WO1994024938A1 - Osteometry and osteometric apparatus - Google Patents

Osteometry and osteometric apparatus Download PDF

Info

Publication number
WO1994024938A1
WO1994024938A1 PCT/JP1994/000688 JP9400688W WO9424938A1 WO 1994024938 A1 WO1994024938 A1 WO 1994024938A1 JP 9400688 W JP9400688 W JP 9400688W WO 9424938 A1 WO9424938 A1 WO 9424938A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
pattern
measurement
test
predetermined
Prior art date
Application number
PCT/JP1994/000688
Other languages
English (en)
French (fr)
Inventor
Makoto Yoshida
Dunhao Chen
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to DE69422130T priority Critical patent/DE69422130T2/de
Priority to EP94913815A priority patent/EP0648467B1/en
Priority to US08/351,282 priority patent/US5602935A/en
Publication of WO1994024938A1 publication Critical patent/WO1994024938A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/505Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Definitions

  • the present invention relates to a bone measuring method and apparatus. More specifically, the present invention uses a bone site suitable for bone measurement, such as the radius and metacarpal bones, as a test bone, and irradiates the test bone with radiation.
  • a bone measuring method and a bone measuring device for measuring a pattern related to the amount of radiation transmitted through a bone obtained from a radiographic image, and for evaluating a bone evaluation parameter, particularly a cancellous bone evaluation parameter, rationally and accurately.
  • Cortical bone is dense bone tissue, represented by the diaphyses of long bones in the limbs, and has a pipe-like shape.
  • Spongy bone is a network of bone tissue called trabecular bone, and is found in the epiphyses of long bones, the spine, carpal bones, calcaneal bones, talus bones, tarsal bones, and the like.
  • cancellous bone has a large area of contact with soft tissues including the vascular system, so it has the characteristic of rapid bone turnover and rapid changes due to bone disease or treatment.
  • a radiographic film obtained by irradiating the bone to be examined with X-rays is used, and the density of the image on the film is measured by a microphone-type density measurement.
  • MD method ⁇ (Bone Metabolism” Vol. 13, pp. 187-195 (1980), "Bone Metabolism” Vol. 14, pp. 91-104 (1981) etc.), photon'absorption siometry, in which bone is measured by irradiating the bone to be examined with gamma rays and measuring the amount of transmitted gamma rays with a detector; There is a method of measuring the amount of transmitted X-rays using a detector, etc.
  • the above-mentioned MD method is widely used as a device for diagnosing bone fractures, etc. X-ray images that can be easily obtained using an X-ray imaging device It is easy to adopt because it uses a film, and it is gradually becoming widespread.
  • the inventors have previously disclosed a method for reading an image of a subject bone on an X-ray film and performing bone measurement, comprising: Obtaining a density pattern of the test bone along a measurement line and smoothing the plurality of density patterns at corresponding positions to obtain a first smoothed pattern;
  • a bone measurement method including the step of obtaining a second smoothed pattern by smoothing the values at a plurality of neighboring points along the measurement line in one smoothed pattern (Japanese Laid-Open Patent Publication No. 1994-84). 939).
  • Prior art methods mainly target long bones (eg, the central portion of the second metacarpal).
  • long bones eg, the central portion of the second metacarpal.
  • a plurality of parallel measurement lines are taken at regular intervals perpendicular to the bone axis (bone center line) in the test bone, and the amount of transmitted light obtained along the lines is measured.
  • the pattern is smoothed in the direction parallel to the bone axis, that is, pattern synthesis is performed.
  • the change in the pattern in the direction of the bone axis (in other words, the change in bone width - change) is small, so it is caused by pattern distortion during pattern synthesis.
  • BMD Breast Mineral Density
  • cancellous bone measurement such as the distal end of the radius
  • the change in the transmitted light intensity pattern in the direction of the bone axis is large.
  • a large distortion occurs, causing a problem that an accurate BMD cannot be obtained (FIGS. 19A and 19B).
  • Another object of the present invention is to provide a bone measuring method and a bone measuring device capable of distinguishing and accurately measuring a region containing many cortical bones and a region containing many cancellous bones.
  • Another object of the present invention is to provide an improved bone measuring method and bone measuring device that enable accurate and reproducible measurement even when measuring cancellous bone. ⁇ It is another object of the present invention to provide an improved bone measuring method and bone measuring apparatus that enable accurate bone measurement even when the bone mass pattern related to the amount of transmitted radiation is complicated.
  • the present inventors have conducted intensive research on a method for increasing the reproducibility of bone R0I settings, and as a result, in the image obtained by radiography, in the case of the radius of cancellous bone, it is easy to obtain a guideline for the head of the bone. Mark the 2 points of the thrust point and the 2 points of the diaphyseal shaft, and the line connecting the respective midpoints is the bone axis.
  • the reproducibility of the ROI was improved and the measurement time was shortened.
  • the predetermined distance in the case of an X-ray film, since the radius and metacarpal bones are shown on one sheet, it was found that it is preferable to use a value based on the length of the metacarpal bones. arrived.
  • the present invention provides a method for performing bone measurement on a test bone using an image obtained by radiography of the test bone, comprising: (i) two bone heads and a bone in a region of interest in the image of the test bone; (ii) determining a bone axis by specifying two points of the trunk and connecting the respective midpoints; setting a reference measurement line perpendicular to the bone axis at a distance apart;
  • the method of the present invention includes a bone measurement method, wherein the test bone is the radius, and the predetermined distance is based on the length of the metacarpal bone.
  • the method of the present invention includes a reference material in which the image is of varying thickness; It is obtained by detecting the amount of transmitted light obtained by irradiating light on an X-ray film photographed with X-rays, and the pattern is a bone density pattern based on the relationship between the thickness of the standard material and the amount of transmitted light. Some bone measurement methods are included.
  • the present invention also provides an apparatus for performing bone measurement on a test bone using an image obtained by radiography of the test bone, comprising: (i) a bone head 2 in a region of interest in the image of the test bone; (ii) a means for determining a bone axis by specifying a point and two points on the diaphysis and connecting the respective midpoints; (ii) transmitting radiation dose through the subject bone along one or more measurement lines at or near the reference measurement line; and (iv) means for performing predetermined arithmetic processing using the pattern and measuring the bone to be examined. be.
  • the apparatus of the present invention includes a bone measuring apparatus characterized in that the bone to be examined is the radius, the length of the metacarpal bone is measured as the distance, and means for using the length is provided. included.
  • the image input means detects the amount of transmitted light obtained by irradiating light on the X-ray film of the subject's bone photographed together with the reference material of varying thickness.
  • the inventors have made intensive studies on objective and quantitative evaluation methods for cortical bone and cancellous bone, and as a result, obtained from images based on transmission radiation images obtained by irradiating the bones to be examined with radiation.
  • transmitted radiation In the dose pattern, the transmitted radiation dose pattern is calculated only in a predetermined region based on the bone width according to the bone to be inspected, and bone measurement is performed to distinguish between a region containing a large amount of cortical bone and a region containing a large amount of cancellous bone.
  • the inventors have found that it is possible to measure with high accuracy and that the above target can be achieved, and have arrived at the present invention.
  • the present invention provides a method for performing bone measurement on a test bone using an image obtained by radiography of the test bone, wherein the test portion of the image on the test bone contains one or more a step of measuring a pattern of transmitted radiation dose of the bone under test along different measurement lines;
  • a bone measuring method characterized by having a step of measuring a bone to be examined is provided.
  • the partial region predetermined based on the width of the bone to be tested is a region corresponding to cancellous bone allocated from the center of the width of the bone to be tested.
  • method is included.
  • the partial region it is desirable to use, for example, a region corresponding to cancellous bone allocated from the center of the bone width in the range of 1/3 to 12 of the bone width at the distal end of the radius.
  • the amount of transmitted light obtained by irradiating an X-ray photographic film of the subject bone photographed together with a standard material of varying thickness for bone measurement of the subject bone and the step of performing arithmetic processing to measure the bone to be examined reads the pattern based on the relationship between the thickness of the standard material obtained from the X-ray film and the amount of transmitted light.
  • the present invention provides an apparatus for performing bone measurement on a subject bone using an image obtained by radiography of the subject bone, wherein the subject bone is: Along one or more different measurement lines in the subject area of the image of the bone autopsy.
  • the object is to provide a bone measuring device characterized by having means for measuring.
  • the apparatus of the present invention is characterized by having means for setting a calculation region of the transmission radiation dose pattern predetermined based on the bone width to a region containing a large amount of cancellous bone. Includes measurement equipment.
  • the image input means detects the amount of transmitted light obtained by irradiating light on the X-ray film of the bone to be examined, which is photographed together with the reference material of varying thickness. is an image reading means, and based on the relationship between the thickness of the standard material obtained from the X-ray film and the amount of transmitted light, the plurality of smoothing patterns (equally spaced parallel measurement lines) Bone measurement having conversion means for converting the transmitted light intensity pattern into one transmitted light intensity pattern in the direction perpendicular to the measurement line and moving average of the synthesized pattern) to the thickness of the standard material. Includes equipment.
  • the inventors firstly selected a part of the obtained pattern group, that is, a narrow pattern.
  • a plurality of density patterns are smoothed into one in an area, a bone parameter is obtained from the smoothed pattern, the process is repeated in another area, and these are combined to obtain an average bone parameter in a wide area.
  • an abnormal value in the bone parameter is determined using a predetermined standard value of the bone parameter and eliminated, and the other bone parameters are averaged.
  • the inventors have found that the bone mass (BMD) can be measured accurately and with good reproducibility, and arrived at the present invention.
  • the present invention uses an image obtained by radiography of a subject bone.
  • the method of performing bone measurements on the test bone uses an image obtained by radiography of a subject bone.
  • the processing under the predetermined condition compares a predetermined standard value with each parameter group, and selects a parameter group that deviates from the standard value by a predetermined amount or more.
  • a bone measurement method comprising the step of obtaining an average value of each parameter for a parameter group excepted, the bone measurement method wherein the standard value relates to bone width in the smoothed pattern, and the bone of the test bone Measurement is by image reading that detects the amount of transmitted light obtained by irradiating light on an X-ray film of a subject bone photographed together with a reference material of varying thickness, and the amount of transmitted radiation
  • the pattern is the density pattern of the bone to be examined, and the predetermined arithmetic processing converts the smoothed pattern of the standard material based on the relationship between the thickness of the standard material obtained from the X-ray film and the amount of transmitted light. Included are bone measurement methods that include processing to convert to thickness.
  • the present invention relates to an apparatus for performing bone measurement on a test bone using an image obtained by radiography of the test bone,
  • a bone measuring apparatus characterized by comprising means for processing the plurality of parameter groups under predetermined conditions and measuring a bone to be examined.
  • the means for measuring the bone to be examined includes a means for obtaining a predetermined standard value and an average value of each parameter for each parameter group.
  • a bone measuring device is included.
  • the present invention includes a bone measuring device having a step of using the bone width of the smoothed pattern in the region of interest as the standard value.
  • the image input means detects the amount of transmitted light obtained by irradiating light on an X-ray film of the subject bone photographed together with a standard material of varying thickness.
  • the image reading means detects the amount of transmitted light obtained by irradiating light on an X-ray film of the subject bone photographed together with a standard material of varying thickness.
  • a bone measuring apparatus characterized by having means for processing the plurality of bone parameter groups under predetermined conditions and measuring a bone to be examined.
  • the present inventors standardized each value of the bone mass pattern based on the transmitted radiation dose obtained from the image related to the transmitted radiation dose of the subject bone as necessary, and furthermore, standardized the bone mass pattern Using each value of , the product of the second-order difference value and the first-order difference value and/or the second-order difference value is used to obtain a plurality of candidates for the boundary point between the region of the test bone and the region of soft tissue only.
  • an image input step for inputting an image based on the amount of transmitted radiation obtained by irradiating a bone to be inspected with radiation; a step of obtaining a pattern relating to the amount of transmitted radiation in the test site; a step of obtaining two boundary points with the soft tissue at both ends of the test bone in the pattern; and a soft tissue approximated by a line connecting the two points.
  • the step of (ii) obtaining at least one of two boundary points with soft tissue at both ends of the test bone in the pattern includes obtaining a primary neighboring point in the pattern, A predetermined range (1) is skipped in the direction of the center of the test bone from the primary neighboring point to obtain an inner primary regression line in the predetermined range (2), and the center of the test bone is further calculated from the primary neighboring point.
  • the step of obtaining the first-order neighboring point uses a second-order difference value and/or a product of a second-order difference value and a first-order difference value in the pattern ( ii) provides a bone measurement method.
  • the present invention also provides (iv) image input means for inputting an image based on the amount of transmitted radiation obtained by irradiating a bone to be inspected with radiation; means for obtaining a pattern relating to the amount of transmitted radiation in the test area along a line connecting the two boundary points of the soft tissue at both ends of the test bone in the pattern; means for obtaining a modified pattern for the transmission radiation dose of the test bone itself by subtracting from the pattern the area for the transmission radiation dose corresponding to the soft tissue approximated by:
  • a bone measuring device having an arithmetic means for performing arithmetic processing for bone measurement.
  • the step of determining boundary points with soft tissues at both ends of the subject bone in the pattern includes determining primary neighboring points in the pattern by a predetermined method, and determining the subject from the primary neighboring points.
  • a predetermined range (1) is skipped in the direction of the center of the bone test, the inner linear regression line is obtained in the predetermined range (2), and a predetermined range (3) is obtained in the direction away from the center of the test bone from the neighboring point.
  • the bone measurement method according to any one of the above (i) to (iii), which is a step of repeating the processing depending on the condition.
  • the step of obtaining the first-order neighboring points includes first obtaining a plurality of candidate points using the product of the second-order difference value and the first-order difference value and Z or the second-order difference value, and then obtaining the plurality of candidate points.
  • the range (4) is defined as the range from the point where the change in inclination in the direction away from the center of the test bone from the primary neighboring point satisfies the predetermined condition (1) to the point near the point where the change in inclination is large. (ii) or (V) above.
  • the bone measurement method according to (i) above is characterized in that the processing is performed after each value of the transmitted radiation dose pattern is standardized using a representative value of the pattern.
  • the image input step is an image obtained by detecting the amount of transmitted light obtained by irradiating an X-ray film of the bone to be examined photographed together with a standard material of varying thickness.
  • the reading step, wherein the step of obtaining the pattern includes the conversion step of converting the density pattern into the thickness of the standard material based on the relationship between the thickness of the standard material obtained from the X-ray film and the amount of transmitted light. bone measurement method.
