JPS5944517B2 - vane rotary compressor - Google Patents

vane rotary compressor

Info

Publication number
JPS5944517B2
JPS5944517B2 JP54041376A JP4137679A JPS5944517B2 JP S5944517 B2 JPS5944517 B2 JP S5944517B2 JP 54041376 A JP54041376 A JP 54041376A JP 4137679 A JP4137679 A JP 4137679A JP S5944517 B2 JPS5944517 B2 JP S5944517B2
Authority
JP
Japan
Prior art keywords
pressure
plunger
oil passage
vane
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54041376A
Other languages
Japanese (ja)
Other versions
JPS55134787A (en
Inventor
嘉一 山田
喜之 森川
勝晴 藤尾
好一 吉弘
敏雄 松田
辰久 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54041376A priority Critical patent/JPS5944517B2/en
Priority to CA000348926A priority patent/CA1162171A/en
Priority to US06/136,392 priority patent/US4342547A/en
Priority to DE19803013006 priority patent/DE3013006A1/en
Publication of JPS55134787A publication Critical patent/JPS55134787A/en
Publication of JPS5944517B2 publication Critical patent/JPS5944517B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • F04C2270/72Safety, emergency conditions or requirements preventing reverse rotation

Description

【発明の詳細な説明】 本発明は自動車空調機等に用いられるベーン回転式圧縮
機の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in vane rotary compressors used in automobile air conditioners and the like.

更に詳しくは、ベーン回転式圧縮機の回転時に、ベーン
溝底部への潤滑油供給を連続ならしめシリンダ内壁への
ベーンの追従性を良くし圧縮効率を高め、また、停止時
には、潤滑油がシリンダ内へ流入するのをなくし再運転
時にみられる液圧縮を防止すると共に、圧縮機停止直後
にみられる逆転をも防止するものである。
More specifically, when the vane rotary compressor rotates, the lubricating oil is continuously supplied to the bottom of the vane groove, which improves the vane's ability to follow the inner wall of the cylinder and improves compression efficiency, and when the vane rotary compressor is stopped, the lubricating oil is supplied to the bottom of the vane groove. This prevents liquid from flowing into the compressor, thereby preventing liquid compression that occurs when restarting the compressor, and also prevents reversal that occurs immediately after the compressor is stopped.

従来この種の回転式圧縮機では、ベーンをシリンダ壁に
押接せしめる力として吐出側に発生する高圧圧力により
潤滑油を加圧しベーン溝底に導入し、この高圧潤滑油に
よりベーンを押す一方、ロータ両側、ベーン先端等の潤
滑の用をなさしめている。
Conventionally, in this type of rotary compressor, lubricating oil is pressurized by high pressure generated on the discharge side as a force that presses the vane against the cylinder wall and introduced into the bottom of the vane groove, and while pushing the vane with this high-pressure lubricating oil, It lubricates both sides of the rotor, the tips of the vanes, etc.

しかし、この構造においては、圧縮機が一度停止される
と、吐出側に残存する高圧圧力により、潤滑油はベーン
溝底に流れ続け、ベーンとベーン溝の隙間から一部潤滑
油はシリンダ内に入る。
However, with this structure, once the compressor is stopped, the lubricating oil continues to flow to the bottom of the vane groove due to the high pressure remaining on the discharge side, and some lubricating oil flows into the cylinder from the gap between the vanes and the vane groove. enter.

一定時間を経過すると前述の残存圧力も膨張弁を経て、
あるいは圧縮機内部の隙間を経て低圧側と均衡し潤滑油
のシリンダ内への流入は止まるのであるが、たとえ少量
の潤滑油と言えども圧縮機が再び回転された特徴しい油
圧縮現象を招きベーンの破損、あるいは、バルブの変形
等大きなトラブルの発生原因となっている。
After a certain period of time, the residual pressure mentioned above also passes through the expansion valve,
Alternatively, the lubricating oil flows through the gap inside the compressor to balance with the low-pressure side and stops flowing into the cylinder, but even a small amount of lubricating oil causes the characteristic oil compression phenomenon that causes the compressor to rotate again, causing the vane. This can cause major problems such as damage to the valve or deformation of the valve.

このような圧縮機停止時の潤滑油の流入によるへい害の
他に、この方式の圧縮機は停止直後残存する高圧圧力の
ベーン底への印加力により逆転を行なう。
In addition to the damage caused by the inflow of lubricating oil when the compressor is stopped, this type of compressor performs reverse rotation due to the high pressure that remains immediately after the compressor is stopped and is applied to the bottom of the vane.

