WO1994027157A1 - Transducteur de mesure de courant base sur la mesure de densite de flux magnetique - Google Patents

Transducteur de mesure de courant base sur la mesure de densite de flux magnetique Download PDF

Info

Publication number
WO1994027157A1
WO1994027157A1 PCT/FI1994/000184 FI9400184W WO9427157A1 WO 1994027157 A1 WO1994027157 A1 WO 1994027157A1 FI 9400184 W FI9400184 W FI 9400184W WO 9427157 A1 WO9427157 A1 WO 9427157A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic circuit
current
transducer
air gap
magnetic flux
Prior art date
Application number
PCT/FI1994/000184
Other languages
English (en)
Inventor
Jussi Kuosa
Mikael NÅHLS
Original Assignee
Abb Strömberg Kojeet Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Strömberg Kojeet Oy filed Critical Abb Strömberg Kojeet Oy
Priority to AU66510/94A priority Critical patent/AU6651094A/en
Publication of WO1994027157A1 publication Critical patent/WO1994027157A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices

Definitions

  • the present invention is related to an electric current measurement transducer in accordance with the preamble of claim 1 based on magnetic flux density measurement.
  • the invention also concerns a method for calibrating the transducer.
  • CH patent application 00518/86-9 describes a three-legged magnetic circuit of electrical steel using a Hall-effect device for measuring electric current.
  • the disclosed structure is mechanically complicated and thus costly to produce. Implementation of 3-phase current measurement has not been specifically taken into account in the embodiment.
  • EP patent application 90,904,843.1 describes a comb-shaped magnetic circuit of electrical steel for measuring three-phase electric current. Due to mutual coupling between the different phases, compensation of external disturbances and calibration in single-phase use are complicated in the embodiment disclosed in cited publication.
  • the invention is based on designing the electromagnetic shielding of the transducer to be essentially of the same material as the magnetic circuit of the transducer itself, and that both the magnetic circuit and the enclosing structure are shaped so as to permit the accommodation of either a straight conductor or a coiled conductor for multiplication of the transducer current sensitivity. More specifically, the transducer according to the invention is characterized by what is stated in the characterizing part of claim 1.
  • the invention offers significant benefits.
  • the disclosed structure is small and simple.
  • the structure is basically designed for three-phase use, while it can also be used in single-phase applications.
  • the manufacture of the transducer according to the invention is easy and quick.
  • a single magnetic circuit provides two basic measurement ranges, and the basic ranges can be further expanded to larger currents by means of current transformers.
  • the magnetic circuit and the transducing Hall-effect device can have the same basic construction for all measurement ranges.
  • the measurement range is wide, extending approx. 10 times above the nominal current of the transducer.
  • One of the measurement basic ranges is designed for the secondary current of a standard current transformer, whereby the other basic range is dimensioned for a tenfold current.
  • the tuning of the transducers will be simplified as the magnetic circuit elements are stamped using a single tool, whereby improved air gap precision is attained and the linearity deviations which are typical of magnetic circuits are reduced.
  • the electromagnetic shield can be fabricated using a single tool only, which lowers the manufacturing costs of the transducer.
  • the transducer is encased within a Faraday shield permitting its use under conditions of high electromagnetic interference levels.
  • the transducer is also suited for measurement of inverter currents (transient-containing currents). The cost reduction offered herein is significant with regard to a conventional cu ⁇ ent transformer implementation.
  • the structure according to the invention achieves a 1 kN insulation level in a small volume.
  • a comparison of the cost reduction achievable by means of the invention with regard to a conventional current measurement techniques is given.
  • the comparison covers current ranges from 0.2 A to 100 A, and the costs are calculated as an average cost of the current measurement elements required for cited current range in each implementation technique, respectively.
  • Figure 1 is an exploded perspective view of a current measurement transducer according to the invention designed for a high current range
  • Figure 2 is an exploded perspective view of another current measurement transducer according to the invention designed for a low current range
  • Figure 3 is a perspective view of the transducer shown in Fig. 2 ready-assembled
  • Figure 4 is a perspective view of the transducer shown in Fig. 1 ready-assembled and complemented with an electromagnetic shield;
  • Figure 5 is a perspective view of the magnetic circuit of a transducer according to the invention.
  • Figure 6 is a perspective view of the shield design for a transducer according to the invention.
  • Figure 7 is a sectional perspective view of the shield design shown in Fig. 6 encasing one magnetic circuit
  • Figure 8 is a sectional perspective view of the transducer structure shown in Fig. 3.
