WO1994027283A1 - Dispositif d'attenuation acoustique a double paroi active - Google Patents

Dispositif d'attenuation acoustique a double paroi active Download PDF

Info

Publication number
WO1994027283A1
WO1994027283A1 PCT/FR1994/000520 FR9400520W WO9427283A1 WO 1994027283 A1 WO1994027283 A1 WO 1994027283A1 FR 9400520 W FR9400520 W FR 9400520W WO 9427283 A1 WO9427283 A1 WO 9427283A1
Authority
WO
WIPO (PCT)
Prior art keywords
plates
sides
noise
interior space
actuators
Prior art date
Application number
PCT/FR1994/000520
Other languages
English (en)
Inventor
Pascal Bouvet
Jacques Roland
Laurent Gagliardini
Original Assignee
Centre Scientifique Et Technique Du Batiment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Scientifique Et Technique Du Batiment filed Critical Centre Scientifique Et Technique Du Batiment
Priority to US08/535,067 priority Critical patent/US5724432A/en
Priority to EP94915585A priority patent/EP0697122B1/fr
Priority to DE69422036T priority patent/DE69422036D1/de
Publication of WO1994027283A1 publication Critical patent/WO1994027283A1/fr

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/102Two dimensional
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/106Boxes, i.e. active box covering a noise source; Enclosures
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/129Vibration, e.g. instead of, or in addition to, acoustic noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/129Vibration, e.g. instead of, or in addition to, acoustic noise
    • G10K2210/1291Anti-Vibration-Control, e.g. reducing vibrations in panels or beams
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3036Modes, e.g. vibrational or spatial modes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3046Multiple acoustic inputs, multiple acoustic outputs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3219Geometry of the configuration
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3223Materials, e.g. special compositions or gases

Definitions

  • the present invention relates to an acoustic attenuation device of the type comprising two substantially parallel plates delimiting a space of rectangular shape, noise detection means arranged between the two plates, counter-noise emission means arranged between the two plates, and regulating means for controlling the means for emitting counter-noise so as to minimize a quantity supplied by the noise detection means.
  • the invention has applications for example in the field of soundproofing of premises, in particular with double glazing, in the production of cowlings for noisy equipment, or in the field of the insulation of the passenger compartments of means of transport.
  • a device of the type indicated above, called active double wall, is based on the operating principle recalled below.
  • the mass-spring-mass resonance frequency of a double wall constituted by two parallel rectangular plates separated by an air gap of thickness d is given by the relation:
  • This resonant frequency is generally between 50 and 250 Hz.
  • the attenuation device aims to compensate for the weak acoustic insulation provided by the double wall in the vicinity of f mrm .
  • the principle consists in preventing - via an electro-acoustic system - any variation in volume of the air space.
  • the sound pressure field in the air space can be written in the form of a modal series: p (x, yz t) lmn 4> lml (X ⁇ y t z). e ⁇ (2)
  • ⁇ lmn amplitude of the mode l, m, n ⁇ lmn : modal base associated with the considered cavity.
  • the variation in volume of the air gap is directly proportional to the amplitude of the mode (0,0,0) without the amplitude of the other modes in the vicinity of the resonance frequency of the wall f mrm being affected.
  • the expression of the acoustic pressure given above (2) shows that the measurement made by a microphone will include the responses of other modes than the mode
  • the invention provides an acoustic attenuation device of the type indicated at the start, characterized in that the means for emitting noise abatement comprise four actuators whose respective positions parallel to the plates correspond approximately to the four points constituting the midpoints of the sides of the rectangular shape of said interior space, in that the noise detection means comprise four sensors whose respective positions parallel to the plates correspond approximately to the four points constituting the midpoints of the sides of a rhombus whose vertices are the midpoints sides of the rectangular shape of said interior space, in that the four actuators are controlled in phase, and in that the quantity to be minimized is represented by the sum of the output signals from the four sensors.
  • the sensors and the actuators practically do not interact with the odd-order modes of the space located between the two plates (i.e. the modes whose indices are of the type (l, m , n) with 1 or odd m), nor with the modes (0,2,0) and (2,0,0).
  • the actuators are advantageously located at the periphery of the double wall.
  • the respective positions of the sensors and actuators are inverted, that is to say that the noise detection means comprise four sensors whose respective positions parallel to the plates correspond approximately to the four points constituting the midpoints of the sides of the rectangular shape of said interior space, and that the means for emitting noise abatement comprise four actuators whose respective positions parallel to the plates correspond approximately to the four points constituting the midpoints of the sides a diamond whose vertices are the midpoints of the sides of the rectangular shape of said interior space.
  • FIG. 1 schematically represents a acoustic attenuation device according to the invention
  • - Figure 2 is a schematic view illustrating the position of the sensors and actuators of the device of Figure 1;
  • - Figure 3 is a graph showing the acoustic attenuation that a device such as that of Figures 1 and 2 can provide;
  • FIG. 4 is a graph illustrating a range of preferred parameters in a device according to the invention.
  • FIGS. 5A to 5F are graphs showing the acoustic attenuation that can be obtained with different examples of constitution of the plates.
  • the device shown in FIG. 1 constitutes an active double wall which can be used to provide acoustic insulation between the spaces situated on either side of the wall.
  • the wall comprises two parallel rectangular plates 10, 11 delimiting between them an interior space 12 of rectangular shape.
  • Sensors 13 and actuators 14 are arranged between the two plates 10, 11 to respectively detect the noise prevailing in the space 12 and emit counter-noise in the space 12.
  • the actuators 14 are placed on the edges of the interior space 12, while the sensors are mounted on a wire mesh 16 installed between the plates 10, 11.
  • the arrangement of the sensors 13 and of the actuators 14 parallel to the plates is illustrated in FIG. Figure 2.
  • the actuators 14 are four in number and arranged at the four points constituting the midpoints of the sides of the rectangular space 12.
  • the sensors 13 are the number of ejuatre and arranged at the four points constituting the midpoints of the sides of a rhombus 17 whose vertices are the midpoints of the sides of the rectangular space 12.
  • the sensors 13 can be microphones with electrons chosen to have sensitivity and phase characteristics varying not more than 1% of a sensor to another.
  • the actuators 14 can be speakers.
  • An example of a usable loudspeaker is the AUDAX BMX 400 model, which represents a good compromise between volume flow and bulk (nominal power 15 W, resonance frequency of the order of 150 Hz, external diameter 77.8 mm , total mass 290 g).
  • a regulating unit 18 and provided for controlling the actuators 14 so as to minimize an error signal e supplied by the sensors 13.
  • the error signal to be minimized is constituted by the amplified sum of the output signals from the four sensors 13, delivered by an adder 22.
  • the regulation unit 18 comprises a signal processing processor 23 programmed in a known manner to apply the gradient algorithm (LMS) with filtered reference.
  • LMS gradient algorithm
  • This adaptive filtering method with finite impulse response is well known in the field of noise cancellation (see for example the works "Digital signal processing” by M. Bellanger, Editions Masson, Paris 1981; and "Adaptive signal processing” by B. Widrow and SD Stearns, Prentice Hall, 1985).
  • the filter coefficients are updated at each sampling cycle to minimize the error signal e.
  • the processor 23 then sends the same control signal to the actuators 14, so that the actuators 14 are controlled in phase.
  • critical plate frequency is 6,400 Hz.
  • the resonance frequencies of the first even modes of the air gap (formula (2)) are given in Table I.
  • the sum of the output signals from the four sensors which represents the signal e to be minimized, reflects the response of the mode (0,0,0) of the space 12 located between the plates 10, 11.
  • the error signal e there is practically no contribution of the odd order modes (l, m, n) with 1 or m odd taking into account the symmetrical arrangement of the sensors, nor of the even order modes of relatively low natural frequency ( 2.0.0), (0.2.0) and (2.2.0).
  • the mode contributing to the signal e and having the lowest natural frequency is the mode (4,0,0).
  • the natural frequency of this mode is relatively far from the resonance frequency f mrm , so that the influence of this mode and of higher index modes on the acoustic transmission is not decisive.
  • the actuators controlled in phase practically do not excite the odd order modes, nor the modes (2,0,0) and (0,2,0).
  • the excitation of the actuators 14 acts mainly to compensate for the transmission by the mode (0,0,0) without appreciably increasing the amplitudes of the other natural low frequency modes.
  • FIG. 3 shows the results of simulations of the acoustic attenuation provided by the device in FIG. 1 (without the filter 21) in the example of the parameters indicated above.
  • the dashed line curve corresponds to the values of the attenuation index R as a function of the frequency f of the noise to be attenuated in the case where there is active mode control (0,0,0), and the curve in solid lines corresponds to the same values in the absence of active control. It can be seen that the active control according to the invention appreciably increases the weakening index in the range of low frequencies close to the resonance frequency f mr ⁇ n .
  • the bandpass filter 21 is provided in the regulation unit 18. This filter 21, to which the reference signal is applied before the filtering with a finite impulse response, allows the frequencies for which the mode control ( 0,0,0) has a favorable effect on the weakening index, i.e.
  • the applicant has carried out numerous simulations to determine the parameters of the plates giving rise to good acoustic attenuation by controlling the mode (0,0,0).
  • FIG. 4 the hatched area of the parameters providing the best attenuation characteristics is shown.
  • the domain corresponds to the constitutions of the plates for which the acoustic transmission around the resonance frequency f mrm is essentially governed by the mode (0,0,0). It corresponds to the relationships:
  • f c in hertz, denotes the critical frequency of a plate or, if the plates 10, 11 are of different constitutions, the greater of the critical frequencies of the two plates (in the case of a homogeneous plane plate, the critical frequency worth
  • C speed of sound in air
  • m mass per unit area of the plate
  • E Young's modulus
  • coefficient Poisson
  • h thickness of the plate
  • L x and L y are the lengths of the sides of the rectangular space, expressed in meters; f m ⁇ 71 is the mass-spring-mass resonance frequency given by formula (1); and
  • f 200 c 0 / max (L x , L y ) is the natural frequency of the mode peer of the cavity with the lowest natural frequency.
  • FIGS. 5A to 5F Examples of attenuation curves (attenuation index R as a function of frequency) obtained by simulating various constitutions of the plates are shown in FIGS. 5A to 5F which correspond respectively to points A to F on the diagram in FIG. 4.
  • the Solid lines show the weakening index in the absence of active control, and dashed lines show the simulated weakening index by subtracting the contribution from the mode (0,0,0).
  • the plate configurations are presented in Table III below.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

Une double paroi active comprend deux plaques parallèles (10, 11) délimitant un espace rectangulaire (12). Quatre capteurs (13) sont placés entre les plaques pour détecter les bruits dans l'espace (12), et quatre actionneurs sont placés entre les plaques pour émettre des contre-bruits dans l'espace (12). Une unité de régulation (18) commande les actionneurs (14) en phase pour minimiser la somme (e) des signaux de sortie des capteurs (13). Les actionneurs (14) sont situés aux milieux des côtés de la forme rectangulaire de l'espace (12), et les capteurs (13) sont situés aux milieux des côtés d'un losange dont les sommets sont constitués par les milieux des côtés de la forme rectangulaire de l'espace (12), ou vice-versa.

Description

DISPOSITIF D'ATTENUATION ACOUSTIQUE A DOUBLE PAROI ACTIVE
La présente invention concerne un dispositif d'atté¬ nuation acoustique du type comprenant deux plaques sensible¬ ment parallèles délimitant un espace de forme rectangulaire, des moyens de détection de bruit disposés entre les deux plaques, des moyens d'émission de contre-bruits disposés entre les deux plaques, et des moyens de régulation pour commander les moyens d'émission de contre-bruits de manière à minimiser une grandeur fournie par les moyens de détection de bruit. L'invention a des applications par exemple dans le domaine de l'isolation phonique de locaux, notamment avec des doubles vitrages, dans la réalisation de capotages pour équipements bruyants, ou dans le domaine de l'isolation des habitacles de moyens de transport. Un dispositif du type indiqué ci-dessus, dit double paroi active, repose sur le principe de fonctionnement rappelé ci-après.
La fréquence de résonance masse-ressort-masse d'une paroi double constituée par deux plaques rectangulaires parallèles séparées par une lame d'air d'épaisseur d est donnée par la relation :
Figure imgf000003_0001
avec
p0 : masse volumique du milieu situé entre les plaques (1,18 Kg/m3 dans le cas de l'air).
Cf, : célérité du son dans le milieu situé entre les plaques (340 m/s dans le cas de l'air)
p0c0 : rigidité de la lame d'air
m1,m2 : masse surfacique des plaques (en kg/m2)
Cette fréquence de résonance est généralement comprise entre 50 et 250 Hz.
Globalement, pour une fréquence f donnée, on considère le comportement acoustique d'une paroi double de la manière suivante :
- f < fmr-_ : les deux plaques vibrent en phase. La variation de volume entre les plaques reste faible. La double paroi se comporte comme une paroi simple de masse équivalente.
- f ≈ fmrπι : les deux plaques, fortement couplées par la lame d'air, vibrent en opposition de phase. Ceci se traduit par de fortes variations de volume de la lame d'air (phénomène de "respiration" des plaques) et par une faible isolation acoustique par la double paroi.
- f > fram : les mouvements des deux plaques sont découplés par la lame d'air. L'isolation acoustique de la paroi augmente alors rapidement avec la fréquence.
Le dispositif d'atténuation vise à compenser la fai¬ ble isolation acoustique procurée par la double paroi au voisinage de fmrm. Le principe consiste à empêcher -via un système électro-acoustique- toute variation de volume de la lame d'air.
Le champ de pression acoustique dans la lame d'air peut s'écrire sous la forme d'une série modale : p (x, y. z. t) almn4>lml (Xι yt z) . e < ( 2 )
Figure imgf000005_0001
avec
αlmn : amplitude du mode l,m,n φlmn : base modale associée à la cavité considérée. Dans le cas d'une lame d'air de forme parallélépipédique :
Φlmπ {x, y, z) ≈cos (lπx/Lx) cos (tππ y/ Ly) cos (nπz/Lz) (3)
LX,L ,Lz(=d) : dimensions de la lame d'air
ω pulsation (= 2πf)
x.Y coordonnées spatiales parallèlement aux plaques
coordonnée spatiale perpendiculairement aux plaques
temps
La fréquence propre flmn d'un mode d'indices (l,m,n) de la lame d'air est donnée par la relation :
Figure imgf000005_0002
La variation de volume de la lame d'air est directement proportionnelle à l'amplitude du mode (0,0,0) sans que l'amplitude des autres modes au voisinage de la fréquence de résonance de la paroi fmrm ne soit affectée. Or il est difficile de mesurer et d'exciter uniquement ce mode par des actions qui, a priori, font intervenir l'ensemble des modes. En effet, l'expression de la pression acoustique donnée ci-dessus (2) montre que la mesure effectuée par un microphone inclura les réponses d'autres modes que le mode
(0,0,0) . II est souhaitable, pour obtenir une atténuation efficace, de réduire la contribution dans la grandeur à minimiser des modes de fréquence basse autres que le mode
(0,0,0), et de faire en sorte que les moyens d'émission de contre-bruits excitent le mode (0,0,0) de façon prépondérante en excitant le moins possible les autres modes de la lame d'air.
C'est un but de l'invention que d'améliorer ainsi l'efficacité de l'atténuation fournie par un dispositif à double paroi active. Dans ce but, l'invention propose un dispositif d'atténuation acoustique du type indiqué au début, caractérisé en ce que les moyens d'émission de contre-bruits comprennent quatre actionneurs dont les positions respectives parallèlement aux plaques correspondent approximativement aux quatre points constituant les milieux des côtés de la forme rectangulaire dudit espace intérieur, en ce que les moyens de détection de bruit comprennent quatre capteurs dont les positions respectives parallèlement aux plaques correspondent approximativement aux quatre points constituant les milieux des côtés d'un losange dont les sommets sont les milieux des côtés de la forme rectangulaire dudit espace intérieur, en ce que les quatre actionneurs sont commandés en phase, et en ce que la grandeur à minimiser est représentée par la somme des signaux de sortie des quatre capteurs.
Avec cette disposition, les capteurs et les actionneurs n'interagissent pratiquement pas avec les modes d'ordre impair de l'espace situé entre les deux plaques (c'est-à-dire les modes dont les indices sont du type (l,m,n) avec 1 ou m impair), ni avec les modes (0,2,0) et (2,0,0). On peut donc obtenir un contrôle satisfaisant du mode (0,0,0) sans affecter sensiblement l'efficacité de l'atténuation par l'excitation de modes à basse fréquence propre.
En outre, avec cette forme de réalisation de l'invention, les actionneurs sont avantageusement situés à la périphérie de la double paroi.
Dans une autre forme de réalisation de l'invention reposant sur le même principe, les positions respectives des capteurs et des actionneurs sont interverties, c'est-à-dire que les moyens de détection de bruit comprennent quatre capteurs dont les positions respectives parallèlement aux plaques correspondent approximativement aux quatre points constituant les milieux des côtés de la forme rectangulaire dudit espace intérieur, et que les moyens d'émission de contre-bruits comprennent quatre actionneurs dont les positions respectives parallèlement aux plaques correspondent approximativement aux quatre points constituant les milieux des côtés d'un losange dont les sommets sont les milieux des côtés de la forme rectangulaire dudit espace intérieur.
On a également constaté qu'il était avantageux qu'un gaz plus léger que l'air, par exemple de l'hélium, occupe l'espace intérieur situé entre les deux plaques. Cette diminution de la densité du milieu situé entre les plaques entraîne une augmentation de la célérité du son dans ce milieu et donc une augmentation des fréquences propres associées aux différents modes (cf.formule (4)). Il en résulte une moindre contribution à la transmission acoustique des modes autres que le mode (0,0,0), et donc une meilleure atténuation par le contrôle sélectif du mode
(0,0,0) .
D'autres particularités et avantages de l'invention apparaîtront dans la description ci-après d'un exemple de réalisation préféré mais non limitatif. Aux dessins annexés : la figure 1 représente schématiquement un dispositif d'atténuation acoustique selon l'invention ;
- la figure 2 est une vue schématique illustrant la position des capteurs et des actionneurs du dispositif de la figure 1 ; - la figure 3 est un graphique montrant l'atténuation acoustique que peut procurer un dispositif tel que celui des figures 1 et 2 ;
- la figure 4 est un graphique illustrant une gamme de paramètres préférés dans un dispositif selon l'invention ; et
- les figures 5A à 5F sont des graphiques montrant l'atténuation acoustique qu'on peut obtenir avec différents exemples de constitution des plaques.
Le dispositif représenté à la figure 1 constitue une double paroi active utilisable pour procurer une isolation acoustique entre les espaces situés de part et d'autre de la paroi. La paroi comprend deux plaques rectangulaires parallèles 10, 11 délimitant entre elles un espace intérieur 12 de forme rectangulaire. Des capteurs 13 et des actionneurs 14 sont disposés entre les deux plaques 10, 11 pour respectivement détecter les bruits régnant dans l'espace 12 et émettre des contre-bruits dans l'espace 12.
Les actionneurs 14 sont placés sur les bords de l'espace intérieur 12, tandis que les capteurs sont montés sur un treillis métallique 16 installé entre les plaques 10, 11. La disposition des capteurs 13 et des actionneurs 14 parallèlement aux plaques est illustrée à la figure 2. Les actionneurs 14 sont au nombre de quatre et disposés aux quatre points constituant les milieux des côtés de l'espace rectangulaire 12. Les capteurs 13 sont au nombre de ejuatre et disposés aux quatre points constituant les milieux des côtés d'un losange 17 dont les sommets sont les milieux des côtés de l'espace rectangulaire 12.
Les capteurs 13 peuvent être des microphones à électrets choisis pour avoir des caractéristiques de sensibilité et de phase ne variant pas plus de 1 % d'un capteur à l'autre. Les actionneurs 14 peuvent être des haut- parleurs. Un exemple de haut-parleur utilisable est le modèle AUDAX BMX 400 qui représente un bon compromis entre le débit volu ique et l'encombrement (puissance nominale 15 W, fréquence de résonance de l'ordre de 150 Hz, diamètre extérieur 77,8 mm, masse totale 290 g) .
Une unité de régulation 18 et prévue pour commander les actionneurs 14 de manière à minimiser un signal d'erreur e fourni par les capteurs 13. Le signal d'erreur à minimiser est constitué par la somme amplifiée des signaux de sortie des quatre capteurs 13, délivrée par un sommateur 22. L'unité de régulation 18 comprend un processeur de traitement de signal 23 programmé de façon connue pour appliquer l'algorithme du gradient (LMS) avec référence filtrée. Ce mode de filtrage adaptatif à réponse impulsionnelle finie est bien connu dans le domaine de l'annulation de bruit (voir par exemple les ouvrages "Traitement numérique du signal" par M. Bellanger, Editions Masson, Paris 1981 ; et "Adaptive signal processing" par B. Widrow et S.D. Stearns, Prentice Hall, 1985) . Un microphone de référence 24, situé du côté de la source des bruits à atténuer, fournit un signal de référence qui est appliqué à un filtre passe-bande 21 dont la sortie, adressée au processeur 23, est soumise au filtrage à réponse impulsionnelle finie. Les coefficients du filtre sont mis à jour à chaque cycle d'échantillonnage pour minimiser le signal d'erreur e. Le processeur 23 adresse alors le même signal de commande aux actionneurs 14, de sorte que les actionneurs 14 sont commandés en phase. Dans un exemple de réalisation typique, les deux plaques 10, 11 sont réalisées en plexiglass et ont pour masse surfacique m. = m2 = 6 kg/m2. Elles délimitent un espace intérieur 12 d'épaisseur d = 5 cm dont la forme rectangulaire a des côtés de longueur Lx = 1,6 m et Ly = 1,2 m. L'espace 12 étant rempli d'air, la fréquence de résonance masse-ressort-masse (formule (D ) vaut fm_ = 150 Hz. La fréquence critique des plaques est de 6 400 Hz. Les fréquences de résonance des premiers modes pairs de la lame d'air (formule (2)) sont données au tableau I.
(l,m,n) (2,0,0) (0,2,0) (2,2,0) (4,0,0) (4,2,0) flmπ(Hz) 216 290 362 434 522
TABLEAU
La somme des signaux de sortie des quatre capteurs, qui représente le signal e à minimiser, reflète la réponse du mode (0,0,0) de l'espace 12 situé entre les plaques 10, 11. Dans le signal d'erreur e, il n'y a pratiquement pas de contribution des modes d'ordre impair (l,m,n) avec 1 ou m impair compte tenu de la disposition symétrique des capteurs, ni des modes d'ordre pair de fréquence propre relativement basse (2,0,0), (0,2,0) et (2,2,0). Hormis le mode (0,0,0), le mode contribuant au signal e et ayant la fréquence propre la plus basse est le mode (4,0,0). Mais la fréquence propre de ce mode est relativement éloignée de la fréquence de résonance fmrm, de sorte que l'influence de ce mode et des modes d'indices supérieurs sur la transmission acoustique n'est pas déterminante.
Du fait de leurs positions, les actionneurs commandés en phase n'excitent pratiquement pas les modes d'ordre impair, ni les modes (2,0,0) et (0,2,0). Ainsi, l'excitation des actionneurs 14 agit principalement pour compenser la transmission par le mode (0,0,0) sans augmenter sensiblement les amplitudes des autres modes de basse fréquence propre.
La figure 3 montre des résultats de simulations de l'atténuation acoustique procurée par le dispositif de la figure 1 (sans le filtre 21) dans l'exemple des paramètres indiqués ci-dessus. La courbe en trait interrompu correspond aux valeurs de l'indice d'affaiblissement R en fonction de la fréquence f du bruit à atténuer dans le cas où il y a un contrôle actif du mode (0,0,0) , et la courbe en trait plein correspond aux mêmes valeurs en l'absence de contrôle actif. On voit que le contrôle actif selon l'invention augmente sensiblement l'indice d'affaiblissement dans la gamme des basses fréquences voisines de la fréquence de résonance fmrτn. Pour les fréquences éloignées de fmrm, il n'y a pas toujours une amélioration de l'indice d'affaiblissement et, dans certains cas, il peut même se produire une légère détérioration. C'est pourquoi on prévoit le filtre passe- bande 21 dans l'unité de régulation 18. Ce filtre 21, auquel est appliqué le signal de référence avant le filtrage à réponse impulsionnelle finie, laisse passer les fréquences pour lesquelles le contrôle du mode (0,0,0) a un effet favorable sur l'indice d'affaiblissement, c'est-à-dire les fréquences comprises entre fmπn/2 et min(2 fmrτn, f200) , f200 désignant la plus petite fréquence propre des modes d'ordre pair : f200 = c0/max(Lx, Ly) , où c0 désigne la célérité du son dans le milieu situé entre les deux plaques 10, 11. On comprendra que diverses modifications de l'exemple décrit ci-dessus en référence aux figures 1 et 2 sont envisageables sans sortir du cadre de l'invention.
Ainsi, il est possible d'intervertir les positions respectives des capteurs et des actionneurs (figure 2) en obtenant un aussi bon contrôle sélectif du mode (0,0,0) . Il est également possible de garnir l'intérieur des plaques avec un isolant phonique tel que de la laine de verre. On peut encore utiliser un mode de régulation autre qu'un filtrage adaptatif. Dans un mode de réalisation particulièrement avanta¬ geux, l'espace 12 situé entre les plaques 10, 11 est occupé par un gaz plus léger que l'air. Ceci augmente la célérité du son dans le milieu situé entre les plaques, ce qui diminue la densité des modes propres aux basses fréquences (formule (4)), tandis que la fréquence de résonance fmrm n'est que peu modifiée. La contribution relative du mode (0,0,0) à la transmission acoustique est alors augmentée de sorte que l'efficacité du contrôle actif de ce mode est améliorée. Cet effet est d'autant plus marqué que le gaz est léger. L'hélium est donc un exemple préféré pour ce gaz. Cet effet se produit également pour des configurations des cap¬ teurs et des actionneurs autres que celle représentée à la figure 2. Ainsi, dans le cas de la double paroi indiqué ci- dessus à titre d'exemple et avec une configuration à quatre capteurs et un actionneur central, le demandeur a mesuré expérimentalement les indices d'affaiblissement moyens -R^ en dB(A), donnés au tableau II lorsque l'espace 12 est rempli d'air ou d'hélium. Ces mesures ont été effectuées avec deux types de bruit à atténuer : un bruit rose et un bruit routier. On constate que l'amélioration de l'atténua¬ tion fournie par l'hélium est nettement plus importante lorsqu'on met en oeuvre le contrôle actif du mode (0,0,0).
bruit rose bruit routier R,„ (dB(A)) R» (dB(A)) sans contrôle 33 27 air actif avec contrôle 40 35 actif sans contrôle 35 28 hélium actif avec contrôle 49 43 actif
TABLEAU II
Le demandeur a réalisé de nombreuses simulations pour déterminer les paramètres des plaques donnant lieu à une bonne atténuation acoustique par le contrôle du mode (0,0,0). Sur la figure 4, on a représenté en hachuré le domaine de paramètres fournissant les meilleures caractéristiques d'atténuation. Le domaine correspond aux constitutions des plaques pour lesquelles la transmission acoustique autour de la fréquence de résonance fmrm est essentiellement régie par le mode (0,0,0) . Il correspond aux relations :
fc / ( L.Ly ) 2 > 800 et fmπn < f200 ( 5 !
ou
fe / ( LxLy ) 2 > 300 et fmτm < f200/2 , ( 6 )
dans lesquelles
fc, en hertz, désigne la fréquence critique d'une plaque ou, si les plaques 10, 11 sont de constitutions différentes, la plus grande des fréquences critiques des deux plaques (dans le cas d'une plaque plane homogène, la fréquence critique vaut
Figure imgf000013_0001
avec C = célérité du son dans l'air, m = masse surfacique de la plaque, D = Eh3/12 (1-υ2) = rigidité en flexion de la plaque , E = module d'Young, υ = coefficient de Poisson, h = épaisseur de la plaque) ;
Lx et Ly sont les longueurs des côtés de l'espace rectangulaire, exprimées en mètres ; fmπ71 est la fréquence de résonance masse-ressort- masse donnée par la formule (1) ; et
f200 = c0/max ( Lx, Ly) est la fréquence propre du mode pair de la cavité ayant la plus faible fréquence propre.
Des exemples de courbes d'atténuation (indice d'affaiblissement R en fonction de la fréquence) obtenues en simulant diverses constitutions des plaques sont représentés aux figures 5A à 5F qui correspondent respectivement aux points A à F sur le diagramme de la figure 4. Les courbes en trait plein illustrent l'indice d'affaiblissement en l'absence de contrôle actif, et les courbes en trait interrompu illustrent l'indice d'affaiblissement simulé en soustrayant la contribution du mode (0,0,0). Les configurations des plaques sont présentées au tableau III ci-dessous.
On peut constater aux figures 5A à 5F que les cas (C,E et F) pour lesquels sont vérifiées les relations (5) ou (6) sont ceux conduisant à l'amélioration la plus importante de l'atténuation autour de la fréquence de résonance fm-^. Un contrôle actif utilisant une configuration de capteurs et d'actionneurs qui fournisse une approximation satisfaisante de la réponse du mode (0,0,0) conduira à une amélioration sensible de l'atténuation lorsque les matériaux et les dimensions des plaques obéissent aux relations (5) ou (6) .
figure 5A 5B 5C 5D 5E 5F matériau des bois verre bois acier acier acier plaques aggloméré aggloméré
m (kg/m2) 15,6 11,7 15,6 11,7 7,8 7,8
LxLy (m2) 2 3 1,3 3 2 0,7
d (m) 0,05 0,025 0,05 0,012 0,05 0,05
fc/(LxLy)2 (Hz/m4) 230 440 550 900 3 000 24 000
^mrm' *-200 0,46 0,92 0,38 1,32 0,67 0,4
TABLEAU III

Claims

REVENDICATIONS
1. Dispositif d'atténuation acoustique, comprenant deux plaques (10,11) sensiblement parallèles délimitant un espace intérieur (12)de forme rectangulaire, des moyens de détection de bruit (13) disposés entre les deux plaques, des moyens d'émission de contre-bruits (14) disposés entre les deux plaques, et des moyens de régulation (18) pour commander les moyens d'émission de contre-bruits de manière à minimiser une grandeur (e) fournie par les moyens de détection de bruit, caractérisé en ce que les moyens d'émission de contre-bruits comprennent quatre actionneurs
(14) dont les positions respectives parallèlement aux plaques (10,11) correspondent approximativement aux quatre points constituant les milieux des côtés de la forme rectangulaire dudit espace intérieur (12), en ce que les moyens de détection de bruit comprennent quatre capteurs
(13) dont les positions respectives parallèlement aux plaques (10,11) correspondent approximativement aux quatre points constituant les milieux des côtés d'un losange (17) dont les sommets sont les milieux des côtés de la forme rectangulaire dudit espace intérieur (12), en ce que les quatre actionneurs (14) sont commandés en phase, et en ce que la grandeur à minimiser est représentée par la somme des signaux de sortie des quatre capteurs (13).
2. Dispositif d'atténuation acoustique, comprenant deux plaques (10,11) sensiblement parallèles délimitant un espace intérieur (12) de forme rectangulaire, des moyens de détection de bruit (13) disposés entre les deux plaques, des moyens d'émission de contre-bruits (14) disposés entre les deux plaques, et des moyens de régulation (18) pour commander les moyens d'émission de contre-bruits de manière à minimiser une grandeur (e) fournie par les moyens de détection de bruit, caractérisé en ce que les moyens de détection de bruit comprennent quatre capteurs dont les positions respectives parallèlement aux plaques (10,11) correspondent approximativement aux quatre points constituant les milieux des côtés de la forme rectangulaire - dudit espace intérieur (12), en ce que les moyens d'émission de contre-bruits comprennent quatre actionneurs dont les positions respectives parallèlement aux plaques (10,11) correspondent approximativement aux quatre points constituant les milieux des côtés d'un losange (17) dont les sommets sont les milieux des côtés de la forme rectangulaire dudit espace intérieur (12), en ce que les quatre actionneurs (14) sont commandés en phase, et en ce que la grandeur à minimiser est représentée par la somme des signaux de sortie des quatre capteurs (13).
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que les matériaux et les dimensions des plaques (10,11) sont choisis de façon que soient vérifiées les relations :
fe / (LxLy) 2 > 800 et fmrm < f200
ou les relations
fc / (LxLy) 2 > 300 et fmrm < f200/2 ,
dans lesquelles
fc, exprimée en hertz, désigne la fréquence critique d'une plaque ou la plus grande des deux fréquences critiques si les plaques (10,11) sont de constitutions différentes,
Lx et y, exprimées en mètres, sont les longueurs des côtés de la forme rectangulaire de l'espace intérieur (12) situé entre les deux plaques, fmrm est la fréquence de résonance du système masse- ressort-masse constitué par les deux plaques (10,11) et le milieu situé entre elles, et f200 est une fréquence propre donnée par la formule f-ioo = c0 / max (Lx,Ly), où c0 désigne la célérité du son dans le milieu situé entre les deux plaques (10,11).
4. Dispositif selon l'une quelconque des revendi¬ cations précédentes, caractérisé en ce qu'il comprend un capteur (24) fournissant un signal de référence, et un filtre passe-bande (21) auquel est appliqué le signal de référence, la sortie du filtre passe-bande (21) étant soumise à un filtrage adaptatif à réponse impulsionnelle finie pour commander les actionneurs (14), le filtre passe- bande (21) laissant passer les fréquences comprises entre f mrm 2 et min(2 fmπn, f200) , où fmrτcι est la fréquence de résonance du système masse- ressort-masse constitué par les deux plaques (10,11) et le milieu situé entre elles, et f200 est une fréquence propre donnée par la formule f2oo = c0 / max (Lx,Ly), où c0 désigne la célérité du son dans le milieu situé entre les deux plaques, et Lx et Ly désignent les longueurs des côtés de la forme rectangulaire de l'espace intérieur (12) situé entre les deux plaques (10,11) .
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'un gaz plus léger que l'air occupe l'espace intérieur (12) situé entre les deux plaques (10,11).
6. Dispositif selon la revendication 5, caractérisé en ce que ledit gaz plus léger que l'air est de l'hélium.
PCT/FR1994/000520 1993-05-06 1994-05-04 Dispositif d'attenuation acoustique a double paroi active WO1994027283A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/535,067 US5724432A (en) 1993-05-06 1994-05-04 Acoustic attenuation device with active double wall
EP94915585A EP0697122B1 (fr) 1993-05-06 1994-05-04 Dispositif d'attenuation acoustique a double paroi active
DE69422036T DE69422036D1 (de) 1993-05-06 1994-05-04 Schalldämpfungsanordnung mit aktiver doppelwand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR93/05451 1993-05-06
FR9305451A FR2704969B1 (fr) 1993-05-06 1993-05-06 Dispositif d'atténuation acoustique à double paroi active.

Publications (1)

Publication Number Publication Date
WO1994027283A1 true WO1994027283A1 (fr) 1994-11-24

Family

ID=9446850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000520 WO1994027283A1 (fr) 1993-05-06 1994-05-04 Dispositif d'attenuation acoustique a double paroi active

Country Status (6)

Country Link
US (1) US5724432A (fr)
EP (1) EP0697122B1 (fr)
AT (1) ATE187570T1 (fr)
DE (1) DE69422036D1 (fr)
FR (1) FR2704969B1 (fr)
WO (1) WO1994027283A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303993A (en) * 1995-08-03 1997-03-05 Taisei Electronic Ind Co Ltd Floor impact active noise suppressor in a multi-storied building
WO1997016817A1 (fr) * 1995-11-02 1997-05-09 Trustees Of Boston University Fenetres de protection contre le bruit et les vibrations

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078673A (en) * 1997-10-03 2000-06-20 Hood Technology Corporation Apparatus and method for active control of sound transmission through aircraft fuselage walls
JP3736790B2 (ja) * 2000-04-21 2006-01-18 三菱重工業株式会社 アクティブ遮音壁
US7352870B2 (en) * 2002-03-29 2008-04-01 Kabushiki Kaisha Toshiba Active sound muffler and active sound muffling method
US20040125922A1 (en) * 2002-09-12 2004-07-01 Specht Jeffrey L. Communications device with sound masking system
GB2423434B (en) * 2002-12-19 2007-04-18 Ultra Electronics Ltd Noise Attenuation System For Vehicles
US7327849B2 (en) * 2004-08-09 2008-02-05 Brigham Young University Energy density control system using a two-dimensional energy density sensor
DK1889198T3 (da) 2005-04-28 2015-02-09 Proteus Digital Health Inc Farma-informatiksystem
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
WO2008034789A1 (fr) * 2006-09-18 2008-03-27 Anocsys Ag agencement doté d'un système de réduction active du bruit
FR2906389B1 (fr) * 2006-09-21 2008-12-26 Neopost Technologies Sa Machine de traitement de courrier a niveau sonore reduit
US8068616B2 (en) * 2006-12-28 2011-11-29 Caterpillar Inc. Methods and systems for controlling noise cancellation
US7933420B2 (en) * 2006-12-28 2011-04-26 Caterpillar Inc. Methods and systems for determining the effectiveness of active noise cancellation
US8340318B2 (en) * 2006-12-28 2012-12-25 Caterpillar Inc. Methods and systems for measuring performance of a noise cancellation system
EP2063771A1 (fr) 2007-03-09 2009-06-03 Proteus Biomedical, Inc. Dispositif organique à antenne déployable
US7854295B2 (en) * 2008-06-03 2010-12-21 Panasonic Corporation Active noise control system
MY154217A (en) 2008-08-13 2015-05-15 Proteus Digital Health Inc Ingestible circuitry
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
MX2011011506A (es) 2009-04-28 2012-05-08 Proteus Biomedical Inc Marcadores de eventos ingeribles altamente confiables y metodos para utilizar los mismos.
KR101798128B1 (ko) 2010-02-01 2017-11-16 프로테우스 디지털 헬스, 인코포레이티드 데이터 수집 시스템
KR20130045261A (ko) 2010-04-07 2013-05-03 프로테우스 디지털 헬스, 인코포레이티드 소형의 섭취가능한 장치
WO2012071280A2 (fr) 2010-11-22 2012-05-31 Proteus Biomedical, Inc. Dispositif ingérable avec produit pharmaceutique
JP2012118135A (ja) * 2010-11-29 2012-06-21 Kurashiki Kako Co Ltd アクティブ防音装置及びアクティブ防音方法
JP2014514032A (ja) 2011-03-11 2014-06-19 プロテウス デジタル ヘルス, インコーポレイテッド 様々な物理的構成を備えた着用式個人身体関連装置
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (fr) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Produit ingérable pouvant être mâché et système de communication associé
JP2015534539A (ja) 2012-07-23 2015-12-03 プロテウス デジタル ヘルス, インコーポレイテッド 摂取可能構成要素を備える摂取可能事象マーカーを製造するための技法
JP5977456B2 (ja) * 2012-09-21 2016-08-24 プロテウス デジタル ヘルス, インコーポレイテッド 無線ウェアラブル装置、システム、および方法
CN104737532A (zh) 2012-10-18 2015-06-24 普罗秋斯数字健康公司 用于适应性优化通信设备的电源中的功率耗散和广播功率的装置、系统和方法
JP2016508529A (ja) 2013-01-29 2016-03-22 プロテウス デジタル ヘルス, インコーポレイテッド 高度に膨張可能なポリマーフィルムおよびこれを含む組成物
WO2014151929A1 (fr) 2013-03-15 2014-09-25 Proteus Digital Health, Inc. Appareil, système et procédé d'authentification personnelle
JP5941240B2 (ja) 2013-03-15 2016-06-29 プロテウス デジタル ヘルス, インコーポレイテッド 金属検出器装置、システム、および方法
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
CN105556912B (zh) 2013-09-20 2019-05-31 普罗秋斯数字健康公司 使用切片和扭曲在存在噪声的情况下接收和解码信号的方法、器件和系统
WO2015044722A1 (fr) 2013-09-24 2015-04-02 Proteus Digital Health, Inc. Procédé et appareil utilisé avec un signal électromagnétique reçu à une fréquence non exactement connue à l'avance
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US20170256251A1 (en) * 2016-03-01 2017-09-07 Guardian Industries Corp. Acoustic wall assembly having double-wall configuration and active noise-disruptive properties, and/or method of making and/or using the same
US10134379B2 (en) 2016-03-01 2018-11-20 Guardian Glass, LLC Acoustic wall assembly having double-wall configuration and passive noise-disruptive properties, and/or method of making and/or using the same
US10354638B2 (en) * 2016-03-01 2019-07-16 Guardian Glass, LLC Acoustic wall assembly having active noise-disruptive properties, and/or method of making and/or using the same
BR112019000861B1 (pt) 2016-07-22 2020-10-27 Proteus Digital Health, Inc dispositivo eletrônico
KR102605670B1 (ko) 2016-10-26 2023-11-24 오츠카 세이야쿠 가부시키가이샤 섭취 가능한 이벤트 마커를 갖는 캡슐을 제조하는 방법
US10726855B2 (en) 2017-03-15 2020-07-28 Guardian Glass, Llc. Speech privacy system and/or associated method
US10304473B2 (en) 2017-03-15 2019-05-28 Guardian Glass, LLC Speech privacy system and/or associated method
US10373626B2 (en) 2017-03-15 2019-08-06 Guardian Glass, LLC Speech privacy system and/or associated method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041260A1 (fr) * 1980-06-02 1981-12-09 Bschorr, Oskar, Dr. rer. nat. Amortisseur de bruit utilisant l'effet de coincidence
JPH0395349A (ja) * 1989-09-07 1991-04-19 Hitachi Plant Eng & Constr Co Ltd 電子消音システム
US5024288A (en) * 1989-08-10 1991-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Sound attenuation apparatus
WO1994005005A1 (fr) * 1992-08-12 1994-03-03 Noise Cancellation Technologies, Inc. Panneau actif a perte de transmission elevee

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8615315D0 (en) * 1986-06-23 1986-07-30 Secr Defence Aircraft cabin noise control apparatus
US5245552A (en) * 1990-10-31 1993-09-14 The Boeing Company Method and apparatus for actively reducing multiple-source repetitive vibrations
JPH06242786A (ja) * 1991-03-26 1994-09-02 Matsushita Electric Works Ltd 遮音方法および遮音装置
JPH05173580A (ja) * 1991-12-24 1993-07-13 Matsushita Electric Works Ltd 遮音パネル
FR2726681B1 (fr) * 1994-11-03 1997-01-17 Centre Scient Tech Batiment Dispositif d'attenuation acoustique a double paroi active

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041260A1 (fr) * 1980-06-02 1981-12-09 Bschorr, Oskar, Dr. rer. nat. Amortisseur de bruit utilisant l'effet de coincidence
US5024288A (en) * 1989-08-10 1991-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Sound attenuation apparatus
JPH0395349A (ja) * 1989-09-07 1991-04-19 Hitachi Plant Eng & Constr Co Ltd 電子消音システム
WO1994005005A1 (fr) * 1992-08-12 1994-03-03 Noise Cancellation Technologies, Inc. Panneau actif a perte de transmission elevee

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLARK ET AL.: "Optimal placement for piezoelectric actuators and polyvinylidene fluoride error sensors in active structural acoustic control approaches", JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,, vol. 92, no. 3, September 1992 (1992-09-01), NEW YORK US, pages 1521 - 1533 *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 276 (M - 1135) 12 July 1991 (1991-07-12) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303993A (en) * 1995-08-03 1997-03-05 Taisei Electronic Ind Co Ltd Floor impact active noise suppressor in a multi-storied building
GB2303993B (en) * 1995-08-03 1999-04-21 Taisei Electronic Ind Co Ltd Floor impact noise suppressor in a multi-storied building
US6483926B1 (en) 1995-08-03 2002-11-19 Taisei Electronic Industries Co., Ltd. Floor impact noise suppressor in a multi-storied building
WO1997016817A1 (fr) * 1995-11-02 1997-05-09 Trustees Of Boston University Fenetres de protection contre le bruit et les vibrations

Also Published As

Publication number Publication date
EP0697122A1 (fr) 1996-02-21
US5724432A (en) 1998-03-03
EP0697122B1 (fr) 1999-12-08
ATE187570T1 (de) 1999-12-15
DE69422036D1 (de) 2000-01-13
FR2704969B1 (fr) 1995-07-28
FR2704969A1 (fr) 1994-11-10

Similar Documents

Publication Publication Date Title
EP0697122B1 (fr) Dispositif d&#39;attenuation acoustique a double paroi active
EP0710946A1 (fr) Dispositif d&#39;attenuation acoustique à double paroi active
CA1265063A (fr) Procedes et dispositifs pour attenuer les bruits d&#39;origine externe parvenant au tympan et ameliorer l&#39;intelligibilite des communications electro- acoustiques
EP0852793B1 (fr) Procede et dispositif d&#39;attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues
EP0142178B1 (fr) Transducteur ultrasonore
FR2538149A1 (fr) Appareil d&#39;attenuation acoustique pour structure fermee
EP3371806B1 (fr) Fenêtre multi-vitrage intégrant un dispositif de réduction active du bruit
EP0601934B1 (fr) Perfectionnements aux procédés et dispositifs pour protéger des bruits extérieurs un volume donné, de préférence disposé à l&#39;intérieur d&#39;un local
IL121555A (en) Active acoustic noise reduction system
FR2495809A1 (fr) Appareil d&#39;attenuation des vibrations sonores et de supression de vibrations
EP0858651A1 (fr) Dispositif d&#39;attenuation acoustique active destine a etre dispose a l&#39;interieur d&#39;un conduit, en particulier pour l&#39;insonorisation de reseau de ventilation et/ou de climatisation
FR2536891A2 (fr) Appareil d&#39;attenuation des vibrations sonores et de suppression de vibrations
EP1414021B1 (fr) Système actif de réduction de bruit acoustique
EP0375570B1 (fr) Dispositif d&#39;absorption des vibrations comportant un élément piézoélectrique
CA2748383A1 (fr) Transducteur d&#39;ondes acoustiques et antenne sonar de directivite amelioree
EP1094444B1 (fr) Dispositif actif d&#39;atténuation de l&#39;intensité sonore
WO2016005489A2 (fr) Dispositif et méthode d&#39;atténuation du son
EP2432600B1 (fr) Dispositif de generation d&#39;ondes acoustiques et installation incluant plusieurs de ces dispositifs
CA2757170A1 (fr) Panneau acoustique destine a recevoir, emettre ou absorber des sons
FR3115176A1 (fr) Dispositif de traitement d’un signal analogique, systeme audio et porte sonorisee de vehicule associes
EP0454601A1 (fr) Procédé pour l&#39;atténuation des ondes acoustiques dans un circuit de circulation de fluide
WO1992010917A1 (fr) Dispositif acoustique
EP4078568A1 (fr) Procede et dispositif de controle de la propagation des ondes acoustiques sur une paroi
FR2724467A1 (fr) Procede et dispositif d&#39;amortissement actif d&#39;ondes mecaniques a capteurs deportes
EP1069414A1 (fr) Hydrophone à faible taux de distorsion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): FI JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994915585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08535067

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994915585

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994915585

Country of ref document: EP