  • FIG. 1 For brevity, a primary neighboring point is obtained by a predetermined method, a predetermined range (1) is skipped in the direction of the center of the test bone from the neighboring point, and the inner primary regression line is obtained in the predetermined range (2). , Further, the predetermined range (3) is skipped in the direction away from the center of the test bone from the neighboring point, the outer primary regression line is obtained in the predetermined range (4), and the intersection of the straight lines is set as a new neighboring point. , the bone measuring device according to (iv) above, which has means for repeating the processing as necessary until a new neighboring point satisfies a predetermined condition.
  • the primary neighboring point is obtained by a predetermined method, and the predetermined range (1) is skipped in the direction of the center of the bone to be examined from the neighboring point, and the predetermined range (2) is obtained.
  • Obtain the inner primary regression line skip the predetermined range (3) in the direction away from the center of the test bone from the neighboring point, and if the predetermined range (4) does not satisfy the predetermined conditions, the primary regression line Instead, take the average value of the transmitted radiation dose pattern in the range, find a straight line of constant radiation dose passing through the average value, set the intersection of the straight line as a new neighboring point, and continue until the new neighboring point satisfies a predetermined condition.
  • the bone measuring device of (xi) or (xii) having means for using the product of the second-order difference value and the first-order difference value and/or the second-order difference value when obtaining the first-order neighboring points. be done. .
  • (xiv) when obtaining the first-order neighboring points first, a plurality of candidate points are obtained using the product of the second-order difference value and the first-order difference value and/or the second-order difference value, and then the plurality of candidate points are obtained.
  • the bone measuring device according to any one of the above (xi) to (xiii) having means for selecting points satisfying a predetermined condition from among them.
  • (XV) means for setting the predetermined range (2) from the primary neighboring point to a neighboring point of a point with a large change in inclination toward the center of the subject bone of the neighboring point;
  • the range (4) of the test bone- has means for determining the range from a point where the change in inclination in the direction away from the center of the center satisfies the predetermined condition (1) to a point near the point where the change in inclination is large.
  • the bone measuring apparatus of (XV) has means for using the condition that the product of the first-order difference and the second-order difference is smaller than a predetermined value as the predetermined condition (1).
  • the bone measuring apparatus of (iv) having means for standardizing the processing by using a representative value of the pattern for each value of the transmitted radiation dose pattern.
  • the image input means detects the amount of transmitted light obtained by irradiating an X-ray film of the subject bone photographed together with a standard material of varying thickness.
  • Image reading means wherein the means for obtaining the pattern has conversion means for converting the density pattern into the thickness of the standard material based on the relationship between the thickness of the standard material obtained from the X-ray film and the amount of transmitted light.
  • FIG. 1 is a graph diagram illustrating variations in bone mass due to variations in the measurement line at the distal end of the radius
  • FIG. 2 is an exemplary graphical representation of picking reference points in the present invention
  • Fig. 3A is a graph diagram explaining that the angle change of the reference measurement line due to the variation of the bone axis is minute;
  • Fig. 3B is a graphical diagram explaining that BMD variation is sufficiently suppressed;
  • Fig. 4 is a diagram exemplifying that the fluctuation of the bone axis due to the deviation of the pick of the diaphyseal reference point is minute;
  • FIG. 5 is a graph showing an example of how to find the predetermined distance used in the present invention.
  • FIG. 6 is a graph showing the relationship between the length of the metacarpal bone and the length of the radius bone;
  • FIG. 7 is a schematic system diagram showing the configuration of a specific example of the bone measuring device according to the present invention.
  • FIG. 8 is a graph diagram showing an example of measurement line setting in the bone measurement method according to the present invention.
  • FIG. 9 is a graph showing an example of bone measurement data according to the present invention
  • FIG. 10 is a schematic diagram showing an example of an apparatus for imaging by irradiating X-rays to a test bone on an X-ray image sensor according to the present invention. mechanism diagram,
  • Fig. 11 is an exemplary graph diagram of conventional bone measurement
  • Fig. 12 is a graphical diagram illustrating the ratio of cancellous bone in the test bone
  • Fig. 13 is a graph showing an example of the results of bone measurement of cancellous bone
  • FIG. 14 is a graph showing an example of the relationship between the measurement area and the measurement accuracy
  • FIG. 15 is a graph showing an example of measurement results by the bone measurement method according to the present invention
  • Fig. 16 is a schematic diagram illustrating bone measurement positions at the distal end of the radius
  • Fig. 17 is an exemplary graph of bone measurement according to the present invention
  • Fig. 18A is a graph showing multiple patterns before synthesis
  • FIG. 18B is a graphical diagram illustrating inappropriate pattern synthesis when synthesizing the pattern of FIG. 18A;
  • FIG. 19A is an exemplary graphical diagram of the relationship between the measurement site of the radius and the bone mass
  • FIG. 19B is a graphical illustration of the relationship between measurement width and accuracy in cancellous bone measurement
  • FIG. 20 is an exemplary graph diagram of smoothing in bone measurement according to the present invention
  • FIG. 21 is a measurement site and bone mass (BMD distribution) when using the smoothing process in bone measurement according to the present invention.
  • BMD distribution bone mass
  • FIG. 22 is an exemplary graph showing the relationship between the measurement site and bone width when the smoothing process of the present invention is used.
  • FIG. 23 is an exemplary graph of the deviation between the measurable value and the true value (data of the entire measurement area) when using the smoothing process of the present invention.
  • FIG. 24 is a graphical diagram showing an example of application of the present invention to the radius
  • FIG. 25 is an exemplary graphical representation of the pattern for penetrating radiation dose for the radius
  • FIG. 26 is an exemplary graphical representation of the pattern for penetrating radiation dose for cancellous-rich bone
  • Fig. 27 is a graph diagram explaining the bone axis of the bone pattern
  • 28A to 28C are exemplary graphs of bone measurement using patterns related to transmitted radiation dose in bone measurement according to the present invention.
  • Figures 28D to 28E are graphs for explaining BMD values of patterns
  • FIG. 29 is an example of pattern standardization regarding the amount of transmitted radiation in bone measurement according to the present invention.
  • FIG. 30 is a graph showing an example of how to obtain first-order neighboring points by second-order difference for boundary points in bone measurement according to the present invention.
  • FIG. 31 is an exemplary graph diagram of how to obtain a first-order neighboring point by the product of the first-order difference and the second-order difference in the present invention.
  • FIG. 32 is an exemplary graph diagram of how to obtain the primary neighboring points in the present invention
  • FIG. 33 is an exemplary diagram of how to obtain boundary points in bone measurement according to the present invention. rough drawing
  • FIG. 34 is an exemplary graphical diagram of how to obtain boundary points in the present invention
  • FIG. 35 is an exemplary graphical diagram of how to obtain boundary points in the present invention
  • FIG. 36 is a diagram of how to obtain boundary points in the present invention.
  • FIG. 37 is an exemplary graph diagram
  • FIG. 37 is a flow chart for carrying out the bone measurement method of the present invention
  • FIG. 38 is an exemplary graph diagram of image reading in the bone measurement of the present invention.
  • X-rays and 7-rays are preferably used as the radiation referred to in the present invention.
  • the image input of the present invention is for inputting an image obtained by an X-ray film or a transmission intensity sensor for X-rays, gamma rays, etc., based on a transmission radiation image obtained by irradiating radiation such as X-rays on the bone to be examined. can give.
  • a region-of-interest determination means is used for determining R 0 I (region of interest) in an input image by a predetermined method.
  • the predetermined method will now be described.
  • the inventors have found that one of the reasons for hindering measurement reproducibility is that the reference measurement line fluctuates above and below the bone axis (that is, the center line of the bone).
  • a reference measurement line is drawn based on the length of the radius and determined, and two points on this line are specified.
  • the maximum reproducibility of the position of the measurement line when plotting is repeated and two points are specified is about 0.5 mm, even for an expert.
  • Fig. 1 shows changes in BMD due to vertical fluctuations of the reference measurement line. From this, it can be seen that if the variation is 1 mm, the BMD changes by about 3.5%.
  • the vertical fluctuation of the reference measurement line is as shown in Table 1 below. It can be reduced to about 50% by 7%.
  • the two points on the diaphyseal shaft usually have the shape of the bone as shown in Fig. 4, so the center of the bone can be found even if any point is taken.
  • the above improved method of specifying R 0 I is the vertical variation &
  • the change in the angle of the reference measurement line due to the change in the bone axis can be reduced, and the change in the BMD can be suppressed to a sufficient degree of accuracy. be.
  • the average value of the distance from the head of the bone to the pick position of the diaphysis is 60 mm or more, and the pick error is empirically 0.3 mm! Since it is about 0.5 mm, even if the pick error of the femoral head is 0.5 mm and the pick error of the diaphyseal part is 0.3 mm, the maximum angular variation is, as clearly shown in FIG. It can be suppressed to about 0.7° at most, and the variation in BMD can be kept to 0.5% or less, as is clear from the illustration in FIG. 3B.
  • the length of the trap as a representative of the length of the metacarpal bone as a predetermined distance with a three-point pick as shown in Fig. 5, it is possible to reduce errors in drawing and length measurement. Fluctuations were also reduced to half compared to simply measuring the length at two points, and combined with this, the vertical fluctuations of the reference measurement line could be suppressed to about 25% of the conventional level. Also, rapid measurement by automation has become possible.
  • the distance can be calculated based on the length of the radius, but if an X-ray film is measured and used, the distal end of the radius and the metacarpal can be combined into one sheet, and the length of the metacarpal can be calculated.
  • the distance corresponds to 1 Z7 of the radius length, taking 12 of the metacarpal length. Therefore, the method based on the metacarpal length is preferable.
  • Determining a reference measurement line in this manner obtaining density patterns of the test bone along one or more different measurement lines around the test bone, A computer means for performing measurement of the bone to be examined only for the area is used to perform pattern processing and measurement.
  • an image display means such as a CRT for displaying bone shadow images and a keyboard, a light pen, etc. as point input means based on the display can be considered.
  • the means for connecting the respective midpoints to determine the bone axis includes computer means comprising a ROM in which the processing content is stored and a RAM for calculation and temporary storage.
  • the means for performing this includes computer means composed of ROM in which these processing contents are stored, and RAM and CPU for calculation and temporary storage.
  • the amount of transmitted light in the test bone is compared with the amount of transmitted light in the standard material.
  • the reference material may be a slope-like material whose thickness changes continuously or a step-like material whose thickness changes at lmm pitch. In the case of a slope shape, a method of converting the thickness by directly comparing the transmitted light amount of the test bone and the transmitted light amount of the standard material can be considered.
  • arithmetic processing means include computer means comprising the aforementioned ROM, RAM and CPU.
  • FIG. 7 shows a preferred embodiment of the bone measuring device of the present invention. i.e.-
  • the automatic reading unit 1 aligns the run sensors (CCD) at right angles to the direction of film movement and illuminates the strip-like light source (LE) from the upper or lower surface of the X-ray film.
  • the transmitted light is condensed by a rod lens arranged so as to focus on the line sensor, and a signal such as the intensity of the transmitted light corresponding to the density of the X-ray film is obtained.
  • a pulse motor capable of minute movement in the direction perpendicular to the line sensor and belt-shaped light source.
  • a film feed controller is a control means for narrowing down to a specific portion of such an X-ray photographic film to enable detection of transmitted light and for controlling intermittent running of the film at a predetermined speed.
  • the CCD driver has a control function so that the data accumulated in the CCD can be retrieved at a predetermined timing.
  • the LED controller is a light source light intensity adjustment means for adjusting the light source intensity to match the gray level of the radiographic film.
  • FIG. 8 is an example of an enlarged radius displayed on the image display means CRT in the bone measurement data processing unit 2 in FIG. 11 is the display screen, 12 is the radius, and 13, 14, 15, and 16 indicate the positions of reference points (pick points) required for bone measurement. be. Specifically, connect the midpoints of 13 and 14 and the midpoints of 15 and 16, and draw a perpendicular line from 13 to a predetermined position (for example, 12 of the length of the second metacarpal bone) for the reference measurement. A line is suitable for ensuring position reproducibility.
  • Point input means include cursor position display, instruction control means, light pen type input means, and a method of inputting from the outside using a touch panel.
  • a group of data read by the automatic reading unit 1 in FIG. The group of data related to the bones was displayed as an enlarged pattern of the test bone as shown in Fig. 9 by image display means mainly consisting of CRCT and CRT
  • the calculation means included in the measuring apparatus of the present invention calculates a predetermined point to be measured in the image of the subject bone stored in the image storage means based on the reference point input by the point input means.
  • the position is determined, and the image of the bone to be examined at the predetermined position and the stored data group related to the image of the standard material whose thickness is converted are used to convert it into the thickness of the standard material and perform calculations for bone measurement. It can be anything as long as it is possible. Examples thereof include a microcomputer means composed of a ROM into which a calculation program for bone measurement is input and a RAM for calculation and temporary storage.
  • the content of the calculation is displayed as a pattern obtained by converting the stored data at the predetermined measurement line of the distal radius as illustrated in FIG. 9 into the thickness of the standard material. That is, D indicates the bone width, and the bone density distribution in the region determined based on this is expressed.
  • RS232C and MODEM in FIG. 7 are for providing a communication function by being connected to a communication means when used in a bone evaluation system via means of a bone measuring device, and PI0 is a diode. It functions as an interface for inputting and outputting digital control inputs to the computer system.
  • the present invention can be easily applied to a device that irradiates a bone to be examined with X-rays on an X-ray image sensor to form an image.
  • FIG. 10 schematically shows the configuration of a system that carries out the flow from X-ray imaging to bone measurement in the case of such an apparatus of the present invention.
  • X-rays from an X-ray source 20 are sent to an X-ray image sensor together with a bone 19 to be examined.
  • X-ray photography is performed using an imaging plate 21 in place of the force set sandwiching the X-ray photographic film in the conventional X-ray photography method.
  • the image processing device 25 AZD-converts the read photoelectric information to obtain an X-ray image 24 of the bone to be examined, and based on the X-ray image, the bone measurement in the present invention as described above is performed. It can be carried out.
  • the present invention also includes photon absorption siometry, in which bone measurement is performed by detecting an image based on a transmission dose obtained by irradiating a test bone with 7 rays.
  • the bone measurement method and bone measurement device of the present invention described above can reduce individual differences and repetition errors in bone mass measurement, and can realize a method and device capable of accurate measurement.