  • magnetic circuit 2 magnetic circuit air gap 4 left-side plastic end piece 5 right-side plastic end piece 8 current bar 6 winding 7 electromagnetic shield 3 magnetic circuit opening 10 magnetic circuit aperture 1 for winding 7 magnetic circuit lower rivet 14 magnetic circuit upper rivet 15 upper rivet corner projection 12 upper corner cut 13 housing 20 housing cover 21 recesses 22 for conductor termination lugs recess 23 for electronics fixing clips 24 fixing notches 25 cavities 30 for Hall-effect devices length A of housing 20 width C of housing 20 height B of housing 20.
  • the current measurement transducer comprises electric-steel magnetic circuits 2, one for each phase, current busbars 6 inserted through said magnetic circuits 2, and a support structure enclosing said magnetic circuits, whereby said support structure to the end of easier assembly comprises two parts, a left-side plastic end piece 5 and a right- side plastic end piece 8.
  • the current busbars 6 are of copper or other high- conductivity material.
  • the elements of the magnetic circuits 2 are brought to mutual alignment with each other with the help of the plastic end pieces 5 and 8.
  • a further purpose of the plastic end pieces is to provide corrosion protection and insulate the windings 7 from the magnetic circuit 2.
  • plastic end pieces 5 and 8 perform the centering alignment of the magnetic circuits 2 within the electromagnetic shield so that the sensor devices measuring the magnetic flux density are easy to insert into the air gap 4 of the magnetic circuit 2.
  • the plastic end pieces 5 and 8 can be made from, e.g., polycarbonate.
  • a suitable commercial grade is manufactured by, e.g., Bayer AG, and coded as CYBE 1D4 in the ABB Str ⁇ mberg material database.
  • the magnetic flux density evoked in the magnetic circuit 2 by the current passing through the current busbars 6 is measured by means of a Hall-effect device (not shown) placed into the air gap 4 of the magnetic circuit 2.
  • the current busbars shown in Fig. 1 can be replaced at lower current with a wire of smaller cross section wound into a winding 7 inserted in the opening of the magnetic circuit 2, whereby the smaller current in the conductor of the winding invokes in the magnetic circuit a magnetic flux density proportional to the number of turns in the winding.
  • FIG. 2 With reference to Fig. 3, the structure illustrated in Fig. 2 is shown ready assembled.
  • the electromagnetic shield 3 is advantageously of the same material as the magnetic circuit 2 itself.
  • the shield 3 serves for excluding interference caused by external low-frequency disturbance fields on the magnetic flux density in the air gap 4 of the measuring magnetic circuit 2.
  • the electromagnetic field imposed by the external interference source is shunted by the shield 3 of a ferromagnetic material enclosing the magnetic circuit 2, whereby the disturbing effect of the external field is minimized.
  • the current busbars 6 are isolated from the electromagnetic shield 3 by means of insulation tubing (not shown).
  • the structure of the electromagnetic shield 3 is designed for a maximum shielding effect within machining and production constraints.
  • the shield can be fabricated using a single tool only, whereby a fast and low-cost production cycle is attained.
  • the shield design is optimized to comprise maximally large contiguous surfaces and small gaps to minimize the effect of the external disturbance fields.
  • the shield 3 can be machined using a combination press tool which cuts, punches and bends the shield into final shape in a single workphase.
  • a suitable material for the shield 3 is, e.g., a commercial grade electrical steel manufactured by Bochum, and coded as AHLY 10070 in the ABB Str ⁇ mberg material database. To its characteristics, this material is essentially similar to the electrical steel grade used in the fabrication of the magnetic circuit 2.
  • the magnetic circuit 2 shown in the earlier diagrams is described below in greater detail.
  • the function of the magnetic circuit 2 is to con- centrate the flux evoked by the cu ⁇ ent conductor as homogeneously as possible in the air gap 4 of the magnetic circuit.
  • the width of the air gap 4 determines the flux density in the magnetic circuit gap, said flux density being proportional to the current passing through the conductor.
  • the flux density peak value in the air gap is dependent on the effective cu ⁇ ent passing through the conductor according to the following formula:
  • the magnetic circuit 2 is basically ring-shaped, whereby an aperture 10 remains in the center of the magnetic circuit for the current conductor.
  • the aperture formed by the ring-shaped magnetic circuit includes an air gap 4, whose width in the exemplifying case is 2.5 mm.
  • the magnetic circuit 2 is made from separate laminations of electrical sheet steel stacked together by means of rivets 14 and 15. In the exemplifying case the magnetic circuit 2 comprises 16 laminations of 27157
  • the magnetic circuit 2 has an external height of 19 mm and an external width of 18 mm. For the smaller current range the lower edge of the magnetic circuit is provided with a notch 11 to accommodate the winding 7. The turns of the winding 7 are wound about the isthmus remaining between the notch 11 and the aperture 10.
  • the magnetic circuit 2 has an upper projection 12, while the other upper corner of the magnetic circuit 2 is provided with a cut 13 to accommodate the upper projection 12 of the adjacent magnetic circuit.
  • the magnetic circuit 2 can be considered to comprise two opposing hammers, whereby the air gap 4 is formed between the impact surfaces of the hammers.
  • the structure of the magnetic circuit 2 is characterized in being made from separate laminations of electrical steel which are riveted together to form a tightly packed magnetic circuit 2 using rivets of a ferromagnetic material or any other suitable material (e.g., brass).