停止時の圧縮機の逆転は高圧ガスの低圧側への逆流が生
じるばかりでなく多量の潤滑油がシリンダ内もしくは吸
入管内に戻る。
When the compressor is reversed when stopped, not only does high-pressure gas flow back to the low-pressure side, but also a large amount of lubricating oil returns into the cylinder or suction pipe.

圧縮機再起動時の悪影響は前述の通りである。The adverse effects of restarting the compressor are as described above.

なおベーン溝底に高圧潤滑油を導入する方式における油
圧縮の常置は上述の通りであるが高圧吐出ガスをベーン
溝底に導入する方式では特に圧縮機停止時の圧縮機逆転
による吐出ガスの低圧吸入側への逆流が大きな問題であ
る。
In addition, in the method of introducing high-pressure lubricating oil into the bottom of the vane groove, oil compression is permanently installed as described above, but in the method of introducing high-pressure discharge gas into the bottom of the vane groove, the pressure of the discharge gas is low due to the reversal of the compressor when the compressor is stopped. Backflow to the suction side is a major problem.

すなわち、逆流高圧ガスにより吸入ガスが過熱され再運
転時の吐出ガス温度の上昇を招く。
That is, the intake gas is overheated by the backflow high pressure gas, leading to an increase in the temperature of the discharge gas during restart.

このような油圧縮あるいは逆転を防止する方法として (1)電縮機吸入側に逆流防止弁を設は圧縮機停止時の
高圧ガスの逆流を直接防止することにより油の流入と逆
転をなくす象知の方法。
As a method to prevent such oil compression or reversal, (1) installing a check valve on the suction side of the electric compressor directly prevents the back flow of high-pressure gas when the compressor is stopped, thereby eliminating oil inflow and reversal. method of knowledge.

(2)ロータ軸端にロータと同期回転する油路開閉部材
による油路しゃ新作用で油の流入と逆転をなくす方法、
例えば特開昭51−133811号公報に示された方法
(2) A method of eliminating oil inflow and reversal by using an oil passage opening/closing member that rotates synchronously with the rotor at the end of the rotor shaft to block the oil passage;
For example, the method disclosed in Japanese Patent Application Laid-open No. 133811/1983.

などがある。and so on.

前者は吸入ガスの通路抵抗が増え圧縮機の性能低下を招
く。
The former increases the passage resistance of the suction gas, leading to a decrease in the performance of the compressor.

後者はロータ回転数の増加に伴ない油路の通路抵抗が増
しベーン溝底への潤滑油の供給が減少し圧縮機の耐久性
が低下する。
In the latter case, as the rotor rotational speed increases, the passage resistance of the oil passage increases, the supply of lubricating oil to the bottom of the vane groove decreases, and the durability of the compressor decreases.

また後者は圧縮機停止直後、その圧力差により潤滑油が
ベーン溝底に流入するのを防止する構造は、実施例のよ
うなロータと同期回転する円板により油路を閉じる場合
は、油路のシール構造が円板と相手部材との金属平面間
のみでの接触シールであるため、潤滑油の流入防止策と
して不十分で一定の圧力差に下がるまで潤滑油の逆流、
圧縮機の逆転が生じ前述の諸弊害がある程度生じるなど
の欠点を有している。
In addition, the latter is a structure that prevents lubricating oil from flowing into the bottom of the vane groove due to the pressure difference immediately after the compressor stops. Since the seal structure is a contact seal only between the metal plane of the disc and the mating member, it is insufficient to prevent the lubricant from flowing in, and the lubricant will not flow back until the pressure difference falls to a certain level.
This method has drawbacks such as reverse rotation of the compressor, which causes the above-mentioned problems to some extent.

本発明は圧縮機の回転時さ停止時とにおいて著るしい圧
力変化がみられる吐出弁前後の圧力差に着目し、この圧
力差で往復運動するプランジャーの作動により移動する
球状物体を潤滑油路に設け、この球状物体が潤滑油路を
圧縮機の回転時には開は停止時には閉じるプランジャー
弁機構を設けることにより上記欠点を解消するものであ
る。
The present invention focuses on the pressure difference before and after the discharge valve, where there is a significant pressure change when the compressor is rotating and when it is stopped, and uses this pressure difference to lubricate a spherical object that moves by the operation of a reciprocating plunger. The above drawbacks are solved by providing a plunger valve mechanism in which the spherical object opens the lubricating oil passage when the compressor is rotating and closes it when the compressor is stopped.

そのための構成として、本発明は、円筒壁を有するシリ
ンダと、このシリンダに偏心して位置し複数のベーン溝
に摺動自在に挿入されかつ先端が前記シリンダの円筒壁
に内接するベーンと、前記シリンダの円筒壁に内接する
ベーンと、前記シリンダと、前記ロータおjび前記ベー
ン両側から閉塞する側壁とからなり、前記ベーン溝の底
部空間と吐出高圧域にある潤滑油溜とを連通ずる油路を
設けるとともに、前記油路の上流側には球状物を配置し
、前記プランジャーの往復移動により前記球状物を移動
して前記油路を開閉するプランジャー弁機構を設け、前
記プランジャー弁機構の前記油路の開閉は主として吐出
弁通過前の吐出圧力と吐出弁通過後の吐出圧力との差圧
を利用して前記プランジャーを往復移動させて行ない、
吐出弁通、過熱圧力が吐出弁通過圧力より犬なる時前記
プランジャー弁機構が前記油路を開き、吐出弁通過前圧
力が吐出弁通過後圧力より小または等しい時、前記プラ
ンジャー弁機構が前記通路を閉じるように、吐出弁通過
前の圧力をプランジャー穴の底部に導く圧力通路を設け
たものである。
As a configuration for this purpose, the present invention includes a cylinder having a cylindrical wall, a vane that is located eccentrically in this cylinder and is slidably inserted into a plurality of vane grooves, and whose tip end is inscribed in the cylindrical wall of the cylinder, an oil passage consisting of a vane inscribed in a cylindrical wall of the cylinder, the cylinder, and a side wall that closes off both sides of the rotor and the vane, and communicating the bottom space of the vane groove with a lubricating oil reservoir in a discharge high pressure region; A spherical object is arranged on the upstream side of the oil passage, and a plunger valve mechanism is provided that opens and closes the oil passage by moving the spherical object by reciprocating movement of the plunger, and the plunger valve mechanism The opening and closing of the oil passage is performed by reciprocating the plunger mainly using the differential pressure between the discharge pressure before passing the discharge valve and the discharge pressure after passing the discharge valve,
When the overheating pressure through the discharge valve is smaller than the pressure passing through the discharge valve, the plunger valve mechanism opens the oil passage, and when the pressure before passing the discharge valve is less than or equal to the pressure after passing the discharge valve, the plunger valve mechanism opens the oil passage. A pressure passage is provided to guide the pressure before passing through the discharge valve to the bottom of the plunger hole so as to close the passage.

以下に本発明の一実施例について図面を参考に説明する
An embodiment of the present invention will be described below with reference to the drawings.

第1図はベーン回転式圧縮機のロータ軸方向の断面、第
2図は第1図におけるA −A断面を示す。
FIG. 1 shows a cross section of a vane rotary compressor in the rotor axial direction, and FIG. 2 shows a cross section taken along line A-A in FIG.

図において、1はロータ、2はシリンダ、3は前側壁、
4は後側壁、5はベーン、6はシリンダ2に設けられた
冷媒吸入口、7は吐出口、8は吐出弁、9はシリンダヘ
ッド、10は油分離室、11は油分離室10からの冷媒
出口、12はコロ軸受、13は軸封装置であり以上によ
りベーン回転式圧縮機の基礎構造が形成されている。
In the figure, 1 is the rotor, 2 is the cylinder, 3 is the front wall,
4 is a rear side wall, 5 is a vane, 6 is a refrigerant inlet provided in the cylinder 2, 7 is a discharge port, 8 is a discharge valve, 9 is a cylinder head, 10 is an oil separation chamber, and 11 is a refrigerant from the oil separation chamber 10. A refrigerant outlet, 12 a roller bearing, and 13 a shaft sealing device form the basic structure of the vane rotary compressor.

14はロータ1に設けられたベーン溝で、15はベーン
溝14に高圧の潤滑油16を供給する円周溝で、後側壁
4に設けられている。
14 is a vane groove provided in the rotor 1, and 15 is a circumferential groove for supplying high-pressure lubricating oil 16 to the vane groove 14, which is provided in the rear side wall 4.

17は吐出弁通過圧力の取出口で、後側壁4に形成され
ている。
Reference numeral 17 denotes an outlet for the pressure passing through the discharge valve, which is formed in the rear wall 4.

18は取出口11の圧力を伝える圧力通路、19は円周
溝15へ潤滑油16を送り込む油路で、後述のプランジ
ャー弁機構の下流に位置し、20は同上の油路で、後述
のプランジャー弁機構の上流に位置し他端を油分離室1
0内の潤滑油16の油面下に開口する。
18 is a pressure passage that transmits the pressure of the outlet 11, 19 is an oil passage that sends lubricating oil 16 to the circumferential groove 15, and is located downstream of the plunger valve mechanism described below; 20 is the same oil passage as described above; Located upstream of the plunger valve mechanism, the other end is the oil separation chamber 1
It opens below the oil level of the lubricating oil 16 in 0.

21はプランジャー穴、22はその上部に突出部を有し
たプランジャー、23は油路19と油路20を連絡する
油路であり、プランジャー22の突出部22aを囲み、
油路23の上流にはその下端が円錐形状をなしている油
路24が形成され、その中には油路23を塞ぐことので
きる大きさの鋼球25が遊飛状態で挿入され、プランジ
ャー22の上下移動により鋼球25は通路23を開閉す
る。
21 is a plunger hole, 22 is a plunger having a protrusion on its upper part, 23 is an oil passage connecting the oil passage 19 and the oil passage 20, surrounding the protrusion 22a of the plunger 22,
An oil passage 24 whose lower end has a conical shape is formed upstream of the oil passage 23, into which a steel ball 25 of a size that can block the oil passage 23 is inserted in a loose state, and a plunger is inserted into the oil passage 24. The steel ball 25 opens and closes the passage 23 by moving the steel ball 22 up and down.

圧力通路18の他端はプランジャー穴21の下端に開口
している。
The other end of the pressure passage 18 opens at the lower end of the plunger hole 21.

第2図に示す矢印B方向にロータ1が回転を始めると冷
凍機油を含んだ冷媒ガスは冷媒吸入口6を通してシリン
ダ内2Gに吸入され、ベーン5、ロータ1の回転により
圧縮され吐出ロアに達し、吐出弁8を押し開は油分離室
10に至り、ここで比重差により冷凍機油は冷媒ガスか
ら分離され潤滑油16として油分離室10の底部に溜め
られる一方、冷媒ガスは冷媒出口11を経て冷凍サイク
ル中へ送出される。
When the rotor 1 starts rotating in the direction of arrow B shown in FIG. 2, refrigerant gas containing refrigerating machine oil is sucked into the cylinder 2G through the refrigerant suction port 6, compressed by the rotation of the vanes 5 and the rotor 1, and reaches the discharge lower. Pushing open the discharge valve 8 leads to the oil separation chamber 10, where the refrigerating machine oil is separated from the refrigerant gas due to the difference in specific gravity and is stored at the bottom of the oil separation chamber 10 as lubricating oil 16, while the refrigerant gas is passed through the refrigerant outlet 11. After that, it is sent to the refrigeration cycle.

以上のような冷媒ガスの流れにおいて吐出弁8を境にし
ての圧力に着目すると、吐出弁前の圧力すなわち、圧力
通路18、プランジャー穴21に発生した圧力と吐出弁
通過後の圧力とは少くとも吐出弁8を押し開き可能な差
圧が発生しており吐出弁圧力が高い。
Focusing on the pressure across the discharge valve 8 in the flow of refrigerant gas as described above, the pressure before the discharge valve, that is, the pressure generated in the pressure passage 18 and the plunger hole 21, and the pressure after passing through the discharge valve are A pressure difference that can at least push open the discharge valve 8 is generated, and the discharge valve pressure is high.

すなわち、プランジャー22を境にして油分離室10に
通じている油路23の圧力と圧力通路18が開口してい
るプランジャー穴21側とはプランジャー221側の圧
力が高い。
That is, the pressure on the plunger 221 side is higher than the pressure in the oil passage 23 communicating with the oil separation chamber 10 with the plunger 22 as a boundary and on the plunger hole 21 side where the pressure passage 18 is open.

プランジャー22とプランジャー穴21とは非常に高精
度の遊合隙間で組合わされており、前述の圧力差により
プランジャー22は土方に移動しプランジャー22の突
出端部で鋼球25が押し上げられ油分離室10と油路1
9とは連通し高圧の潤滑油16は圧力差でベーン溝14
に供給され、ベーン5はシリンダ2の内壁に押接される
The plunger 22 and the plunger hole 21 are combined with a very high-precision play gap, and the plunger 22 moves toward the ground due to the above-mentioned pressure difference, and the steel ball 25 is pushed up by the protruding end of the plunger 22. oil separation chamber 10 and oil passage 1
The high-pressure lubricating oil 16 communicates with the vane groove 14 due to the pressure difference.
The vane 5 is pressed against the inner wall of the cylinder 2.

次に圧縮機停止時の作動を説明する。Next, the operation when the compressor is stopped will be explained.

圧縮機への動力伝達機構(図示なし)が断たれる吐出弁
8は直ちに閉じる。
The discharge valve 8, which cuts off the power transmission mechanism (not shown) to the compressor, immediately closes.

その結果、冷媒出口11側の圧力は、周知のように冷媒
サイクルの高圧側に連結されているため、油分離室10
と同圧力となる。
As a result, since the pressure on the refrigerant outlet 11 side is connected to the high pressure side of the refrigerant cycle as is well known, the oil separation chamber 10
The same pressure will be applied.

そしてその冷媒出口11側の圧力は減圧器(図示せず)
を介して冷凍サイクルの低圧側と平衡しようと減圧する
が、その均衡する速度は遅く吐出ロア内の圧力が速く減
圧する。
The pressure on the refrigerant outlet 11 side is controlled by a pressure reducer (not shown).
The pressure in the discharge lower is reduced quickly to balance the low pressure side of the refrigeration cycle, but the speed at which the pressure is balanced is slow.

すなわち、圧縮機27内およびベーン溝14内の冷媒ガ
スや冷凍機油はロータ1と前側壁3、後側壁4との隙間
、ベーン5とシリンダ内壁あるいはベーン1と前側壁3
、後側壁4との隙間、ロータ1とシリンダ2の頂部隙間
等から低圧側へ洩れ吐出弁前後の圧力差は逆転する。
That is, the refrigerant gas and refrigerating machine oil in the compressor 27 and the vane groove 14 are distributed between the rotor 1 and the front wall 3 and the rear wall 4, between the vane 5 and the cylinder inner wall, or between the vane 1 and the front wall 3.
, the gap with the rear side wall 4, the top gap between the rotor 1 and the cylinder 2, etc. leak to the low pressure side, and the pressure difference before and after the discharge valve is reversed.

すなわち、圧力通路18に通じるプランジャー穴21の
圧力は油分離室10に通じる油路23の圧力より低くな
りプランジャー22の受ける力は圧縮機回転時とは逆の
方向となってプランジャー22は下降する。
That is, the pressure in the plunger hole 21 communicating with the pressure passage 18 is lower than the pressure in the oil passage 23 communicating with the oil separation chamber 10, and the force received by the plunger 22 is in the opposite direction to that when the compressor is rotating. is descending.

同様に、鋼球25は油路23と油路24の圧力差で油路
23側へ下降し、油路23の開口端を押圧し油路23と
油路24との連通を断ち、残留吐出圧力により加圧状態
になる潤滑油16のベーン溝14ならびにシリンダ内2
6への流入を止める。
Similarly, the steel ball 25 descends toward the oil passage 23 due to the pressure difference between the oil passage 23 and the oil passage 24, presses the open end of the oil passage 23, cuts off the communication between the oil passage 23 and the oil passage 24, and releases the remaining discharge. The vane groove 14 of the lubricating oil 16 that becomes pressurized due to pressure and the inside of the cylinder 2
Stop the flow to 6.

この時、油路24の油路23に接する側は油路23と同
心の円錐形状をなしているので、鋼球25の静止位置は
一定で確実に油路23の開口端は塞がれる。
At this time, since the side of the oil passage 24 in contact with the oil passage 23 has a conical shape concentric with the oil passage 23, the resting position of the steel ball 25 is constant and the open end of the oil passage 23 is reliably closed.

このような高圧側の残存圧力は時間の経過と共に冷凍サ
イクルを構成す゛る膨張弁(図示せず)を通して均衡化
され圧縮機内圧力は等しくなる。
As time passes, this residual pressure on the high pressure side is balanced through an expansion valve (not shown) that constitutes the refrigeration cycle, and the pressure within the compressor becomes equal.

以上のように本発明の、回転式圧縮機は、ベーン溝の底
部空間と吐出高圧の潤滑油間とを連通ずる油路を設け、
この油路の上流側には球状物を配置し下流側には前記球
状物と分離したプランジャーを配置し、このシランジャ
ーの往復移動により前記球状物を移動せしめて該油路を
開閉するプランジャー弁機構を設け、このプランジャー
弁機構の前記油路の開閉は主として吐出弁通過前の吐出
圧力と吐出弁通過後の吐出圧力との差圧を利用して前記
プランジャーを往復移動せしめて行ない、吐出弁通過前
圧力が吐出弁通過後圧力より大なる時、前記プランジャ
ー弁機構は前記油路を開せしめ、吐出弁通過前圧力が吐
出弁通過後圧力より小または等しい時前記プランジャー
弁機構は前記通路を閉せしめてなる構造を特徴とするも
ので、圧縮機回転中は吐出弁前後の差圧発生により油路
が常に開状態となりベーン溝の底部への潤滑油の供給が
圧縮機回転速度に影響されることなく連続して行なえ、
しかも、油路を開閉する弁体が球状物であるため潤滑油
の通路抵抗が少なく充分な潤滑油供給が行なえるのでベ
ーンを常にシリンダ内壁に押接せしめることができ、ベ
ーンの往復回転運動時に生じるいわゆるジャンピング作
用がなくベーンの摩耗が少ない。
As described above, the rotary compressor of the present invention is provided with an oil passage that communicates between the bottom space of the vane groove and the discharged high-pressure lubricating oil,
A plan in which a spherical object is arranged on the upstream side of this oil passage, and a plunger separated from the spherical object is arranged on the downstream side, and the spherical object is moved by the reciprocating movement of the silanger to open and close the oil passage. A plunger valve mechanism is provided, and the oil passage of the plunger valve mechanism is opened and closed by reciprocating the plunger mainly using the differential pressure between the discharge pressure before passing the discharge valve and the discharge pressure after passing the discharge valve. When the pressure before passing the discharge valve is greater than the pressure after passing the discharge valve, the plunger valve mechanism opens the oil passage, and when the pressure before passing the discharge valve is less than or equal to the pressure after passing the discharge valve, the plunger valve mechanism opens the oil passage. The valve mechanism is characterized by a structure that closes the passage, and when the compressor is rotating, the oil passage is always open due to the generation of a pressure difference before and after the discharge valve, and the supply of lubricating oil to the bottom of the vane groove is compressed. Can be performed continuously without being affected by machine rotation speed,
Furthermore, since the valve body that opens and closes the oil passage is spherical, there is little resistance to the passage of lubricating oil, and sufficient lubricating oil can be supplied, so the vane can always be pressed against the inner wall of the cylinder, and during reciprocating rotation of the vane, There is no so-called jumping effect and there is less wear on the vanes.

また、圧縮ガスもれの少ない圧縮効率の良い回転式圧縮
機ができる。
In addition, a rotary compressor with good compression efficiency and less leakage of compressed gas can be obtained.

更に本発明において特に効果のある第1の点は、油路を
開閉する弁体が球状物であるため、潤滑油の通路抵抗が
少なく弁体の開度を小さく設定しておくことができるの
で圧縮機停止直後、吐出弁前後の圧力差が逆転しプラン
ジャーが弁体を離れた時、弁体は迅速に油路を塞ぐこと
ができる。
Furthermore, the first point that is particularly effective in the present invention is that since the valve body that opens and closes the oil passage is a spherical object, there is little resistance to the passage of lubricating oil and the opening degree of the valve body can be set small. Immediately after the compressor stops, when the pressure difference across the discharge valve reverses and the plunger leaves the valve body, the valve body can quickly close the oil passage.

また第2の点は、前述のように弁体の開度を小さく設定
できるので、圧縮機起動初期の吐出弁前後の差圧が低く
プランジャーによる油路の開方向への弁体の移動距離が
少ない段階でも油路は開状態になり圧縮機起動初期のベ
ーン溝への潤滑油供給が早く、起動初期に生じやすいい
わゆるベーンのジャンピングを早期に防止できる。
The second point is that, as mentioned above, the opening degree of the valve body can be set small, so the differential pressure before and after the discharge valve is low at the beginning of compressor startup, and the distance the valve body is moved by the plunger in the direction of opening the oil path is low. The oil passage is open even when the compressor is low, and lubricating oil is quickly supplied to the vane grooves at the beginning of compressor startup, so that so-called vane jumping, which tends to occur at the beginning of startup, can be prevented at an early stage.

更に第3の特徴ある効果は、圧縮機停止直後、弁体が残
留吐出圧力と圧縮機停止前の潤滑油の流れを利用して油
路を塞ぐ時、弁体が球状物であり、かつ、プランジャー
と別体であるため弁体は潤滑油の流れに追従しやすく油
路を瞬時に塞ぐ。
Furthermore, the third characteristic effect is that when the valve body blocks the oil passage immediately after the compressor stops, using the residual discharge pressure and the flow of lubricating oil before the compressor stops, the valve body is a spherical object, and Since it is separate from the plunger, the valve body can easily follow the flow of lubricating oil and instantly block the oil passage.

油路閉塞部の弁体と相手部材との接触状態が線接触に近
い状態になり油路閉塞気密度が高く、圧縮機停止時の油
路からの冷媒ガス、潤滑油のシリンダ内、ベーン溝の底
部、あるいは低圧側への流入を防ぐなどである。
The contact state between the valve body of the oil passage blockage part and the mating member is close to a line contact, and the oil passage blockage density is high, and when the compressor is stopped, refrigerant gas from the oil passage, lubricating oil inside the cylinder, and vane groove. for example, to prevent it from flowing into the bottom of the tank or the low-pressure side.

これらの効果により圧縮機の逆転、あるいは停止・再起
動時に付随して発生していた前述の従来欠点のない回転
式圧縮機を実現することができる。
These effects make it possible to realize a rotary compressor that does not have the above-mentioned conventional drawbacks that occur when the compressor is reversed or stopped or restarted.

【図面の簡単な説明】 第1図は本発明の一実施例におけるベーン回転式圧縮機
の断面図、第2図は第1図に示すA−Aでの断面図であ
る。 1・・・・・田−タ、2・・・・・・シリンダ、5・・
・・・・ベーン、8・・・・・・吐出弁、18・・・・
・・吐出弁圧力を導く圧力通路、19,20,23,2
4・・・・・・吐出弁後の圧力を導く油路、16・・・
・・・潤滑油、21・・・・・・プランジャー穴、22
・・・・・・プランジャー、22a・・・・・・吐出部
、25・・・・・・鋼球。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a vane rotary compressor according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA shown in FIG. 1...Data, 2...Cylinder, 5...
...Vane, 8...Discharge valve, 18...
...Pressure passage leading to discharge valve pressure, 19, 20, 23, 2
4...Oil passage guiding pressure after the discharge valve, 16...
... Lubricating oil, 21 ... Plunger hole, 22
... Plunger, 22a ... Discharge part, 25 ... Steel ball.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒壁を有しかつ冷媒吸入口を有するシリンダと、
このシリンダに偏心して位置し複数のベーン溝を有する
ロータと、前記各ベーン溝に摺動自在に挿入されかつ先
端が前記シリンダの円筒壁に内接するベーンと、前記シ
リンダと、前記ロータおよび前記ベーンを両側から閉塞
する側壁とからなり、前記ベーン溝の底部空間と吐出高
圧域にある潤滑油溜とを連通ずる油路を設けるとともに
、前記油路の上流側には球状物を配置し下流側には前記
球状物と分離したプランジャーを配置し、前記プランジ
ャーの往復移動により前記球状物を移動して前記油路を
開閉するプランジャー弁機構を設け、前記プランジャー
弁機構の前記油路の開閉は吐出弁通過前の吐出圧力と吐
出弁通過後の吐出圧力との差圧を利用して前記プランジ
ャーを往復移動させて行ない、吐出弁通過前圧力が吐出
弁通過圧力より大なる時前記プランジャー弁機構が前記
油路を開き、吐出弁通過前圧力が吐出弁通過後圧力より
小または等しい時、前記プランジャー弁機構が前記油路
を閉じるように、吐出弁通過前の圧力をプランジャー穴
の底部に導く圧力通過を設け、さらに前記潤滑油溜に冷
媒出口を設け、前記冷媒吸入口と冷媒出口間に冷凍サイ
クルを接続して閉回路を形成したベーン回転式圧縮機。
1 a cylinder having a cylindrical wall and a refrigerant suction port;
a rotor located eccentrically in the cylinder and having a plurality of vane grooves; a vane that is slidably inserted into each of the vane grooves and whose tip is inscribed in the cylindrical wall of the cylinder; the cylinder; the rotor; and the vane. An oil passage is provided that communicates the bottom space of the vane groove with a lubricating oil reservoir in the discharge high pressure area, and a spherical object is placed on the upstream side of the oil passage, and a spherical object is arranged on the upstream side of the oil passage. is provided with a plunger valve mechanism in which a plunger separate from the spherical object is disposed, and the plunger valve mechanism moves the spherical object to open and close the oil passage by reciprocating the plunger, and the plunger valve mechanism opens and closes the oil passage. The plunger is opened and closed by reciprocating the plunger using the differential pressure between the discharge pressure before passing the discharge valve and the discharge pressure after passing the discharge valve, and when the pressure before passing the discharge valve is greater than the pressure passing the discharge valve. When the plunger valve mechanism opens the oil passage and the pressure before passing the discharge valve is less than or equal to the pressure after passing the discharge valve, the plunger valve mechanism closes the oil passage. A vane rotary compressor comprising a pressure passage leading to the bottom of the plunger hole, a refrigerant outlet in the lubricating oil reservoir, and a refrigeration cycle connected between the refrigerant inlet and the refrigerant outlet to form a closed circuit.
JP54041376A 1979-04-04 1979-04-05 vane rotary compressor Expired JPS5944517B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP54041376A JPS5944517B2 (en) 1979-04-05 1979-04-05 vane rotary compressor
CA000348926A CA1162171A (en) 1979-04-04 1980-04-01 Vane type rotary compressor
US06/136,392 US4342547A (en) 1979-04-04 1980-04-01 Rotary vane compressor with valve control of oil to bias the vanes
DE19803013006 DE3013006A1 (en) 1979-04-04 1980-04-03 TURNING PISTON COMPRESSORS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54041376A JPS5944517B2 (en) 1979-04-05 1979-04-05 vane rotary compressor

Publications (2)

Publication Number Publication Date
JPS55134787A JPS55134787A (en) 1980-10-20
JPS5944517B2 true JPS5944517B2 (en) 1984-10-30

Family

ID=12606685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54041376A Expired JPS5944517B2 (en) 1979-04-04 1979-04-05 vane rotary compressor

Country Status (1)

Country Link
JP (1) JPS5944517B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104074760A (en) * 2013-03-25 2014-10-01 株式会社丰田自动织机 Rotary blade-type compressor
US10721646B2 (en) 2016-09-16 2020-07-21 Panasonic Corporation Terminal device, communication system and communication control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080983A (en) * 1998-07-09 2000-03-21 Toyota Autom Loom Works Ltd Compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578190A (en) * 1978-12-06 1980-06-12 Matsushita Electric Ind Co Ltd Vane rotating type compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578190A (en) * 1978-12-06 1980-06-12 Matsushita Electric Ind Co Ltd Vane rotating type compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104074760A (en) * 2013-03-25 2014-10-01 株式会社丰田自动织机 Rotary blade-type compressor
CN104074760B (en) * 2013-03-25 2015-12-02 株式会社丰田自动织机 Rotary vane compressor
US10721646B2 (en) 2016-09-16 2020-07-21 Panasonic Corporation Terminal device, communication system and communication control method

Also Published As

Publication number Publication date
JPS55134787A (en) 1980-10-20

Similar Documents

Publication Publication Date Title
CN101915239B (en) Scroll machine
JP2585380Y2 (en) Rotary compressor
JPH04187887A (en) Rotary type multistage gas compressor
JP2513444B2 (en) High pressure rotary compressor
KR101553953B1 (en) Scoroll compressor and refrigerator having the same
CN100412381C (en) Scroll compressor
JPS5944517B2 (en) vane rotary compressor
KR100951551B1 (en) Scroll type compressor
JP2002048080A (en) Gas compressor
CA1054114A (en) Rotary compressor
JP2790126B2 (en) Scroll gas compressor
JP3274900B2 (en) Refueling pump device in compressor
JPS60252188A (en) Movable vane compressor
JP2004190509A (en) Gas compressor
JPH041492A (en) Hydraulic compressor
KR102619911B1 (en) Compressor
JPS5944516B2 (en) rotary compressor
JPH0988862A (en) Scroll type fluid machinery
JPS5944515B2 (en) vane rotary compressor
JPS6325196B2 (en)
JPS588289A (en) Rotary compressor
CN116857189A (en) Compressor with axial flexibility
JPH0381586A (en) Scroll type compressor
JPH04159480A (en) Screw compressor
JPH0745877B2 (en) Vane back pressure application device for sliding vane compressor