WO1995014939A1 - Radarverfahren und vorrichtung zur durchführung dieses verfahrens - Google Patents

Radarverfahren und vorrichtung zur durchführung dieses verfahrens Download PDF

Info

Publication number
WO1995014939A1
WO1995014939A1 PCT/DE1994/001382 DE9401382W WO9514939A1 WO 1995014939 A1 WO1995014939 A1 WO 1995014939A1 DE 9401382 W DE9401382 W DE 9401382W WO 9514939 A1 WO9514939 A1 WO 9514939A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
signals
signal processor
target object
cpu
Prior art date
Application number
PCT/DE1994/001382
Other languages
English (en)
French (fr)
Inventor
Alfred HÖSS
Wolfgang Schindler
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP7514749A priority Critical patent/JPH09506698A/ja
Priority to EP95901323A priority patent/EP0730742A1/de
Priority to KR1019960702697A priority patent/KR960706086A/ko
Publication of WO1995014939A1 publication Critical patent/WO1995014939A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • B60W2420/408
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/301Sensors for position or displacement
    • B60Y2400/3017Radars
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • G01S13/726Multiple target tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9319Controlling the accelerator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9322Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using additional data, e.g. driver condition, road state or weather data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4039Means for monitoring or calibrating of parts of a radar system of sensor or antenna obstruction, e.g. dirt- or ice-coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4056Means for monitoring or calibrating by simulation of echoes specially adapted to FMCW

Definitions

  • the invention relates to a radar method, in particular for road vehicles, according to the preamble of claim 1 and to an apparatus for performing this method according to the preamble of claim 15.
  • and fd
  • FMCW radar methods are generally known, for example from - E. Baur, introduction to radar technology / study scripts, Teubner, 1st edition, Stuttgart 1985, pages 124 to 133; as well as from DE-Al-25 14 858.
  • the invention has for its object to further improve the method and device from DE-Al-29 00 825.
  • FIG. 1 shows a vehicle on a three-lane roadway
  • FIG. 2 shows a schematic circuit diagram of the radar device
  • Figure 3 shows an example of two identical modulation cycles per
  • Figure 4 shows an example of two different modulation cycles per measurement phase
  • FIG. 5 shows an alternative picture of the radar device.
  • FIG. 1 shows a vehicle F equipped with a radar device while driving on the middle lane FM of a lane FR, FM, FL in the direction of travel.
  • Each lane is, for example, 3.75 m wide.
  • the radar device has three forward-facing radar beams sr, sm, sl with beam directions that are offset slightly to one side.
  • the three-beam system already irradiates the entire FM roadway at a distance of approx. 25 m.
  • each of the three beams detects a roadway of approximately full width: the beam sm the own roadway FM, and the side beams sl, sr the right and left neighboring roadways FR and FL.
  • All three lanes are selectively monitored simultaneously in an important distance range.
  • the beam width in the vertical direction is approximately 5 °, for example, so as not to lose objects H traveling ahead over crests or by lowering.
  • the minimum is Range of the radar device, for example approx. Im, and the maximum range, for example, around 150 m, although FIG. 1 only shows a range of approx. 75 m for the three beams sr, sm, sl.
  • the radar device according to FIG. 2 is used to determine the distance e and the relative speed vr between the moving vehicle F and objects H in front. It should be noted that the relative speed vr is negative if the distance e between the vehicle and the object H decreases.
  • a digital signal processor CPU sends a digital modulation signal msd, which is in a D / A converter of an inter face module ADI is converted to an analog, triangular modulation signal ms and fed to the transmitter S.
  • the transmitter S is used to emit modulated radar beams sr, sm, sl.
  • the echo signals rs received by the receiver E are fed as digital data rsd to the signal processor CPU and processed in it according to the known method for the variables distance e and relative speed vr for each target object.
  • the signal processor CPU carries out all calculations for the method, in particular also the fast digital Fourier transformations FFT according to the previously known method for determining the maxima contained in the spectra obtained therefrom and the object frequencies fu and fd assigned to them.
  • These spectra contain noise components from which, according to the invention, mean values are formed which are subtracted from the amplitudes of this spectrum.
  • the signal processor CPU can additionally receive data by means of signals s from sensors SE from a higher-level system of the vehicle F, for example via a sensor interface S1, for example data about the current driving speed of the vehicle F and about the turning angle of its steerable front wheels or their wheel speeds.
  • the signal processor CPU can also query other status data of the roadway FM, such as dry, wet, etc., as well as weather and visibility conditions or other data, in order to evaluate the received radar echoes and the like Determination of the display and warning thresholds to be taken into account, or also in the automatic determination of the braking distance and at the evaluation of how dangerous a determined target object H is.
  • the signal processor CPU can also connect to other units of the vehicle F via an interface unit IS (e.g. with the brakes or the throttle valve, in order to automatically reduce the speed if the calculated distance is reduced or increased or the relative speed to the target object changes too much of the vehicle F to reduce or increase - automatically controlled column travel).
  • an interface unit IS e.g. with the brakes or the throttle valve, in order to automatically reduce the speed if the calculated distance is reduced or increased or the relative speed to the target object changes too much of the vehicle F to reduce or increase - automatically controlled column travel.
  • the signal processor CPU can also send digital control signals directly to the transmitter or receiver, e.g. can be used to switch from one radar beam to the other beams.
  • the signal processor CPU can trigger at least individual signals assigned to the determined target objects H via an optical or acoustic warning device OW, AW.
  • an optical or acoustic warning device OW e.g. by mirroring in the front window, indications of such objects H are shown.
  • Individual data can also be registered in a unit REG, e.g. in one. Accident data recorder.
  • the buffering of the received radar echo signals rsd as well as that of the modulation signals msd output by the signal processor can be buffered, as shown in FIG. 5 RMEM, TMEM and data processing are carried out in the signal processor CPU (slave), which is carried out by a controller CON (master) of data acquisition, transfer to the higher-level system, transfer of control data, triggering of the address logic (start of the measuring cycle), the address logic itself and possibly also relieved of the control of the transmitting / receiving system and the display interface.
  • RMEM, TMEM and data processing are carried out in the signal processor CPU (slave), which is carried out by a controller CON (master) of data acquisition, transfer to the higher-level system, transfer of control data, triggering of the address logic (start of the measuring cycle), the address logic itself and possibly also relieved of the control of the transmitting / receiving system and the display interface.
  • the CON controller and the CPU signal processor can monitor each other and the controller can control the self-diagnosis of the radar device, as explained below.
  • the data evaluation of the data recorded in the previous measuring cycle may be almost the entire
  • a single measurement cycle mez per radar beam comprises a single modulation cycle and, subsequently, an evaluation pause.
  • it can also comprise several such successive modulation cycles moz, for example three or five modulation cycles.
  • the individual modulation cycles moz can have different durations and different slope steepnesses in the frequency-time diagram, cf. FIGS. 3 and 4. In these figures it was assumed, for example, that the modulation strokes for the upward and downward modulation phases up and do are constant in each case.
  • a data record for each target object contains at least the following parameters, which, if they are not constant, are updated after each measurement cycle and, if not yet known, are then explained:
  • Distance, relative speed, relative acceleration, amplitude (of the associated maxima in the FFT spectrum), selected safety distance, tracking time or tracking counter, prediction time or prediction counter and object status e.g.
  • the tracking time or the tracking counter of a target object represents a measure of the previous tracking time (in time or number of measuring cycles), which can be limited.
  • the prediction time or the prediction counter characterizes the duration of the forecast (in time or number of measuring cycles) about the further behavior of the object being tracked, which, for example, temporarily seems to have disappeared for the radar system due to shielding (due to another large object moving close to the vehicle F) can be and therefore (for some measuring cycles) it is no longer detected but predicted.
  • Prediction time or prediction counter can also be limited.
  • Distance e, relative speed vr and relative acceleration br of the determined target objects H are then fed to a Kaiman filter known per se (or also known ⁇ - ⁇ or ⁇ - ⁇ - ⁇ filters) and filtered (cleaned).
  • target object paths are now also formed for each target object H, analogous to the formation of the paths of the object frequencies fu and fd in the previously known method, and the target objects are continuously tracked over a predetermined period of time (tracking), to the physically possible Behavior checked, and in the absence of measurement data over a predetermined period of time, estimates are formed based on the previous behavior (prediction). If a target object does not reappear after the prediction time has elapsed or if it behaves "physically impossible", the corresponding data record is deleted.
  • the driver's steering movements (d / dt), accelerations and braking decelerations are used to adaptively determine the driving style. Accordingly, display, warning and, if necessary, intervention thresholds for distance e, relative speed vr and acceleration br are formed, with which the data of the most dangerous target objects are compared. If these thresholds are exceeded or undershot, corresponding displays or warning signals are triggered, or brakes, engine throttle flaps or gear shifts are activated.
  • the radar device When the method according to the invention is started, the radar device is initially initialized by deleting all stored data records (which relate to target objects which were tracked before the radar device was last switched off).
  • the initialization routine can also check the functionality of the radar device: it can e.g. the function of the radar front end via the size of the noise level in the radar signals (comparison with specified limit values)

Abstract

Radarverfahren und Vorrichtung zur Durchführung dieses Verfahrens, wobei aus den ermittelten Größen Entfernung e, Relativgeschwindigkeit vr und Relativbeschleunigung br nach Kalman-Filterung und Ausscheiden von Zielobjekten mit physikalisch nicht möglichem Verhalten (Tracking und Prädiktion) sowie der Azimutwinkel jedes Zielobjekts abgeschätzt wird, und daraus ermittelt wird, welche Zielobjekte sich auf der eigenen Fahrbahn befinden und welche die gefährlichsten davon sind, und abhängig vom Fahrverhalten des Fahrers, Straßen- und Wetterbedingungen Anzeige-, Warn- oder Eingreifschwellen ermittelt werden und bei Über- oder Unterschreiten dieser Schwellen durch Entferung e, Relativgeschwindigkeit vr und Relativbeschleunigung br der Zielobjekte Anzeige-, Warn- oder Eingreifsignale (in Bremsen, Drosselklappe oder Getriebeschaltung des Fahrzeuges) erfolgen.

Description

Beschreibung
Radarverfahren und Vorrichtung zur Durchführung dieses Verfahrens
Die Erfindung bezieht sich auf ein Radarverfahren, insbesondere für Straßenfahrzeuge, gemäß Oberbegriff von Anspruch 1 sowie auf eine Vorrichtung zur Durchführung dieses Verfahrens gemäß Oberbegriff von Anspruch 15.
Ein solches Radarverfahren, insbesondere für Straßenfahrzeuge, und eine Vorrichtung (Radargerät) zur Durchführung dieses Verfahrens ist in der nicht vorveröffentlichten Patentanmeldung PCT/EP 9403646 beschrieben (im folgenden als
"vorbekanntes Verfahren" bezeichnet) und bildet die Grundlage für die vorliegende Erfindung. Es handelt sich dabei um ein kostengünstiges FMCW-Radargerät mit einem digitalen Signalprozessor, welcher über einen Oszillator wenigstens eine Antenne steuert und aus dreieckförmig modulierten Sende- und Empfangssignalen ein Mischsignal erzeugt, welches je Modulationsphase (auf oder ab) jedes Meßzyklus einer schnellen Fouriertransformation unterworfen wird, um aus den ermittelten Maxima jedem Zielobjekt zugeordnete Objektfrequenzen zu erhalten, aus denen über mehrere Meßzyklen zurückreichende Objektbahnen gebildet werden , die zur Bildung von Schätzwerten für die im nächsten Meßzyklus zu erwartenden Meßwerte der Objektfrequenzen herangezogen werden, wobei die zueinandergehörenden Objektfrequenzen fu = |fr - fv| und fd = |fr + fv| beider Modulationsphasen eines Meßzyklus ermittelt und aus ihnen in bekannter Weise Abstand e ~ |fu + fd| und Relativgeschwindigkeit vr ~ |fu - fd| jedes Zielobjekts bestimmt werden.
FMCW-Radarverfahren sind allgemein bekannt, zum Beispiel aus - E. Baur, Einführung in die Radartechnik / Studienskripten, Teubner, 1. Auflage, Stuttgart 1985, Seiten 124 bis 133; sowie aus DE-Al-25 14 858 .
DE-Al-29 00 825 und
DE-Al-40 40 572 ; Der Erfindung liegt die Aufgabe zugrunde, Verfahren und Vorrichtung aus der DE-Al-29 00 825 weiter zu verbessern.
Die Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen:
Figur 1 ein Fahrzeug auf einer dreispurigen Fahrbahn,
Figur 2 ein schematisches Schaltbild des Radargerätes,
Figur 3 ein Beispiel für zwei gleiche Modulationszyklen pro
Meßphase,
Figur 4 ein Beispiel für zwei unterschiedliche Modulations zyklen pro Meßphase, und
Figur 5 ein alternatives Scxhaltbild des Radargerätes.
Ein Ausführungsbeispiel nach Figur 1 zeigt ein mit einem Ra- dargerät ausgestattetes Fahrzeug F während seiner Fahrt auf der mittleren Fahrbahn FM einer in Fahrtrichtung dreispurigen Fahrbahn FR, FM, FL. Jede Fahrbahn ist hier beispielsweise 3,75 m breit. Das Radargerät weist drei nach vorne gerichtete Radarstrahlen sr, sm, sl mit seitlich etwas gegeneinander versetzten Strahlrichtungen auf. Im gezeigten Beispiel bestrahlt das dreistrahlige System in einer Entfernung von ca. 25 m bereits die gesamte eigene Fahrbahn FM. Beispielsweise in rund 70 m Entfernung erfaßt jeder der drei Strahlen jeweils eine Fahrbahn in angenähert voller Breite: der Strahl sm die eigene Fahrbahn FM, und die seitlichen Strahlen sl, sr die rechte und linke Nachbarfahrbahn FR und FL.
Es werden gleichzeitig alle drei Fahrbahnen selektiv in einem wichtigen Entfernungsbereich überwacht. Die Strahlenbreite in vertikaler Richtung beträgt z.B. ca. 5°, um bei Fahrten über Kuppen oder durch Senken vorausfahrende Objekte H nicht zu verlieren. In dem gezeigten Beispiel beträgt die minimale Reichweite des Radargerätes z.B. ca. Im, sowie die maximale Reichweite z.B. rund 150m, obwohl die Figur 1 für die drei Strahlen sr, sm, sl nur eine Reichweite von jeweils ca. 75 m zeigt.
Das Radargerät nach Figur 2 dient zur Ermittlung der Entfernung e und der Relativgeschwindigkeit vr zwischen dem fahrenden Fahrzeug F und vorausfahrenden Objekten H. Zu beachten ist, daß die Relativgeschwindigkeit vr negativ ist, wenn sich der Abstand e zwischen dem Fahrzeug und dem Objekt H verkleinert.
Bei einem konkreten Ausführungsbeispiel eines FMCW-Radarver- fahrens und -gerätes gemäß der Erfindung (Figuren 1 und 2) mit drei gegeneinander versetzten und zyklisch nacheinander gesendeten Radarstrahlen sm, sr, sl beträgt:
* die Breite jedes einzelnen der drei Strahlen horizontal 3,0° ± 0,5°und vertikal 5,0° ± 1,0°,
* der Winkel zwischen den Zentren benachbarter Keulen 3,3° ± 0,5°,
* die minimale Reichweite ca Im,
* die maximale Reichweite gegen 200m,
* die Genauigkeit der errechneten Objektentfernungen < ±1m
* und die Geschwindigkeitsauflösung < ±2, 7km/h
* bei 77GHz Trägerfrequenz fo sowie 220MHz Modulationshub, jeweils durchlaufen in ca. 3ms pro Modulationsphase, bei einer Meßzyklusdauer von etwa 13ms.
Eine noch bessere Unterdrückung von Fehlalarmen läßt sich mit einem beispielsweise fünfstrahligen Radar ohne höhere Prozessoranforderungen erreichen, wobei die fünf Strahlen 11 (links außen), 1 (links), m (mitte), r (rechts), rr (rechts außen) zyklisch, beispielsweise in der Folge m-11-rr-m-1-r u.s.w., gesendet bzw. empfangen werden.
Ein digitaler Signalprozessor CPU sendet ein digitales Modulationssignal msd, welches in einem D/A-Wandler eines Inter- face-Bausteins ADI zu einem analogen, dreieckförmigen Modulationssignal ms umgewandelt und dem Sender S zugeleitet wird. Der Sender S dient zur Abstrahlung von modulierten Radarstrahlen sr, sm, sl.
Die vom Empfänger E empfangenen Echosignale rs werden nach Digitalisierung im A/D-Wandler des Interface-Bausteins ADI als digitale Daten rsd dem Signalprozessor CPU zugeleitet und in ihm gemäß dem vorbekannten Verfahren zu den Größen Entfernung e und Relativgeschwindigkeit vr für jedes Zielobjekt verarbeitet. Der Signalprozessor CPU führt sämtliche Berechnungen für das Verfahren durch, insbesondere auch die schnellen digitalen Fourier-Transformationen FFT nach dem vorbekannten Verfahren zur Ermittlung der in den daraus erhaltenen Spektren enthaltenen Maxima und der diesen zugeordneten Objektfrequenzen fu und fd. Diese Spektren enthalten Rauschanteile, aus denen erfindungsgemäß Mittelwerte gebildet werden, die von den Amplituden dieses Spektrums subtrahiert werden. Es wird anschließend ein über dem verbliebenen Rauschsignal liegender Grenzwert festgelegt, so daß alle Maxima des Spektrums, die oberhalb dieses Grenzwertes liegen, als einem Zielobjekt zugeordnete Maxima und nicht als Rauschwerte zu werten sind. Der Signalprozessor CPU kann zusätzlich mittels Signalen s von Sensoren SE aus einem übergeordneten System des Fahrzeuges F, z.B. über ein Sensorinterface Sl, Daten empfangen, z.B. Daten über die aktuelle Fahrgeschwindigkeit des Fahrzeuges F und über den Einschlagwinkel seiner lenkbaren Vorderräder bzw. deren Raddrehzahlen. Über weitere Sensoren oder vom Fahrer zu betätigende Schalter und das Sensorinterface Sl kann der Signalprozessor CPU z.B. auch sonstige Zustandsdaten der Fahrbahn FM wie trocken, naß, u.s.w. sowie Wetter- und Sichtverhältnisse oder sonstige Daten abfragen, um sie bei der Auswertung der empfangenen Radarechos und der Bestimmung der Anzeige- und Warnschwellen mit zu berücksichtigen, oder auch bei der automatischen Ermittlung des Bremsweges und bei der Bewertung, wie gefährlich ein ermitteltes Zielobjekt H ist.
Der Signalprozessor CPU kann zusätzlich über eine Interfaceeinheit IS mit anderen Aggregaten des Fahrzeuges F in Verbindung treten (z.B. mit den Bremsen oder der Drosselklappe, um bei zu starker Verringerung oder Vergrößerung der errechneten Entfernung oder bei zu starker Änderung der Relativgeschwindigkeit zum vorausfahrenden Zielobjekt automatisch die Geschwindigkeit des Fahrzeuges F zu reduzieren oder zu erhöhen - automatisch gesteuerte Kolonnenfahrt).
Der Signalprozessor CPU kann zusätzlich direkt zum Sender oder zum Empfänger digitale Steuersignale es senden, die z.B. zur Umschaltung von einem Radarstrahl auf die anderen Strahlen dienen können. Ebenso können auch Signale fu, z.B. Fehlermeldungen, Meldungen über Verschmutzung der Sende/Empfangsantenne (= Aufforderung zur automatischen oder manuellen Reinigung der Radarantennen-Abdeckung), usw., vom Sender S oder vom Empfänger E oder von ihnen zugeordneten Sensoren direkt zum Signalprozessor CPU gemeldet werden.
Anschließend an eine Auswertung kann der Signalprozessor CPU zumindest einzelnen der ermittelten Zielobjekte H zugeordnete Signale über eine optische oder akustische Warneinrichtung OW, AW auslösen. Zusätzlich können auch, z.B. durch Spiegeln in die Frontscheibe, Hinweise auf solche Objekte H eingeblendet werden. Es können auch einzelne Daten in einer Einheit REG registriert werden, z.B. in einem. Unfalldatenschreiber.
Wenn das Speichern der empfangenen Echosignale und deren Verarbeitung im selben Signalprozessor nacheinander zyklisch erfolgen, werden schnelle und damit kostenintensive Prozessoren benötigt. Um preiswertere Prozessoren einsetzen zu können, kann, wie in Figur 5 dargestellt, die Zwischenspeicherung der empfangenen Radarecho-Signale rsd ebenso wie die der vom Signalprozessor ausgegebenen Modulationssignale msd in Puffer speichern RMEM, TMEM erfolgen und die Datenverarbeitung im Signalprozessor CPU (Slave) durchgeführt werden, der durch einen Controller CON (Master) von Datenaufnahme, Transfer zum übergeordneten System, Übernahme von Steuerdaten, der Triggerung der Adresslogik (Start des Meßzyklus), der Adresslogik selbst und ggf. auch von der Steuerung der Sende/Empfangsanlage und des Display-Interface entlastet wird.
Zusätzlich können sich Controller CON und Signalprozessor CPU gegenseitig überwachen und kann der Controller die Steuerung der Eigendiagnose des Radargerätes, wie noch erläutert, übernehmen.
Mit zwei Prozessoren darf die Datenauswertung der im vorhergehenden Meßzyklus aufgenommenen Daten nahezu die gesamte
Dauer eines Meßzyklus betragen, vermindert lediglich um eine kurze Übertragungsdauer der Daten vom Pufferspeicher zum Verarbeitungsprozessor) . Die Trennung bewirkt zwar einen etwas höheren Hardwareaufwand durch die zusätzlichen Pufferspeicher und den weiteren Controller, verringert aber die hohen Anforderungen an den Verarbeitungsprozessor (digitaler Signalprozessor) . Das erlaubt zudem bei gleicher Rechenleistung die Implementierung weiterer, zusätzlicher Funktionen wie Abstandswarnung, intelligente Fahrgeschwindigkeitsregelung u.s.w.
Ein einzelner Meßzyklus mez pro Radarstrahl umfaßt gemäß dem vorbekannten Verfahren einen einzigen Modulationszyklus und, daran anschließend, eine Auswertepause. Er kann jedoch erfindungsgemäß auch mehrere solcher aufeinanderfolgender Modulationszyklen moz umfassen, z.B. drei oder fünf Modulationszyklen. Die einzelnen Modulationszyklen moz können unterschiedliche Dauern und unterschiedliche Flankensteilheiten im Frequenz-Zeit-Diagramm aufweisen, vgl. die Figuren 3 und 4. In diesen Figuren wurde beispielsweise angenommen, daß die Modulationshübe für Aufwärts- und Abwärts-Modulationsphase up und do jeweils konstant sind. Die Signalform gemäß Figur 4 mit unterschiedlichen Modulationsdauern mozl, moz2 gestattet zusätzlich, Spiegelfrequenzen (bei langsamen Modulationsraten df/dt können rechnerischtheoretisch in der Formel fd = I fr - fv| negative Frequenzen fv entstehen, die, als positive Frequenzen gespiegelt, Mehrdeutigkeiten verursachen) dadurch zu eliminieren, daß im Nahbereich (z.B. bevorzugt 0 m bis 40 m), in welchem bei langsamen Modulationszyklen solche Spiegelfrequenzen auftreten können, mit einem schnelleren Modulationszyklus mozl vermessen wird, z.B. mit einer Anstiegszeit von 0.75ms (wodurch sich die Frequenzen fr und fv nach oben verschieben und negative Frequenzen fv nicht auftreten), während der Fernbereich mit einer langsameren Anstiegszeit von z.B. 3ms vermessen wird. Aufgrund der im schnelleren Modulationszyklus im Nahbereich gewonnenen Informationen können durch Spiegelfrequenzen verursachte Mehrdeutigkeiten in den langsamen Modulationszyklen moz2 für diesen Bereich eliminiert werden.
Bei mehreren Modulationszyklen je Meßzyklus wird für die Bildüng der Objektfrequenzen fu und fd - siehe vorbekanntes Verfahren - ein Mittelwert aus den entsprechenden Werten aller n Modulationszyklen dieses Meßzyklus verwendet.
Die so ermittelten Werte für Entfernung e und Relativgeschwindigkeit vr jedes Zielobjekts H bilden die "Rohdaten" für den weiteren Verfahrensablauf.
In einem Datensatz für jedes Zielobjekt sind wenigstens folgende Parameter enthalten, die, soweit sie nicht konstant sind, nach jedem Meßzyklus aktualisiert werden und, soweit noch nicht bekannt, anschließend erläutert werden:
Entfernung, Relativgeschwindigkeit, relative Beschleunigung, Amplitude (der zugehörigen Maxima im FFT-Spektrum), gewählter Sicherheitsabstand, Trackingzeit bzw. Trackingzähler, Prädiktionszeit bzw. Prädiktionszähler sowie Objektstatus (z.B.
Zielobjekt detektiert, aber noch nicht zuverlässig gültig, gültig, gefährlich, weniger gefährlich, ungefährlich). Die Trackingzeit bzw. der Trackingzähler eines Zielobjektes stellt ein Maß für die bisherige Verfolgungsdauer (in Zeit oder Zahl der Meßzyklen) dar, die aber begrenzt sein kann. Die Prädiktionszeit bzw. der Prädiktionszähler kennzeichnet die Dauer der Prognose (in Zeit oder Zahl der Meßzyklen) über das weitere Verhalten des verfolgten Objekts, welches z.B. wegen Abschirmungen (durch ein dicht vor dem Fahrzeug F fahrendes anderes großes Objekt) für das Radarsystem vorübergehend scheinbar verschwunden sein kann und deshalb (seit einigen Meßzyklen) nicht mehr detektiert, sondern prädiktioniert wird. Prädiktionszeit bzw. Prädiktionszähler können ebenfalls begrenzt sein. Entfernung e, Relativgeschwindigkeit vr und relative Beschleunigung br der ermittelten Zielobjekte H werden anschließend einem an sich bekannten Kaiman-Filter (oder ebenfalls bekannten α-β- bzw. α-β-γ-Filtern) zugeführt und gffiltert (bereinigt).
Mit den bereinigten Daten e, vr und br werden nun für jedes Zielobjekt H, analog zur Bildung der Bahnen der Objektfrequenzen fu und fd bei dem vorbekannten Verfahren, ebenfalls Zielobjektbahnen gebildet und die Zielobjekte laufend über einen vorgegebenen Zeitraum verfolgt (Tracking), auf physikalisch mögliches Verhalten überprüft, und bei Ausbleiben von Meßdaten über einen vorgegebenen Zeitraum aufgrund des bisherigen Verhaltens Schätzwerte gebildet (Prädiktion). Wenn ein Zielobjekt nach Ablauf der Prädiktionszeit nicht wieder erscheint oder sich "physikalisch unmöglich" verhält, wird der entsprechende Datensatz gelöscht.
Aus den bereinigten Daten sowie aus Amplituden der Objektfrequenzen und Strahlnummer (bei drei Strahlen: mitte, links, rechts) der Azimutwinkel (horizontale Abweichung von der
Fahrzeuglängsachse) abgeschätzt und auf besonders einfache, wenig aufwendige Weise die verfolgten Ziele störungsarm gewichtet werden.
Mittels bekannter mathematischer bzw. geometrischer Zusammenhänge wird zumindest aus den Zielobjektdaten Abstand e, Relativgeschwindigkeit vr, Beschleunigung br und Azimutwinkel sowie Geschwindigkeit und Kurvenradius des eigenen Fahrzeuges festgestellt, welche Zielobjekte sich auf der eigenen Fahrbahn befinden und werden die kritischen Zielobjekte und das gefährlichste Zielobjekt auf der eigenen Fahrbahn ermittelt.
In einem weiteren Schritt wird aus den durch den Fahrer ausgelösten Lenkbewegungen (d/dt) , Beschleunigungen und Bremsverzögerungen adaptiv auf den Fahrstil geschlossen. Dem entsprechend werden Anzeige-, Warn- und ggf. Eingreif-Schwellen für Abstand e, Relativgeschwindigkeit vr und Beschleunigung br gebildet, mit denen die Daten der gefährlichsten Zielobjekte verglichen werden. Bei Überschreiten bzw. Unterschreiten dieser Schwellen werden entsprechende Anzeigen oder WarnSignale ausgelöst bzw. Bremsen, Motor-Drosselklappe oder Getriebeschaltung betätigt.
Beim Start des erfindungsgemäßen Verfahrens wird das Radargerät zunächst initialisiert, indem alle gespeicherten Datensätze gelöscht werden (die Zielobjekte betreffen, welche vor dem letzten Abschalten des Radargerätes verfolgt wurden). Die Initialisierungsroutine kann zusätzlich die Funktionstüchtigkeit des Radargerätes überprüfen: sie kann z.B. über die Größe des Rauschpegels in den Radarsignalen (Vergleich mit vorgegebenen Grenzwerten) die Funktion des Radar-Frontends
(Analogteils) überprüfen, sie kann ein simuliertes Objekt am Empfangsantennen-Eingang einspeisen und die Korrektheit der Verarbeitung des simulierten Signals prüfen. Sie kann auch, falls eine Fehlfunktion auftritt, diese Fehlfunktion über eine Warnlampe dem Fahrer anzeigen oder eine Reinigung der Radarantennen-Abdeckung bei deren Verschmutzung anfordern oder automatisch auslösen. - Es ist von Vorteil, wenn die Funkti onstüchtigkeit des Radargerätes auch während des laufenden Betriebes in regelmäßigen Abständen überprüft wird.

Claims

Patentansprüche
1. Radarverfahren, insbesondere für Straßenfahrzeuge, mit wenigstens einem Radarstrahl (Keule), bei welchem fortlaufend in aufeinanderfolgenden Meßzyklen pro Radarstrahl- wobei jeder Meßzyklus aus einem Modulationszyklus aus einer aufsteigenden und einer absteigenden Modulationsphase des Radarsignals und einer anschließenden Auswertepause für die empfangenen Echosignale besteht - in einem digitalen Signalprozessor (CPU) die in jedem Modulationszyklus (moz) während der beiden Modulationsphasen (up, do) empfangenen, digitalisierten und aufgezeichneten Abtastwerte der aus Sende- und Empfangssignalen gebildeten Mischsignale getrennt einer schnellen Fouriertransformation (FFT) unterzogen werden, um aus den in den daraus ermittelten Frequenzspektren enthaltenen Maxima den Zielobjekten zugeordnete Objektfrequenzen (fu,fd) pro Meßzyklus zu bestimmen,
wobei aus den über einige Meßzyklen gespeicherten Objektfrequenzen für jedes Zielobjekt, nach aufsteigenden und absteigenden Modulationsphasen getrennt, Objektbahnen gebildet werden, die den bisherigen zeitlichen Verlauf dieser Objektfrequenzen beschreiben,
wobei aus dem bisherigen Verlauf dieser Objektbahnen Schätzwerte für die im nächsten Meßzyklus zu erwartenden Objektfrequenzen gebildet werden, und
wobei nach Berechnung eines Fehlermaßes aus den Objektfrequenzen und aus den von den Objektbahnen erhaltenen Schätzwerten die Objektfrequenz-Paare (fu, fd) mit dem jeweils geringsten Fehlermaß einander zugeordnet werden, und wobei aus diesen Paaren die richtigen Werte für Entfernung (e), Relativgeschwindigkeit (vr) und Relativbeschleunigung (br) jedes Zielobjekts (H) berechnet werden,
d a d u r c h g e k e n n z e i c h n e t ,
daß für jedes Zielobjekt (H) ein Datensatz angelegt und gespeichert wird, der wenigstens folgende Daten enthält:
Entfernung (e), Relativgeschwindigkeit (vr), relative Be schleunigung (br) , Amplitude (der zugehörigen Maxima im FFT- Spektrum) , gewählter Sicherheitsabstand, Trackingzeit bzw. Trackingzähler, Prädiktionszeit bzw. Prädiktionszähler sowie Objektstatus,
daß die Daten Entfernung (e) , Relativgeschwindigkeit (vr) und relative Beschleunigung (br) einer Kaiman-Filterung oder α-ß- bzw. α-ß-γ-Filterung unterzogen und damit bereinigt werden, daß für jedes Zielobjekt (H) für Entfernung (e) , Relativgeschwindigkeit (vr) und relative Beschleunigung (br) Zielob- jektbahnen gebildet und Zielobjekte mit physikalisch nicht möglichem Verhalten oder verschwindende Zielobjekte nicht weiter verfolgt werden,
daß aus Entfernung (e) , Relativgeschwindigkeit (vr) und relativer Beschleunigung (br) , Amplituden der Objektfrequenzen und Strahlnummer (1, m, r bzw. 11, 1, m, r, rr) der Azimutwinkel jedes Zielobjekts (H) abgeschätzt wird,
daß zumindest aus den Zielobjektdaten Abstand (e) , Relativgeschwindigkeit (vr) , Relativbeschleunigung (br) und Azimutwinkel jedes Zielobjekts (H) sowie Geschwindigkeit und Kurvenra- dius des eigenen Fahrzeuges (F) festgestellt wird, welche
Zielobjekte sich auf der eigenen Fahrbahn befinden und daraus wenigstens das gefährlichste Zielobjekt auf der eigenen Fahrbahn ermittelt wird, und
daß Anzeige-, Warn- und Eingreifschwellen für Abstand (e) , Relativgeschwindigkeit (vr) und Relativbeschleunigung (br) oder Kombinationen davon vorgegeben werden, bei deren Überoder Unterschreiten Anzeigen und Warnungen für den Fahrer oder Eingriffe in Bremsen, Motordrosselklappe oder Getriebeschaltung des Fahrzeuges (F) erfolgen.
2. Radarverfahren nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t ,
daß aus dem Rauschanteil des bei jeder Fouriertransformation (FFT) gebildeten Frequenzspektrums Mittelwerte gebildet werden, daß diese Mittelwerte von den Amplituden des Frequenzspektrums subtrahiert werden, daß eine über dem verbleibenden Rauschpegel liegende Schwelle vorgegeben wird, und daß alle oberhalb dieser Schwelle liegenden Maxima nicht als Rauschen, sondern als Zielobjekten zugeordnet weiterverarbeitet werden.
3. Radarverfahren nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t ,
daß in jedem Meßzyklus (mez) wenigstens zwei Modulationszyklen (moz1, moz2) durchgeführt werden, und daß die Mittelwerte der aus diesen Modulationszyklen errechneten Objektfrequenzen als Objektfrequenzen (fu, fd) dieses Meßzyklus weiterverarbeitet werden.
4. Radarverfahren nach Anspruch 3,
d a d u r c h g e k e n n z e i c h n e t ,
daß die Modulationszyklen (moz1, moz2) pro Meßzyklus (mez) unterschiedlichen Modulationshub oder unterschiedliche Modulationsdauer aufweisen.
5. Radarverfahren nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t ,
daß für jedes Zielobjekt (H) ein Datensatz angelegt und gespeichert wird, der wenigstens folgende Daten enthält, die, soweit sie nicht konstant sind, nach jedem Meßzyklus aktualisiert werden:
Entfernung (e), Relativgeschwindigkeit (vr), relative Beschleunigung (br), Amplitude (der zugehörigen Maxima im FFT-Spektrum), gewählter Sicherheitsabstand, Trackingzeit bzw. Trackingzähler, Prädiktionszeit bzw. Prädiktionszähler, sowie Objektstatus.
6. Radarverfahren nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t ,
daß Entfernung (e), Relativgeschwindigkeit (vr) und relative Beschleunigung (br) der ermittelten Zielobjekte (H) in jedem Meßzyklus einem Kaiman-Filter oder α-ß- bzw. α-ß-γ-Filtern zugeführt und dort gefiltert - bereinigt - werden.
7. Radarverfahren nach Anspruch 6,
d a d u r c h g e k e n n z e i c h n e t ,
daß aus den bereinigten Daten (e, vr, br) jedes Zielobjekts über eine vorgegebene Zeit oder Anzahl von Meßzyklen (mez) Zielobjektbahnen gebildet werden (Tracking), daß bei Ausblei- ben von Meßdaten Schätzwerte aufgrund des bisherigen Verhaltens des Zielobjekts über eine vorgegebene Zeit oder Anzahl von Meßzyklen (mez) gebildet werden (Prädiktion), und daß bei einem physikalisch nicht möglichen Verhalten oder bei Ausbleiben von Meßdaten über die vorgegebene Prädiktionszeit hinaus der Datensatz dieses Zielobjekts gelöscht wird.
8. Radarverfahren nach Anspruch 6,
d a d u r c h g e k e n n z e i c h n e t ,
daß aus den bereinigten Daten (e, vr, br), aus den Amplituden der Objektfrequenzen und der Strahlnummer (sl, sm, sr) jedes Zielobjekts (H) der Azimutwinkel (horizontale Abweichung des Zielobjekts von der Fahrzeuglängsachse des Fahrzeuges F) ermittelt wird.
9. Radarverfahren nach Anspruch 8,
d a d u r c h g e k e n n z e i c h n e t ,
daß aus den bereinigten Daten (e, vr, br) und dem Azimutwinkel jedes Zielobjekts (H) sowie aus Geschwindigkeit und Kurvenradius des eigenen Fahrzeugs (F) ermittelt wird, welche Zielobjekte sich auf der Fahrbahn des Fahrzeugs (F) befinden und welche Zielobjekte kritisch oder dem Fahrzeug (F) gefährlich oder am gefährlichsten sind.
10. Radarverfahren nach Anspruch 9,
d a d u r c h g e k e n n z e i c h n e t . daß aus den vom Fahrer des Fahrzeugs (F) ausgelösten Lenkbewegungen (d/dt), FahrZeugbeschleunigungen und Bremsverzögerungen adaptiv auf den Fahrstil des Fahrers geschlossen wird und dem entsprechend Anzeige-, Warn- oder Eingreif-Schwellen für Entfernung (e), Relativgeschwindigkeit (vr) und Relativbeschleunigung (br) gebildet werden, bei deren Über- oder Unterschreiten durch die gefährlichen oder gefährlichsten Zielobjekte Anzeige- oder Warnsignale ausgelöst werden oder Bremsen, Motordrosselklappe oder Getriebeschaltung des Fahrzeuges (F) betätigt werden.
11. Radarverfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t ,
daß beim Start des Radarverfahrens alle gespeicherten Datensätze gelöscht werden und eine Funktionskontrolle des Radargerätes durchgeführt wird, die in vorgegebenen Abständen während des Betriebes des Radargerätes wiederholt wird..
12. Radarverfahren nach Anspruch 11,
d a d u r c h g e k e n n z e i c h n e t ,
daß zur Funktionskontrolle des Radar-Frontends ein Vergleich des Rauschpegels in den Radarsignalen (rs, rsd) mit vorgegebenen Grenzwerten erfolgt.
13. Radarverfahren nach Anspruch 11,
d a d u r c h g e k e n n z e i c h n e t ,
daß zur Funktionskontrolle des Radarverfahrens Signale eines simulierten Zielobjekts in die Radarsignale (rs) eingespeist werden und die korrekte Verarbeitung dieser Signale überprüft wird.
14. Radarverfahren nach Anspruch 13,
d a d u r c h g e k e n n z e i c h n e t daß bei fehlerhafter Verarbeitung der simulierten Signale ein Warnsignal abgegeben wird.
15. Vorrichtung zur Durchführung des Radarverfahrens nach Anspruch 1, mit einem digitalen Signalprozessor (CPU), welcher dreieckförmige digitale Modulationssignale (msd) erzeugt, die in einem D/A-Wandler eines Interface-Bausteins (ADI) in analoge Signale (ms) umgewandelt und in einem Radar-Frontend (S- E/D) zu modulierten Radarsignalen (sr, sm, sl; 11, 1, m, r, rr) verarbeitet werden, die von wenigstens einer Antenne gesendet und empfangen werden, mit Misch- und Filtermitteln zur Erzeugung von Mischsignalen (rs) aus Sende- und Empfangssignalen, die in einem A/D-Wandler des Interface-Bausteins (ADI) in digitale Signale (rsd) umgewandelt und dem Signalprozessor (CPU) zur Weiterverarbeitung zugeführt werden, d a d u r c h g e k e n n z e i c h n e t ,
daß ein Sensor-Interface (SI) vorgesehen ist, über welches dem Signalprozessor (CPU) Signale (s) zuführbar sind,
daß eine Interfaceeinheit (IS) vorgesehen ist, über welche Steuersignale des Signalprozessors (CPU) anderen Aggregaten (Bremsen, Drosselklappe, Getriebeschaltung) des Fahrzeuges (F) zuführbar sind,
daß eine Steuerleitung vom Signalprozessor (CPU) zum Radar- Frontend (S-E/D) geschaltet ist, über welche digitale Steuersignale (es) des Signalprozessors (CPU) zur Steuerung der Sende- oder Empfangsantennen geleitet werden,
daß eine Signalleitung vom Radar-Frontend (S-E/D) zum Signalprozessor geschaltet ist, über welche digitale Fehlermeldun- gen (fu) oder Reinigungs-Anforderungssignale für die Radarantennen-Abdeckung vom Radar-Frontend (S-E/D) zum Signalprozessor gemeldet werden,
daß eine optische (OW) oder akustische (AW) Anzeige- oder Warneinrichtung vorgesehen ist, welche von Steuersignalen des Pignalprozessors (CPU) gesteuert wird, und daß eine Registriereinrichtung (REG) vorgesehen ist, in welcher vom Signalprozessor (CPU) ausgegebene Daten für späteren Abruf speicherbar sind.
16. Vorrichtung nach Anspruch 15,
d a d u r c h g e k e n n z e i c h n e t ,
daß die von Sensoren oder über vom Fahrer betätigte Schalter über das Sensor-Interface (SI) dem Signalprozessor (CPU) zugeführten Signale (s) der Fahrzeuggeschwindigkeit, dem Einschlagwinkel der lenkbaren Vorderräder oder deren Drehzahlen, dem Fahrverhalten des Fahrers (Lenkbewegungen, Bremsverzögerungen und Beschleunigungen), Fahrbahnzustand (naß, trocken, Schnee, Eis) sowie Wetter- oder Sichtverhältnissen zugeordnet sind.
17. Vorrichtung nach Anspruch 15,
d a d u r c h g e k e n n z e i c h n e t ,
daß zwischen Signalprozessor (CPU) und Interface-Baustein
(ADI) für die Signale (msd, rsd) vom und zum Signalprozessor Pufferspeicher (TMEM, RMEM) vorgesehen sind, daß ein vom Signalprozessor (CPU) getrennter Controller (CON) vorgesehen ist, und daß der Controller (CON) die Steuerung des Radarverfahrens sowie der Funktionskontrolle übernimmt und der Signalprozessor (CPU) die Datenverarbeitung durchführt.
18. Vorrichtung nach Anspruch 17,
d a d u r c h g e k e n n z e i c h n e t ,
daß sich Signalprozessor (CPU) und Controller (CON) gegenseitig überwachen.
19. Vorrichtung nach Anspruch 15,
d a d u r c h g e k e n n z e i c h n e t
daß das Radargerät folgende Daten aufweist: * drei oder fünf gegeneinander versetzte und zyklisch in vorgegebener Reihenfolge nacheinander gesendete Radarstrahlen (sm, sr, sl; 11, 1, m, r, rr);
* die Breite jedes einzelnen bei drei Strahlen beträgt horizontal 3,0° ± 0,5°und vertikal 5,0° ± 1,0°;
* der Winkel zwischen den Zentren benachbarter Keulen beträgt 3,3° ± 0,5°;
* die minimale Reichweite beträgt ca Im;
* die maximale Reichweite beträgt gegen 200m;
* die Genauigkeit der errechneten Objektentfernungen ist < ±lm;
* und die Geschwindigkeitsauflösung beträgt < ±2, 7km/h;
* bei 77GHz Trägerfrequenz fo sowie etwa 200MHz Modulationshub, jeweils durchlaufen in ca. 0,75 ms oder 3ms pro Modulationsphase, bei einer Meßzyklusdauer von etwa 13ms
PCT/DE1994/001382 1993-11-23 1994-11-23 Radarverfahren und vorrichtung zur durchführung dieses verfahrens WO1995014939A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7514749A JPH09506698A (ja) 1993-11-23 1994-11-23 レーダー方法及びこの方法を実施する装置
EP95901323A EP0730742A1 (de) 1993-11-23 1994-11-23 Radarverfahren und vorrichtung zur durchführung dieses verfahrens
KR1019960702697A KR960706086A (ko) 1993-11-23 1994-11-23 레이다 방법 및 그 방법을 실행하기 위한 장치(radar process and device for carrying out said process)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4339920.7 1993-11-23
DE4339920 1993-11-23

Publications (1)

Publication Number Publication Date
WO1995014939A1 true WO1995014939A1 (de) 1995-06-01

Family

ID=6503246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001382 WO1995014939A1 (de) 1993-11-23 1994-11-23 Radarverfahren und vorrichtung zur durchführung dieses verfahrens

Country Status (4)

Country Link
EP (1) EP0730742A1 (de)
JP (1) JPH09506698A (de)
KR (1) KR960706086A (de)
WO (1) WO1995014939A1 (de)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677799A2 (de) * 1994-04-15 1995-10-18 Honda Giken Kogyo Kabushiki Kaisha Vorrichtung zur Fahrhilfe eines Fahrzeugs
WO1997006449A1 (de) * 1995-08-08 1997-02-20 Siemens Aktiengesellschaft Schaltungsanordnung mit einem radargerät zur ermittlung eines abstandes oder einer relativgeschwindigkeit
GB2312113A (en) * 1996-04-10 1997-10-15 Fuji Heavy Ind Ltd Vehicular collision avoidance system
JPH09287652A (ja) * 1996-04-19 1997-11-04 Toyota Motor Corp 車両の制御装置
EP0872741A2 (de) * 1997-04-18 1998-10-21 Nissan Motor Co., Ltd. Alarmanlage zur Warnung des Führers eines Kraftfahrzeugs und Verfahern zur Erzeugung des Alarms
WO1999019745A1 (en) * 1997-10-09 1999-04-22 Eaton Vorad Technologies, L.L.C. Method and apparatus for in-path target determination for an automotive vehicle using a gyroscopic device
EP0954758A1 (de) * 1997-01-21 1999-11-10 Automotive Systems Laboratory Inc. Prädiktives kollisionsentdeckungssystem
EP0959370A2 (de) * 1998-05-20 1999-11-24 DaimlerChrysler Aerospace AG Radarverfahren in einem Kraftfahrzeug
WO1999064888A1 (fr) * 1996-12-09 1999-12-16 Radar Communication Services Procede d'anticollision pour vehicule
DE19963625A1 (de) * 1999-12-29 2001-07-12 Bosch Gmbh Robert Verfahren zur Messung des Abstands und der Geschwindigkeit von Objekten
DE10015500A1 (de) * 2000-03-29 2001-10-11 Bosch Gmbh Robert Mehrstrahl-Radarsystem
WO2003005325A1 (de) * 2001-07-06 2003-01-16 Volkswagen Fahrerassistenzsystem
WO2004008174A1 (de) * 2002-07-11 2004-01-22 Robert Bosch Gmbh Vorrichtung zur umfeldüberwachung in einem fahrzeug
DE19929794B4 (de) * 1998-07-03 2004-04-01 Toyota Jidosha Kabushiki Kaisha, Toyota Fahrzeug-Radarvorrichtung
WO2004045887A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur beeinflussung der geschwindigkeit eines kraftfahrzeuges
WO2004045896A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur beeinflussung der geschwindigkeit eines kraftfahrzeuges (kfzs)
WO2005044612A1 (de) * 2003-10-28 2005-05-19 Robert Bosch Gmbh Vorrichtung zur ermüdungswarnung in kraftfahrzeugen mit abstandswarnsystem
WO2006094510A1 (en) * 2005-03-11 2006-09-14 Weibel Scientific A/S Fm-cw radar
US7212907B2 (en) 2002-11-21 2007-05-01 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
KR100719141B1 (ko) * 2003-01-28 2007-05-17 도요다 지도샤 가부시끼가이샤 충돌 예보 장치 및 충돌 예보 방법
US7248962B2 (en) 2002-11-21 2007-07-24 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
WO2007137689A1 (de) * 2006-06-01 2007-12-06 Valeo Schalter Und Sensoren Gmbh Parkhilfesystem und verfahren zum betrieb eines parkhilfesystems
WO2008040341A1 (de) 2006-10-06 2008-04-10 Adc Automotive Distance Control Systems Gmbh Radarsystem zur umfelderfassung mit kompensation von störsignalen
US7386385B2 (en) 2002-11-21 2008-06-10 Lucas Automotive Gmbh System for recognising the lane-change manoeuver of a motor vehicle
US7831368B2 (en) 2002-11-21 2010-11-09 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7831367B2 (en) 2002-11-21 2010-11-09 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7840330B2 (en) 2002-11-21 2010-11-23 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
DE10141920B4 (de) * 2000-08-29 2015-04-09 Toyota Jidosha Kabushiki Kaisha Warnvorrichtung und Fahrsteuerungsgerät mit der Warnvorrichtung
CN109814080A (zh) * 2018-12-11 2019-05-28 长沙莫之比智能科技有限公司 一种毫米波雷达目标跟踪与置信度算法及其装置
US20210011152A1 (en) * 2019-07-11 2021-01-14 Ubtechi Robotics Corp Ltd Ultrasonic ranging method and apparatus and robot using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006028465A1 (de) * 2006-06-21 2007-12-27 Valeo Schalter Und Sensoren Gmbh Kraftfahrzeug-Radarsystem und Verfahren zur Bestimmung von Geschwindigkeiten und Entfernungen von Objekten relativ zu dem einen Radarsystem
US7504989B2 (en) 2006-08-09 2009-03-17 Fujitsu Ten Limited On-vehicle radar device
JP5141760B2 (ja) * 2010-12-28 2013-02-13 株式会社デンソー 車両の挙動データ記憶制御システム、電子制御装置、データ記憶装置
DE102012003373B4 (de) * 2012-02-22 2018-11-22 Krohne Messtechnik Gmbh Verfahren zur Überwachung und Verfahren zum Betreiben eines nach dem Radar-Prinzip arbeitenden Füllstandmesssystems und entsprechendes Füllstandmesssystem
WO2020049648A1 (ja) * 2018-09-05 2020-03-12 株式会社ソシオネクスト センシング方法及びセンシング装置
US20210403008A1 (en) * 2020-06-29 2021-12-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and system for predicting a trajectory of a target vehicle in an environment of a vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2172461A (en) * 1985-03-13 1986-09-17 Philips Electronic Associated Measuring range and/or radial velocity of a moving target
EP0544468A2 (de) * 1991-11-27 1993-06-02 The State Of Israel, Ministry Of Defense, Rafael Armament Development Authority Kollisionsvermeidungs- und Warnsystem

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2172461A (en) * 1985-03-13 1986-09-17 Philips Electronic Associated Measuring range and/or radial velocity of a moving target
EP0544468A2 (de) * 1991-11-27 1993-06-02 The State Of Israel, Ministry Of Defense, Rafael Armament Development Authority Kollisionsvermeidungs- und Warnsystem

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677799A2 (de) * 1994-04-15 1995-10-18 Honda Giken Kogyo Kabushiki Kaisha Vorrichtung zur Fahrhilfe eines Fahrzeugs
EP0677799B1 (de) * 1994-04-15 2000-05-17 Honda Giken Kogyo Kabushiki Kaisha Vorrichtung zur Fahrhilfe eines Fahrzeugs
US5861836A (en) * 1995-08-08 1999-01-19 Siemens Aktiengesellschaft Circuit configuration having radar equipment for determining a distance or a relative speed
WO1997006449A1 (de) * 1995-08-08 1997-02-20 Siemens Aktiengesellschaft Schaltungsanordnung mit einem radargerät zur ermittlung eines abstandes oder einer relativgeschwindigkeit
DE19529180C1 (de) * 1995-08-08 1997-04-03 Siemens Ag Schaltungsanordnung mit einem Radargerät zur Ermittlung eines Abstandes oder einer Relativgeschwindigkeit
GB2312113B (en) * 1996-04-10 1998-06-10 Fuji Heavy Ind Ltd Drive assist system and method for a vehicle
GB2312113A (en) * 1996-04-10 1997-10-15 Fuji Heavy Ind Ltd Vehicular collision avoidance system
JPH09287652A (ja) * 1996-04-19 1997-11-04 Toyota Motor Corp 車両の制御装置
WO1999064888A1 (fr) * 1996-12-09 1999-12-16 Radar Communication Services Procede d'anticollision pour vehicule
EP0954758A1 (de) * 1997-01-21 1999-11-10 Automotive Systems Laboratory Inc. Prädiktives kollisionsentdeckungssystem
EP0954758A4 (de) * 1997-01-21 2001-01-17 Automotive Systems Lab Prädiktives kollisionsentdeckungssystem
EP0872741A2 (de) * 1997-04-18 1998-10-21 Nissan Motor Co., Ltd. Alarmanlage zur Warnung des Führers eines Kraftfahrzeugs und Verfahern zur Erzeugung des Alarms
EP0872741A3 (de) * 1997-04-18 1998-12-16 Nissan Motor Co., Ltd. Alarmanlage zur Warnung des Führers eines Kraftfahrzeugs und Verfahern zur Erzeugung des Alarms
US6091323A (en) * 1997-04-18 2000-07-18 Nissan Motor Co., Ltd. Alarm apparatus for alarming driver of vehicle and method of alarming the same
US5959569A (en) * 1997-10-09 1999-09-28 Eaton Vorad Technologies, L.L.C. Method and apparatus for in path target determination for an automotive vehicle using a gyroscopic device
WO1999019745A1 (en) * 1997-10-09 1999-04-22 Eaton Vorad Technologies, L.L.C. Method and apparatus for in-path target determination for an automotive vehicle using a gyroscopic device
EP0959370A2 (de) * 1998-05-20 1999-11-24 DaimlerChrysler Aerospace AG Radarverfahren in einem Kraftfahrzeug
EP0959370A3 (de) * 1998-05-20 2000-07-19 DaimlerChrysler Aerospace AG Radarverfahren in einem Kraftfahrzeug
US6266004B1 (en) 1998-05-20 2001-07-24 Daimlerchrysler Ag Radar method used in a motor vehicle
DE19929794B4 (de) * 1998-07-03 2004-04-01 Toyota Jidosha Kabushiki Kaisha, Toyota Fahrzeug-Radarvorrichtung
DE19963625A1 (de) * 1999-12-29 2001-07-12 Bosch Gmbh Robert Verfahren zur Messung des Abstands und der Geschwindigkeit von Objekten
DE10015500A1 (de) * 2000-03-29 2001-10-11 Bosch Gmbh Robert Mehrstrahl-Radarsystem
DE10141920B4 (de) * 2000-08-29 2015-04-09 Toyota Jidosha Kabushiki Kaisha Warnvorrichtung und Fahrsteuerungsgerät mit der Warnvorrichtung
WO2003005325A1 (de) * 2001-07-06 2003-01-16 Volkswagen Fahrerassistenzsystem
WO2004008174A1 (de) * 2002-07-11 2004-01-22 Robert Bosch Gmbh Vorrichtung zur umfeldüberwachung in einem fahrzeug
US7616101B2 (en) 2002-07-11 2009-11-10 Robert Bosch Gmbh Device for monitoring the surroundings of a vehicle
US7840330B2 (en) 2002-11-21 2010-11-23 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
WO2004045887A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur beeinflussung der geschwindigkeit eines kraftfahrzeuges
US7177750B2 (en) 2002-11-21 2007-02-13 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7212907B2 (en) 2002-11-21 2007-05-01 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7386385B2 (en) 2002-11-21 2008-06-10 Lucas Automotive Gmbh System for recognising the lane-change manoeuver of a motor vehicle
US7248962B2 (en) 2002-11-21 2007-07-24 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
WO2004045896A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur beeinflussung der geschwindigkeit eines kraftfahrzeuges (kfzs)
US7774123B2 (en) 2002-11-21 2010-08-10 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7831367B2 (en) 2002-11-21 2010-11-09 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7831368B2 (en) 2002-11-21 2010-11-09 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7974784B2 (en) 2003-01-28 2011-07-05 Toyota Jidosha Kabushiki Kaisha Collision predicting apparatus and collision predicting method
KR100719141B1 (ko) * 2003-01-28 2007-05-17 도요다 지도샤 가부시끼가이샤 충돌 예보 장치 및 충돌 예보 방법
US7821384B2 (en) 2003-10-28 2010-10-26 Robert Bosch Gmbh Device for fatigue warning in motor vehicles having a run-up alarm system
WO2005044612A1 (de) * 2003-10-28 2005-05-19 Robert Bosch Gmbh Vorrichtung zur ermüdungswarnung in kraftfahrzeugen mit abstandswarnsystem
WO2006094510A1 (en) * 2005-03-11 2006-09-14 Weibel Scientific A/S Fm-cw radar
WO2007137689A1 (de) * 2006-06-01 2007-12-06 Valeo Schalter Und Sensoren Gmbh Parkhilfesystem und verfahren zum betrieb eines parkhilfesystems
WO2008040341A1 (de) 2006-10-06 2008-04-10 Adc Automotive Distance Control Systems Gmbh Radarsystem zur umfelderfassung mit kompensation von störsignalen
US8203481B2 (en) 2006-10-06 2012-06-19 Adc Automotive Distance Control Systems Gmbh Radar system for detecting the surroundings with compensation of interfering signals
CN109814080A (zh) * 2018-12-11 2019-05-28 长沙莫之比智能科技有限公司 一种毫米波雷达目标跟踪与置信度算法及其装置
US20210011152A1 (en) * 2019-07-11 2021-01-14 Ubtechi Robotics Corp Ltd Ultrasonic ranging method and apparatus and robot using the same

Also Published As

Publication number Publication date
JPH09506698A (ja) 1997-06-30
EP0730742A1 (de) 1996-09-11
KR960706086A (ko) 1996-11-08

Similar Documents

Publication Publication Date Title
EP0730742A1 (de) Radarverfahren und vorrichtung zur durchführung dieses verfahrens
US5633642A (en) Radar method and device for carrying out the method
DE19655360B4 (de) Verfahren und Abstandsmesseinrichtung zur von den Fahrzeugdaten abhängigen Abstandsmessung von Hindernissen
DE10052691B4 (de) Objekterfassungsvorrichtung und Fahrsicherheitsvorrichtung für ein Fahrzeug
EP3183152B1 (de) Verfahren zum warnen eines fahrers eines kraftfahrzeugs vor der anwesenheit eines objekts in der umgebung, fahrerassistenzsystem und kraftfahrzeug
EP2191293B1 (de) Objektklassifizierungsverfahren, einparkhilfeverfahren und einparkhilfesystem
WO1999025580A1 (de) Fahrtregelungssystem für fahrzeuge, insbesondere für kraftfahrzeuge
EP1412776A1 (de) Verfahren und vorrichtung zur ermittlung eines stationären und/oder bewegten objekts
DE10118265A1 (de) Verfahren zur Erkennung eines Spurwechsels eines Fahrzeugs
WO1997025629A1 (de) Verfahren zur signalverarbeitung bei einer kraftfahrzeug-radaranordnung und radaranordnung hierfür
EP1873737B1 (de) Verfahren zur Erkennung einer kritischen Situation vor einem Kraftfahrzeug
WO2014006034A1 (de) Verfahren und system zur informationsnutzung
WO2019038174A1 (de) Vermeidung von totwinkelwarnungen durch gischt
WO2005123440A1 (de) Verfahren zur erkennung einer ausrichtungsänderung eines umgebungsfahrzeugs
WO2003078195A1 (de) Verfahren zur wahl des betriebszustands eines geschwindigkeitsregelsystems für kraftfahrzeuge
DE102017129149A1 (de) Verfahren zur Ermittlung von wenigstens einer Objektinformation wenigstens eines Zielobjekts, das mit einem Radarsystem insbesondere eines Fahrzeugs erfasst wird, Radarsystem und Fahrerassistenzsystem
DE102017208239B4 (de) Verfahren zum Ermitteln einer Formeigenschaft eines von einem Kraftfahrzeug überfahrenen Einzelhindernisses auf einer Straße sowie Steuervorrichtung und Kraftfahrzeug
DE19948252C2 (de) Verfahren zur Erkennung einer Verschmutzung und/oder Blindheit bei einem nach dem Radar- oder Lidarprinzip arbeitenden Sensor
WO2020104305A1 (de) Kodierung und verschlüsselung von radardaten in einer chip-radarsensor-architektur zur datenkommunikation im kfz
DE102006046903A1 (de) Fahrerassistenzsystem und Verfahren zum Verfolgen von georteten Objekten
EP3788398A1 (de) Ultraschallsystem eines fahrzeugs zur bestimmung des zustands der fahrbahn
DE10335898A1 (de) Vorrichtung zur Bewertung von stehenden Objekten in einem Fahrerassistenzsystem
EP2068172A2 (de) Adaptives Platzieren von Nullstellen im Monopuls-Differenz-Antennendiagramm zur verbesserten Winkelauflösung an Objektorten
WO2004089678A1 (de) System zur automatischen abstandsregelung
DE102020206237A1 (de) Verfahren zur Unterstützung eines Fahrers für ein Überholmanöver, sowie Fahrzeug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995901323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08651564

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995901323

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1995901323

Country of ref document: EP