  • the structure of the magnetic circuit 2 has been designed so as to make it suitable for single-phase measurement applications as well. Owing to the advantageous design of the magnetic circuit, the mutual distances between the current conductors are minimized. By virtue of the above- described design principles, a compact structure has been achieved for the three- phase magnetic circuit 2.
  • the design of the magnetic circuit 2 offers two different current measurement basic ranges with a single core structure alone.
  • the smaller of the current ranges is implemented with windings, while the larger of the current ranges uses a current busbar or a straight conductor.
  • the structure and production method of the magnetic circuit 2 have been carefully taken into account to reduce the manufacturing tolerance effects of the air gap 4 on the distribution of the transducer sensitivity.
  • the sensitivity differences between the different phase legs have been minimized by using a single stamping tool only, whereby the stamping tolerances will be equal for all phase legs.
  • the manufacturing method applied attains a tolerance of approx. ⁇ 0.05 mm.
  • the sensitivity of the transducer has been found to drop when the thickness of the electrical steel laminations 2 is selected larger. On the basis of laboratory tests, the steel grade selected for the transducer has been compatible with cost, quality and machinability requirements.
  • the core must be free from inter-lamination air gaps between the laminations, which is prevented by bonding the laminations tightly together with rivets. Any separation between the laminations of the core cause nonlinearity of the magnetic circuit function and reduce the transducer sensitivity.
  • the magnetic circuit 2 can be fabricated using only a single machine, which is adapted to stamp and rivet the magnetic circuit core into a ready-assembled entity.
  • the machine circuit are stamped, after which the machine inserts them into the riveting jig and bonds the stack of laminations with rivets.
  • the machine capacity is in excess of 10 magnetic circuit cores per minute.
  • the laminations for the magnetic circuit core are stamped using one and only one stamping tool.
  • Suitable material for the magnetic circuit core 2 is, e.g., a commercial grade electrical steel manufactured by Bochum, and coded as AHLY 5040 in the ABB Str ⁇ mberg material database.
  • the transducer construction can be enclosed in a housing
  • the transducer structure of which only the shield 3 is visible in the diagram, is located in the mid-part of the housing 20.
  • the housing 20 is provided with fixing clips 24 suited for mating with the fixing notches 25 of the cover part 21, thus locking the cover.
  • the cover 21 for the housing further has a recess for an electronics card employed for conditioning the current-proportional voltage output signal from the measuring sensor and calibrating the entire transducer (comprised by the magnetic circuit 2 and the measuring sensor).
  • the Hall- effect devices used as the measuring sensors are mounted on said electronics card.
  • the external dimensions A, B and C of the housing for the embodiment are: length A 105 mm, height B 33 mm and width C 65 mm.
  • the Hall-effect devices are accommodated by a cavity 30 designed at the air gap 4 of the magnetic circuit core 2 and extending through the plastic end piece 5, the shield 3 and the cover 21 of the housing.
  • the cavity 30 designed at the air gap 4 of the magnetic circuit core 2 and extending through the plastic end piece 5, the shield 3 and the cover 21 of the housing.
  • a practical structure and dimensioning calculations for a transducer according to the invention are as follows:
  • the magnetic flux density can be obtained from the same basic formula given above:
  • the selected values are compatible with the dimensions of the above-described exemplifying embodiment.
  • Magnetic flux sensor used is Honeywell X91973-SS
  • the ratio between the cu ⁇ ent measurement basic ranges is selected as 10, whereby the second basic range will be 2 - 25 A.
  • the winding for the lower basic range must have 10 turns to attain the same flux density in both basic ranges.
  • the magnetic circuit air gap width is computed:
  • the Hall-effect device has a sensitivity of 25 mN/mT with a measurement range of 100 mT, the maximum effective value of sensor output voltage is 2500 mV. Using these values, the sensitivity of the sensor can be computed:
  • the nominal current range is 2 - 25 A.
  • the maximum cu ⁇ ent of the higher cu ⁇ ent range is 175 A and the sensitivity is:
  • the cu ⁇ ent conductor must be thermally rated to carry 175 A for approx. 25 s.
  • the sensors must be calibrated to the desired sensitivity values by means of active or passive components on the electronics card.
  • the linearity as well as the sensitivity of the transducers according to tests entirely follows the characteristic curve of the sensor employed, the transducer can be used for extremely accurate measurements if the sensor nonlinearity is taken into account by the design of the transducer electronics card.
  • the sensor nonlinearity can be compensated for by programming means, or alternatively, using a nonlinear amplifier.
  • the transducers were calibrated so that their nominal sensitivities (as mN/A) co ⁇ esponded to the average sensitivity of transducers at the nominal cu ⁇ ent.
  • the magnetic flux density can be measured using any other sensor responding to the magnetic flux density, such as a small coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

L'invention se rapporte à un transducteur de courant basé sur la mesure de densité de flux magnétique et à un procédé d'étalonnage de celui-ci. Le transducteur comprend un châssis, un circuit magnétique essentiellement en forme d'anneau adapté à ce châssis et dans lequel on a ménagé un entrefer (4) et qui sert à concentrer le flux magnétique. Le circuit magnétique (2) en forme d'anneau comprend une ouverture (10) à travers laquelle on peut introduire le conducteur de courant (6, 7) devant être mesuré. Le transducteur comprend également un dispositif à effet Hall (1) insérable dans l'entrefer, et une structure de blindage (3) électromagnétique entourant le cadre et destinée à empêcher les champs d'interférence externes d'atteindre le dispositif à effet Hall. Selon l'invention, la structure de blindage (3) électromagnétique est réalisée à l'aide d'un matériau essentiellement similaire à celui du circuit magnétique (2), et le circuit magnétique ainsi que la structure de corps (5) sont conformés de façon à recevoir soit un conducteur de courant rectiligne (6) soit un enroulement (7) permettant de multiplier la sensibilité de mesure de courant.
PCT/FI1994/000184 1993-05-11 1994-05-10 Transducteur de mesure de courant base sur la mesure de densite de flux magnetique WO1994027157A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU66510/94A AU6651094A (en) 1993-05-11 1994-05-10 Current measurement transducer based on magnetic flux density measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI932122A FI932122A (fi) 1993-05-11 1993-05-11 Vuontiheyden mittaukseen perustuva sähkövirranmittausanturi ja menetelmä sen virittämiseksi
FI932122 1993-05-11

Publications (1)

Publication Number Publication Date
WO1994027157A1 true WO1994027157A1 (fr) 1994-11-24

Family

ID=8537905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI1994/000184 WO1994027157A1 (fr) 1993-05-11 1994-05-10 Transducteur de mesure de courant base sur la mesure de densite de flux magnetique

Country Status (3)

Country Link
AU (1) AU6651094A (fr)
FI (1) FI932122A (fr)
WO (1) WO1994027157A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045861A1 (fr) * 1997-04-04 1998-10-15 Gründl und Hoffmann GmbH Gesellschaft für elektrotechnische Entwicklungen Ensemble pour la commutation d'installations d'energie
EP1037240A2 (fr) * 1999-03-12 2000-09-20 Eaton Corporation Ecran concentrateur du flux magnétique pour un relais de surcharge
WO2001040811A2 (fr) * 1999-11-30 2001-06-07 Honeywell Control Systems Ltd. Detecteur de courant possedant un noyau blinde
EP1107274A1 (fr) * 1999-06-22 2001-06-13 Mitsubishi Denki Kabushiki Kaisha Disjoncteur a dispositif de mesure informant sur l'etat sous tension
EP1120659A1 (fr) * 2000-01-28 2001-08-01 Socomec S.A. Compteur d'énergie électrique
WO2006090769A1 (fr) 2005-02-23 2006-08-31 Asahi Kasei Emd Corporation Instrument de mesure de courant
WO2006125407A1 (fr) * 2005-05-25 2006-11-30 Conti Temic Microelectronic Gmbh Dispositif pour mesurer l'intensite d'un courant
EP1752776A1 (fr) * 2005-08-12 2007-02-14 Liaisons Electroniques-Mecaniques Lem S.A. Capteur de courant triphasé
EP2333566A1 (fr) * 2009-12-11 2011-06-15 Schneider Electric Industries SAS Appareil électrique de mesure avec deux possiblilités de raccordement
WO2014005615A1 (fr) * 2012-07-02 2014-01-09 Siemens Aktiengesellschaft Ensemble transformateur de courant
JP2017102029A (ja) * 2015-12-02 2017-06-08 アイシン精機株式会社 電流センサ
JPWO2017014040A1 (ja) * 2015-07-22 2017-11-02 株式会社村田製作所 電流センサ
WO2018162216A1 (fr) * 2017-03-08 2018-09-13 Harting Electric Gmbh & Co. Kg Agencement de capteurs de courant et procédé
JP2018205045A (ja) * 2017-05-31 2018-12-27 本田技研工業株式会社 電力装置及び電力装置の製造方法
EP3432006A1 (fr) * 2017-07-20 2019-01-23 Audi Ag Dispositif électronique avec un capteur de courant intégré dans un radiateur
JPWO2018055664A1 (ja) * 2016-09-20 2019-06-24 株式会社東芝 三相貫通形変流器
JP2019164079A (ja) * 2018-03-20 2019-09-26 株式会社デンソー 電流センサ
EP3561525A1 (fr) * 2018-04-27 2019-10-30 Baumer Electric AG Blindage magnétique d'un capteur à champ parasites interne
CN116013665A (zh) * 2023-02-17 2023-04-25 捷蒽迪电子科技(上海)有限公司 一种电感

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749939A (en) * 1986-02-10 1988-06-07 Lgz Landis & Gyr Zug Measuring transformer for measuring of a current flowing in an electrical conductor
US4864223A (en) * 1987-05-26 1989-09-05 Lgz Landis & Gyr Zug Ag Measuring transformer to measure the current flowing in an electric conductor
US4939449A (en) * 1986-12-12 1990-07-03 Liaisons Electroniques-Mecaniques Lem Sa Electric current sensing device of the magnetic field compensation type
WO1990011529A1 (fr) * 1989-03-23 1990-10-04 Abb Strömberg Kojeet Oy Appareil et procede servant a mesurer un courant electrique dans des conditions d'interferences elevees
US4963827A (en) * 1988-09-13 1990-10-16 Lgz Landis & Gyr Zug Ag Intermittently activated magnetic shield arrangement for reducing noise and offsets in solid state magnetic field sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749939A (en) * 1986-02-10 1988-06-07 Lgz Landis & Gyr Zug Measuring transformer for measuring of a current flowing in an electrical conductor
US4939449A (en) * 1986-12-12 1990-07-03 Liaisons Electroniques-Mecaniques Lem Sa Electric current sensing device of the magnetic field compensation type
US4864223A (en) * 1987-05-26 1989-09-05 Lgz Landis & Gyr Zug Ag Measuring transformer to measure the current flowing in an electric conductor
US4963827A (en) * 1988-09-13 1990-10-16 Lgz Landis & Gyr Zug Ag Intermittently activated magnetic shield arrangement for reducing noise and offsets in solid state magnetic field sensors
WO1990011529A1 (fr) * 1989-03-23 1990-10-04 Abb Strömberg Kojeet Oy Appareil et procede servant a mesurer un courant electrique dans des conditions d'interferences elevees

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279336B1 (en) 1997-04-04 2001-08-28 Grundl Und Hoffmann Gmbh Gesellschaft Fur Elektrotechnische Assembly for switching electrical power
WO1998045861A1 (fr) * 1997-04-04 1998-10-15 Gründl und Hoffmann GmbH Gesellschaft für elektrotechnische Entwicklungen Ensemble pour la commutation d'installations d'energie
EP1037240A2 (fr) * 1999-03-12 2000-09-20 Eaton Corporation Ecran concentrateur du flux magnétique pour un relais de surcharge
EP1037240A3 (fr) * 1999-03-12 2001-06-13 Eaton Corporation Ecran concentrateur du flux magnétique pour un relais de surcharge
EP1107274A1 (fr) * 1999-06-22 2001-06-13 Mitsubishi Denki Kabushiki Kaisha Disjoncteur a dispositif de mesure informant sur l'etat sous tension
EP1107274A4 (fr) * 1999-06-22 2004-03-03 Mitsubishi Electric Corp Disjoncteur a dispositif de mesure informant sur l'etat sous tension
WO2001040811A3 (fr) * 1999-11-30 2001-11-08 Honeywell Control Syst Detecteur de courant possedant un noyau blinde
WO2001040811A2 (fr) * 1999-11-30 2001-06-07 Honeywell Control Systems Ltd. Detecteur de courant possedant un noyau blinde
FR2804512A1 (fr) * 2000-01-28 2001-08-03 Socomec Sa Compteur d'energie electrique
EP1120659A1 (fr) * 2000-01-28 2001-08-01 Socomec S.A. Compteur d'énergie électrique
WO2006090769A1 (fr) 2005-02-23 2006-08-31 Asahi Kasei Emd Corporation Instrument de mesure de courant
EP1855118A1 (fr) * 2005-02-23 2007-11-14 Asahi Kasei EMD Corporation Instrument de mesure de courant
EP1855118A4 (fr) * 2005-02-23 2009-12-09 Asahi Kasei Emd Corp Instrument de mesure de courant
US7898240B2 (en) 2005-02-23 2011-03-01 Asahi Kasei Emd Corporation Current measuring apparatus
WO2006125407A1 (fr) * 2005-05-25 2006-11-30 Conti Temic Microelectronic Gmbh Dispositif pour mesurer l'intensite d'un courant
CN101238378B (zh) * 2005-08-12 2011-11-30 机电联合股份有限公司 三相电流传感器
EP1752776A1 (fr) * 2005-08-12 2007-02-14 Liaisons Electroniques-Mecaniques Lem S.A. Capteur de courant triphasé
WO2007020500A1 (fr) * 2005-08-12 2007-02-22 Liaisons Electroniques-Mecaniques Lem S.A. Capteur de courant triphase
US7821252B2 (en) 2005-08-12 2010-10-26 Liasons Electroniques-Mecaniques Lem SA Three-phase current sensor
EP2333566A1 (fr) * 2009-12-11 2011-06-15 Schneider Electric Industries SAS Appareil électrique de mesure avec deux possiblilités de raccordement
FR2953936A1 (fr) * 2009-12-11 2011-06-17 Schneider Electric Ind Sas Appareil electrique de mesure avec deux possibilites de raccordement
WO2014005615A1 (fr) * 2012-07-02 2014-01-09 Siemens Aktiengesellschaft Ensemble transformateur de courant
CN104395975A (zh) * 2012-07-02 2015-03-04 西门子公司 电流互感器组件
JPWO2017014040A1 (ja) * 2015-07-22 2017-11-02 株式会社村田製作所 電流センサ
JP2017102029A (ja) * 2015-12-02 2017-06-08 アイシン精機株式会社 電流センサ
JPWO2018055664A1 (ja) * 2016-09-20 2019-06-24 株式会社東芝 三相貫通形変流器
WO2018162216A1 (fr) * 2017-03-08 2018-09-13 Harting Electric Gmbh & Co. Kg Agencement de capteurs de courant et procédé
CN110383082A (zh) * 2017-03-08 2019-10-25 哈廷电子有限公司及两合公司 电流传感器装置和方法
KR20190124762A (ko) * 2017-03-08 2019-11-05 하르팅 에렉트릭 게엠베하 운트 코우. 카게 전류 센서 조립체 및 방법
KR102423187B1 (ko) 2017-03-08 2022-07-21 하르팅 에렉트릭 게엠베하 운트 코우. 카게 전류 센서 조립체 및 방법
JP2018205045A (ja) * 2017-05-31 2018-12-27 本田技研工業株式会社 電力装置及び電力装置の製造方法
EP3432006A1 (fr) * 2017-07-20 2019-01-23 Audi Ag Dispositif électronique avec un capteur de courant intégré dans un radiateur
US10784180B2 (en) 2017-07-20 2020-09-22 Audi Ag Electronics device having at least one component to be cooled
JP2019164079A (ja) * 2018-03-20 2019-09-26 株式会社デンソー 電流センサ
WO2019181174A1 (fr) * 2018-03-20 2019-09-26 株式会社デンソー Capteur de courant
EP3561525A1 (fr) * 2018-04-27 2019-10-30 Baumer Electric AG Blindage magnétique d'un capteur à champ parasites interne
CN116013665A (zh) * 2023-02-17 2023-04-25 捷蒽迪电子科技(上海)有限公司 一种电感

Also Published As

Publication number Publication date
AU6651094A (en) 1994-12-12
FI932122A0 (fi) 1993-05-11
FI932122A (fi) 1994-11-12

Similar Documents

Publication Publication Date Title
WO1994027157A1 (fr) Transducteur de mesure de courant base sur la mesure de densite de flux magnetique
EP1595158B1 (fr) Detecteur de champ magnetique et detecteur de courant electrique
EP2423693B1 (fr) Transducteur toroïdal de courant
US6441605B1 (en) Current sensor for an electrical device
US6844799B2 (en) Compact low cost current sensor and current transformer core having improved dynamic range
US8238066B2 (en) Current sensor for earth leakage module
FI83998C (fi) Maettransformator foer maetning av stroem i en elledare.
US4591942A (en) Current sensing transformer assembly
EP2515125B1 (fr) Capteur de courant doté d'un noyau magnétique
JPH10213603A (ja) 自己給電式軸方向電流センサ
AU2012277518A1 (en) Sensors
WO1991019305A1 (fr) Procede et dispositif de blindage de transformateur de courant et transformateur de courant comprenant ce blindage
JP2005321206A (ja) 電流検出装置
US5400006A (en) Current transformer with plural part core
EP1551039B1 (fr) Dispositif d'alimentation d'un apparei de protection électronique utilisable dans un disjoncteur basse tension
JP2862054B2 (ja) 零相電流検出装置
JP2954500B2 (ja) 電流変成器
KR101776774B1 (ko) 자기장 차폐구조를 구비한 전류 감지 모듈
JP4189164B2 (ja) 電流測定器
JPH0750658B2 (ja) 電流変成器
JPH022544B2 (fr)
KR20010027246A (ko) 교류 전류센서 및 이것을 내장하는 전력기기
CN114113738A (zh) 一种穿芯式闭环型霍尔电流传感器用磁路及安装结构
KR20240126418A (ko) 전류 측정 모듈
JPH11201999A (ja) 電流検出器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KG KP KR KZ LK LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA