレード8を前記ロ
ーラ7に、該ローラ7の径方向外方に突出するように一
体的に設けると共に、前記シリンダ4に、前記ブレード
8の突出側先端部を受入れる受入溝11aをもった支持
体11を回動可能に設けたことを特徴とするものであ
る。In order to achieve the above object, the present invention, as clearly shown in FIG.
And a cylinder 4 having a
A compression element 3 having a roller 7 that revolves in the cylinder chamber 41 and a blade 8 that divides the cylinder chamber 41 into a compression chamber X and a suction chamber Y, and compresses a gas fluid sucked from a suction port 3a. In the rotary compressor configured to discharge from the discharge port 3b, the blade 8 is integrally provided on the roller 7 so as to project outward in the radial direction of the roller 7, and the cylinder 4 It is characterized in that a support 11 having a receiving groove 11a for receiving the tip end of the blade 8 on the protruding side is rotatably provided.
【0007】また、同図1に示すように、前記ローラ7
の外周部で前記吐出口3bとの対向部位に、この吐出口
3bに向かって突出し、該吐出口3bに突入可能とした
突起75を設けるのが好ましい。Further, as shown in FIG. 1, the roller 7
It is preferable to provide a projection 75, which projects toward the discharge port 3b and is capable of entering the discharge port 3b, at a portion facing the discharge port 3b on the outer peripheral portion of the above.
【0008】更に、図14又は図15に示すように、ロ
ーラ7の高さを、圧縮室X側に接する高温側壁部7aで
低く、吸入室Y側に接する低温側壁部7bで高く設定す
るのも好ましい。Further, as shown in FIG. 14 or FIG. 15, the height of the roller 7 is set low at the high temperature side wall portion 7a in contact with the compression chamber X side and high at the low temperature side wall portion 7b in contact with the suction chamber Y side. Is also preferable.
【0009】[0009]
【作用】以上のロータリー圧縮機では、前記ローラ7
と、該ローラ7が嵌合され、かつ、潤滑油が供給されて
いる駆動軸の偏心軸部との間で相対回転させ、従来例の
ようにブレードとローラとの相対移動をなくしたのであ
るから、ブレードとローラとが相対移動するようにした
従来例に比較して摩擦損失及び動力損失を少なくできる
のである。即ち、前記ローラ7を嵌合する駆動軸の偏心
軸部には、駆動軸の給油路から常時潤滑油が供給されて
いて、流体接触しているからローラ7と偏心軸部との相
対回転においてはその摩擦抵抗を小さくできるのであっ
て、ブレード8に背圧を作用させて、ブレードとローラ
とを相対移動させる場合に比較して摩擦損失を小さくで
きるのであり、動力損失も小さくできるのである。その
上、ブレード8をローラ7に設けて、ブレード8に背圧
をかける必要がないようにしているから、ブレードの背
面室から吸入室Y及び圧縮室Xへのガス漏れをなくする
ことができて、容積効率及び指示効率を高めることがで
き、更に、ブレード8をローラ7に設けているから、圧
縮室Xから吸入室Yへのガス漏れも少なくでき、前記背
面室からのガス漏れがないことと相俟って容積効率をよ
り一層高めることができるのである。In the above rotary compressor, the roller 7
And the roller 7 is fitted to the roller 7 and relatively rotated between the roller 7 and the eccentric shaft portion of the drive shaft to which the lubricating oil is supplied, thereby eliminating the relative movement between the blade and the roller as in the conventional example. Therefore, the friction loss and the power loss can be reduced as compared with the conventional example in which the blade and the roller are relatively moved. That is, the eccentric shaft portion of the drive shaft into which the roller 7 is fitted is constantly supplied with lubricating oil from the oil supply passage of the drive shaft and is in fluid contact with the eccentric shaft portion. The frictional resistance can be reduced, so that the friction loss can be reduced and the power loss can also be reduced as compared with the case where the back pressure is applied to the blade 8 to relatively move the blade and the roller. Moreover, since the blade 8 is provided on the roller 7 so that it is not necessary to apply back pressure to the blade 8, gas leakage from the back chamber of the blade to the suction chamber Y and the compression chamber X can be eliminated. Therefore, the volumetric efficiency and the indicating efficiency can be improved. Further, since the blade 8 is provided on the roller 7, the gas leakage from the compression chamber X to the suction chamber Y can be reduced, and the gas leakage from the back chamber does not occur. Together with this, the volumetric efficiency can be further enhanced.
【0010】また、ローラ7の外周部で吐出口3bに対
向する部位に、前記吐出口3bに向かって突出し、該吐
出口3bに突入可能とした突起75を設けることによ
り、圧縮行程から吐出行程へと移行するとき、前記ロー
ラ7に設けた突起75を、吐出口3bに対し離れた位置
から前記吐出口3bに徐々に突入させることができ、ま
たこの突入時、吐出口3b内の圧縮ガスを外部に押出す
ように突入させることができるから、トップクリアラン
スを少なくでき、前記吐出行程の終了後に吸入行程へと
移行して前記吸入室Y内に低圧ガスを吸入するとき、前
記吐出口3b内に残留した高圧ガスの前記吸入室Y側へ
の逆流量を少なくできるのである。この結果、圧縮損失
や前記吸入室Y内での吸入ガスの過熱及び脈動が防止で
きるし、また、以上の吐出行程の開始時、つまり、吐出
量が多くなる吐出行程初期には、前記突起75が吐出口
3bに突入していないから、ガスの吐出通路を十分に確
保できるのであるから、ガス吐出抵抗を小さくでき、ガ
スの過圧縮を防止でき、この過圧縮による動力損失をな
くすることもできるのである。Further, by providing a projection 75 projecting toward the discharge port 3b and capable of entering the discharge port 3b at a portion of the outer peripheral portion of the roller 7 facing the discharge port 3b, a compression stroke to a discharge stroke is formed. When transitioning to, the protrusion 75 provided on the roller 7 can be gradually rushed into the discharge port 3b from a position distant from the discharge port 3b, and at the time of this rush, the compressed gas in the discharge port 3b is compressed. Since it can be rushed to be pushed out to the outside, the top clearance can be reduced, and when the low pressure gas is sucked into the suction chamber Y after shifting to the suction stroke after the end of the discharge stroke, the discharge port 3b is discharged. It is possible to reduce the reverse flow rate of the high-pressure gas remaining inside to the suction chamber Y side. As a result, compression loss, overheating and pulsation of the suction gas in the suction chamber Y can be prevented, and at the start of the above discharge stroke, that is, at the beginning of the discharge stroke where the discharge amount increases, the protrusion 75 Since it does not rush into the discharge port 3b, a sufficient gas discharge passage can be secured, so that the gas discharge resistance can be reduced, overcompression of gas can be prevented, and power loss due to this overcompression can be eliminated. You can do it.
【0011】更に、ローラ7の高さを、圧縮室X側に接
する高温側壁部7aで低く、吸入室Y側に接する低温側
壁部7bで高く設定することにより、ローラ7が非自転
式となり、運転時、該ローラ7の円周上に沿って生じる
温度差に起因して、ローラ7の高さ方向に熱膨張量の差
が現れることによる不利益も解消できるのである。即
ち、図16に示した従来のブレード往復動式のもので
は、ローラEが駆動軸Dの回転に引きずられて自転し得
るから、その外面が低温の吸入室Yと高温の圧縮室Xと
に交互に接触し、ローラEはその円周上に沿ってほぼ均
等な温度となり得るが、ローラ7が非自転式の場合、低
温の吸入室Yと高温の圧縮室Xとに接触する壁部分が円
周上で固定的に決まるから、図11に示すようにブレー
ド8の突出部を基点0度として時計方向に角度をとった
場合、ローラ7の壁部温度は図12に示すように変化
し、高温のピークが270度付近に、低温のピークが9
0度付近にできてしまうことになる。このため、270
度付近を山として圧縮室X側に接する高温側壁部7aで
は熱膨張が大きく、90度付近を谷として吸入室Y側に
接する低温側壁部7bでは熱膨張が小さく、これらの熱
膨張の差により、ローラ7の高さは、図13の想像線で
極端に示したように数十ミクロンオーダーの差が生じる
ことになる。一方、シリンダ4は、高圧の吐出ガスが充
満されるケーシング内に置かれているため、その熱膨張
はシリンダ室41の円周上に沿ってほぼ均一とみること
ができ、又、シリンダ4の高さは、最大熱膨張量を見込
んで設定しているから、結局、吸入室Y側に接し、その
熱膨張量の小さい低温側壁部7bの上下端面に大きな隙
間ができ、図13中矢印eで示す漏れが生じ、吸入ガス
を加熱して容積効率を低下させる不利益が生じるのであ
る。そこで、図14又は図15に示すように、ローラ7
の高さを、圧縮室X側に接する高温側壁部7aで低く、
吸入室Y側に接する低温側壁部7bで高く設定すること
により、運転時には、その熱膨張の差を積極的に利用
し、同各図中想像線で示すように、これら高温側壁部7
aと低温側壁部7bとの高さを揃えて、ローラ7の高さ
のアンバランスによる漏れを解消したのである。Further, by setting the height of the roller 7 low at the high temperature side wall portion 7a in contact with the compression chamber X side and high at the low temperature side wall portion 7b in contact with the suction chamber Y side, the roller 7 becomes non-rotating. At the time of operation, the disadvantage caused by the difference in the thermal expansion amount in the height direction of the roller 7 due to the temperature difference generated along the circumference of the roller 7 can be eliminated. That is, in the conventional blade reciprocating type shown in FIG. 16, the roller E can be rotated by being rotated by the rotation of the drive shaft D, so that the outer surfaces thereof become a low temperature suction chamber Y and a high temperature compression chamber X. The rollers E may come into contact with each other alternately and have a substantially uniform temperature along the circumference thereof, but when the roller 7 is a non-rotating type, the wall portion contacting the low temperature suction chamber Y and the high temperature compression chamber X is Since it is fixedly determined on the circumference, the wall temperature of the roller 7 changes as shown in FIG. 12 when the protrusion of the blade 8 is set as a base point of 0 degrees and an angle is formed in the clockwise direction as shown in FIG. , The peak of high temperature is around 270 degrees, and the peak of low temperature is 9
It will be near 0 degrees. Therefore, 270
The thermal expansion is large in the high temperature side wall portion 7a which is in contact with the compression chamber X side with a peak near 90 degrees, and is small in the low temperature side wall portion 7b which is in contact with the suction chamber Y side with a valley near 90 degrees and is small. The heights of the rollers 7 are different from each other by several tens of microns as shown by the imaginary line in FIG. On the other hand, since the cylinder 4 is placed in the casing filled with high-pressure discharge gas, its thermal expansion can be considered to be substantially uniform along the circumference of the cylinder chamber 41. Since the height is set in consideration of the maximum amount of thermal expansion, it eventually comes into contact with the suction chamber Y side, and a large gap is formed on the upper and lower end surfaces of the low temperature side wall portion 7b having a small amount of thermal expansion. As a result, leakage occurs, which causes a disadvantage that the intake gas is heated and volumetric efficiency is reduced. Therefore, as shown in FIG. 14 or FIG.
Of the high temperature side wall portion 7a in contact with the compression chamber X side,
By setting the low temperature side wall portion 7b in contact with the suction chamber Y side to be high, the difference in thermal expansion is positively utilized during operation, and the high temperature side wall portion 7b can be used as indicated by the imaginary line in each figure.
By making the heights of a and the low temperature side wall portion 7b uniform, the leakage due to the imbalance of the height of the roller 7 is eliminated.
【0012】[0012]
【実施例】図10に示したロータリー圧縮機は、密閉ケ
ーシング1の内方上部にモータ2を配設すると共に、該
モータ2の下部側に圧縮要素3を配設して、前記モータ
2から延びる駆動軸21を前記圧縮要素3に連動連結さ
せている。この圧縮要素3は、内部にシリンダ室41を
もつシリンダ4と、該シリンダ4の上下開放部に対設さ
れたフロントヘッド5及びリヤヘッド6と、前記シリン
ダ室41内に公転可能に内装されたローラ7とを備え、
前記各ヘッド5,6に設けた軸受部に前記駆動軸21の
下部側を軸受支持すると共に、この駆動軸21の偏心軸
部22に前記ローラ7を回転自由に挿嵌させて、前記駆
動軸21の回転に伴いその偏心軸部22に対し前記ロー
ラ7を摺接させながら回転させるようにしている。ま
た、前記駆動軸21の中心側に、前記ケーシング1にお
ける底部油溜め1bに開口する給油路23を設け、この
給油路23の入口にポンプ要素24を取付け、また、前
記給油路23の中間出口を、前記ローラ7と偏心軸部2
2との摺接面に開口させて、前記ポンプ要素24で前記
油溜め1aから汲上げた潤滑油を、前記給油路23から
前記摺接面に供給するようにしている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The rotary compressor shown in FIG. 10 includes a hermetic casing 1 having a motor 2 disposed in the upper upper portion thereof, and a compression element 3 disposed at the lower portion of the motor 2 so that An extending drive shaft 21 is operatively connected to the compression element 3. The compression element 3 includes a cylinder 4 having a cylinder chamber 41 therein, a front head 5 and a rear head 6 facing the upper and lower open portions of the cylinder 4, and a roller revolvably installed in the cylinder chamber 41. 7 and
The lower portion of the drive shaft 21 is supported by bearings provided on the heads 5 and 6, and the roller 7 is rotatably inserted into the eccentric shaft portion 22 of the drive shaft 21 to form the drive shaft. With the rotation of 21, the roller 7 is rotated while slidingly contacting the eccentric shaft portion 22. Further, an oil supply passage 23 that opens to the bottom oil sump 1b of the casing 1 is provided on the center side of the drive shaft 21, a pump element 24 is attached to the inlet of the oil supply passage 23, and an intermediate outlet of the oil supply passage 23. The roller 7 and the eccentric shaft portion 2
The lubricating oil pumped up from the oil sump 1a by the pump element 24 is supplied to the sliding contact surface from the oil supply passage 23 by opening the sliding contact surface with the sliding contact surface.
【0013】また、前記圧縮要素3には、前記シリンダ
4のシリンダ室41に開口する吸入ガス流体の吸入口3
aと、同じく前記シリンダ室41に開口する圧縮ガス流
体の吐出口3bとをそれぞれ形成する。例えば、図1で
明らかなように、前記シリンダ4の側壁に前記シリンダ
室41に開口する吸入口3aを、また、該吸入口3aの
近くで前記シリンダ4の側壁に前記シリンダ室41に開
口する吐出口3bをそれぞれ形成して、これら吸入口3
aと吐出口3bとの中間部位に、前記シリンダ室41内
を圧縮室Xと吸入室Yとに画成するブレード8を設ける
と共に、前記吐出口3bには、その出口周りに形成され
る弁座面に衝合して前記吐出口3bを開閉する板状の弁
体9を配設する。尚、図1において、10は前記弁体9
の受板、また、図10において、1aは前記ケーシング
1の上部側に接続した外部吐出管である。Further, the compression element 3 has a suction port 3 for suction gas fluid which opens into a cylinder chamber 41 of the cylinder 4.
a and a discharge port 3b of the compressed gas fluid, which also opens in the cylinder chamber 41, are formed. For example, as is apparent from FIG. 1, a suction port 3a opening to the cylinder chamber 41 is formed in a side wall of the cylinder 4, and a cylinder chamber 41 is opened in a side wall of the cylinder 4 near the suction port 3a. The discharge ports 3b are respectively formed, and the suction ports 3 are formed.
A blade 8 which defines the inside of the cylinder chamber 41 into a compression chamber X and a suction chamber Y is provided at an intermediate portion between a and the discharge port 3b, and a valve formed around the outlet of the discharge port 3b. A plate-shaped valve body 9 that abuts the seat surface and opens and closes the discharge port 3b is provided. In FIG. 1, 10 is the valve body 9
In FIG. 10, 1a is an external discharge pipe connected to the upper side of the casing 1.
【0014】しかして以上のロータリー圧縮機におい
て、図1で明らかにしたように、前記ブレード8を前記
ローラ7の外周一部に、該ローラ7の径方向外方に向け
て突出するように設けると共に、前記シリンダ4におけ
る前記吸入口3aと吐出口3bとの中間内方部に円筒形
や球形等の円形保持孔42を設けて、この保持孔42
に、一端が前記シリンダ室41側に開口された受入溝1
1aをもつ支持体11を回動可能に保持して、該支持体
11の受入溝11a内に前記ブレード8の突出側先端部
を摺動可能に挿入させる。In the above rotary compressor, however, the blade 8 is provided on a part of the outer periphery of the roller 7 so as to project outward in the radial direction of the roller 7, as shown in FIG. At the same time, a circular holding hole 42 having a cylindrical shape, a spherical shape, or the like is provided in an intermediate inner portion of the cylinder 4 between the suction port 3a and the discharge port 3b.
And a receiving groove 1 whose one end is opened to the cylinder chamber 41 side.
The support 11 having 1a is rotatably held, and the tip end of the blade 8 on the protruding side is slidably inserted into the receiving groove 11a of the support 11.
【0015】前記ローラ7の外周一部に前記ブレード8
を設けるに際しては、例えば図1で示したように、前記
ローラ7側に前記ブレード8の基端一部を挿入可能とし
た取付溝71を形成し、この取付溝71内に前記ブレー
ド8の基端一部を挿入させて接着剤で接着一体化させる
か或はロウ付けにより一体化させるのである。又は、図
2、図3で示すように、前記ローラ7の半径方向外周
に、軸方向中央部を深溝72aとし、両端側を浅溝72
bとした段付溝72と、この段付溝72の深溝部両端面
から軸方向外方に貫通する嵌合孔73とを設けると共
に、前記ブレード8の基端に、前記段付溝72の深溝部
に嵌合する嵌合突起81aをもった嵌合部81を設け
て、前記嵌合突起81aに嵌合孔82を設け、前記ブレ
ード8の嵌合部81を前記段付溝72に嵌合して、前記
各嵌合孔73、82に一本のピン83を挿嵌することに
より、前記ブレード8をローラ7に固定するのである。
この場合、前記嵌合部81の段付溝72への嵌合部分に
は補助的に接着剤を付着させるのが好ましい。又、図4
で示すように、前記ローラ7の外周一部に突部74を設
けると共に、前記ブレード8側に前記突部74に突入可
能な溝部84を設けて、該溝部84に前記突部74を介
入させた状態で前記突部74とブレード8とにピン85
を貫通させると共に、ブレード8とローラ7との対向面
間に接着剤を装填することにより、このブレード8を前
記ローラ7に固定してもよい。The blade 8 is provided on a part of the outer periphery of the roller 7.
When the blade 8 is provided, for example, as shown in FIG. 1, a mounting groove 71 into which a part of the base end of the blade 8 can be inserted is formed on the roller 7 side, and the base of the blade 8 is formed in the mounting groove 71. The end portions are inserted and bonded together with an adhesive, or they are integrated by brazing. Alternatively, as shown in FIGS. 2 and 3, on the outer circumference in the radial direction of the roller 7, a deep groove 72a is formed at the central portion in the axial direction and shallow grooves 72 are formed at both ends.
The stepped groove 72 of b and the fitting hole 73 penetrating axially outward from both end surfaces of the deep groove portion of the stepped groove 72 are provided, and the base end of the blade 8 is provided with the stepped groove 72 of the stepped groove 72. A fitting portion 81 having a fitting protrusion 81a for fitting in the deep groove portion is provided, a fitting hole 82 is provided in the fitting protrusion 81a, and the fitting portion 81 of the blade 8 is fitted in the stepped groove 72. At the same time, the blade 8 is fixed to the roller 7 by inserting one pin 83 into each of the fitting holes 73 and 82.
In this case, it is preferable that an adhesive agent is auxiliary attached to the fitting portion of the fitting portion 81 into the stepped groove 72. Also, FIG.
As shown in FIG. 7, a protrusion 74 is provided on a part of the outer periphery of the roller 7, and a groove 84 that can enter the protrusion 74 is provided on the side of the blade 8 so that the protrusion 74 is intervened in the groove 84. Pin 85 on the protrusion 74 and the blade 8 while
It is also possible to fix the blade 8 to the roller 7 by penetrating it and filling an adhesive between the opposing surfaces of the blade 8 and the roller 7.
【0016】そして、前記駆動軸21の駆動に伴い前記
ローラ7に設けたブレード8を、その突出先端部を前記
支持体11の受入溝11a内で出入させ、かつ、該支持
体11の回動を伴い、揺動しながら径方向へと進退動さ
せることにより、前記シリンダ室41の内部を圧縮室X
と吸入室Yとに画成するのである。以上の構成とするこ
とにより、前記ローラ7を、偏心軸部22に対し相対回
転させ、従来のように前記ブレード8の先端部が前記ロ
ーラ7の外周面に接触して、ブレード8とローラ7とが
相対移動することがないため、前記ブレード8とローラ
7との摩擦による摩耗及び前記摩擦による動力損失をな
くすことができるのである。即ち、ブレード8とローラ
7とが相対移動しない代わりに、ローラ7と偏心軸部2
2とが相対回転することになるのであるが、前記ローラ
7を嵌合する駆動軸21の偏心軸部22には、駆動軸2
1の給油路23から常時潤滑油が供給されていて、流体
接触しているから摩擦抵抗を小さくできるのであって、
ブレード8に背圧を作用させ、ブレード8をローラ7に
接触させて相対移動させる場合に比較して摩擦損失を小
さくできるのであり、動力損失も小さくできるのであ
る。The blade 8 provided on the roller 7 is driven into and out of the receiving groove 11a of the support 11 by the drive of the drive shaft 21, and the support 11 is rotated. Accordingly, the inside of the cylinder chamber 41 is moved inside the compression chamber X by moving back and forth in the radial direction while swinging.
And a suction chamber Y. With the above configuration, the roller 7 is rotated relative to the eccentric shaft portion 22, and the tip portion of the blade 8 comes into contact with the outer peripheral surface of the roller 7 as in the conventional case, so that the blade 8 and the roller 7 Since and do not move relative to each other, wear due to friction between the blade 8 and the roller 7 and power loss due to the friction can be eliminated. That is, the blade 8 and the roller 7 do not move relative to each other, but the roller 7 and the eccentric shaft portion 2 do not move.
2 will rotate relative to each other, but the eccentric shaft portion 22 of the drive shaft 21 into which the roller 7 is fitted has the drive shaft 2
Since the lubricating oil is constantly supplied from the first oil supply passage 23 and is in fluid contact, the frictional resistance can be reduced,
The friction loss can be reduced and the power loss can be reduced as compared with the case where the back pressure is applied to the blade 8 and the blade 8 is brought into contact with the roller 7 and moved relatively.
【0017】更に、前記ブレード8は、前記ローラ7に
設けているため、従来のように背圧を作用させる必要が
なく、従って、従来例のようにブレードの背面室から前
記吸入室Yや圧縮室Xへのガス漏れがなくなり、容積効
率及び指示効率を高くできるのである。また、前記圧縮
室Xから前記吸入室Yへのガス漏れも少なくなって容積
効率をより一層高くできるのである。即ち、前記ブレー
ド8の両側壁面と、該ブレード8が挿入される前記支持
体11の受入溝11aとの間から、前記圧縮室X内のガ
ス流体が前記吸入室Y側に漏れることがあるが、前記圧
縮室X内のガスは、低圧から高圧まで変動するのである
から、この圧縮室X内のガス流体圧力が吸入室Yのガス
流体圧力との圧力差が所定圧以上になったときにのみガ
ス漏れを招き、それ以外にはガス漏れが発生しないため
に、従来のものに較べて圧縮室Xから吸入室Yへのガス
漏れ量を大幅に少なくできるのである。Further, since the blade 8 is provided on the roller 7, it is not necessary to apply back pressure as in the conventional case. Therefore, unlike the conventional example, the back chamber of the blade is used to the suction chamber Y and the compression chamber. Gas leakage to the chamber X is eliminated, and volumetric efficiency and indicating efficiency can be increased. Further, gas leakage from the compression chamber X to the suction chamber Y is reduced, and the volumetric efficiency can be further increased. That is, the gas fluid in the compression chamber X may leak to the suction chamber Y side from between both side wall surfaces of the blade 8 and the receiving groove 11a of the support body 11 into which the blade 8 is inserted. Since the gas in the compression chamber X fluctuates from low pressure to high pressure, when the pressure difference between the gas fluid pressure in the compression chamber X and the gas fluid pressure in the suction chamber Y becomes a predetermined pressure or more. Only the gas leakage is caused, and the gas leakage does not occur other than that, so that the gas leakage amount from the compression chamber X to the suction chamber Y can be significantly reduced as compared with the conventional one.
【0018】また、前記ローラ7の外周部で前記吐出口
3bとの対向部位には、この吐出口3bよりも径小とし
た略円柱状の突起75を設けて、吐出量が多くなる吐出
行程開始時、前記突起75が吐出口3bに突入しない位
置にあり、吐出行程が進行して吐出量が減少するのに伴
い前記突起75が徐々に前記吐出口3bに突入するよう
にし、かつ、この突入により前記吐出口3b内の圧縮ガ
スを外部に押し出すようになすのである。Further, a substantially cylindrical projection 75 having a smaller diameter than the discharge port 3b is provided at a portion of the outer peripheral portion of the roller 7 facing the discharge port 3b, and a discharge process in which the discharge amount is increased. At the time of start, the projection 75 is in a position where it does not enter the ejection port 3b, and the projection 75 gradually enters the ejection port 3b as the ejection process progresses and the ejection amount decreases. The compressed gas in the discharge port 3b is pushed out by the rush.
【0019】次に、以上の構成としたロータリー圧縮機
の作用について説明する。先ず、図5で示したように、
前記ローラ7の公転角度が0度の場合で吸入及び圧縮行
程を開始しようとするときには、前記ブレード8が前記
支持体11における受入溝11aの奥内部にまで挿入さ
れた状態にあり、また、このときには、前記ローラ7に
設けた突起75が前記吐出口3b内に突入された状態に
ある。そして、以上の状態から前記ローラ7が90度公
転されると、図6で示したように、前記突起75が前記
吐出口3bから離間され、かつ、前記ブレード8は前記
支持体11を回動させながら揺動し、その受入溝11a
から外方側へと摺動されて、前記ローラ7の公転に伴い
前記ブレード8で画成される前記シリンダ室41内の圧
縮室Xでガス流体の圧縮が行われ、又、前記吸入室Y側
では前記吸入口3aからのガス流体の吸入が行われる。Next, the operation of the rotary compressor having the above structure will be described. First, as shown in FIG.
When attempting to start the suction and compression strokes when the revolution angle of the roller 7 is 0 degree, the blade 8 is in a state of being inserted into the inside of the receiving groove 11a in the support body 11, and At times, the projection 75 provided on the roller 7 is in a state of being projected into the discharge port 3b. Then, when the roller 7 revolves 90 degrees from the above state, as shown in FIG. 6, the protrusion 75 is separated from the discharge port 3b, and the blade 8 rotates the support body 11. While swinging, the receiving groove 11a
Is slid to the outer side, the gas fluid is compressed in the compression chamber X in the cylinder chamber 41 defined by the blade 8 as the roller 7 revolves, and the suction chamber Y is also compressed. On the side, the gas fluid is sucked from the suction port 3a.
【0020】また、図7で示したように、前記ローラ7
の公転角度が180度となったときには、前記圧縮室X
でのガス流体の圧縮と前記吸入室Yでのガス流体の吸入
とが継続され、このとき前記ブレード8は前記支持体1
1の受入溝11aから最大量引き出された状態にある。
更に、図8で示したように、前記ローラ7の公転角度が
270度となって吐出行程に至ったときには、前記ロー
ラ7の公転に伴い、該ローラ7に設けたブレード8が徐
々に内方側へと摺動されながら、前記圧縮室Xで圧縮さ
れたガス流体が前記吐出口3bから外部吐出され、ま
た、このときには前記突起75が前記吐出口3b内への
突入を開始する。そして、図9で示したように、前記ロ
ーラ7が315度から360度(図1)にかけて公転さ
れるときに、前記圧縮室Xで圧縮されたガス流体の前記
吐出口3bからの吐出が終了し、このとき前記突起75
が前記吐出口3b内に突入され、該吐出口3bのトップ
クリアランスが小とされて、前記吐出口3b内の残留ガ
ス量を少なくでき、この残留ガスが図5の吸入室へ逆流
することによる容積効率の低下を少なくできる。Further, as shown in FIG. 7, the roller 7
When the revolution angle of 180 degrees becomes 180 degrees, the compression chamber X
The compression of the gas fluid in the suction chamber Y and the suction of the gas fluid in the suction chamber Y are continued, and at this time, the blade 8 is moved by the support 1
The maximum amount is pulled out from the first receiving groove 11a.
Further, as shown in FIG. 8, when the revolution angle of the roller 7 reaches 270 degrees and the discharge stroke is reached, the blade 8 provided on the roller 7 gradually inwardly moves along with the revolution of the roller 7. While sliding to the side, the gas fluid compressed in the compression chamber X is discharged from the discharge port 3b to the outside, and at this time, the protrusion 75 starts to rush into the discharge port 3b. Then, as shown in FIG. 9, when the roller 7 revolves from 315 degrees to 360 degrees (FIG. 1), the discharge of the gas fluid compressed in the compression chamber X from the discharge port 3b ends. At this time, the protrusion 75
Is rushed into the discharge port 3b, the top clearance of the discharge port 3b is made small, and the amount of residual gas in the discharge port 3b can be reduced, and this residual gas flows back to the suction chamber of FIG. Reduction in volumetric efficiency can be reduced.
【0021】以上のように、前記吐出行程へと移行する
とき、前記ローラ7に設けた突起75は、吐出口3bに
対し離れた位置にあり、前記ローラ7の揺動角度に対応
して前記吐出口3b内に前記突起75が徐々に突入する
と共に、この突入時、吐出口3b内の圧縮ガスを外部に
押出すように突入するのである。従って、トップクリア
ランスを少なくでき、前記吐出行程の終了後に吸入行程
へと移行して前記吸入室Y内に低圧ガスを吸入すると
き、前記吐出口3b内に残留した高圧ガスの前記吸入室
Y側への逆流量を少なくできるのである。この結果、圧
縮損失や前記吸入室Y内での吸入ガスの過熱及び脈動が
防止できるし、また、以上の吐出行程の開始時、つま
り、吐出量が多くなる吐出行程初期には、前記突起75
が吐出口3bに突入していないから、ガスの吐出通路を
十分に確保できるのであるから、ガス吐出抵抗を小さく
でき、ガスの過圧縮を防止でき、この過圧縮による動力
損失をなくすることもできるのである。As described above, when shifting to the discharge stroke, the protrusion 75 provided on the roller 7 is located at a position apart from the discharge port 3b and corresponds to the swing angle of the roller 7 as described above. The projection 75 gradually enters the discharge port 3b, and at the time of this projection, the compressed gas in the discharge port 3b protrudes to the outside. Therefore, when the top clearance can be reduced, and when the low pressure gas is sucked into the suction chamber Y after the discharge stroke is completed and the low pressure gas is sucked into the suction chamber Y, the high pressure gas remaining in the discharge port 3b is located on the suction chamber Y side. It is possible to reduce the reverse flow rate to the. As a result, compression loss, overheating and pulsation of the suction gas in the suction chamber Y can be prevented, and at the start of the above discharge stroke, that is, at the beginning of the discharge stroke where the discharge amount increases, the protrusion 75
Since it does not rush into the discharge port 3b, a sufficient gas discharge passage can be secured, so that the gas discharge resistance can be reduced, overcompression of gas can be prevented, and power loss due to this overcompression can be eliminated. You can do it.
【0022】ところで、ローラ7の高さは、図14に示
すように、そのローラ7の上下端面を、ブレード突出部
を基点として時計方向にとった角度で最高温になる27
0度付近が最も低く、最低温となる90度付近が最も高
くなる傾斜面701,702で形成することにより、圧
縮室X側に接する高温側壁部7aで低く、吸入室Y側に
接する低温側壁部7bで高く設定するのが好ましい。こ
の場合には、運転時、元々高さの低い高温側壁部7a
が、元々高さの高い低温側壁部7bよりも大きく熱膨張
し、図中想像線で示すように、これら高温側壁部7aと
低温側壁部7bとの高さが均一に揃えられ、ローラ7の
円周上に沿って、その上下端面部の隙間を均等な小隙間
に保つことができ、該ローラ7の上下端面部を介した漏
れを低減できて、吸入ガスの加熱を一層良好に低減で
き、容積効率を更に向上することができるのである。
尚、ローラ7は、モリブデン・ニッケル・クロム合金等
を用いており、高温側壁部7aと低温側壁部7bとの高
さの差は、数十ミクロン程度に設定している。By the way, as shown in FIG. 14, the height of the roller 7 reaches the maximum temperature at the angle formed by the upper and lower end surfaces of the roller 7 in the clockwise direction with the blade protrusion as the base point.
By forming the inclined surfaces 701 and 702 having the lowest temperature near 0 degrees and the highest temperature near 90 degrees, which is the lowest temperature, the low temperature side wall 7a that is in contact with the compression chamber X side is low, and the low temperature side wall is in contact with the suction chamber Y side. It is preferable to set it high in the portion 7b. In this case, during operation, the high temperature side wall portion 7a is originally low in height.
However, the thermal expansion is larger than that of the low temperature side wall portion 7b which is originally high, and as shown by the imaginary line in the figure, the high temperature side wall portion 7a and the low temperature side wall portion 7b have a uniform height, and the roller 7 Along the circumference, the gaps between the upper and lower end face portions of the roller 7 can be kept evenly small, leakage through the upper and lower end face portions of the roller 7 can be reduced, and heating of the suction gas can be further reduced. Therefore, the volumetric efficiency can be further improved.
The roller 7 is made of molybdenum-nickel-chromium alloy or the like, and the height difference between the high temperature side wall portion 7a and the low temperature side wall portion 7b is set to about several tens of microns.
【0023】又、ローラ7の高さは、図15に示すよう
に、圧縮室X側に接し、角度180度〜360度までの
半円筒部分から成る高温側壁部7aを一律に低く、吸入
室Y側に接し、角度0度〜180度までの半円等部分か
ら成る低温側壁部7bを一律に高くし、その上下端面
を、段差703,704をもつ形状にしてもよく、この
場合には、段差の部分で多少端面に不均一が生じるが、
図14に示したものに比べて加工を簡易にできるし、単
一高さの円筒で形成するものに比べて運転時における高
温側壁面7aと低温側壁面7bとの端面を概ね揃えるこ
とができ、その端面部を介した漏れを低減することがで
きるのである。Further, as shown in FIG. 15, the roller 7 is in contact with the compression chamber X side and the height of the high temperature side wall portion 7a consisting of a semi-cylindrical portion having an angle of 180 to 360 degrees is uniformly low. The low temperature side wall portion 7b which is in contact with the Y side and is formed of a semicircle or the like having an angle of 0 to 180 degrees may be uniformly raised, and the upper and lower end surfaces thereof may be shaped to have steps 703 and 704. In this case, , There is some unevenness on the end surface at the step, but
Processing can be simplified compared to the one shown in FIG. 14, and the end faces of the high temperature side wall surface 7a and the low temperature side wall surface 7b during operation can be substantially aligned compared to those formed with a single height cylinder. Therefore, it is possible to reduce the leakage through the end face portion.
【0024】[0024]
【発明の効果】以上説明したように、本発明のロータリ
ー圧縮機では、シリンダ4のシリンダ室41を圧縮室X
と吸入室Yとに画成するブレード8をローラ7に、該ロ
ーラ7の径方向外方に突出するように一体的に設けると
共に、前記シリンダ4に前記ブレード8の突出側先端部
を受入れる受入溝11aをもつ支持体11を回動可能に
設けて、前記ローラ7と、該ローラ7が嵌合され、か
つ、潤滑油が供給されている駆動軸の偏心軸部との間で
相対回転させ、従来例のようにブレードとローラとの相
対移動をなくしたのであるから、ブレードとローラとが
相対移動するようにした従来例に比較して摩擦損失及び
動力損失を少なくできるのである。即ち、前記ローラ7
を嵌合する駆動軸の偏心軸部には、駆動軸の給油路から
常時潤滑油が供給されていて、流体接触しているのであ
るから、ブードとローラとの接触に比較して摩擦抵抗を
小さくできるのであって、ブレード8に背圧を作用させ
てブレードとローラとを相対移動させる場合に比較して
摩擦損失を小さくできるのであり、動力損失も小さくで
きるのである。その上、ブレード8をローラ7に設け
て、ブレード8に背圧をかける必要がないようにしてい
るから、ブレードの背面室から吸入室Y及び圧縮室Xへ
のガス漏れをなくすることができて、容積効率及び指示
効率を高めることができ、更に、ブレード8をローラ7
に設けているから、圧縮室Xから吸入室Yへのガス漏れ
も防止でき、前記背面室からのガス漏れがないことと相
俟って容積効率をより一層高めることができるのであ
る。As described above, in the rotary compressor of the present invention, the cylinder chamber 41 of the cylinder 4 is replaced by the compression chamber X.
And a suction chamber Y defining a blade 8 integrally provided on the roller 7 so as to project outward in the radial direction of the roller 7, and a receiving portion for receiving the protruding end portion of the blade 8 in the cylinder 4. A support 11 having a groove 11a is rotatably provided so that the roller 7 and the eccentric shaft portion of the drive shaft to which the roller 7 is fitted and which is supplied with lubricating oil are relatively rotated. Since the relative movement of the blade and the roller is eliminated as in the conventional example, the friction loss and the power loss can be reduced as compared with the conventional example in which the blade and the roller are relatively moved. That is, the roller 7
The eccentric shaft part of the drive shaft that is fitted with is constantly in contact with the lubricating oil from the oil supply passage of the drive shaft and is in fluid contact. The friction loss can be reduced and the power loss can also be reduced as compared with the case where the back pressure is applied to the blade 8 to relatively move the blade and the roller. Moreover, since the blade 8 is provided on the roller 7 so that it is not necessary to apply back pressure to the blade 8, gas leakage from the back chamber of the blade to the suction chamber Y and the compression chamber X can be eliminated. Volume efficiency and indicating efficiency can be improved.
Since the gas leakage from the compression chamber X to the suction chamber Y can be prevented, the volume efficiency can be further improved in combination with the absence of gas leakage from the back chamber.
【0025】また、ローラ7の外周部で吐出口3bに対
向する部位に、前記吐出口3bに向かって突出し、該吐
出口3bに突入可能とした突起75を設けることによ
り、圧縮行程から吐出行程へと移行するとき、前記ロー
ラ7に設けた突起75を、吐出口3bに対し離れた位置
から前記吐出口3bに徐々に突入させることができ、ま
た、この突入時、吐出口3b内の圧縮ガスを外部に押出
すように突入させることができるから、トップクリアラ
ンスを少なくでき、前記吐出行程の終了後に吸入行程へ
と移行して前記吸入室Y内に低圧ガスを吸入するとき、
前記吐出口3b内に残留した高圧ガスの前記吸入室Y側
への逆流量を少なくできるのである。この結果、圧縮損
失や前記吸入室Y内での吸入ガスの過熱及び脈動が防止
できるし、また、以上の吐出行程の開始時、つまり、吐
出量が多くなる吐出行程初期には、前記突起75が吐出
口3bに突入していないから、ガスの吐出通路を十分に
確保できるのであるから、ガス吐出抵抗を小さくでき、
ガスの過圧縮を防止でき、この過圧縮による動力損失を
なくすることもできるのである。Further, by providing a projection 75 projecting toward the discharge port 3b and capable of entering the discharge port 3b at a portion of the outer peripheral portion of the roller 7 facing the discharge port 3b, the compression stroke to the discharge stroke can be performed. When transitioning to, the protrusion 75 provided on the roller 7 can be gradually rushed into the discharge port 3b from a position distant from the discharge port 3b, and at the time of this rush, compression in the discharge port 3b is performed. Since the gas can be rushed to be pushed out to the outside, the top clearance can be reduced, and when the low pressure gas is sucked into the suction chamber Y by shifting to the suction stroke after the end of the discharge stroke,
The reverse flow rate of the high-pressure gas remaining in the discharge port 3b to the suction chamber Y side can be reduced. As a result, compression loss, overheating and pulsation of the suction gas in the suction chamber Y can be prevented, and at the start of the above discharge stroke, that is, at the beginning of the discharge stroke where the discharge amount increases, the protrusion 75 Does not penetrate into the discharge port 3b, so that a sufficient gas discharge passage can be secured, so that the gas discharge resistance can be reduced,
It is possible to prevent overcompression of the gas and eliminate power loss due to this overcompression.
【0026】更に、ローラ7の高さを、圧縮室X側に接
する高温側壁部7aで低く、吸入室Y側に接する低温側
壁部7bで高く設定することにより、運転時、ローラ7
の円周上に沿って生じる温度差に起因した熱膨張の差を
積極的に利用でき、高温側壁部7aと低温側壁部7bと
の高さを揃えることができるため、ローラ高さのアンバ
ランスによる漏れを低減でき、吸入ガスの加熱を一層良
好に低減できて、容積効率を更に向上することができる
のである。Further, by setting the height of the roller 7 low at the high temperature side wall portion 7a in contact with the compression chamber X side and high at the low temperature side wall portion 7b in contact with the suction chamber Y side, the roller 7 is in operation.
The difference in thermal expansion caused by the temperature difference along the circumference of the roller can be positively utilized, and the heights of the high temperature side wall portion 7a and the low temperature side wall portion 7b can be made uniform, so that the roller height imbalance is unbalanced. Therefore, it is possible to reduce the leakage caused by the above, further reduce the heating of the suction gas, and further improve the volumetric efficiency.
【図1】本発明のロータリー圧縮機に備えるシリンダの
要部を示す平断面図である。FIG. 1 is a plan sectional view showing a main part of a cylinder provided in a rotary compressor of the present invention.
【図2】ブレードの取付構造例を示す断面図である。FIG. 2 is a sectional view showing an example of a blade mounting structure.
【図3】図2の中央縦断面図である。FIG. 3 is a central vertical sectional view of FIG.
【図4】同ブレードの他の取付構造例を示す断面図であ
る。FIG. 4 is a cross-sectional view showing another example of the mounting structure of the blade.
【図5】ローラの公転角度が0度の場合を示す平断面図
である。FIG. 5 is a plan sectional view showing a case where the revolution angle of the roller is 0 degree.
【図6】同ローラの公転角度が90度の場合を示す平断
面図である。FIG. 6 is a plan sectional view showing a case where the revolving angle of the roller is 90 degrees.
【図7】同ローラの公転角度が180度の場合を示す平
断面図である。FIG. 7 is a plan sectional view showing a case where the revolution angle of the roller is 180 degrees.
【図8】同ローラの公転角度が270度の場合を示す平
断面図である。FIG. 8 is a plan sectional view showing a case where the revolution angle of the roller is 270 degrees.
【図9】同ローラの公転角度が315度の場合を示す平
断面図である。FIG. 9 is a plan sectional view showing a case where the revolution angle of the roller is 315 degrees.
【図10】ロータリー圧縮機の全体構造を示す縦断面図
である。FIG. 10 is a vertical sectional view showing the overall structure of a rotary compressor.
【図11】他の実施例を説明するシリンダの要部を示す
平断面図である。FIG. 11 is a plan sectional view showing a main part of a cylinder for explaining another embodiment.
【図12】同他の実施例を説明するローラの角度に対す
る壁部温度を示す図である。FIG. 12 is a diagram showing a wall temperature with respect to a roller angle for explaining the other embodiment.
【図13】同他の実施例を説明するシリンダの要部を示
す縦断面図である。FIG. 13 is a vertical sectional view showing a main part of a cylinder for explaining the other embodiment.
【図14】同他の実施例におけるローラの具体的形状の
一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of a specific shape of a roller in the other embodiment.
【図15】同じくローラの具体的形状の変形例を示す断
面図である。FIG. 15 is a sectional view showing a modification of the specific shape of the roller.
【図16】従来にかかるロータリー圧縮機の圧縮要素を
示す平断面図である。FIG. 16 is a plan sectional view showing a compression element of a conventional rotary compressor.
【図17】同従来にかゝるロータリー圧縮機の部分断面
図である。FIG. 17 is a partial cross-sectional view of the conventional rotary compressor.
3 圧縮要素 3a 吸入口 3b 吐出口 4 シリンダ 41 シリンダ室 7 ローラ 7a 高温側壁部 7b 低温側壁部 75 突起 8 ブレード 11 支持体 11a 受入溝 3 Compression Element 3a Suction Port 3b Discharge Port 4 Cylinder 41 Cylinder Chamber 7 Roller 7a High Temperature Sidewall 7b Low Temperature Sidewall 75 Protrusion 8 Blade 11 Support 11a Receiving Groove
Claims (3)
記シリンダ室41に内装され、該シリンダ室41内を公
転するローラ7及び、前記シリンダ室41を圧縮室Xと
吸入室Yとに区画するブレード8とを備えた圧縮要素3
をもち、吸入口3aから吸入したガス流体を圧縮して吐
出口3bから吐出するようにしたロータリー圧縮機にお
いて、前記ブレード8を前記ローラ7に、該ローラ7の
径方向外方に突出するように一体的に設けると共に、前
記シリンダ4に、前記ブレード8の突出側先端部を受入
れる受入溝11aをもった支持体11を回動可能に設け
ていることを特徴とするロータリー圧縮機。1. A cylinder 4 having a cylinder chamber 41, a roller 7 which is installed in the cylinder chamber 41 and revolves in the cylinder chamber 41, and the cylinder chamber 41 is divided into a compression chamber X and a suction chamber Y. Compression element 3 with blade 8
In the rotary compressor which has the gas fluid sucked from the suction port 3a and is discharged from the discharge port 3b, the blade 8 is projected to the roller 7 in the radial direction of the roller 7. The rotary compressor is characterized in that it is integrally provided on the cylinder 4, and that the cylinder 4 is rotatably provided with a support 11 having a receiving groove 11a for receiving the tip end of the protruding side of the blade 8.
部位に、前記吐出口3bに向かって突出し、該吐出口3
bに突入可能とした突起75を設けている請求項1記載
のロータリー圧縮機。2. The discharge port 3 is formed by projecting toward the discharge port 3b at a portion of the roller 7 facing the discharge port 3b.
The rotary compressor according to claim 1, further comprising a protrusion 75 that can be inserted into b.
温側壁部7aで低く、吸入室Y側に接する低温側壁部7
bで高く設定している請求項1又は請求項2記載のロー
タリー圧縮機。3. The height of the roller 7 is low at the high temperature side wall portion 7a in contact with the compression chamber X side and low at the low temperature side wall portion 7 in contact with the suction chamber Y side.
The rotary compressor according to claim 1 or 2, wherein the value is set high in b.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25275092A JP3178559B2 (en) | 1991-09-24 | 1992-09-22 | Rotary compressor |
PCT/JP1993/000122 WO1993022561A1 (en) | 1992-04-28 | 1993-02-02 | Rotary compressor in which blade and roller are integrated |
ES93902558T ES2120494T3 (en) | 1992-04-28 | 1993-02-02 | ROTARY COMPRESSOR WITH INTEGRATED WING AND ROLLER. |
SG1996001489A SG45220A1 (en) | 1992-04-28 | 1993-02-02 | Rotary compressor having blade integrated in roller |
US08/030,067 US5383774A (en) | 1992-04-28 | 1993-02-02 | Rotary compressor having blade integrated in roller |
EP93902558A EP0591539B1 (en) | 1992-04-28 | 1993-02-02 | Rotary compressor in which blade and roller are integrated |
DE69320289T DE69320289T2 (en) | 1992-04-28 | 1993-02-02 | ROTATIONAL COMPRESSOR PISTON WITH INTEGRATED CELLS |
DK93902558T DK0591539T3 (en) | 1992-04-28 | 1993-02-02 | Rotary compressor in which blade and roller are integrated |
KR1019930700890A KR100240049B1 (en) | 1992-04-28 | 1993-02-02 | Rotary compressor with roller in which blade is integrated |
CN93102606.7A CN1040787C (en) | 1992-04-28 | 1993-03-18 | Rotative compressor with integral blades and rotator |
TW082102090A TW253014B (en) | 1991-09-24 | 1993-03-20 | Rotary compressor which unifyies blade and roller |
MYPI93000521A MY109211A (en) | 1992-04-28 | 1993-03-23 | Rotary compressor having blade integrated in roller |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-242933 | 1991-09-24 | ||
JP24293391 | 1991-09-24 | ||
JP25275092A JP3178559B2 (en) | 1991-09-24 | 1992-09-22 | Rotary compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05202874A true JPH05202874A (en) | 1993-08-10 |
JP3178559B2 JP3178559B2 (en) | 2001-06-18 |
Family
ID=26535990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25275092A Expired - Fee Related JP3178559B2 (en) | 1991-09-24 | 1992-09-22 | Rotary compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3178559B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995016135A1 (en) * | 1993-12-06 | 1995-06-15 | Daikin Industries, Ltd. | Swinging rotary compressor |
WO1995016136A1 (en) * | 1993-12-08 | 1995-06-15 | Daikin Industries, Ltd. | Swinging rotary compressor |
US5564916A (en) * | 1993-05-11 | 1996-10-15 | Daikin Industries, Ltd. | Rotary compressor having strengthened partition and shaped recesses for receiving the strengthened partition |
US5577903A (en) * | 1993-12-08 | 1996-11-26 | Daikin Industries, Ltd. | Rotary compressor |
US5580231A (en) * | 1993-12-24 | 1996-12-03 | Daikin Industries, Ltd. | Swing type rotary compressor having an oil groove on the roller |
JPH0988855A (en) * | 1995-09-28 | 1997-03-31 | Daikin Ind Ltd | Swing compressor |
WO1997012148A1 (en) * | 1995-09-28 | 1997-04-03 | Daikin Industries, Ltd. | Rotary compressor |
CN105804993A (en) * | 2016-04-28 | 2016-07-27 | 河北盛多威泵业制造有限公司 | Deflection volumetric high-pressure water pump |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112343818B (en) * | 2020-11-13 | 2021-10-15 | 珠海格力电器股份有限公司 | Pump body structure and air conditioner |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059730U (en) * | 1991-07-16 | 1993-02-09 | 日本オートマチツクマシン株式会社 | Wire gripping device |
-
1992
- 1992-09-22 JP JP25275092A patent/JP3178559B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059730U (en) * | 1991-07-16 | 1993-02-09 | 日本オートマチツクマシン株式会社 | Wire gripping device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5564916A (en) * | 1993-05-11 | 1996-10-15 | Daikin Industries, Ltd. | Rotary compressor having strengthened partition and shaped recesses for receiving the strengthened partition |
WO1995016135A1 (en) * | 1993-12-06 | 1995-06-15 | Daikin Industries, Ltd. | Swinging rotary compressor |
US5641279A (en) * | 1993-12-06 | 1997-06-24 | Daikin Industries, Ltd. | Swing type rotary compressors having a cut-off portion on the roller |
WO1995016136A1 (en) * | 1993-12-08 | 1995-06-15 | Daikin Industries, Ltd. | Swinging rotary compressor |
US5577903A (en) * | 1993-12-08 | 1996-11-26 | Daikin Industries, Ltd. | Rotary compressor |
US5580231A (en) * | 1993-12-24 | 1996-12-03 | Daikin Industries, Ltd. | Swing type rotary compressor having an oil groove on the roller |
JPH0988855A (en) * | 1995-09-28 | 1997-03-31 | Daikin Ind Ltd | Swing compressor |
WO1997012148A1 (en) * | 1995-09-28 | 1997-04-03 | Daikin Industries, Ltd. | Rotary compressor |
US6077058A (en) * | 1995-09-28 | 2000-06-20 | Daikin Industries, Ltd. | Rotary compressor |
CN105804993A (en) * | 2016-04-28 | 2016-07-27 | 河北盛多威泵业制造有限公司 | Deflection volumetric high-pressure water pump |
Also Published As
Publication number | Publication date |
---|---|
JP3178559B2 (en) | 2001-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100240049B1 (en) | Rotary compressor with roller in which blade is integrated | |
JPH05202874A (en) | Rotary compressor | |
JP3924817B2 (en) | Positive displacement fluid machine | |
JP3473067B2 (en) | Swing type rotary compressor | |
JPS5874890A (en) | Rotary vane type compressor | |
JP2642329B2 (en) | Rotary hermetic compressor | |
JPH08159070A (en) | Rotary compressor | |
KR100286714B1 (en) | The Rotary Compressor with the System of Suction through Bearing | |
JP3389753B2 (en) | Scroll type fluid machine | |
KR100556796B1 (en) | Back pressure sealing apparatus for high-pressure type scroll compressor | |
JPH0743877U (en) | Hermetic compressor and its lubricating oil supply device | |
JPH041492A (en) | Hydraulic compressor | |
JP2510079Y2 (en) | Rolling piston type compressor | |
JP3347050B2 (en) | Helical blade compressor | |
JPH0347497A (en) | Closed, rotary compressor | |
JPH07180682A (en) | Oscillating rotary compressor | |
JPH10169579A (en) | Rotary compressor | |
JPH06280767A (en) | Rotary compressor with blade and roller integrated | |
JPH0579480A (en) | Rotary compressor | |
JPH01138392A (en) | Rotary compressor | |
JPS5944517B2 (en) | vane rotary compressor | |
JPH05312169A (en) | Rotary compressor | |
JPH11351172A (en) | Fluid machine | |
JP2000136783A (en) | Fluid machine | |
JPS61237887A (en) | Fluid machinery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19990427 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080413 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090413 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |