WO1994028189A1 - Fil d'acier ou barre en acier riche en carbone presentant une excellente usinabilite dans le trefilage, et leur procede de production - Google Patents

Fil d'acier ou barre en acier riche en carbone presentant une excellente usinabilite dans le trefilage, et leur procede de production Download PDF

Info

Publication number
WO1994028189A1
WO1994028189A1 PCT/JP1994/000576 JP9400576W WO9428189A1 WO 1994028189 A1 WO1994028189 A1 WO 1994028189A1 JP 9400576 W JP9400576 W JP 9400576W WO 9428189 A1 WO9428189 A1 WO 9428189A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
wire
transformation
steel wire
cooling
Prior art date
Application number
PCT/JP1994/000576
Other languages
English (en)
French (fr)
Inventor
Akifumi Kawana
Hiroshi Oba
Ikuo Ochiai
Seiki Nishida
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5122984A external-priority patent/JP2984888B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to DE69423619T priority Critical patent/DE69423619T2/de
Priority to US08/545,675 priority patent/US5658402A/en
Priority to EP94912062A priority patent/EP0708183B1/en
Publication of WO1994028189A1 publication Critical patent/WO1994028189A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the present invention relates to a high-carbon steel wire or a steel wire excellent in wire drawing workability and a method for producing the same.
  • wire or steel wire is drawn according to the use of various end products, but before this wire drawing, a wire suitable for drawing is converted to a steel wire in advance. There is a need.
  • C at the austenitizing temperature 0.2 to 1.0%, and Si at 0.30%.
  • Mn A steel wire containing 0.30 to 0.90% is heated and melted at a temperature of 350 to 600 ° C, alone or in combination with potassium silicate or sodium nitrate.
  • a steel wire rod with high strength and small variation in strength characterized by being immersed in a molten salt stirred by a gaseous material and having a cooling rate of 800 to 600 ° C of 15 to 6 (TCZ sec).
  • An object of the present invention is to provide a high-carbon steel wire or a steel wire excellent in drawability, which can advantageously solve the above-mentioned problems of the prior art, and a method for producing the same. Disclosure of the invention
  • the gist of the present invention is as follows.
  • the upper bainite structure obtained by the two-stage transformation has a microstructure with an area ratio of 80% or more and an Hv of 450 or less.
  • the cooling rate is reduced from 110 to 75 to 55 ° C to 60 to 300 ° CZ sec.
  • a temperature in the range of 350 to 500 ° C and within this temperature range, within the range where the Payinite transformation does not start or after the start of the Bainite transformation and before the end of the Bainite transformation.
  • a method for producing a high carbon steel wire excellent in wire drawability characterized in that the temperature is raised after the temperature is maintained, and the temperature is maintained until the bainite transformation is completely completed.
  • the temperature range is from 110 to 755 and the temperature is 350 to 550 ° C at a cooling rate of 60 to 300 c.
  • the wire drawing process described in 3 or 4 above characterized in that the temperature is raised to a temperature of at least 60 ° C and below 600- ( ⁇ ,: holding temperature after cooling) and held until complete bainite transformation is completed.
  • the starting steel wire is moved from the heating temperature range of 110 to 75 to 5 ° C to 60 to Cool at a cooling rate of 300 ° C / sec to a temperature range of 350 to 500 ° C, and within this temperature range for at least 1 second and within the range where bainite transformation does not start, the time defined by the following equation (1) X seconds
  • the temperature is raised up to 60 ° C-T, (T,: holding temperature after cooling) ° C or less, and the temperature is kept until the complete transformation of the paneite is completed.
  • T holding temperature after cooling
  • the starting steel wire is cooled from a heating temperature range of 1100 to 755 ° C to a temperature range of 350 to 500 ° C at a cooling rate of 60 to 300 ° C Zsec, After the start of the cell transformation and before the end of the Payneite transformation, that is, after the time specified by the following equation (2) is maintained for Y seconds or less, the temperature is maintained at 10 ° C or more and 600——, (T,: the maintained temperature after cooling. 7.
  • FIG. 1 is a view showing a heat treatment pattern of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • C is a basic element that controls the strength and ductility of steel. The strength is improved.
  • the lower limit of C is set to 0.70% in order to secure hardenability and strength.
  • the upper limit of C is set to 1.20% in order to prevent the occurrence of pro-eutectoid cementite.
  • Si is added as a steel deoxidizer in an amount of 0.15% or more. Also, Si is an element that strengthens the solid solution of the steel and is an element that can reduce the relaxation loss of the steel wire. In addition, Si reduces the amount of scale generated, reduces mechanical strength, and slightly reduces the wire's bond lubricity. Therefore, the upper limit of Si is set to 1.00%.
  • Mn is added as a deoxidizing agent in an amount of 0.30% or more.
  • Mn is an element that forms a solid solution in steel and strengthens it.
  • the segregation part improves hardenability and the transformation end time shifts to a longer time side, so the untransformed part becomes martensite, which leads to disconnection during wire drawing. Therefore, the upper limit of Mn is set to 0.90%.
  • A1 is the most economical element that not only acts as a deoxidizer but also fixes N in steel and turns it into fine-grained austenite.
  • the upper limit of A1 was 0.10% in consideration of the addition of nonmetallic inclusions, and the lower limit was 0.006%, at which the effect of A1 was exhibited.
  • Ti is currently being used to adjust the austenitic grain size of Ti deoxidized steel, primarily plain carbon.
  • the upper limit of Ti was set to 0.35% in order to suppress the addition of Ti inclusions and to suppress the formation of solid solution carbonitride in steel.
  • the lower limit of Ti is set to 0.01% at which these effects are effective.
  • one or two of A1 and Ti may be added.
  • the upper limit of S is set to 0.01%, The upper limit was set to 0.02%.
  • Cr is an element that is added as needed to increase the strength of the steel, and the strength increases as the amount of addition increases. However, Cr also improves hardenability, and the transformation end line moves to a longer time side. This increases the time required for the heat treatment, so the upper limit of Cr was set to 0.50%, and the lower limit was set to 0.10% to increase the strength.
  • the cooling onset temperature (T D ) after wire rod rolling or steel wire heating affects the structure after transformation.
  • the lower limit is the austenite transformation point which is the equilibrium transformation onset temperature
  • the upper limit was set at 110 ° C to suppress abnormal growth of austenite crystal grains.
  • the cooling rate (V,) after wire rod rolling or steel wire heating is an important factor for suppressing the onset of pearlite transformation.
  • the present inventors have experimentally determined this. If the initial cooling rate is lower than 60 ° C / sec, the transformation starts on the higher temperature side than the nose position of the pearlite transformation, and the pearlite structure is formed, so that a complete payinite structure cannot be obtained.
  • the formation temperature of bainite structure is 500 or less, but it is necessary to rapidly cool in the early stage of cooling to form a complete payinite structure. So the cooling rate
  • the lower limit of (V,) was set at 60 ° C / sec, and the upper limit was set at 300 ° Czsec, which is industrially possible.
  • the constant temperature (T,) after cooling is an important factor that determines the generated tissue. If the holding temperature exceeds 500 ° C, a pearlite structure is formed at the center of the wire or steel wire, so that the tensile strength increases and the drawability deteriorates. If the holding temperature is lower than 350 ° C, the cementite in the bainite structure starts to granulate, thereby increasing the tensile strength and deteriorating the drawability. For this reason, the upper limit of the constant temperature transformation temperature was set to 500 ° C, and the lower limit was set to 350 ° C. A supercooled austenite structure can be obtained by maintaining the temperature at 350-500 ° C for a certain period of time. Thereafter, the bainite structure that appears when the temperature is increased has coarser cementite precipitates than the isothermal transformation. As a result, the upper bainite tissue that has undergone the two-stage transformation softens.
  • the required supercooling time (t,) in the temperature range from 350 to 500 is longer than the time required to form the supercooled austenite structure, and the upper limit is the Bainite transformation. Before the start of Preferably, it is 1 second or more and X seconds or less shown by the following formula.
  • the lower limit of the heating temperature range ( ⁇ ) for the two-stage transformation after supercooling is 10 ° C, at which the softening effect by the two-stage transformation is exhibited, and the upper limit is the temperature after heating of 600 ° C or less. Therefore, the difference is set to ⁇ T or less in the following equation.
  • the required supercooling time (t,) in the temperature range of 350 to 500 ° C shall be Y seconds or less as shown in the following formula after the start of the payinite transformation.
  • the temperature rise ( ⁇ ⁇ ) for the two-stage transformation after supercooling is set at the lower limit of 10 ° C, as in the case of the complete two-stage transformation, at which the softening effect of the two-stage transformation appears, and the upper limit is after the temperature rise Since it is necessary to keep the temperature of 600 ° C or less, the temperature is set to ⁇ or less as shown in the following equation.
  • Pearlite wire or steel wire treated at a constant temperature of more than 500 ° C has a pearlite structure in the center of the wire or steel wire. Parlite organization Since the tightite and the filler have a layered structure, they greatly contribute to work hardening, but do not prevent a decrease in ductility. For this reason, in the high area reduction region, the tensile strength increases and the torsion characteristics are degraded, resulting in the occurrence of delamination.
  • the area ratio of the payinite structure is determined by the lattice point method from observation of the structure in the cross section.
  • the area ratio is an important index that indicates the state of formation of bainite structure and affects the drawability.
  • the lower limit of the area ratio was set to 80%, at which the two-stage transformation effect was prominent.
  • the Vickers hardness of the upper bainite structure is an important factor in characterizing the sample.
  • the precipitation of cementite is coarser than in the case of the isothermal transformation.
  • the upper bainite structure that has undergone the two-stage transformation softens.
  • the upper limit of the Vickers hardness was set to 450 or less in consideration of the effect of the C content.
  • Table 1 shows the chemical composition of the test steel.
  • Steel E has a C content exceeding the upper limit
  • steel F has a Mn content exceeding the upper limit.
  • a piece having a size of 300 ⁇ 500 mm was rolled into a steel piece having a square cross section of 122 mm by a continuous production facility. After wire rolling these slabs, the molten salt was cooled directly under the conditions shown in Table 2.
  • wire rods were drawn to 1.000 mm at an average area reduction rate of 17%, and a tensile test and a twist test were performed.
  • the tensile test was performed by the method described in JIS Z2241, using a No. 2 test piece of JIS Z2201.
  • the test piece was cut to a length of 100 d + 100, and then rotated at a rotation speed of 10 rpm at a distance between chucks of 100 d until breaking.
  • d represents the diameter of the steel wire.
  • Table 2 shows the characteristic values thus obtained.
  • No. 1 to No. 4 are examples of the present invention.
  • No. 5 to No. 10 are comparative examples.
  • Comparative Example No. 6 since the heating temperature was too low, a two-stage transformed bainite structure was not formed, the wire drawing workability was reduced, and the wire was broken during the wire drawing.
  • Comparative Example N since the constant temperature transformation time was not sufficiently secured, martensite was generated, the wire drawing workability was reduced, and the wire was broken during the wire drawing.
  • Comparative Example No. 8 since the supercooling treatment time was long, the rate of formation of the two-stage transformed payinite structure was reduced, the wire drawing workability was reduced, and breakage occurred during wire drawing.
  • Table 3 shows the chemical composition of the test steel.
  • a to D are examples of the steel of the present invention, and E to F are examples of comparative steels.
  • Steel E has a C content exceeding the upper limit
  • steel F has a Mn content exceeding the upper limit.
  • a piece having a size of 300 x 500 mm was rolled into a piece of steel having a square cross section of 122 mm by a continuous fabrication facility, and a steel wire was produced from this piece.
  • the tensile test was performed using the No. 2 test piece of JIS Z2201 according to the method described in JIS Z2241.
  • the test piece was cut to a length of 100 d + 100, and then rotated at a rotation speed of 10 rpm at a distance between the chucks of 100 d until it broke.
  • d represents the diameter of the steel wire.
  • No. 1 to No. 4 are examples of the present invention.
  • No. 5 to No. 10 are comparative examples.
  • Comparative Example No. 6 the heating temperature was too low, so that a two-stage transformed paneite structure was not formed, the wire drawing workability was reduced, and the wire was broken during wire drawing.
  • Comparative Example No. 7 since the constant temperature transformation time was not sufficiently secured, martensite was generated, the wire drawing workability was reduced, and the wire was broken during the wire drawing.
  • Comparative Example No. 8 since the supercooling treatment time was long, the rate of formation of the two-stage transformed payinite structure was reduced, and the wire drawing workability was reduced. Disconnection has occurred.
  • the high carbon steel wire or the steel wire according to the present invention can be drawn to a much higher area reduction ratio than the conventional material, and the delamination resistance characteristics are also improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

明 細 書 伸線加工性に優れた高炭素鋼線材または鋼線およびその製造方法 技術分野
本発明は、 伸線加工性に優れた高炭素鋼線材または鋼線とその製造方 法に関するものである。 背景技術
通常、 線材または鋼線は、 種々の最終製品の用途に応じて、 伸線加工 が行われるが、 この伸線加工の前に予め伸線に適した線材ぁるレ、は鋼線 にしておく必要がある。
従来その対策として、 特公昭 6 0 - 5 6 2 1 5号公報に開示されてい るように、 オーステナイト化温度にある C : 0 . 2〜1 . 0 %、 S iく 0 . 3 0 %. M n : 0 . 3 0〜 0 . 9 0 %を含む鋼線材を、 力リウム硝 酸塩またはナトリウム硝酸塩を、 単独または複合して 3 5 0〜6 0 0 °C の温度に加熱溶融し、 ガス体により攪拌した溶融塩に浸潰して、 8 0 0 〜6 0 0 °C間の冷却速度を、 1 5〜6 (TCZ s e cにすることを特徴と する高強度かつ強度ばらつきの小さい鋼線材の熱処理方法がある。 しかし、 前記特許公報記載の熱処理方法により得られるパーライ ト組 織の線 では、 伸線加工工程において高減面率における延性の劣化、 捻 回試験での割れの発生 (以下デラミネーシヨンと称する) が問題となつ ている。
本発明は、 前記の如き従来技術の問題点を有利に解決することのでき る伸線加工性の優れた高炭素鋼線材または鋼線およびその製造方法を提 供することを目的とする。 発明の開示
本発明の要旨とするところは下記のとおりである。
( 1 ) 重量%で
C : 0. 70〜1. 20%、
S i : 0. 1 5〜1. 00%、
Mn : 0. 30〜0. 90%
を含有し、 さらに
A 1 : 0. 006〜0. 1 00%、
丁 i : 0. 0 1 ~0. 35%
のいずれか 1種または 2種を含有し、
P : 0. 02 %以下、
S : 0. 0 1 %以下
に制限され、 残部が F eおよび不可避的不純物よりなり、 2段変態によ り得られた上部べィナイ ト組織が面積率で 80%以上で、 かつ Hvが 4 50以下であるミクロ組織を有することを特徵とする伸線加工性に儍 れた高炭素鋼線材または鋼線。
(2) 合金成分として、 さらに C r : 0. 1 0〜0. 50%を含有す ることを特徴とする前項 1記載の伸線加工性に優れた高炭素鋼線材また は鋼線。
(3) 重量%で
C : 0. 70- 1. 20 %、
S i : 0. 1 5〜1. 00%、
Mn : 0. 30〜 90%
を含有し、 さらに
A 1 : 0. 006〜0. 1 00%、
T i : 0. 0 1-0. 35% のいずれか 1種または 2種を含有し、
P : 0. 0 2%以下、
S : 0. 0 1 %以下
に制限され、 残部が F eおよび不可避的不純物よりなる鋼片を線材に圧 延後、 1 1 0 0〜 7 5 5 °Cの温度範囲から 6 0 ~ 3 0 0 °CZ s e cの冷 却速度で 3 5 0~ 5 0 0 °Cの温度範囲に冷却し、 この温度範囲に、 ペイ ナイト変態が開始しない範囲内でまたはべィナイト変態開始後でかつべ ィナイト変態終了前の範囲内で、 一定時間保定した後、 昇温し、 完全に ベイナイト変態が終了するまで保定することを特徴とする伸線加工性に 優れた高炭素鋼線材の製造方法。
(4) 出発鋼片が、 合金成分としてさらに C r : 0. 1 0~0. 5 0 %を含有することを特徴とする前項 3記載の伸線加工性に優れた高炭素 鋼線材の製造方法。
(5) 出発鋼片を線材に圧延後、 1 1 0 0〜7 5 5 °Cの温度範囲から 6 0〜 3 0 0 °CZ s e cの冷却速度で 3 5 0〜 5 0 0 °Cの温度範囲に冷 却し、 この温度範囲に 1秒以上、 かつべィナイト変態が開始しない範囲 内で下記式 ( 1 ) で定める時間 X秒以下保定した後、 1 0 °C以上、 6 0 0 -T, (T, :冷却後の保定温度) °C以下昇温し、 完全にベイナ ィト変態が終了するまで保定することを特徵とする前項 3または 4記載 の伸線加工性に優れた高炭素鋼線材の製造方法。
X=e xp ( 1 6. 0 3— 0. 0 3 0 7 XT, ) - ( 1 )
T, :冷却後の保定温度
( 6 ) 出発鋼片を線材に圧延後、 1 1 0 0 ~ 7 5 5での温度範囲から 6 0〜3 0 0 ノ3 6 cの冷却速度で 3 5 0 - 5 0 0 °Cの温度範囲に冷 却し、 この温度範囲にペイナイト変態開始後、 ペイナイ ト変態が終了す る以前、 すなわち下記式 (2) で定める時間 Y秒以下保定した後、 1 0 °C以上、 6 0 0— (Τ, :冷却後の保定温度) 以下昇温し、 完全 にべイナイ ト変態が終了するまで保定することを特徴とする前項 3また は 4記載の伸線加工性に優れた高炭素鋼線材の製造方法。
Y=e χρ ( 1 9. 8 3 - 0. 0 3 2 9 x T , ) - ( 2 )
T, :冷却後の保定温度
( 7 ) 重量%で
C: 0. 7 0〜1. 2 0%、
S i : 0. 1 5〜1. 0 0%、
Mn: 0. 3 0〜0. 9 0%
を含有し、 さらに
A 1 : 0. 0 0 6〜0. 1 0 0%、
T i : 0. 0 卜 0. 3 5%
のいずれか 1種または 2種を含有し、
P: 0. 0 2 %以下、
S : 0. 0 1 %以下
に制限され、 残部が F eおよび不可避的不純物よりなる鋼線を 1 1 0 0 〜 7 5 5での加熱温度範囲から 6 0〜 3 0 0 °C " s e cの冷却速度で 3 5 0-5 0 0 °Cの温度範囲に冷却し、 この温度範囲に、 ベイナイト変 態が開始しない範囲内でまたはべィナイト変態開始後でかつべィナイト 変態終了前の範囲内で、 一定時間保定した後、 昇温し、 完全にペイナイ ト変態が終了するまで保定することを特徴とする伸線加工性に優れた高 炭素鋼鋼線の製造方法。
(8) 出発鋼線が、 合金成分としてさらに C r : 0. 1 0〜0. 5 0 %を含有することを特徵とする前項 7記載の伸線加工性に優れた高炭素 鋼鋼線の製造方法。
(9) 出発鋼線を 1 1 0 0〜7 5 5 °Cの加熱温度範囲から 6 0~ 300 °C/ s e cの冷却速度で 350〜500 °Cの温度範囲に冷却し、 この温度範囲に 1秒以上、 かつべィナイト変態が開始しない範囲内で下 記式 ( 1 ) で定める時間 X秒以下保定した後、 1 0°C以上、 6 0 0— T, (T, :冷却後の保定温度) °C以下昇温し、 完全にペイナイ 卜変態 が終了するまで保定することを特徴とする前項 6または 7記載の伸線加 ェ性に優れた高炭素鋼鋼線の製造方法。
X=e xp ( 1 6. 03 - 0. 0307 XT, ) - ( 1 )
T, :冷却後の保定温度
(1 0) 出発鋼線を 1 1 00 ~ 7 5 5 °Cの加熱温度範囲から 6 0〜 300 °CZs e cの冷却速度で 350-500 °Cの温度範囲に冷却し、 この温度範囲にペイナイ 卜変態開始後、 ペイナイ 卜変態が終了する以 前、 すなわち下記式 (2) で定める時間 Y秒以下保定した後、 1 0°C以 上、 600— Τ, (T, :冷却後の保定温度) °C以下昇温し、 完全にベ イナイト変態が終了するまで保定することを特徴とする前項 6または 7 記載の伸線加工性に優れた高炭素鋼鋼線の製造方法。
Y=e xp ( 1 9. 83 - 0. 0329 x T , ) - ( 2 )
T , :冷却後の保定温度 図面の簡単な説明
第 1図は本発明の熱処理パターンを示す図である。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明におけるべイナイト線材および鋼線の化学成分の限定理由につ いて述べる。
Cは鋼の強度と延性を支配する基本的な元素であり、 高炭素化するほ ど強度が向上する。 Cの下限は焼入性と強度を確保するために 0. 70 %とした。 また、 Cの上限は初析セメ ンタイ 卜の発生を防止するために 1. 20%とした。
S iは鋼の脱酸剤として 0. 15%以上加える。 また、 S iは鋼を固 溶強化する元素であるとともに、 鋼線のリラクセーションロスを低減で きる元素である。 し力、し、 S iはスケール生成量を減少させ、 メカ二力 ルデスケ一リング性を悪くするほか、 線材のボンデ潤滑性をやや低下さ せる。 そのため、 S iの上限は 1. 00%とした。
Mnは脱酸剤として 0. 30%以上加える。 また、 Mnは鋼に固溶し て強化する元素であるが、 添加量を増加させると線材中心部において偏 析を生じ易くなる。 偏析部は焼入性が向上し、 変態終了時間が長時間側 にずれるため、 未変態部がマルテンサイトとなり、 伸線加工中の断線に つながる。 そこで、 Mnの上限は0. 90%とした。
A 1は脱酸作用をするほか、 鋼中の Nを固定し、 細粒オーステナイ卜 にするために最も経済的な元素である。 A 1の上限は非金属介在物の增 加を考慮して 0. 1 0 0%とし、 また下限は、 A 1の効果が表れる 0. 006 %とした。
T iは現在すでに T i脱酸鋼、 主としてプレイン炭素のオーステナイ 卜結晶粒の調整作用に利用されている。 T iの上限は、 T i介在物の增 加を抑えることと、 鋼中の固溶炭窒化物の生成を抑えるため 0. 35 %とした。 また、 T iの下限はこれらの作用が効果的である 0. 0 1 % とした。
なお、 本発明においては、 A 1および T iの 1種または 2種が添加さ れ得る。
Sおよび Pは結晶粒界に析出し、 鋼の特性を劣化させるため、 できる 限り低く抑える必要がある。 そのため Sの上限を 0. 01%とし、 Pの 上限を 0 . 0 2 %とした。
C rは鋼の強度を増加させるために必要に応じて添加される元素であ り、 添加量が増えるに従って強度は増加する。 しかし、 C rは焼入性も 向上させ、 変態終了線が長時間側に移動する。 これにより、 熱処理に必 要な時間も長くなるため、 C rの上限を 0 . 5 0 %とし、 また下限は強 度を増すために 0 . 1 0 %とした。
本発明の製造方法の限定理由は以下に述べるとおりである。
線材圧延後または鋼線加熱後の冷却開始温度 (T D ) は変態後の組織 に影響を与える。 下限は平衡変態開始温度であるオーステナイト変態点
( 7 5 5 °C) 以上とした。 上限はオーステナイト結晶粒の異常成長を抑 えるために 1 1 0 0 °Cとした。
線材圧延後または鋼線加熱後における冷却速度 (V , ) はパーライト 変態の開始を抑制するための重要な因子である。 このことを本発明者ら は実験的に求めた。 初期冷却速度が 6 0 °C/ s e c未満で緩冷した場 合、 パーライト変態のノーズ位置より高温側で変態が開始し、 パーライ ト組織が生成するため完全なペイナイト組織が得られない。 ベイナイト 組織の生成温度は 5 0 0て以下であるが、 完全なペイナイト組織を生成 させるためには冷却初期に急激に冷却する必要がある。 そこで冷却速度
(V , ) の下限を 6 0 °C/ s e cとし、 上限は工業的に可能な 3 0 0 °C z s e cとした。
冷却後の恒温保持温度 (T , ) は生成する組織を決定する重要な因子 である。 保持温度が 5 0 0 °C超では線材または鋼線中心部にパーライ 卜 組織が生成するため、 引張強さが上昇し、 伸線加工性が劣化する。 また 保持温度が 3 5 0 °C未満ではべイナィ卜組織中のセメンタイ 卜の粒状化 が始まることにより、 引張強さが上昇し、 伸線加工性が劣化する。 この ため恒温変態温度の上限を 5 0 0 °C、 下限を 3 5 0 °Cとした。 350 - 500 °Cに一定時間以内保持することにより過冷オーステナ ィト組織が得られる。 その後温度を上昇させることにより出現するべィ ナイト組織は、 等温変態に比較し、 セメンタイ卜の析出が粗くなる。 こ のため 2段変態させた上部べィナイ卜組織は軟質化する。
完全 2段変態の場合は、 350〜500での温度範囲での必要な過冷 時間 (t , ) は、 過冷オーステナイト組織を生成するのに必要な時間以 上で、 かつ上限はべイナィト変態が開始する以前までとする。 好ましく は 1秒以上かつ下記式で示す X秒以下とする。
X= e X p ( 1 6. 03 - 0. 0307 XT, )
(T, :冷却後の保定温度)
過冷後、 2段変態させる場合の昇温温度幅 (ΔΤ) は、 下限を 2段変 態による軟質化効果が現れる 1 0°Cとし、 上限は昇温後の温度を 600 °C以下にする必要があるため下記式に示す Δ T以下とする。
ΔΤ= 600 -Τ, (Τ, :冷却後の保定温度)
昇温後の保定時間 (t2 ) は完全に変態が完了するまでとする。 混合 2段変態の場合は、 350~500 °Cの温度範囲での必要な過冷 時間 (t , ) は、 ペイナイト変態開始後下記式で示す Y秒以下とする。
Y= e X p ( 1 9. 83 - 0. 0329 XT, )
(T, :冷却後の保定温度)
過冷後、 2段変態させる場合の昇温温度幅 (ΔΤ) は完全 2段変態の 場合と同様に、 下限を 2段変態による軟質化効果が現れる 1 0°Cとし、 上限は昇温後の温度を 600 °C以下にする必要があるため下記式に示す ΔΤ以下とする。
ΔΤ= 600 -Τ, (Τ, :冷却後の保定温度)
恒温保定温度 500 °C超で処理したパーラィト線材または鋼線は線材 または鋼線中心部にパーライト組織が生成する。 パ一ライト組織はセメ ンタイトとフヱライ 卜が層状構造を有しているため、 加工硬化には大き な寄与をもたらすが、 延性の低下が防げない。 このため高減面率領域に おいて引張強さが上昇するとともに捻回特性が劣化し、 デラミネーショ ンの発生を招く。
これに対して、 本発明に従い 2段変態させたペイナイ ト線材または鋼 線は、 フヱライ 卜中に粗いセメンタイ 卜が分散している状態にあるため 加工硬化を抑えられる。 これにより高減面率領域までデラミネ一シヨン の発生を抑制でき、 伸線加工が可能である。
ペイナイト組織の面積率の測定法は、 断面内の組織観察から格子点法 により求める。 面積率はべイナィト組織の生成状況を示す重要な指標で あり、 伸線加工性に影響を与える。 面積率の下限は 2段変態効果が顕著 に現れる 8 0 %とした。
上部べィナイト組織のビッカース硬度はその試料の特性を示すのに重 要な因子である。 冷却過程および昇温過程を施した 2段変態させたペイ ナイト線材または鋼線は、 等温変態させた場合に比較し、 セメンタイト の析出が粗くなる。 このため、 2段変態させた上部べイナイト組織は軟 質化する。 ビッカース硬度の上限は C量の影響を考え、 4 5 0以下とし た。 実施例
実施例 1
表 1に供試鋼の化学成分を示す。
表 1の A~ Dは本発明鋼の例、 E ~ Fは比較鋼の例である。
E鋼は C量が上限超、 F鋼は M n量が上限超である。
連続铸造設備により 3 0 0 X 5 0 0 mmとした铸片を 1 2 2 mm角断 面の鋼片に圧延した。 これらの鋼片を線材圧延後、 表 2に示す条件で直接溶融塩冷却を行つ た。
これらの線材を平均減面率 17%で1. O Omm0まで伸線し、 引張 試験、 捻回試験を行った。
引張試験は J I S Z 2201の 2号試験片を用い、 J I S Z 224 1 記載の方法で行った。
捻回試験は試験片長さ 1 00 d + 1 00に切断後、 チヤック間距離 100 d、 回転速度 1 0 r pmで破断するまで回転させた。 dは鋼線の 直径を表わす。
このようにして得られた特性値を表 2に併せて示す。
No. l~No. 4は本発明例である。
No. 5〜No. 10は比較例である。
比較例 N 0. 5は冷却速度が遅すぎたためにパーライ ト組織が生成 し、 伸線加工性が低下し、 伸線途中で断線が生じた。
比較例 No. 6は昇温温度が低すぎたため 2段変態させたベイナイト 組織が生成せず、 伸線加工性が低下し、 伸線途中で断線が生じた。 比較例 N 0. 7は恒温変態時間が十分確保されなかったためマルテン サイ卜が発生し、 伸線加工性が低下し、 伸線途中で断線が生じた。 比較例 No. 8は過冷却処理時間が長かったため 2段変態させたペイ ナイト組織が生成する割合が低下し、 伸線加工性が低下し、 伸線途中で 断線が生じた。
比較例 No. 9は C量が高すぎたため初析セメンタイトが発生し、 伸 線加工性が低下した。
比較例 No. 10は M n量が高すぎたため中心偏析に伴うミクロマル テンサイトが発生し、 伸線加工性が低下した。 表 1 供試鋼の化学成分 符号 備 考
c Si Mn P S Cr Al Ti N 0
A 0.960 0.18 0.40 0.012 0.009 0.25 0.30 0.0054 0.0029 本発明鋼
B 0.930 0.15 0.30 0.010 0.008 0.28 0.080 0.01 0.0031 0.0030 本発明鐧
C 1.120 0.16 0.39 0.013 0.007 0.35 0.070 0.0034 0.0025 本発明鋼
D 0.900 0.20 0.35 0.015 0.008 0.02 0.0055 0.0036 本発明鋼
E 1.290 0.11 0.40 0.018补 0.008 0.20 0.010 0.01 0.0034 0.0037 比蛟鋼
F 0.980 0.30 1.80 0.016 0.009 0.22 0.010 0.01 0.0037 0.0029 比較鋼
表 2 供試鋼の線材圧延条件と特性値
Figure imgf000014_0001
To :冷去 n«sg τ, :冷繊 厶 T 畐
V, :冷去 t, :冷繊 棚 t2 -. m
実施例 2
表 3に供試鋼の化学成分を示す。
表 3の A ~ Dは本発明鋼の例、 E〜 Fは比較鋼の例である。
E鋼は C量が上限超、 F鋼は M n量が上限超である。
連続铸造設備により 300 X 500 mmとした铸片を 1 22 mm角断 面の鋼片に圧延し、 この鋼片から鋼線を製造した。
これらの鋼線を加熱後、 表 4に示す条件で直接溶融塩冷却を行つ
/
これらの鋼線を平均減面率 1 7%で1. 00 mm øまで伸線し、 引張 試験、 捻回試験を行った。
引張試験は J I S Z 220 1の 2号試験片を用い、 J I S Z 224 1 記載の方法で行った。
捻回試験は試験片長さ 1 0 0 d + 1 00に切断後、 チヤック間距離 1 00 d、 回転速度 1 0 r pmで破断するまで回転させた。 dは鋼線の 直径を表わす。
このようにして得られた特性値を表 4に併せて示す。
No. l〜No. 4は本発明例である。
No. 5〜No. 1 0は比較例である。
比較例 No. 5は冷却速度が遅すぎたためにパーライ 卜組織が生成 し、 伸線加工性が低下し、 伸線途中で断線が生じた。
比較例 N o . 6は昇温温度が低すぎたため 2段変態させたペイナイ 卜 組織が生成せず、 伸線加工性が低下し、 伸線途中で断線が生じた。 比較例 No. 7は恒温変態時間が十分確保されなかったためマルテン サイ卜が発生し、 伸線加工性が低下し、 伸線途中で断線が生じた。 比較例 No. 8は過冷却処理時間が長かつたため 2段変態させたペイ ナイト組織が生成する割合が低下し、 伸線加工性が低下し、 伸線途中で 断線が生じた。
比較例 No. 9は C量が高すぎたため初析セメ ンタイ トが発生し、 伸 線加工性が低下した。
比較例 No. 1 0は M n量が高すぎたため中心偏析に伴うミ クロマル テンサイトが発生し、 伸線加工性が低下した。
表 3 供試鋼の化学成分 化 学 成 分 (wt%)
符号 備 考
C Si Mn P S Cr Al Ti N 0
A 0.960 0.18 0.40 0.012 0.009 0.25 0.30 0.0054 0.0029 本発明鋼
B 0.930 0.15 0.30 0.010 0.008 0.28 0.080 0.01 0.0031 0.0030 本発明鋼
C 1.120 0.16 0.39 0.013 0.007 0.35 0.070 0.0034 0.0025 本発明鋼
D 0.900 0.20 0.35 0.015 0.008 0.02 0.0055 0.0036 本発明鋼
E 1.290 0.11 0.40 0.018 0.008 0.20 0.010 0.01 0.0034 0.0037 比铰鋼
F 0.980 0.30 1.80 0.016 0.009 0.22 0.010 0.01 0.0037 0.0029 比铰鋼
表 4 供試鋼の鋼線熱処理条件と特性値
Figure imgf000018_0001
To -.t ^. τ, : o^m
v, :冷去赚 t, :冷繊 ® W t2 : m
産業上の利用の可能性
以上述べた如く、 本発明に従った高炭素鋼線材または鋼線は、 従来材 に比べてより一段と高減面率まで伸線が可能で、 耐デラミネーション特 性も改善されている。
また、 本発明によれば伸線加工性が優れた高炭素鋼線材または鋼線の 製造が可能になり、 2次加工工程における中間熱処理が省略でき、 大幅 なコストダウン、 ェ期短縮、 設備費削減が図れる。

Claims

請 求 の 範 囲
1. 重量%で
C: 0. 70- 1. 20 %、
S i : 0. 1 5〜 1. 00%、
Mn: 0. 30〜0. 90%
を含有し、 さらに
A 1 : 0. 006〜0. 1 00%、
T i : 0. 0 1〜0. 35%
のいずれか 1種または 2種を含有し、
P: 0. 02%以下、
S : 0. 0 1 %以下
に制限され、 残部が F eおよび不可避的不純物よりなり、 2段変態によ り得られた上部べィナイ 卜組織が面積率で 8 0%以上で、 かつ Hvが 450以下であるミクロ組織を有することを特徴とする伸線加工性に優 れた高炭素鋼線材または鋼線。
2. 合金成分として、 さらに C r : 0. 1 0〜0. 50%を含有するこ とを特徴とする請求項 1記載の伸線加工性に優れた高炭素鋼線材または 鋼線。
3. 重量%で
C: 0. 70〜1. 20%、
S i : 0. 1 5〜1. 00%、
Mn : 0. 30-0. 90 %
を含有し、 さらに
A 1 : 0. 006 - 0. 1 00 %,
T i : 0. 0 卜 0. 35%
のいずれか 1種または 2種を含有し、 P : 0. 0 2 %以下、
S : 0. 0 1 %以下
に制限され、 残部が F eおよび不可避的不純物よりなる鋼片を線材に圧 延後、 1 1 0 0〜 7 5 5 °Cの温度範囲から 6 0 ~ 3 0 0 °CZ s e cの冷 却速度で 3 5 0-5 0 0°Cの温度範囲に冷却し、 この温度範囲に、 ペイ ナイト変態が開始しない範囲内でまたはべィナイト変態開始後でかつべ ィナイト変態終了前の範囲内で、 一定時間保定した後、 昇温し、 完全に ベイナイト変態が終了するまで保定することを特徴とする伸線加工性に 優れた高炭素鋼線材の製造方法。
4. 出発鋼片が、 合金成分としてさらに C r : 0. 1 0〜 5 0%を 含有することを特徵とする請求項 3記載の伸線加工性に優れた高炭素鋼 線材の製造方法。
5. 出発鋼片を線材に圧延後、 1 1 0 0〜7 5 5 °Cの温度範囲から 6 0 〜3 0 0 °C/s e cの冷却速度で 3 5 0〜5 0 0 °Cの温度範囲に冷却 し、 この温度範囲に 1秒以上、 かつべィナイト変態が開始しない範囲内 で下記式 (1 ) で定める時間 X秒以下保定した後、 1 0°C以上、 6 0 0 -T, (T: :冷却後の保定温度) °C以下昇温し、 完全にペイナイ卜変 態が終了するまで保定することを特徴とする請求項 3または 4記載の伸 線加工性に優れた高炭素鋼線材の製造方法。
X=e xp ( 1 6. 0 3 - 0. 0 3 0 7 XT, ) - ( 1 )
T , :冷却後の保定温度
6. 出発鋼片を線材に圧延後、 1 1 0 0~ 7 5 5 °Cの温度範囲から 6 0 〜3 0 0 °CZs e cの冷却速度で 3 5 0〜 5 0 0での温度範囲に冷却 し、 この温度範囲にペイナイ卜変態開始後、 ペイナイト変態が終了する 以前、 すなわち下記式 (2) で定める時間 Y秒以下保定した後、 1 0°C 以上、 6 0 0— (T, :冷却後の保定温度) °C以下昇温し、 完全に ペイナイ ト変態が終了するまで保定することを特徴とする請求項 3また は 4記載の伸線加工性に優れた高炭素鋼線材の製造方法。
Y= e X p ( 1 9. 83 - 0. 0329 XT, ) - (2)
T, :冷却後の保定温度
7. 重量%で
C : 0. 70〜1. 20%、
S i : 0. 1 5〜1. 00%、
Mn : 0. 30〜0. 90%
を含有し、 さらに
A 1 : 0. 006〜0. 1 00%、
T i : 0. 0 1〜0. 35%
のいずれか 1種または 2種を含有し、
P : 0. 02 %以下、
S : 0. 0 1 %以下
に制限され、 残部が F eおよび不可避的不純物よりなる鋼線を 1 1 00 - 7 5 5ての加熱温度範囲から 60〜 30 0 °C/ s e cの冷却速度で 350〜500 °Cの温度範囲に冷却し、 この温度範囲に、 ペイナイト変 態が開始しない範囲内でまたはべィナイト変態開始後でかつべィナイト 変態終了前の範囲内で、 一定時間保定した後、 昇温し、 完全にペイナイ ト変態が終了するまで保定することを特徴とする伸線加工性に優れた高 炭素鋼鋼線の製造方法。
8. 出発鋼線が、 合金成分としてさらに C r : 0. 1 0-0. 50%を 含有することを特徴とする請求項 7記載の伸線加工性に優れた高炭素鋼 鋼線の製造方法。
9. 出発鋼線を 1 1 00 ~ 755 °Cの加熱温度範囲から 60~300 °C /s e cの冷却速度で 350~ 500 °Cの温度範囲に冷却し、 この温度 範囲に 1秒以上、 かつべィナイ ト変態が開始しない範囲内で下記式 ( 1 ) で定める時間 X秒以下保定した後、 1 0°C以上、 6 0 0 - (T, :冷却後の保定温度) °C以下昇温し、 完全にペイナイ ト変態が終 了するまで保定することを特徴とする請求項 7または 8記載の伸線加工 性に優れた高炭素鋼鋼線の製造方法。
X=e xp ( 1 6. 03 - 0. 0307 XT, ) - ( 1 )
T, :冷却後の保定温度
1 0. 出発鋼線を 1 1 00〜755での加熱温度範囲から 60〜300 °C/s e cの冷却速度で 350 - 500。Cの温度範囲に冷却し、 この温 度範囲にペイナイト変態開始後、 ペイナイト変態が終了する以前、 すな わち下記式 (2) で定める時間 Y秒以下保定した後、 1 0°C以上、 600 -T, (T, :冷却後の保定温度) °C以下昇温し、 完全にベイナ ィト変態が終了するまで保定することを特徴とする請求項 7または 8記 載の伸線加工性に優れた高炭素鋼鋼線の製造方法。
Y= e X p ( 1 9. 83 - 0. 0329 XT, ) - (2)
T, :冷却後の保定温度
PCT/JP1994/000576 1993-05-25 1994-04-06 Fil d'acier ou barre en acier riche en carbone presentant une excellente usinabilite dans le trefilage, et leur procede de production WO1994028189A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69423619T DE69423619T2 (de) 1993-05-25 1994-04-06 Hochkohlenstoffhaltiger stabstahl oder stahldraht mit hervorragenden zieheigenschaften und herstellungsverfahren
US08/545,675 US5658402A (en) 1993-05-25 1994-04-06 High-carbon steel wire rod and wire excellent in drawability and methods of producing the same
EP94912062A EP0708183B1 (en) 1993-05-25 1994-04-06 High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5122984A JP2984888B2 (ja) 1992-06-23 1993-05-25 伸線加工性に優れた高炭素鋼線材または鋼線およびその製造方法
JP5/122984 1993-05-25

Publications (1)

Publication Number Publication Date
WO1994028189A1 true WO1994028189A1 (fr) 1994-12-08

Family

ID=14849423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000576 WO1994028189A1 (fr) 1993-05-25 1994-04-06 Fil d'acier ou barre en acier riche en carbone presentant une excellente usinabilite dans le trefilage, et leur procede de production

Country Status (4)

Country Link
US (1) US5658402A (ja)
EP (1) EP0708183B1 (ja)
DE (1) DE69423619T2 (ja)
WO (1) WO1994028189A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044954A1 (fr) * 1999-01-28 2000-08-03 Nippon Steel Corporation Fil pour fil d'acier a resistance a la fatigue elevee, fil d'acier et procede de production correspondant
JP4248790B2 (ja) * 2002-02-06 2009-04-02 株式会社神戸製鋼所 メカニカルデスケーリング性に優れた鋼線材およびその製造方法
KR101789949B1 (ko) * 2013-10-08 2017-10-25 신닛테츠스미킨 카부시키카이샤 선재, 과공석 베이나이트 강선 및 그것들의 제조 방법
JP2016014169A (ja) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 鋼線用線材および鋼線
CN104388826A (zh) * 2014-10-12 2015-03-04 首钢总公司 一种减轻过共析盘条心部网状渗碳体的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245722A (ja) * 1984-05-21 1985-12-05 Kawasaki Steel Corp 高張力線材の製造方法
JPS6324045A (ja) * 1986-07-16 1988-02-01 Nippon Kokan Kk <Nkk> 不安定破壊伝播停止能力に優れた耐摩耗性高性能レ−ル
JPS6324046A (ja) * 1986-07-16 1988-02-01 Kobe Steel Ltd 高靭性高延性極細線用線材
JPS6439353A (en) * 1987-08-03 1989-02-09 Kobe Steel Ltd High-strength spring steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU165184A1 (ru) * 1963-05-09 1964-09-23 Высокопрочная арматурная сталь
EP0020357B1 (en) * 1978-11-15 1984-07-18 Caterpillar Tractor Co. Lower bainite alloy steel article
JPS607004B2 (ja) * 1979-02-23 1985-02-21 株式会社神戸製鋼所 直接パテンテイング線材の製造法
JPS63179017A (ja) * 1987-01-21 1988-07-23 Nippon Steel Corp 延性の優れた超高張力鋼線の製造方法
JPH089734B2 (ja) * 1987-01-21 1996-01-31 新日本製鐵株式会社 延性の優れた超高張力鋼線の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245722A (ja) * 1984-05-21 1985-12-05 Kawasaki Steel Corp 高張力線材の製造方法
JPS6324045A (ja) * 1986-07-16 1988-02-01 Nippon Kokan Kk <Nkk> 不安定破壊伝播停止能力に優れた耐摩耗性高性能レ−ル
JPS6324046A (ja) * 1986-07-16 1988-02-01 Kobe Steel Ltd 高靭性高延性極細線用線材
JPS6439353A (en) * 1987-08-03 1989-02-09 Kobe Steel Ltd High-strength spring steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0708183A4 *

Also Published As

Publication number Publication date
DE69423619T2 (de) 2000-10-26
DE69423619D1 (de) 2000-04-27
EP0708183A4 (en) 1996-11-06
US5658402A (en) 1997-08-19
EP0708183A1 (en) 1996-04-24
EP0708183B1 (en) 2000-03-22

Similar Documents

Publication Publication Date Title
JP5277648B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板並びにその製造方法
JPH028349A (ja) 冷間加工性および溶接性に優れた引張り強さが55Kgf/mm↑2以上の高張力熱延鋼帯
WO1994023084A1 (en) Bainite rod wire or steel wire for wire drawing and process for producing the same
WO1994028189A1 (fr) Fil d&#39;acier ou barre en acier riche en carbone presentant une excellente usinabilite dans le trefilage, et leur procede de production
JP2984889B2 (ja) 伸線加工性に優れた高炭素鋼線材または鋼線およびその製造方法
WO1994028187A1 (fr) Barre en acier riche en carbone et fil d&#39;acier presentant une excellente usinabilite dans le trefilage, et leur procede de production
JPH11131187A (ja) 迅速黒鉛化鋼および迅速黒鉛化鋼の製造方法
JP3018268B2 (ja) 伸線加工性に優れた高炭素鋼線材または鋼線およびその製造方法
JP3218442B2 (ja) 耐遅れ破壊特性の優れた機械構造用鋼の製造方法
JP2984888B2 (ja) 伸線加工性に優れた高炭素鋼線材または鋼線およびその製造方法
JPS63241120A (ja) 高延性高強度複合組織鋼板の製造法
KR100431849B1 (ko) 저온조직이 없는 고실리콘 첨가 중탄소강 선재의 제조방법
KR100435481B1 (ko) 표면 탈탄깊이가 적은 고실리콘 첨가 고탄소강 선재의제조방법
KR100448623B1 (ko) 표면탈탄이 적은 고실리콘 첨가 중탄소 선재의 제조방법
KR100431847B1 (ko) 페라이트 탈탄층을 이용한 고실리콘 첨가 중탄소 선재의제조방법
JP2984887B2 (ja) 伸線加工用ベイナイト線材または鋼線およびその製造方法
US5647918A (en) Bainite wire rod and wire for drawing and methods of producing the same
KR100431848B1 (ko) 저온조직이 없는 고실리콘 첨가 고탄소 선재의 제조방법
JP2984885B2 (ja) 伸線加工用ベイナイト線材または鋼線およびその製造方法
KR100398378B1 (ko) 피로특성이우수한자동차스테빌라이저용비조질강선재의제조방법
WO1994023083A1 (en) Bainite rod wire or steel wire for wire drawing and process for producing the same
KR0128139B1 (ko) 고강도 특성을 갖는 강관형 스태빌라이저 제조방법
KR0146799B1 (ko) 내식성이 우수한 고강도 강관형 스태빌라이저의 제조방법
KR100352607B1 (ko) 고응력 스프링용강 선재의 제조방법
JPH083649A (ja) 伸線加工性に優れた高炭素鋼線材または鋼線の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08545675

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994912062

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994912062

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994912062

Country of ref document: EP