  • the transmission of the subject bone along one or more different measurement lines around the subject bone can be determined.
  • Obtaining radiation dose patterns and performing pattern processing and measurements using computer means for performing measurements of the bone to be examined only in predetermined regions for each of the patterns is the same as in the previous embodiment. are the same.
  • This computer means is composed of an MPU for performing calculations, a ROM into which a program for bone measurement including the calculations is input, and a RAM for temporarily storing calculations.
  • Bone can be classified into cortical bone and cancellous bone, as mentioned above.
  • bone density was calculated for all patterns of transmitted radiation dose for the entire bone width D in FIG. rice field.
  • Figs. 12 and 14 there is a trade-off relationship between the ratio of cancellous bone and CV. , If the accuracy is determined, the proportion of the bone is determined. By rationally determining these, we have made it possible to measure regions containing a large amount of cancellous bone with high accuracy. It is preferable to use a value based on the bone width D shown in FIG. 15 for determining this region. - Here, as shown in FIG. 15, when d (peak, peak distance) used for measuring cortical bone is used, this d force is often not clear in regions with a large amount of cancellous bone, so it is not suitable. do not have.
  • the bone distribution is as shown in Fig. 16 at 1/8 of the length of the radius. It can be seen that measurement can be performed with a CV of 2% or less at a rate of 50%.
  • a preferred embodiment of the bone measuring device of the present invention is the same as the device shown in FIG. 7 described above. That is, the automatic reading unit 1 aligns the line sensor (CCD) perpendicularly to the direction of film movement, irradiates the film from the upper or lower surface of the X-ray photographic film with a band-shaped light source (LED), and transmits the transmitted light onto the line sensor.
  • the light is condensed by a rod lens arranged so as to form a focal point, and signals such as the intensity of the transmitted light corresponding to the density of the X-ray film are obtained. It is equipped with a fine film traveling means using a pulse motor capable of
  • a film filter controller is a control means for enabling the detection of transmitted light by focusing on a specific portion of the X-ray photographic film and for controlling intermittent running of the film at a predetermined speed.
  • the CCD driver has a control function so that the data accumulated in the CCD can be retrieved at a predetermined timing.
  • the LED controller is a light source light intensity adjustment means for adjusting the light source intensity to match the gray level of the radiographic film.
  • image display means such as a CRT for displaying the image of the bone and point input means based on the display are used.
  • a keyboard, a light pen, etc. can be considered.
  • ROM read-only memory
  • computer means consisting of RAM for
  • the amount of transmitted light in the test bone is compared with the amount of transmitted light in the standard material.
  • the reference material can be considered as a slope-like material whose thickness changes continuously or a step-like material whose thickness changes at 1-mm pitches. In the case of a slope shape, a method of converting the thickness by directly comparing the transmitted light amount of the test bone and the transmitted light amount of the standard material can be considered.
  • arithmetic processing means include computer means comprising the aforementioned ROM, RAM and CPU.
  • the displayed image of the radius is enlarged and displayed on an image display means such as a CRT as in FIG.
  • a group of data read by the automatic reading unit 1 in the device of FIG. The group of data relating to the obtained image is displayed as an enlarged pattern of the subject's bone as shown in FIG. 18 by image display means consisting mainly of CRCT and CRT.
  • an image of the subject bone stored in the image storage means is calculated based on a reference point input by point input means, for example, a cursor key.
  • point input means for example, a cursor key.
  • a predetermined position to be measured is determined, and a group of stored data relating to the image of the test bone at the predetermined position and the image of the reference material whose thickness is changing) are converted into the thickness of the reference material and bone measurement is performed. Anything can be used as long as it can perform operations for .
  • An example of this is a microcomputer means composed of a ROM into which a calculation program for bone measurement is input and a RAM for calculation and temporary storage.
  • a means for measuring a pattern of transmitted radiation dose of the test bone along one or more different measurement lines at a test portion of an image of the test bone, and a bone width of the test bone Calculation processing of the pattern only in a predetermined partial region based on the above information, and the measurement of the bone to be examined.
  • the contents of the calculation are displayed as a pattern obtained by converting the stored data on the predetermined measurement line of the distal radius as illustrated in FIG. 17 into the thickness of the standard material. be. That is, D indicates the bone width, and the bone density distribution in the region of 1Z3 of the bone width determined based on this is expressed.
  • the RS232C and MODEM in FIG. PI 0 functions as an interface for inputting and outputting digital control inputs to the computer system.
  • the present invention can be easily applied to a device that directly irradiates an X-ray image sensor with X-rays to form an image.
  • the system of the flow from X-ray imaging to bone measurement is schematically shown in FIG. 10 as described above. Therefore, in a device that directly irradiates an X-ray image sensor together with an X-ray source 20 from an X-ray source 20 to an X-ray image sensor together with a bone 19 to be examined, the X-ray photographic film in the conventional X-ray imaging method is used. X-ray photography is performed using the imaging plate 21 instead of the sandwiched force set, and the X-ray information accumulated and recorded on the imaging plate 21 by the laser light irradiation means 22 and the light detection sensor 23.
  • Photoelectric information read by the image processing device 25 is A ZD converted to obtain an X-ray image 24 of the bone to be examined, and based on the X-ray image, the bone measurement method and apparatus of the present invention as described above. Equivalent bone measurements can be performed.
  • the present invention also includes photon absometry in which bone measurement is performed by detecting an image based on the amount of transmitted gamma rays obtained by irradiating a bone to be examined with gamma rays.
  • This embodiment provides a measuring method and apparatus capable of accurately and rationally measuring the amount of cortical bone and cancellous bone.
  • a region of interest is determined in a predetermined manner- Since real patterns contain noise, pattern processing requires denoising. For noise elimination, it is simple and good results can be obtained by smoothing the transmission radiation dose pattern in the bone axis direction in a narrow area, that is, synthesizing the pattern for the entire measurement area.
  • the number of pattern composites is increased, that is, if the number of measurement lines is increased, the ability to remove noise is improved. This results in pattern distortion. 63.5
  • about 5 lines about 0.3 mm
  • the BMD fluctuates greatly due to fluctuations in the pattern measurement line (see FIG. 19B). Therefore, in order to stably measure the BMD value, multiple measurement lines are first synthesized in a narrow area, the BMD is obtained, and each BMD is averaged over a wider area. It became possible to perform measurements with good reproducibility.
  • the wide area size is determined by the stability of the data of the measurement site and the required measurement accuracy.
  • FIG. 19B shows the relationship between the measurement area and CV relative to a position at the distal end of the radius at a distance of 12 lengths of the second metacarpal bone from the distal end. To obtain an accuracy improvement of 1% from this, a measurement area of 10 mm is required.
  • the reject method is described in detail.
  • the physical properties of bones have a structure in which stress concentration is difficult to occur, that is, they change continuously. Therefore, by examining changes in the width of the bone and the BMD value at each measurement line, it is possible to find abnormal parameters in the measurement by finding places where the values change abruptly.
  • Fig. 21 shows changes in BMD
  • Fig. 22 shows changes in bone width D data.
  • the measured bone width is compared with the bone width obtained from the next pattern, and it is determined whether the difference exceeds the allowable amount and the accuracy of the parameter is maintained.
  • the method for determining this tolerance is to measure several X-ray photographic films, find the standard deviation of the difference in bone width between adjacent bones, and subtract 3 from this to determine the tolerance. Suitable- is. Furthermore, as for the reference bone width, it is preferable to use a bone width that allows stable determination of the region.
  • FIG. 23 shows the BMD averaged after rejection and the deviation from the true value, CV (Coefficiency of Variance). It is also possible to question the accuracy of the data based on this.
  • a preferred embodiment of the apparatus for carrying out the bone measurement method of the present invention can be formed by an apparatus having the same configuration as the apparatus of FIG. 7 described above.
  • the automatic reading unit 1 aligns the line sensor (CCD) at right angles to the direction of film movement, and irradiates the film from the upper or lower surface of the X-ray film with a band-shaped light source (LED).
  • the transmitted light is condensed by a rod lens arranged so as to focus on the line sensor, and a signal such as the intensity of the transmitted light corresponding to the density of the X-ray film is obtained. It is equipped with minute film moving means using a pulse motor that can move minutely in the right-angle direction.
  • a film feed controller is a control means for narrowing down to a specific portion of the X-ray photographic film to enable detection of transmitted light and for controlling intermittent running of the film at a predetermined speed.
  • the CCD driver has a control function so that the data accumulated in the CCD can be retrieved at a predetermined timing.
  • the LED controller is a light source light intensity adjustment means for adjusting the light source intensity to match the gray level of the radiographic film.
  • an image display means such as a CRT that displays the image of the bone and a keyboard as a point input means based on the display are used. and a light pen, etc. available.
  • the means for determining the bone axis by connecting the respective midpoints includes computer means composed of a ROM in which the content of the processing is stored and a RAM for calculation and temporary storage.
  • the means for performing this includes computer means composed of ROM in which these processing contents are stored, and RAM and CPU for calculation and temporary storage.
  • the amount of transmitted light in the test bone is compared with the amount of transmitted light in the standard material.
  • the reference material can be considered as a slope-like material whose thickness changes continuously or a step-like material whose thickness changes with a pitch of 1 mm. In the case of a slope shape, a method of converting the thickness by directly comparing the transmitted light amount of the test bone and the transmitted light amount of the standard material can be considered.
  • arithmetic processing means include computer means comprising the aforementioned ROM, RAM and CPU.
  • a data group related to is displayed as an enlarged pattern of the test bone by an image display means mainly composed of CRCT and CRT.
  • a predetermined point to be measured in the image of the subject bone stored in the image storage means is calculated based on the reference point input by the point input means.
  • a position is determined, and a group of stored data relating to the image of the bone to be examined at the predetermined position and the image of the standard material whose thickness is changing is used to convert it into the thickness of the standard material and perform calculations for bone measurement. It can be anything as long as it is possible.
  • Examples thereof include computer means such as a microcomputer comprising a ROM in which a calculation program for bone measurement is input and a RAM for calculation and temporary storage.
  • the content of the calculation is displayed as a pattern obtained by converting the stored data on the predetermined measurement line of the distal radius as illustrated in FIG. 24 into the thickness of the standard material. be. That is, D indicates the bone width, and the bone density distribution in the area determined based on this is expressed.
  • D and BMD are taken as parameters.
  • Means for obtaining a smoothed pattern in the bone measuring apparatus of the present embodiment means for obtaining a plurality of parameter groups for bone measurement, and processing the parameter groups to measure the bone to be examined. is included in the bone measurement data processing unit 2 of FIG. It is contained in a microcomputer means consisting of RAM for storage.
  • an X-ray photographic film is used, but the present invention can be easily applied to a device that irradiates a bone to be examined with X-rays on an X-ray image sensor to form an image. .
  • the flow system from X-ray imaging to bone measurement The system is shown in FIG. 10 already mentioned.
  • the cassette in which the X-ray film is sandwiched in the conventional X-ray imaging method is used.
  • the imaging plate 21 is used for X-ray photography, and the X-ray information accumulated and recorded on the imaging plate 21 is scanned by the laser beam irradiation means 22 and the light detection sensor 23. By irradiating light, information proportional to the X-ray intensity can be read as an optical signal.
  • the image processing device 25 performs A/D conversion on the read photoelectric information to obtain an X-ray image 24 of the bone to be inspected, and based on the X-ray image, the bone measuring method and method according to the present invention as described above. Bone measurement equivalent to that of the device can be performed.
  • the bone measuring method and bone measuring device of the present embodiment By the bone measuring method and bone measuring device of the present embodiment, the influence of picking reference points for bone measurement, such as points 13, 14, 15, and 16 in FIG. 8, is reduced. , bone measurements can be performed with good reproducibility. Moreover, according to the method and apparatus of the present embodiment, an excellent effect can be obtained in which abnormal data can be excluded from the measured data, and bone measurement can be performed more accurately and with good reproducibility. In particular, this embodiment is suitable for bone measurement of cancellous bone.
  • test bone e.g., second metacarpal, distal radius, calcaneus etc.
  • thickness distribution of the soft tissue around the test bone is different.
  • weight differences, etc. it is necessary to correct for the effects of soft tissue.
  • FIGS. 28A to 28C for example, a radiographic film obtained by irradiating a bone to be examined (shown as a cross-sectional view in FIG. 28A) with X-rays is irradiated with light. pattern on the amount of transmitted radiation obtained from the amount of transmitted light obtained by
  • transmission radiation dose pattern two boundary points between the bone and the soft tissue that include the thickness of the soft tissue are obtained, and the two points are divided by a predetermined line connecting the two points.
  • the upper part of the line is the transmission radiation dose pattern for the bone and the lower part is the soft tissue radiation pattern.
  • the soft tissue is corrected using the soft tissue pattern approximated by the line connecting the two points. That is, by subtracting the approximated soft tissue pattern from the transmitted radiation pattern, a modified pattern (FIG. 28C) for the transmitted radiation of the test bone itself is obtained.
  • a curved line or a straight line is used depending on the thickness distribution of the peri-bone soft tissue to be examined. For example, when measuring the second metacarpal bone and the distal radius, it is preferable to use a straight line because the soft tissue corresponding to the bone in the transmitted radiation dose pattern is nearly uniform.
  • D is the bone width, which is obtained from the distance between the two boundary points of the above bone and soft tissue.
  • BMD Bis Mineral Density converts the above correction pattern into the thickness of the standard material based on the relationship between the thickness of the standard material and the amount of transmitted light, and then allocates it from the entire bone width area or the center of the bone width. 28D and 28E by dividing by the width of the region (bone width D or region width X allocated from the center of the bone width).
  • each value of the transmitted radiation dose pattern is standardized using the representative value of the pattern, if necessary.
  • Commonly tested- Penetrating radiation patterns differ depending on the bone site or individual differences.
  • the density of the X-ray film and changes in the intensity of the light source that irradiates the X-ray film also change the level of the pattern. Standardization is effective in setting predetermined conditions for each stage of bone and soft tissue determination. for example,
  • each value of the pattern is 255, with the representative value being the maximum value of the pattern.
  • the inventors of the present invention have found that it is preferable to use the product of the second-order difference and the first-order difference to solve this problem. Arrived. Mathematically, the product of the first-order difference and the second-order difference is expressed as follows.
  • the peak (A') corresponding to the desired boundary point or its neighboring points and the peak due to the change in the soft tissue itself that is the disturbance.
  • the difference in (B') is five times greater than when only the second-order difference is used, making it easy to correctly detect the target boundary point or neighboring points.
  • candidate points of the subject bone from a plurality of candidate points obtained by the method using the product of the first-order difference and the second-order difference and the second-order difference described above. For example, when measuring the radius as shown in Fig. 32, candidate point 1 (ulna) and candidate point 2 (radius) are sought.
  • candidate point 1 (ulna) and candidate point 2 (radius) are sought.
  • Candidate point 2 of the test bone can be selected by taking the lower level of .
  • the subject bone can be measured without the need to adjust the length of the measurement line. rice field.
  • the product of the second-order difference and the first-order difference and the second-order difference is used to determine first-order neighboring points (also called candidate points), which are displaced from the correct bone-soft tissue boundary points by the number of differences or the penetrating radiation dose pattern. I found out.
  • Fig. 33 shows how to find the new candidate points. That is, a primary regression line is obtained in the vicinity of the maximum point of inclination toward the center of the test bone from the candidate points, a primary regression line is obtained in a predetermined region in a direction away from the center of the bone, and the intersection of the regression lines (P 2 ) as a new candidate point.
  • the predetermined range (1) is determined by statistical means according to the bone to be examined and the number of differences when obtaining neighboring points from the transmitted radiation dose pattern of the bone to be examined. For example, for the distal radius, if the number of differences is 11, (approximately 0.7 mm length for sampling 63.5 m) is preferred.
  • the predetermined range (2) it is preferable to use points near the point where the slope changes greatly on the bone side (corresponding to peaks 1 and 2 in FIG. 32). Because, as shown on the left side of Figure 33- It is possible to avoid regressing in an inappropriate range (near the maximum slope in Method 2).
  • the predetermined range (3) should be from the neighboring point to the point where the product of the first-order difference and the second-order difference is smaller than a predetermined value.
  • the predetermined value is preferably 1 when the numbers of both the first difference and the second difference are 11 after standardizing the transmitted radiation dose pattern.
  • the predetermined range (4) is determined by the distance between the radius and ulna as shown in the example of FIG. If the distance between the radius and the ulna is short (e.g. 0.5 mm), instead of regressing over a given range (4), the pattern is averaged over that range, and a constant dose of radiation passing through that range is calculated. A straight line is desirable.
  • a new candidate point P2 is obtained by the first regression from the candidate point P1 by the above method. Furthermore, a new candidate point P3 is obtained from the new candidate point P2. Thus we find that we approach P1 ⁇ P2 ⁇ P3 ⁇ P (the correct boundary point). The number of times of regression processing is determined by the transmitted radiation dose pattern to be tested and the required measurement accuracy.
  • an image input means for inputting a shadow image there is a device that irradiates the film with a strip light source (LED) from the upper or lower surface of the X-ray photographic film and reads the transmitted light with a line sensor (CCD). .
  • LED strip light source
  • CCD line sensor
  • means for obtaining a pattern regarding the transmitted radiation dose of the subject along the measurement line in the subject with respect to the input image, and boundaries between the soft tissues at both ends of the subject bone in the pattern are:
  • Computer means such as a microcomputer comprising RAM for storage.
  • FIG. 37 An example of the bone measurement method according to the present embodiment is shown in FIG. 37 as a flow chart.
  • a preferred embodiment of the bone measuring device according to this embodiment can be formed by the device of FIG. 7 already described. That is, the automatic reading unit 11 aligns the line sensor (CCD) at right angles to the direction of film movement, irradiates the film from the upper or lower surface of the X-ray photographic film with a band-shaped light source (LED), and detects the transmitted light. Light is collected by a rod lens arranged so as to be focused on the line sensor, and a signal such as the intensity of the transmitted light corresponding to the X-ray film density is obtained. It is equipped with minute film traveling means using a pulse motor capable of minute movement.
  • CCD line sensor
  • LED band-shaped light source
  • a film feed controller is a control means for narrowing a specific portion of the X-ray photographic film to enable detection of transmitted light and for controlling intermittent running of the film at a predetermined speed.
  • the CCD driver reads the data accumulated in the CCD at a predetermined timing. It has a function to control so that it can be taken out by logging.
  • the LED controller is a light source light intensity adjustment means for adjusting the light source intensity to match the gray level of the radiographic film.
  • FIG. 38 is an example of an enlarged radius displayed on the CRT image display means in the bone measurement data processing unit 12 in the apparatus of FIG. 1 is the display screen, 2 is the radius, and 3, 4, 5, 6 indicate the positions of reference points required for bone measurement. Specifically, it is preferable to connect the midpoints of 3 and 4 and the midpoints of 5 and 6, and to take a perpendicular line from 3 to a predetermined position as a reference measurement line to ensure position reproducibility.
  • Point input means include cursor position display, instruction control means, light pen type input means, and a method of inputting from the outside using a touch panel.
  • a group of data read by the automatic reading section 11 in the apparatus of FIG. is displayed as a pattern of the test bone enlarged by the image display means mainly composed of CRTC and CRT.
  • a predetermined point to be measured in the image of the subject bone stored in the image storage means is calculated based on the reference point input by the point input means.
  • Any device capable of determining a position and performing calculations for bone measurement using a stored data set relating to an image of a subject's bone at such a predetermined position may be used.
  • An example of this is a computer means such as a microcomputer composed of a ROM in which a calculation program for bone measurement is input and a RAM for calculation and temporary storage.
  • the present invention can also be applied to an apparatus that irradiates the bone to be examined with X-rays on an X-ray image sensor and forms an image. can be easily applied.
  • the system for carrying out the flow from X-ray imaging to bone measurement can be realized by the system shown in FIG. 10 already described.
  • the force applied by pinching the X-ray film in the conventional X-ray imaging method is used.
  • X-ray photography is performed using the imaging plate 21 instead of the setting, and X-rays accumulated and recorded on the imaging plate 21 by the laser light irradiation means 22 and the light detection sensor 23
  • the information proportional to the X-ray intensity can be read as an optical signal.
  • the image processing device 25 performs A ZD conversion on the read photoelectric information to obtain an X-ray image 24 of the subject bone, and based on the X-ray image, the bone measurement method and apparatus according to the present embodiment. Equivalent bone measurements can be performed.
  • the present embodiment also includes photon absorption siometry, in which bone measurement is performed by detecting an image based on a transmission dose obtained by irradiating a subject bone with seven rays.
  • the boundary between the bone and the soft tissue can be automatically detected correctly when reading the image, so it has an excellent effect of facilitating accurate measurement of bones such as bones rich in cancellous bone. is obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Dentistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

明 細 書 骨計測方法及び骨計測装置 技術分野
本発明は、 骨計測方法及び装置に関する。 更に詳細には、 本発明 は、 橈骨、 中手骨を始めとする骨の計測に適した骨部位を被検骨と し、 被検骨に放射線を照射することにより得られる透過放射線像に 基づく影像から得られる骨の透過放射線量に関するパターンを測定 し、 骨評価パラメ一夕、 特に海綿骨評価パラメータを合理的かつ精 度よく骨を評価する骨計測方法及および骨計測装置を提供するもの である。 背景技術
人間の骨の発育状態、 老化度の確認、 又は骨粗鬆症、 骨軟化症等 の骨病変の種類の半 if定やその症状の進行度、 治療時の効果の確認等 の種々 の骨計測を行う場合がある。
人間の骨には、 皮質骨と海綿骨に分類される。 皮質骨は緻密な骨 組織であり、 四肢の長管骨骨幹部に代表され、 パイプ状の形をとる。 海綿骨は骨梁という網目状に分布する骨組織であり、 長管骨の骨 端部や、 脊椎、 手根骨、 踵骨、 距骨、 足根骨等にみられる。 皮質骨 に比べ、 海綿骨は、 その骨組織が血管系を含む軟部組織に接する面 積が大きいため、 骨の代謝回転が早く、 骨の病気あるいは治療によ る変化が早いという特徵をもつ。
このような骨計測の方法としては、 被検骨に X線照射して得られ た X線写真フィルムを用いてそのフィルムにおける影像の濃淡をマ イク口デンシ トメ一夕一により測定して骨計測をおこなう M D法 · ( 「骨代謝」 第 1 3巻、 1 8 7— 1 9 5頁 ( 1 9 8 0年) 、 「骨代 謝」 第 1 4巻、 9 1 一 1 0 4頁 ( 1 9 8 1年) 等参照) 、 被検骨に ガンマ線を照射して、 透過したガンマ線の量を検出器により測定し て骨計測を行うフオ ト ン ' アブソープシオメ ト リー、 被検骨に X線 照射して得られた透過 X線の量を検出器により測定する方法等があ 上記 MD法は、 骨折の診断等のための装置として広く普及してい る X線像の撮影装置を用いて容易に得られる X線写真フィルムを用 いる点で採用しやすく、 次第に広く普及してきている。
然しながら、 これらの方法において基準測定ラインとその近傍の 単数又は複数の R 0 1 (関心領域) の設定の際、 基準測定ライ ンか ら成る測定ライ ンの指定に作図作業があり、 同一測定者でも被検者 の骨の トレン ドを調べる時に同じ基準測定ラインをとることが困難 で正しく被検骨の ト レン ドの観察ができなかった。 即ち同一被検骨 を測定しても R 0 I の再現性が悪く、 特に海綿骨部位では、 R〇 I の変動による B MD (Bone Mineral Density) の変動が大き くなつ てしまう問題があった。
例えば、 橈骨または尺骨の長さを基準にし、 橈骨長さの 1 Z 6 ま たは尺骨長さの 1 / 1 0部位等を測定する S P A (Single Photon Absorptiometry) 法では R 0 I を設定する際先ず、 メ ジャ一で橈骨 又は尺骨の長さを測定し、 次に測定部位の皮膚にマークをつけて更 に前腕をスキヤ ン方向に直角になるように調整している ( 〈骨ミ ネ ラル測定と骨粗鬆症〉 メディカルレビュー社、 1 9 8 9 ) 。 故に、 メ ジャ一での長さ測定誤差やマーキング誤差により R 0 I設定の再 現性が悪く、 しかもこれに長い時間も要していた。 一方、 X線フィ ルム上の作図作業による R 0 I設定においても同様に橈骨の長さ又 は尺骨の長さをメジヤーで測定した骨頭と骨端を結ぶほぼ中心線に' 垂直線を骨頭から該長さの距離にとり、 これを基準線にして R O I を設定している。 この設定作業誤差が C Vの悪化につながる。 又、 作図作業に時間を要し、 迅速な測定を妨げていた。
また、 従来の方法において得られる透過放射線量のパターンには 原理上皮質骨の情報と海綿骨の情報が混在し、 皮質骨を多く含む領 域と海綿骨を多く含む領域を区別して測定しているとは言えなかつ た。
また、 先に発明者等は、 X線写真フィルムにおける被検骨の像を 読み取り、 骨計測を行う方法であって、 入力された影像の被検部の 領域において、 複数の異なる実質上平行な測定ラインに沿って該被 検骨の濃度パターンを得て各々対応する位置で該複数個の濃度バタ 一ンを平滑化することによって第 1平滑化パターンを得る工程と、 必要に応じて該第 1平滑化パターンにおいてその測定ライ ンに沿つ て近傍の複数点での値を平滑化することによって第 2平滑化パター ンを得る工程を含む骨計測方法を提案した (特開平 4一 8 4 9 3 9 号公報参照) 。
然しながら、 従来技術においては、 海綿骨における骨量を計測す る場合には図 1 に示すように、 被検骨の種類や計測部位によっては、 計測のための影像読み取りラインのズレによる骨量計測値の変動が 大き くなるために、 再現性よぐ骨計測を実施することが困難である 場合が生ずる問題点がある。
従来技術には主に長管骨 (例えば第 2中手骨の中央部) を対象と する方法がある。 これは再現性を上げるため被検骨において骨軸 (骨の中心線) と垂直に、 一定の間隔で平行している複数の測定ラ イ ンをとり、 該ライ ンに沿って得られる透過光量パターンを骨軸に 平行な方向で平滑化、 すなわちパターン合成を行っている。 こ こで 長管骨の場合は該パターンの骨軸方向の変化 (換言すれば、 骨幅の- 変化) は少ないのでパターン合成時のパターンの歪みにより生じる
B M D ( Bone Mi nera l Den- s i ty) の変動は少ないが、 橈骨位端等 の海綿骨測定において透過光量パターンの骨軸方向の変化は大きい ためパターンを複数の測定ラインからなる広いエリアで合成すると 大きな歪みが生じ、 正確な B M Dが得られない (図 1 9 A、 図 1 9 B ) と言う問題を生ずる。
また、 これまでの骨計測方法では、 主として被検骨の近く に他の 骨がなくてその影響しにく く、 また軟骨組織による影響が少ないよ うな典型的な皮質骨について計測を行う場合が多かった。
然しながら、 図 2 7に示すように被検骨 (橈骨) の周辺に他の骨 (尺骨) が存在し、 骨計測の際に他の骨による影響を受けやすい場 合や、 図 2 8 に示すように海綿骨が豊富な骨の場合には、 透過放射 線量に関する骨量パターンが複雑になり他の骨ゃ軟部組織の影響を 受け易く、 これまでの骨計測方法を適用しても、 これらの複雑な透 過放射線量に関する骨量パターンの場合には、 正確に骨計測するこ とができなかった。 発明の開示
上述の従来技術に鑑みて、 本発明は、 従来技術による骨計測方法 を改善し、 かつそのような骨計測方法を実施に適用可能な骨計測装 置を提供するこ とは主たる目的とするものである。
また、 本発明の他の目的は、 皮質骨を多く含む領域と海綿骨を多 く含む領域とを区別して精度良く測定することが可能な骨計測方法 および骨計測装置を提供することにある。
更に、 本発明の他の目的は、 海綿骨の骨計測の際にも正確に、 再 現性よく計測が可能なような改良された骨計測方法及び骨計測装置 を提供することにある。 · なお又、 本発明の目的は、 透過放射線量に関する骨量パターンが 複雑な場合でも精度よく骨計測ができるような改善された骨計測方 法及び骨計測装置を提供することにある。
まず、 本発明者らは、 骨の R〇 I設定の再現性を上げる方法につ いて鋭意研究した結果、 放射線撮影により得られた影像において、 海綿骨の橈骨の場合目安のつけやすい骨頭部の突っている所の 2点 と骨幹部の 2点をマーク し、 それぞれの中点どう しを結んだ線を骨 軸とし、 これに対して垂線を骨頭部の 2点の中点あるいは、 片方の
1 点からの所定の距離に設定し、 これをコ ンピュータ手段を介し自 動的に基準測定ライ ンを設定することで、 R O I の再現性を向上及 び測定時間の短縮ができた。 また所定の距離としては、 X線写真フ イルムの場合、 1枚に橈骨と中手骨が写っているので、 中手骨の長 さに基づく値を利用するのが好適だとわかり本発明に到った。
即ち本発明は、 被検骨の放射線撮影により得られる影像を用いて 該被検骨についての骨計測を行う方法において、 ( i ) 該被検骨の 影像における関心領域において骨頭部 2点と骨幹部 2点を指定しそ れぞれの中点を結んで骨軸を求める工程と、 (i i ) 該骨頭部 2点及 びその中点のいずれかの点を基準に該骨軸に沿って所定の距離だけ 離れた位置に骨軸に垂直な基準測定ライ ンを設定する工程と、
( i i i ) 該基準測定ライン又はその近傍の単数又は複数の測定ライ ンに沿って該被検骨の透過放射線量に関するパターンを得る工程と、
( i v) 該パターンを用いて所定の演算処理を行い該被検骨の骨計測 を行う工程とを有することを特徴とする骨計測方法を提供するもの である。
か、 る本発明の方法には、 該被検骨が橈骨であって、 該所定の距 離が中手骨の長さを基準としたものである骨計測方法が含まれる。
更に本発明の方法には、 該影像が厚さの変化している標準物質と- 共に X線撮影された X線写真フィルムに光を照射して得られる透過 光量の検知により得られるものであり、 該パターンが標準物質の厚 みと透過光量の関係に基づいた骨の濃度パターンである骨計測方法 が含まれる。
また、 本発明は、 被検骨の放射線撮影により得られる影像を用い て該被検骨についての骨計測を行うための装置において、 ( i ) 該 被検骨の影像における関心領域において骨頭部 2点と骨幹部 2点を 指定しそれぞれの中点を結んで骨軸を求める手段と、 (i i ) 該骨頭 部 2点及びその中点のいずれかの点を基準に該骨軸に沿って所定の 距離だけ離れた位置に骨軸に垂直な基準測定ラインを設定する手段 と、 (i i i ) 該基準測定ライン又はその近傍の単数又は複数の測定 ライ ンに沿って該被検骨の透過放射線量に関するパターンを得る手 段と、 (i v) 該パターンを用いて所定の演算処理を行い該被検骨の 骨計測を行う手段とを有したことを特徵とする骨計測装置を提供す るものである。
か、 る本発明の装置には、 被検骨が橈骨であって該距離として中 手骨の長さを測定し該長さを利用する手段を有するこ とを特徴とす る骨計測装置が含まれる。
更に、 本発明の装置には、 該影像入力手段が、 厚さが変化してい る標準物質と共に撮影された該被検骨の X線フィル厶に光を照射し て得られる透過光量を検知することによる影像読み取り手段であり、 該 X線フィルムから得られる標準物質の厚みと透過光量の関係に基 づいて濃度パターンを標準物質の厚みに変化する変換手段を有する 骨計測装置が含まれる。
他方、 発明者等は、 皮質骨、 海綿骨についての客観的、 定量的な 評価方法について鋭意研究した結果、 被検骨に放射線を照射するこ とにより得られる透過放射線像に基づく影像から得られる透過放射. 線量パターンにおいて被検骨に応じて骨幅に基づく所定の領域での み該透過放射線量パターンを演算処理し、 骨計測を行う ことで皮質 骨を多く含む領域と海綿骨を多く含む領域を区別して精度よく測定 することが可能になり該目標が達成できることを見い出し、 本発明 に到達した。
即ち、 本発明は、 被検骨の放射線撮影により得られる影像を用い て該被検骨についての骨計測を行なう方法において、 該被検骨につ いての影像の被検部で単数又は複数の異なる測定ライ ンに沿って該 被検骨の透過放射線量に関するパターンを測定する工程と、 該被検 骨の骨幅に基づいて予め定められた部分領域でのみ該パターンを演 算処理して該被検骨の計測を行う工程を有することを特徴とする骨 計測方法を提供するものである。
か、 る本発明には、 該被検骨の骨幅に基づいて予め定められた部 分領域が、 該被検骨における骨幅の中央から割り振った海綿骨に対 応した領域である骨計測方法が含まれる。 その部分領域としては、 例えば橈骨遠位端における骨幅の 1 / 3〜 1 2の範囲で骨幅の中 央から割り振った海綿骨に対応した領域を用いることが望ま しい。 更に、 本発明の方法には、 該被検骨の骨計測が、 厚さが変化して いる標準物質と共に撮影された被検骨の X線写真フィルムに光を照 射して得られる透過光量を検知する影像読み取りによるものであつ て、 演算処理して被検骨の計測を行う工程が該 X線フィルムから得 られる標準物質の厚みと透過光量の関係に基づいて該パターンを標 準物質の厚みに変換することを含むものである骨計測方法が含まれ また、 本発明は、 被検骨の放射線撮影により得られる影像を用い て該被検骨についての骨計測を行うための装置において、 該被検骨 についての影像の被検部で単数又は複数の異なる測定ライ ンに沿つ. て該被検骨の透過放射線量に関するパターンを測定するための手段 と、 該被検骨の骨幅に基づいて予め定められた部分領域でのみ該パ ターンを演算処理して該被検骨の計測を行う手段を有することを特 徵とする骨計測装置を提供するものである。
なお、 か、 る本発明の装置には、 該骨幅に基づく予め定められた 該透過放射線量パターンの演算領域を、 海綿骨を多く含む領域に設 定する手段を有することを特徵とする骨計測装置が含まれる。
更に、 本発明の装置には、 該影像入力手段が、 厚さが変化してい る標準物質と共に撮影された該被検骨の X線写真フィルムに光を照 射して得られる透過光量を検知することにより影像読み取り手段で あり、 該 X線写真フィルムから得られる標準物質の厚みと透過光量 の関係に基づいて該複数の平滑化パターン (等間隔で平行している 複数の測定ラインに沿った透過光量パターンを測定ライ ンと垂直な 方向に 1 本の透過光量パターンに合成し、 更に合成されたパターン を移動平均することで得るパターン) を標準物質の厚みに変換する 変換手段を有する骨計測装置が含まれる。
更に、 発明者等は、 海綿骨の骨計測の際にも正確に再現性良く計 測が可能なように改善すべく、 まず第一に、 得られたパターン群か ら一部、 即ち、 狭いエリアで複数濃度パターンを 1本に平滑化し、 該平滑化パターンから、 骨パラメ一夕を求め、 更に、 該処理を別の 領域にも繰り返し行い、 これらを合わせて広い領域における骨パラ メータの平均化処理を行う こと、 更に必要に応じて、 骨パラメ一夕 の所定の標準値を用いて該骨パラメータ中の異常値を判定してそれ を排除し、 それ以外の骨パラメータについて平均化処理することで 正確に再現性良く骨量 ( B M D ) が測定できることを見い出し、 本 発明に到達したものである。
即ち、 本発明は、 被検骨の放射線撮影により得られる影像を用い. て該被検骨についての骨計測を行なう方法において、
(1 ) 該被検骨についての影像における被検部の予め定めた複数の 実質上異なるライ ンに沿って各々の透過放射線量に関するパターン を測定して透過放射線量パターン群を得て、 該パターン群の一部の 群を用いて平滑化することを別々の部分群について繰り返すことに よって複数の平滑化パターンを得ること、
(2) 該複数の平滑化パターンの各々について所定の演算処理を行 ない骨計測のためのパラメ一タ群を複数得る工程と、
(3) 該複数のパラメータ群を所定の条件で処理して被検骨の計測 を行う工程とを有することを特徴とする骨計測方法を提供するもの である。
か ^ る本発明の骨計測方法には、 該所定の条件での処理が、 所定 の標準値と個々のパラメータ群とを比較し、 該標準値から所定量以 上はなれたパラメ一夕群を除いたパラメ一夕群について各パラメ一 夕の平均値を求める工程を含む骨計測方法、 該標準値が、 該平滑 化パターンにおける骨幅に関するものである骨計測方法、 及び 該 被検骨の骨計測が厚さが変化している標準物質と共に撮影された被 検骨の X線写真フィルムに光を照射して得られる透過光量を検知す る影像読み取りによるものであって、 該透過放射線量に関するパ夕 ーンが被検骨の濃度パターンであって、 該所定の演算処理が該 X線 写真フィルムから得られる標準物質の厚みと透過光量の関係に基づ いて該平滑化バターンを標準物質の厚みに変換する処理を含むもの である骨計測方法が含まれる。
また、 本発明は、 被検骨の放射線撮影により得られる影像を用い て該被検骨についての骨計測を行うための装置について、
(1) 該被検骨の影像における被検部の予め定めた複数の実質上異 なるラインに沿って各々透過放射線量に関するパターンを測定して- 透過放射線量パターン群を得て、 該バタ一ン群の一部の群を用いて 平滑化することを別々の部分群について繰り返すことによって複数 の平滑化パターンを得るための手段と、
(2) 該複数の平滑化パターンの各々について所定の演算処理を行 ない骨計測のためのパラメータ群を複数得るための手段と、
(3) 該複数のパラメ一夕群を所定の条件で処理して被検骨の計測 を行うための手段とを有することを特徴とした骨計測装置を提供す るものである。
か、 る本発明の骨計測装置では、 該被検骨の計測を行うための手 段が、 所定の標準値と個々のパラメ一夕群について各パラメ一夕の 平均値を求める手段を含むものである骨計測装置が含まれる。
なお、 本発明には、 該標準値として関心領域における該平滑化パ 夕一ンの骨幅を利用する工程を有する骨計測装置が含まれる。
更に、 本発明には該影像入力手段が、 厚さが変化している標準物 質と共に撮影された該被検骨の X線写真フィルムに光を照射して得 られる透過光量を検知することにより影像読み取り手段において、
(1) 被検骨部周辺の予め定めた複数の実質上異なる測定ライ ンに 沿って該被検骨の複数の濃度パターンを得て各々対応する位置で各 々の複数の濃度パターンを平滑化することで複数の平滑化パターン を得る手段と、
(2) 該 X線写真フィルムから得られる標準物質の厚みと透過光量 の関係に基づいて該複数の平滑化パターンを標準物質の厚みに変換 した変換平滑化パターンを求めて、 該複数の該変換平滑化パターン について、 演算処理を行い骨計測に必要な複数のパラメ一夕群を得 る手段と、
(3) 該複数の骨パラメ一夕群を所定の条件で処理し被検骨の計測 を行う手段を有することを特徴とする骨計測装置が含まれる。 - 本発明者等は、 また、 鋭意研究した結果、 被検骨の透過放射線量 に関する影像から得られる透過放射線量に基づく骨量のパターンの 各値を必要に応じて標準化し、 さらにその骨量パターンの各値を用 いて、 2階差分値と 1 階差分値の積及び/又は 2階差分値を用いて、 被検骨の領域と軟部組織のみの領域との境界点についての複数の候 補点を求め、 その中から所定の条件を満たす点を選択し、 パターン に応じて所定の範囲で 1次回帰直線を所定の条件を満たすまで、 必 要に応じて処理を繰り返すことで、 正しく、 精度よく計測ができる ことを見い出し、 本発明による骨計測方法および骨計測装置を構成 した。 即ち本発明は、
( i ) 被検骨に放射線を照射することにより得られる透過放射線量 に基づく影像を入力するための影像入力工程と、 入力された影像に 関して被検部における測定ライ ンに沿って該被検部の透過放射線量 に関するパターンを求める工程と、 該パターンにおいて該被検骨の 両端部での軟部組織との境界点 2点を求める工程と、 該 2点を結ぶ ライ ンにより近似される軟部組織に対応した透過放射線量に関する 領域を該パターンから減算することにより該被検骨自体の透過放射 線量に関する修正パターンを得る工程と、 該修正パターンを用いて 演算処理して該被検骨の計測を行う工程を有した骨計測方法を提供 する。
更に、 本発明は、 (i i ) 該パターンにおいて該被検骨の両端部で の軟部組織との境界点 2点の少なく とも 1 点を求める工程が、 該パ ターンにおいて 1 次近傍点を求め、 該 1次近傍点より被検骨の中心 方向に所定の範囲 ( 1 ) だけスキップして所定の範囲 ( 2 ) で内側 1次回帰直線を求め、 さらに該 1 次近傍点より被検骨の中心から遠 ざかる方向に所定の範囲 ( 3 ) だけスキップして所定の範囲 ( 4 ) で外側 1次回帰直線を求め、 該内側 1 次回帰直線と外側 1 次回帰直- 線の交点を 2次近傍点とし、 新たな近傍点が所定の条件を満たすよ うになるまでかかる処理を繰り返すものである ( i ) の骨計測方法 を提供する。
更に、 本発明は、 (i i i ) 該 1次近傍点を求める工程が、 該パ夕 ーンにおける 2階差分値及び/又は 2階差分値と 1 階差分値の積を 用いるものである上記 ( ii ) の骨計測方法を提供する。
また本発明は、 (i v) 被検骨に放射線を照射することにより得ら れる透過放射線量に基づく影像を入力するための影像入力手段と、 入力された影像に関して被検部における測定ライ ンに沿って該被検 部の透過放射線量に関するパターンを求める手段と、 該パターンに おいて該被検骨の両端部での軟部組織との境界点 2点を求めて、 該 2点を結ぶライ ンにより近似される軟部組織に対応した透過放射線 量に関する領域を該パターンから減算することにより該被検骨自体 の透過放射線量に関する修正パターンを得るための手段と、 該修正 パターンを用いて該被検骨の計測のための演算処理を行う演算手段 を有した骨計測装置を提供する。
なお、 このような本発明の骨計測方法の更に好ましい態様として 以下のものが列挙できる。
即ち、 ( V ) 該パターンにおいて該被検骨の両端部での軟部組織 との境界点を求める工程が、 該パターンにおいて 1次近傍点を所定 の方法で求め、 該 1 次近傍点より、 被検骨の中心方向に所定の範囲 ( 1 ) をスキップし所定の範囲 ( 2 ) で内側 1次回帰直線を求め、 更に該近傍点より被検骨の中心から遠ざかる方向に所定の範囲 ( 3 ) をスキップし所定の範囲 ( 4 ) が所定の条件を満たさなければ 1 次 回帰直線の代わりに該範囲において透過放射線量パターンの平均値 をとり、 該平均値を通る一定放射線量の直線を求め、 該直線の交点 を新たな近傍点とし、 新たな近傍点が所定の条件を満たすまで必要 に応じて該処理を繰り返す工程であるような前記 ( i ) 〜 (iii ) の何れかに記載の骨計測方法が挙げられる。
更に、 (vi) 該 1次近傍点を求める工程が、 まず 2階差分値と 1 階差分値の積及び Z又は 2階差分値を用いて複数の候補点を求め、 次に該複数の候補点の中から所定の条件を満たす点を選択する工程 を有するものである前記 ( i ) 〜 (iii ) 及び ( V ) のいずれかに 記載の骨計測方法が挙げられる。
更に、 (vii ) 該所定の範囲 ( 2) として、 1次近傍点から該近 傍点の被検骨の中心方向へ傾きの変化が大きい点の近傍点までとす る工程、 また、 該所定の範囲 ( 4 ) として、 1次近傍点より被検骨 の中心から遠ざかる方向へ傾きの変化が所定の条件 ( 1 ) を満たす 点から傾きの変化が大きい点の近傍点までの範囲とする工程を有す る前記 (ii) 又は ( V) 記載の骨計測方法があげられる。
更に、 (viii) 該所定の条件 ( 1 ) とレて 1階差分と 2階差分の 積が所定の値より小さいものという条件を用いる工程を有する前記 (vii ) の骨計測方法があげられる。
更に、 (ix) 該処理を透過放射線量パターンの各値をパターンの 代表値を用いて標準化した後行う ことを特徴とする前記 ( i ) の骨 計測方法が挙げられる。
更に、 ( X ) 該影像入力工程が、 厚さが変化している標準物質と 共に撮影された該被検骨の X線フィルムに光を照射して得られる透 過光量を検知することによる影像読み取り工程であり、 該パターン を求める工程が、 該 X線フィルムから得られる標準物質の厚みと透 過光量の関係に基づいて濃度パターンを標準物質の厚みに変換する 変換工程を含む前記 ( i ) の骨計測方法があげられる。
また、 前記 (iv) の本発明の骨計測装置の更に好ましい具体的態 様として以下のものがあげられる。 即ちまず (xi) 該境界点を求め. る際に、 1次近傍点を所定の方法で求め、 該近傍点より被検骨の中 心方向に所定の範囲 ( 1 ) をスキップし所定の範囲 ( 2 ) で内側 1 次回帰直線を求め、 さらに該近傍点より被検骨の中心から遠ざかる 方向へ所定の範囲 ( 3 ) をスキップし、 所定の範囲 ( 4 ) で外側 1 次回帰直線を求め、 該直線の交点を新たな近傍点とし、 新たな近傍 点が所定の条件を満たすまで必要に応じて該処理を繰り返す手段を 有する前記 (iv) 記載の骨計測装置があげられる。
更に、 (xii ) 境界点を求める際、 1次近傍点を所定の方法で求 め、 該近傍点より被検骨の中心方向に所定の範囲 ( 1 ) をスキップ し所定の範囲 ( 2 ) で内側 1次回帰直線を求め、 さらに該近傍点よ り被検骨の中心から遠ざかる方向に所定の範囲 ( 3 ) をスキップし 所定の範囲 ( 4 ) が所定の条件を満たさなければ 1次回帰直線の代 わりに該範囲において透過放射線量パターンの平均値をとり該平均 値を通る一定放射線量の直線を求め、 該直線の交点を新たな近傍点 とし、 新たな近傍点が所定の条件を満たすまで必要に応じて該処理 を繰り返す手段を有する前記 (iv) 記載の骨計測装置が挙げられる のである。
更に、 (xiii) 1次近傍点を求める際に 2階差分値と 1階差分値 の積及び 又は 2階差分値を用いる手段を有する前記の (xi) 又は (xii ) の骨計測装置が挙げられる。.
更に、 (xiv ) 1次近傍点を求める際に、 まず 2階差分値と 1階 差分値の積及び 又は 2階差分値を用いて複数の候補点を求め、 次 に該複数の候補点の中から所定の条件を満たす点を選択する手段を 有する前記 (xi) 〜 (xiii) の何れかの骨計測装置が挙げられる。 更に、 (XV) 該所定の範囲 ( 2) として、 該 1次近傍点から該近 傍点の被検骨の中心方向へ傾きの変化が大きい点の近傍点までとす る手段、 また、 該所定の範囲 ( 4 ) として、 1次近傍点より被検骨- の中心から遠ざかる方向へ傾きの変化が所定の条件 ( 1 ) を満たす 点から傾きの変化が大きい点の近傍点までの範囲とする手段を有す る前記 (x i ) の骨計測装置が挙げられる。
更に、 (xv i ) 該所定の条件 ( 1 ) として 1 階差分と 2階差分の 積が所定の値より小さいものという条件を用いる手段を有する前記 ( X V ) の骨計測装置が挙げられる。
更に、 (xv i i ) 該処理を透過放射線量パターンの各値をパターン の代表値を用いて標準化するための手段を有した前記 (i v) の骨計 測装置も挙げられる。
更に、 (xv i i i ) 該影像入力手段が、 厚さが変化している標準物 質と共に撮影された該被検骨の X線フィルムに光を照射して得られ る透過光量を検知することによる影像読み取り手段であり、 該パ夕 一ンを求める手段が該 X線フィルムから得られる標準物質の厚みと 透過光量の関係に基づいて濃度パターンを標準物質の厚みに変換す る変換手段を有するものである前記 (i v) ,の骨計測装置が挙げられ o 図面の簡単な説明
本発明の上述した目的および他の目的、 特徴、 利点に関して、 添 付の図面を参照しながら、 更に詳細に記載するが、 添付図面におい て、
図 1 は、 橈骨遠位端における測定ライ ン変動による骨量の変動を 例示したグラフ図、
図 2は、 本発明における基準ポイン トのピックの例示したグラフ 図、
図 3 Aは、 骨軸の変動による基準測定ライ ンの角度変化が微小で あることを説明したグラフ図、 - 図 3 Bは、 B M Dの変動を十分に抑制していることを説明するグ ラフ図、
図 4 は、 骨幹部基準ボイン トのピッ クのズレによる骨軸の変動が 微小であるこ とを例示した図、
図 5 は、 本発明で用いる所定の距離の求め方の一例を示したグラ フ図、
図 6は、 中手骨長さと橈骨長さの関係を示したグラフ図、 図 7は、 本発明に係る骨計測装置の具体例の構成を示す模式的な システム図、
図 8 は、 本発明に係る骨計測方法における測定ライ ン設定の一例 を示したグラフ図、
図 9は、 本発明に係る骨計測データを例示するグラフ図、 図 1 0は、 本発明における X線イメージセンサ一上で被検骨に X 線照射して画像化する装置を例示する略示機構図、
図 1 1 は、 従来の骨計測の例示グラフ図、
図 1 2は、 被検骨中の海綿骨の比率の例示グラフ図、
図 1 3は、 海綿骨についての骨計測をした結果の一例を示すグラ フ図、
図 1 4 は、 計測領域と計測精度の関係を例示するグラフ図、 図 1 5 は、 本発明に係る骨計測方法による計測結果の一例を示す グラフ図、
図 1 6 は、 橈骨遠位端における骨計測位置を例示する模式図、 図 1 7は、 本発明に係る骨計測の例示グラフ図、
図 1 8 Aは、 合成前の複数のパターンを示すグラフ図、
図 1 8 Bは、 図 1 8 Aのパターンを合成する場合の不適性なパ夕 ーン合成を例示するグラフ図、
図 1 9 Aは、 橈骨の測定部位と骨量の関係の例示グラフ図、 - 図 1 9 Bは、 海綿骨の計測における計測幅と精度の関係の例示グ ラフ図、
図 2 0 は、 本発明に係る骨計測における平滑化の例示グラフ図、 図 2 1 は、 本発明に係る骨計測における平滑化工程を用いた場合 の測定部位と骨量 ( B M Dの分布) の関係の例示グラフ図、
図 2 2は、 本発明の平滑化工程を用いた場合の測定部位と骨幅の 関係の例示グラフ図、
図 2 3は、 本発明の平滑化工程を用いた場合の測定可能ェリ了と 真値 (全測定エリアのデータ) との偏差の例示グラフ図、
図 2 4 は、 橈骨への本発明の適用例を示すグラフ図、
図 2 5は、 橈骨についての透過放射線量に関するパターンの例示 グラフ図、
図 2 6 は、 海綿骨が豊富な骨についての透過放射線量に関するパ ターンの例示グラフ図、
図 2 7は、 骨パターンの骨軸を説明するグラフ図、
図 2 8 A〜図 2 8 Cは、 本発明に係る骨計測における透過放射線 量に関するパターンを用いた骨計測の例示グラフ図、
図 2 8 D〜図 2 8 Eは、 パターンの B M Dの値に就いて説明する グラフ図、
図 2 9は、 本発明に係る骨計測における透過放射線量に関するパ ターンの標準化の例示。
図 3 0は、 本発明に係る骨計測における境界点についての二階差 分による 1 次近傍点の求め方の例示グラフ図、
図 3 1 は、 本発明における 1 階差分と 2階差分の積による 1 次近 傍点の求め方の例示グラフ図、
図 3 2は、 本発明における 1 次近傍点の求め方の例示グラフ図、 図 3 3は、 本発明に係る骨計測における境界点の求め方の例示ダ ラフ図、
図 3 4 は、 本発明における境界点の求め方の例示グラフ図、 図 3 5 は、 本発明における境界点の求め方の例示グラフ図、 図 3 6は、 本発明における境界点の求め方の例示グラフ図、 図 3 7は、 本発明の骨計測方法の実施におけるフローチヤ一ト、 図 3 8は、 本発明の骨計測における画像読み取りの例示グラフ図 である。 発明を実施するための最良の態様
さて、 本発明にいう放射線としては、 X線や 7線が好ましく用い られる。 また本発明の影像入力としては、 被検骨に X線等放射線を 照射し透過放射像に基づく、 X線フィルムや X線やガンマ線などの 透過強度センサーにより得られる影像を入力するためのものがあげ られる。 本発明では入力された影像において R 0 I (関心領域) を 所定の方法で決定する関心領域決定手段が用いられる。
ここで上記所定の方法について述べる。
発明者等は測定再現性を妨げている原因の 1つに基準測定ライ ン が骨軸 (すなわち骨の中心線) に対して上、 下の変動があることを 見いだした。 従来の方法で橈骨においてはまず、 基準測定ライ ンを 橈骨長さをもとに作図を行い決定し、 このライン上の 2点を指定し ている。 この方法だと繰り返し作図を行い 2点を指定した際の測定 ラィ ンの位置再現性はエキスパー トでも 0 . 5 m mぐらいが限界で ある。 こ こで図 1 は基準測定ラインの上下変動による B M Dの変化 を示す。 これより該変動が 1 m mとすれば、 B M Dが約 3 . 5 %変 化していることがわかる。 これは、 同一測定者のく りかえしの測定 再現性の変動にもなるし、 測定者間再現性の変動にもつながり、 被 検者の ト レン ド経過観察の際に問題となる。 - そこで我々は橈骨において 4点ピッ クをすることでピッ ク点 (基 準ポイ ン ト) の変動による基準測定ライ ンの上下変動を従来より大 幅に減少でき、 データの再現性を改善できることがわかった。 即ち 図 2のように骨頭部のわかり良い突部 2点をピッ ク しその中点を求 め、 次に骨幹部の 2点ピッ ク、 該中点を求め、 それらを結び骨軸と し、 これに対する垂線を骨頭部の 2点の中点又はいずれか 1 点から の距離を基に自動的に決定することで従来に比べて、 基準測定ライ ンの上下変動が下表 1 のように、 約 5 0 %に減少させるこ とが可能 に 7よ つ に。
表 1 基準測定ライ ン指定の再現性
Figure imgf000021_0001
これはピッ ク点の変動をお互いに補いあって全体では変動を少な い方向へもって行く ことができるためと、 自動作図により作図誤差 そのものが小さ くなつたことの 2つに起因している。 この時骨幹部 の 2点は、 骨形状が通常図 4のようになつているので任意の点をと つても骨の中央が求まる。
上記改善された R 0 I の指定方法は、 基準測定ライ ンの上下変& を減少できるのみならず、 2つ目の R O I設定誤差の原因である骨 軸の変動による基準測定ラインの角度変化 (ひ) も低減でき、 BM Dの変化を十分の精度に抑えることが可能である。
即ち、 成人に対して、 骨頭部から骨幹部のピッ ク位置までの距離 の平均値は 6 0 mm以上あり、 経験的にピッ ク誤差は 0. 3 mn!〜 0. 5 mm程度なので骨頭部の例えばピッ ク誤差 0. 5 mm、 骨幹 部のピッ ク誤差 0. 3 mmとしても最大角度変動は、 図 3 Aに明示 するように、 角度変化ひが、 せいぜい約 0. 7 ° に抑えられ、 また B MDの変動は図 3 Bの図示から明らかなように、 0. 5 %以下と することが可能である。
更に、 所定の距離として中手骨長さを代表してとりこの長さを図 5のように 3点ピッ クで求めることで作図及び長さの計測誤差を小 さ くできるので、 この距離の変動も単に長さを 2点測定するより も 半分に抑えられ、 これと相まって基準測定ラインの上下変動を従来 の 2 5 %程度に押さえることができた。 また、 自動化による迅速な 測定も可能になった。 もちろん橈骨の長さをもとに該距離を算出し てもよいが X線フィルムを計測して使用する場合橈骨遠位端と中手 骨.を 1枚におさめることができ、 中手骨長さと橈骨長さは図 6のよ うに相関 (相関計数 7 > 0. 9 ) がある。 例えば該距離は中手骨長 さの 1 2をとる場合、 橈骨長さの 1 Z 7に相当する。 従って中手 骨長さを基準とする方法が好適である。
このような方法で基準測定ライ ンを決定し、 被検骨部周辺の単数 又は、 複数の異なる測定ラインに沿って該被検骨の濃度パターンを 得て、 該パターンの各々に対して所定の領域に対してのみ被検骨の 計測を行うためのコンピュータ手段を用いてパターン処理を行い計 測を行う ものである。
該被検骨の影像において、 骨頭部 2点と骨幹部 2点を指定する手- 段としては、 骨の影像を表示する C R Tなる画像表示手段とその表 示をもとにポイ ン ト入力手段としてのキーボー ドやライ トペン等が 考えられる。 更に、 それぞれの中点を結んで骨軸を求める手段とし ては、 該処理内容が記憶されている R O M及び演算 · 一時記憶のな めの R A Mから構成されるコンピュータ手段が挙げられる。
更に、 該骨頭部 2点のいずれかの点又はその中点を基準に該骨軸 にそって所定の距離だけ離れた位置に骨軸に垂直な基準測定ライ ン を設定する手段と該基準測定ライ ン又はその近傍の単数又は複数の 測定ライ ンに沿って該被検骨の透過放射線量に関するパターンを得 る手段及び該パターンを用いて所定の演算処理を行い該被検骨の骨 計測を行う手段としては、 これらの処理内容が記憶されている R〇 M及び演算 · 一時記憶のための R A M及び C P Uから構成されるコ ンピュー夕手段が挙げられる。
被検骨と標準物質を共に撮影された X線フィルムに光を照射して 得られる透過光量のパターンにおいて、 被検骨部の透過光量を標準 物質部の透過光量と比較することが被検骨を標準物質厚さに変換す るこ とができ、 撮影条件による X線写真フイルム濃度の違いによる 誤差を小さ くできる。 こ こで、 標準物質とは厚みが連続的に変化す るスロープ状のものや l m mピッチで厚みが変化するステップ状の ものが考えられる。 スロープ状の場合は被検骨部の透過光量と標準 物質の透過光量の直接比較で厚み変換する方法が考えられる。 ステ ップ状の標準物質へ厚さ変換する時は、 被検骨部の透過光量が標準 物質ステツプ間のそれに対応する場合、 各ステツプの透過光量を一 次補間したり、 スプラインで補間したり して変換する方法が考えら れる。 これらの演算処理手段としては、 上述の R O M、 R A Mおよ び C P Uから成るコンピュー夕手段が挙げられる。
本発明の骨計測装置の好ましい実施態様例を図 7に示す。 即ち、- 自動読み取り部 1 はラ ンセンサ一 ( C C D ) をフィルム移動方向に 直角に並べて X線写真フイルムの上面又は下面から帯状光源 ( L E
D ) によりフィルムを照射し、 その透過光をラインセンサー上に焦 点を結ぶように配置したロッ ドレンズにより集光し、 その X線フィ ルム濃度に応じた透過光の強度等の信号をえるようにすると同時に ライ ンセンサー及び帯状光源と直角方向に微少移動することのでき るパルスモータを用いた微少フィルム走行手段を具備している。
フィルムフィ ー ドコン トローラーはかかる X線写真フィルムの特 定部位にしぼって透過光の検知を可能にしたり、 フィルムを所定の 速度で間欠的に走行させることを制御するための制御手段である。 C C D ドライバ一は、 C C Dに蓄積されたデータを所定の夕ィ ミ ン グで取り出せるように制御する機能を有するものである。 又は L E Dコン トローラは、 X線写真フィルムの濃淡のレベルに合わせて光 源の強さを調節するための光源の光強度調節手段である。
図 8は、 図 7における骨計測データ処理部 2における C R Tなる 画像表示手段に拡大されて表示された橈骨の例である。 1 1 が表示 画面であり、 1 2が橈骨であり、 1 3、 1 4、 1 5、 1 6が骨計測 のため必要とされる基準ポイ ン ト (ピッ ク点) の位置を示すもので ある。 具体的には 1 3、 1 4の中点と 1 5、 1 6の中点を結びこれ に垂線を 1 3から所定の位置 (例えば、 第 2中手骨長さの 1 2 ) にとり基準測定ラインとするのが位置再現性を確保するのに好適で ある。 そのポイン ト入力手段としては、 カーソル位置表示、 指示制 御手段や、 ライ トペン型入力手段、 夕ツチパネルにより外部より入 力する方法等があげられる。
図 7における自動読み取り部 1 によって読み取られたデータ群が デ一夕処理部 2におけるイメージ入出力部及びイメージメモリ ーか ら主としてなる影像記憶手段によって記憶されて、 記憶された影像 に関するデータ群は、 C R C T及び C R Tから主としてなる画像表 示手段によって図 9 に示す如き拡大された被検骨のパターンとして
: ^不 れる。
更に、 本発明の計測装置に含まれる演算手段としては、 ポイ ン ト 入力手段により入力された基準ポイン トを基準として、 影像記憶手 段に記憶された被検骨の影像における測定すべき所定の位置を決定 し、 かかる所定位置での被検骨の影像及び厚さ変換している標準物 質の影像に関する記憶データ群を用いて標準物質の厚みに変換して 骨測定のための演算を行う ことができるものであればいかなるもの であってもよい。 その例としては骨計測のための演算プログラムが 入力された R O M及び演算 · 一時記憶のための R A Mから構成され るマイクロコンピューター手段があげられる。
演算の内容は具体的例を示すために、 図 9に例示された如き橈骨 遠位端の所定の測定ライ ンでの記憶データを標準物質の厚みに変換 したパターンとして表示したものである。 即ち Dが骨巾を示し、 こ れに基づいて決定された領域での骨密度分布が表現されている。 なお、 図 7の R S 2 3 2 C及び M O D E Mは、 骨計測装置の手段 を介した骨評価システムに用いる場合の通信手段に連結されて通信 機能を付与するためのものであり、 P I 0はディ ジタル制御入力を コンピューターシステムへ入出力するためのインターフェイスとし て機能するものである。
上述した具体例では X線写真フイ ルムを用いたものを示したが、 X線イメージセンサー上で被検骨に X線を照射して画像化する装置 等にも本発明は容易に適用できる。
このような本発明の装置の場合の、 X線撮影から骨計測までの流 れを実施するシステムの構成を模式的に図 1 0に示す。
X線源 2 0からの X線を被検骨 1 9 と共に X線イメージセンサ" に直接 X線を照射して画像化する装置においては、 従来の X線撮影 法における X線写真フィルムを挟み込んだ力セッテの代わりにィメ 一ジングプレー ト 2 1 を使用して X線撮影を行い、 レーザー光照射 手段 2 2および光検知センサ一 2 3により該イメージングプレー ト 2 1 に蓄積記録された X線情報にレーザー光を照射することで X線 強度に比例した情報を光信号として読み取ることができる。 画像処 理装置 2 5 によって、 読み取った光電情報を A Z D変換して被検骨 の X線像 2 4を得て、 該 X線像をもとに、 前記の如き本発明におけ る骨計測を行う ことができる。
また本発明には、 被検骨に 7線を照射して得られる透過 7線量に 基づく影像を検出して骨計測を行うフォ トン · アブソープシオメ ト リーによるものも含まれる。
上述した本発明の骨計測方法及び骨計測装置は、 骨量の測定にお いて個人差、 繰り返し誤差を少なくでき、 精度よく計測ができる方 法と装置を実現できる。
次に、 本発明の他の実施態様に就いて、 記載する。
さて、 本発明において、 該入力された映像において、 R O I (関 心領域) を所定の方法で決定することで被検骨周辺の単数又は複数 の異なる測定ライ ンに沿って該被検骨の透過放射線量パターンを得 て、 該パターンの各々に対して所定の領域に対してのみ被検骨の計 測を行うためのコンピュータ手段を用いてパターン処理を行い計測 を行う ことは先の実施態様と同じである。
こ こで、 所定の方法としては、 骨頭部のわかり良い突部 2点をピ ッ ク してその中点を求め、 次に骨幹部の 2点をピッ ク し、 その中点 を求め、 それらを結び骨軸とし、 これに対する垂線を骨頭部の 2点 の中点又はいずれか 1 点からの距離を基に決め、 同ラインの近傍で 等間隔、 かつ平行している複数の測定ライ ンを R O I とする方法が あ ^
このコ ンピュータ手段には演算を行う M P Uと該演算を含む骨計 測のためのプログラムが入力された R O M及び、 演算一時記憶のた めの R A Mから構成されている。
こ こで所定の領域の決め方について述べる。 骨は先に述べたよう に皮質骨と海綿骨に分類できる。 しかし、 従来の測定では図 1 1 の 骨幅 D全体についての透過放射線量に関するパターンすべてについ て骨密度を計算していたので、 皮質骨あるいは海綿骨を区別して計 測することは不可能であった。
そこで我々は該透過放射線量に関するパターンにおいて図 1 1 に おける Xなる所定の領域でのみ演算を行う方法を考案した。 即ち、 被検骨の部位により、 皮質骨、 海綿骨の割合 (橈骨遠位端において 1例) は図 1 2 (この図 1 2は骨幅の半分についてのみ、 模式的に 示したものである。 ) のように変化する。 よっていずれかの割合を できるだけ多く とるには、 領域を狭くする必要がある。 例えば、 海 綿骨を多く含む領域を測定するには図 1 3の領域についてパターン 処理すればよいこ とになる。
然しながら、 該領域を狭くすれば骨の性質による位置によるデー 夕の変動や測定系の感度バラツキ等による測定ラインのズレによる データ変動が大き くなり測定精度 ( C V ) の低下をまねく。 これを 図 1 4 に示す。
そこで、 図 1 2、 図 1 4に示すように、 海綿骨の割合と C Vは ト レー ドオフの関係になっていて、 逆に言えば、 測定に要求される骨 の割合が決まれば精度は決まり、 精度が決まれば骨の割合が決まる。 これらを我々は合理的に決定することで海綿骨を多く含む領域かつ、 高い精度での測定を可能とした。 この領域の決定には図 1 5で示す 骨幅 Dに基づく値を利用するのが好適である。 - こ こで、 図 1 5 に示す通り、 皮質骨の測定に用いられる d (ピー ク、 ピークキヨ リ) を用いた場合、 海綿骨が多い領域ではこの d力 明確でない場合が多いので好適とは言えない。 橈骨長さの 1 / 8部 位では図 1 6のような骨分布になっているが海綿骨を測定したいと きは Dの 1 / 3領域をとれば図 1 2、 図 1 4 より海綿骨の割合 5 0 %で C V 2 %以下で測定できることがわかる。
本発明の骨計測装置の好ま しい実施態様の例は、 既述した図 7に 示す装置と同じである。 即ち、 自動読み取り部 1 はライ ンセンサー ( C C D ) をフィルム移動方向に直角に並べて X線写真フィルムの 上面又は下面から帯状光源 ( L E D ) によりフィルムを照射し、 そ の透過光をラインセンサー上に焦点を結ぶように配置したロッ ドレ ンズにより集光し、 その X線フィルム濃度に応じた透過光の強度等 の信号を得るようにすると同時にラインセンサー及び帯状光源と直 角方向に微少移動することのできるパルスモータを用いた微少フィ ル厶走行手段を具備している。
フイルムフィ 一 ドコ ン トロ一ラーはかかる X線写真フィルムの特 定部位にしぼって透過光の検知を可能にしたり、 フイルムを所定の 速度で間欠的に走行させることを制御するための制御手段である。 C C D ドライバ一は、 C C Dに蓄積されたデータを所定のタイ ミ ン グで取り出せるように制御する機能を有するものである。 又は L E Dコン トロ一ラは、 X線写真フィルムの濃淡のレベルに合わせて光 源の強さを調節するための光源の光強度調節手段である。
該被検骨の影像において、 骨頭部 2点と骨幹部 2点を指定する手 段としては、 骨の影像を表示する C R Tなる画像表示手段とその表 示をもとにボイン ト入力手段としてのキーボー ドやライ トペン等が 考えられる。 更に、 それぞれの中点を結んで骨軸を求める手段とし ては、 該処理内容が記憶されている R O M及び演算 · 一時記憶のな- めの R A Mから構成されるコンピュー夕手段が挙げられる。
更に、 該骨頭部 2点のいずれかの点又はその中点を基準に該骨軸 にそって所定の距離だけ離れた位置に骨軸に垂直な基準測定ライン を設定する手段と該基準測定ライン又はその近傍の単数又は複数の 測定ライ ンに沿って該被検骨の透過放射線量に関するパターンを得 る手段及び該パターンを用いて所定の演算処理を行い該被検骨の骨 計測を行う手段としては、 これらの処理内容が記憶されている R〇 M及び演算 '一時記憶のための R A M及び C P Uから構成されるコ ンピュー夕手段が挙げられる。
被検骨と標準物質を共に撮影された X線フィルムに光を照射して 得られる透過光量のパターンにおいて、 被検骨部の透過光量を標準 物質部の透過光量と比較することが被検骨を標準物質厚さに変換す ることができ、 撮影条件による X線写真フイルム濃度の違いによる 誤差を小さ くできる。 こ こで、 標準物質とは厚みが連続的に変化す るスロープ状のものや 1 m mピッチで厚みが変化するステップ状の ものが考えられる。 スロープ状の場合は被検骨部の透過光量と標準 物質の透過光量の直接比較で厚み変換する方法が考えられる。 ステ ップ状の標準物質へ厚さ変換する時は、 被検骨部の透過光量が標準 物質ステップ間のそれに対応する場合、 各ステップの透過光量を一 次補間したり、 スプライ ンで補間したり して変換する方法が考えら れる。 これらの演算処理手段としては、 上述の R O M、 R A Mおよ び C P Uから成るコ ンピュー夕手段が挙げられる。
なお、 図 7に示す装置により、 図 8 と同様に橈骨の表示像を C R T等の画像表示手段に拡大して表示される。
図 7の装置における自動読み取り部 1 によって読み取られたデー 夕群がデータ処理部 2におけるィ メージ入出力部及びィ メージメモ リーから主としてなる影像記憶手段によって記憶されて、 記憶され- た影像に関するデータ群は、 C R C T及び C R Tから主としてなる 画像表示手段によって図 1 8 に示す如き拡大された被検骨のパター ンとして表示される。
更に本発明の計測装置に含まれる演算手段としては、 ポイ ン ト入 力手段、 例えば、 カーソルキー等により入力された基準ポイ ン トを 基準として、 影像記憶手段に記憶された被検骨の影像における測定 すべき所定の位置を決定し、 かかる所定位置での被検骨の影像及び 厚さ変化している標準物質の影像) に関する記憶データ群を用いて 標準物質の厚みに変換して骨測定のための演算を行う ことができる ものであればいかなるものであってもよい。 その例としては骨計測 のための演算プログラムが入力された R OM及び演算 · 一時記憶の ための R AMから構成されるマイクロコンピュータ一手段があげら れ 。
また、 被検骨についての影像の被検部で単数または複数の異なる 計測ライ ンに沿って該被検骨の透過放射線量に関するパターンを測 定するための手段及び該被検骨の骨幅に基づいて予め定められた部 分領域でのみ該パターンを演算処理して該被検骨の計測を行う手段 としてこれらの処理 · 演算プログラムが入力された R OM及び演算 • 一時記憶のための R AMから構成されたコンピュータ手段が挙げ られる。
演算の内容は具体的例を示すために、 図 1 7に例示された如き橈 骨遠位端の所定の測定ライ ンでの記憶データを標準物質の厚みに変 換したパターンとして表示したものである。 即ち Dが骨巾を示し、 これに基づいて決定された骨幅の 1 Z 3の領域での骨密度分布が表 現されている。
なお、 本実施例の場合も、 図 7の R S 2 3 2 C及び MO D E Mは、 骨計測装置の手段を介した骨評価システムに用いる場合の通信手段- に連結されて通信機能を付与するためのものであり、 P I 0はディ ジタル制御入力をコンピューターシステムへ入出力するためのイン 夕一フェイスとして機能するものである。
上述した本発明の具体例では X線写真フイルムを用いたものを示 したが、 X線イメージセンサーに直接 X線を照射して画像化する装 置等にも本発明は容易に適用できる。
このような本発明の装置の場合の、 X線撮影から骨計測までの流 れのシステムを模式的に示すと既述と同様に図 1 0に示す構成とな つまり、 図 1 0を参照して、 X線源 2 0からの X線を被検骨 1 9 と共に X線イメージセンサーに直接を照射して画像化する装置にお いては、 従来の X線撮影法における X線写真フイ ルムを挟み込んだ 力セッテの代わりにイメージングプレー ト 2 1 を使用して X線撮影 を行い、 レーザー光照射手段 2 2および光検知センサー 2 3により 該イメージングプレー ト 2 1 に蓄積記録された X線情報にレーザー 光を照射することで X線強度に比例した情報を光信号として読み取 ることができる。 画像処理装置 2 5 によって読み取った光電情報を A Z D変換して被検骨の X線像 2 4を得て、 該 X線像をもとに、 前 記の如き本発明における骨計測方法及び装置と同等な骨計測を行う ことができる。
また、 本発明には、 被検骨にガンマ線を照射して得られる透過ガ ンマ線量に基づいて影像を検出して骨計測を行うフ ォ トン · アブソ —プシオメ ト リーによるものも含まれる。
本実施例により皮質骨、 海綿骨量を精度よく合理的に計測できる 計測方法と装置が提供されるのである。
次に、 更に他の実施例に就いて記載する。
本実施例において、 関心領域 (R O I」) を所定の方法で決定する- 実際のパターンにはノイズが含まれているので、 パターン処理には ノィズ除去が必要である。 ノィズ除去には全測定ェリアに対して、 狭いエリァで透過放射線量バタ一ンの骨軸方向の平滑化、 すなわち パターンの合成を合成するのが単純で良好な結果が得られる。 こ こ で、 パターン合成数を増やせば、 すなわち測定ライン数を増やせば ノイズの除去能力は向上するが、 増やし過ぎると図 1 8 A、 図 1 8 Bで前述したように橈骨のような海面骨パターンの歪みを生ずる。 6 3. 5 ;zm程度の分解能のセンサで X線フィ ルムをスキャ ンした 場合、 橈骨遠位端に対し経験的には 5本程度 (約 0. 3 mm) が好 ま しい。
図 1 9 Aに示すように、 B MDはパターンの測定ライ ン (図 1 9 B参照) の変動により大き く変動している。 そこで BMD値を安定 して測定するためには複数の測定ライ ンを用いて先ず狭いエリアで 合成し、 BMDを求め、 更に広いエリアで各々の BMDを平均化す るこ とで、 正確に、 かつ再現性良く、 測定を行うことが可能となつ た。
この時広いエリァサイズは測定部位のデータの安定度及び要求さ れる測定精度によって決定される。
図 1 9 Bは、 橈骨遠位端における遠位端から第 2中手骨の長さの 1 2の距離だけ離れた位置を基準とした測定エリアと C Vの関係 で示されている。 これより 1 %の精度の向上を得るためには、 1 0 mmの測定ェリァが必要である。
一方、 こ こで測定エリア内の全ての測定ライ ンの濃度パターンを 演算していたのではデータ量が膨大な場合、 計算時間がかかりすぎ て実際的でない。 そこで合成パターンを得るための狭エリアを連続 してとらず、 間を開けてとることでこの問題をク リアしている。 即ち、 測定エリアの内、 6 3. 5 〃m間隔で平行している透過放- 射線パターン群において、 5本の測定ライ ンである 3 1 7 · 5 〃m の狭いエリアでの 5本の測定パターンを 1本に合成した場合、 図 2
0 に示すように合成パターンから得られる B M Dを 1 つおきに省い て平均化しても B M D値に大きな変化がないが、 これ以上省いて平 均化を行った場合、 B M D値に変化が生ずることがわかった。 従つ て、 合成パターン 1 本おき、 つまり、 5本の測定ラインからなるェ リアの B M Dを 1 つずつ省いて平均化するのが好適である。 更に、 合成 (平滑化) されたパターンの認識がうま く行かず、 異常パラメ 一夕がでた場合、 これをリ ジェク トし、 平均化処理から除く こ とが 精度を保っために必要である。 また、 合成パターンから B M Dを求 める前に移動平均をとり、 更に細かいノイズを除去することも必要 に応じて実施してもよい。
リ ジヱク ト方法について詳細に述べる。 一般に骨の物性は応力集 中が生じにくい構造即ち、 連続的に変化する。 そこで骨の巾や B M D値の各測定ラインでの変化を調べれば急激に値の変化するところ を見つけることで計測上の異常のパラメ一夕を発見することが可能 である。
図 2 1 に B M D、 図 2 2に骨幅 Dのデータの変化を示す。 こ こで B M Dのデータの変化を見るのは海綿骨の割合の多い方向に変わる ところでは値の変化が大き く なるのでこの方法では実際のものなの か異常パラメータによるものなのか判別は難しい。 一方、 骨巾 Dに 着目する方法では急激の変化がなく、 異常を見つけやすいのでこの 指標が好適である。 この時、 計測された骨幅と次のパターンから得 られた骨幅をく らべ、 その差が許容量を越えているのかを判断しパ ラメ一夕の正確性を保つのである。 こ こで、 この許容量の決め方で あるが、 いくつかの X線写真フィルムを測定し、 隣り同志の骨幅の 差の標準偏差びを求め、 これより 3 びをとつて許容量とするが好適- である。 更に基準骨幅については、 領域の安定しているデ一夕のと れるところの骨幅を用いるのが好適である。
橈骨遠位端において、 領域の例えば中央部又は下部 (パターン認 識の容易な部位) を基準骨幅とするのが好適である。 また、 リ ジェ ク ト した後、 平均化された BMDと真値からの偏差、 C V (Coeffi cient of Variance ) を図 2 3に示した。 これに基づいてデータの 精度を問う ことも可能である。
本発明の骨計測方法を実施する装置の好ま しい実施態様例は既述 の図 7の装置と同様の構成を有した装置によって形成できる。
即ち、 図 7を再び、 参照すると、 自動読み取り部 1 はライ ンセン サ一 (C C D) をフィルム移動方向に直角に並べて X線写真フィル ムの上面又は下面から帯状光源 (L E D) によりフィルムを照射し その透過光をライ ンセンサー上に焦点を結ぶように配置したロッ ド レンズにより集光し、 その X線フィルム濃度に応じた透過光の強度 等の信号を得るようにすると同時にラインセンサー及び帯状光源と 直角方向に微少移動するこ とのできるパルスモータを用いた微少フ ィル厶走行手段を具備している。
フィルムフィ ー ドコ ン トローラーはかかる X線写真フィルムの特 定部位にしぼって透過光の検知を可能にしたり、 フィルムを所定の 速度で間欠的に走行させることを制御するための制御手段である。 C C D ドライバ一は、 C CDに蓄積されたデータを所定のタイ ミ ン グで取り出せるように制御する機能を有するものである。 又は L E Dコン トローラは、 X線写真フィルムの濃淡のレベルに合わせて光 源の強さを調節するための光源の光強度調節手段である。
該被検骨の影像において、 骨頭部 2点と骨幹部 2点を指定する手段 としては、 骨の影像を表示する C R Tなる画像表示手段とその表示 をもとにポイ ン ト入力手段としてのキーボー ドやライ トペン等が考- えられる。 更に、 それぞれの中点を結んで骨軸を求める手段として は、 該処理内容が記憶されている R O M及び演算 · 一時記憶のなめ の R A Mから構成されるコンピュー夕手段が挙げられる。
更に、 該骨頭部 2点のいずれかの点又はその中点を基準に該骨軸 にそって所定の距離だけ離れた位置に骨軸に垂直な基準測定ライ ン を設定する手段と該基準測定ライ ン又はその近傍の単数又は複数の 測定ライ ンに沿って該被検骨の透過放射線量に関するパターンを得 る手段及び該パターンを用いて所定の演算処理を行い該被検骨の骨 計測を行う手段としては、 これらの処理内容が記憶されている R〇 M及び演算 · 一時記憶のための R A M及び C P Uから構成されるコ ンピュー夕手段が挙げられる。
被検骨と標準物質を共に撮影された X線フィルムに光を照射して 得られる透過光量のパターンにおいて、 被検骨部の透過光量を標準 物質部の透過光量と比較することが被検骨を標準物質厚さに変換す ることができ、 撮影条件による X線写真フイルム濃度の違いによる 誤差を小さ くできる。 こ こで、 標準物質とは厚みが連続的に変化す るスロープ状のものや l m mピッチで厚みが変化するステツプ状の ものが考えられる。 スロープ状の場合は被検骨部の透過光量と標準 物質の透過光量の直接比較で厚み変換する方法が考えられる。 ステ ップ状の標準物質へ厚さ変換する時は、 被検骨部の透過光量が標準 物質ステツプ間のそれに対応する場合、 各ステツプの透過光量を一 次補間したり、 スプラインで補間したり して変換する方法が考えら れる。 これらの演算処理手段としては、 上述の R O M、 R A Mおよ び C P Uから成るコンピュー夕手段が挙げられる。
図 7における自動読み取り部 1 によって読み取られたデータ群が データ処理部 2におけるィ メ ージ入出力部及びィメ一ジメモ リ 一か ら主としてなる影像記憶手段によって記憶されて、 記憶された影像- に関するデータ群は、 C R C T及び C R Tから主としてなる画像表 示手段によって拡大された被検骨のパターンとして表示される。 更に本実施例の計測装置に含まれる演算手段としては、 ポイン ト 入力手段により入力された基準ボイ ン トを基準として、 影像記憶手 段に記憶された被検骨の影像における測定すべき所定の位置を決定 し、 かかる所定位置での被検骨の影像及び厚さ変化している標準物 質の影像に関する記憶データ群を用いて標準物質の厚みに変換して 骨測定のための演算を行う ことができるものであればいかなるもの であってもよい。 その例としては骨計測のための演算プログラムが 入力された R O M及び演算 · 一時記憶のための R A Mから構成され るマイクロコンピュ一夕一等のコンピュ一ター手段があげられる。 演算の内容は具体的例を示すために、 図 2 4に例示された如き橈 骨遠位端の所定の測定ライ ンでの記憶データを標準物質の厚みに変 換したパターンとして表示したものである。 即ち Dが骨巾を示し、 これに基づいて決定された領域での骨密度分布が表現されている。 ここでは、 D及び B M Dをパラメ一夕としている。
なお、 本実施例の骨計測装置における平滑化パターンを得るため の手段、 骨計測のためのパラメ一夕群を複数得るための手段、 及び そのパラメ一夕群を処理して被検骨の計測を行うための手段は、 図 7の骨計測データ処理部 2に含まれ、 更に具体的には、 該処理部 2 における M P Uとその処理を行うプログラムが記憶されている R 0 M、 及び演算一時記憶のための R A Mからなるマイクロコンピュー 夕手段に含まれている。
上述した本実施例では X線写真フイ ルムを用いたものを示したが、 X線イメージセンサー上で被検骨に X線を照射して画像化する装置 等にも本発明は容易に適用できる。
このような装置の場合の、 X線撮影から骨計測までの流れのシス- テムは、 既述した図 1 0に示されている。 X線源 2 0からの X線を 被検骨と共に X線イメージセンサ一に直接照射して画像化する装置 においては、 従来の X線撮影法における X線写真フイ ルムを挟み込 んだカセッテの代わりにイメージングプレー ト 2 1 を使用して X線 撮影を行い、 レーザー光照射手段 2 2および光検知センサー 2 3に より該イメージングプレー ト 2 1 に蓄積記録された X線情報にレ一 ザ一光を照射することで X線強度に比例した情報を光信号として読 み取るこ とができる。 画像処理装置 2 5によって、 読み取った光電 情報を A / D変換して被検骨の X線像 2 4を得て、 該 X線像をもと に、 前記の如き本発明における骨計測方法及び装置と同等な骨計測 を行なう ことができる。
本実施例の骨計測方法及び骨計測装置によって、 例えば図 8にお ける点 1 3、 1 4、 1 5、 1 6の如き骨計測のための基準点のピッ クがずれによる影響が少なくなり、 再現性よく骨計測を行う ことが できる。 また本実施例の方法及び装置によれば、 計測されたデータ のうちの異常なものを排除してより正確に、 再現性良く骨計測がで きる優れた効果も得られる。 特に本実施例は、 海綿骨についての骨 計測に適している。
次に、 他の実施例に就いて記載する。
一般的に得られた骨と軟部組織からなる透過放射線量パターンに おいて、 被検骨のみの計測を行う際に、 被検骨 (例えば、 第 2中手 骨、 橈骨遠位端、 踵骨など) により、 該被検骨周辺の軟部組織の厚 さ分布が異なる。 また、 個人差 (体重差など) もあるので、 軟部組 織の影響を補正する必要がある。
こ こで、 本実施例におけるその補正方法について述べる。 まず図 2 8 A〜 2 8 Cに示すように、 例えば被検骨 (図 2 8 Aに断面図と して示す) に X線を照射して得られた X線写真フィルムに光を照射 して得られる透過光量から得られた透過放射線量に関するパターン
(以下 「透過放射線量パターン」 ともいう。 図 2 8 B参照) から軟 部組織の厚さを包含する骨と軟部組織の境界点 2点を求め、 該 2点 を結ぶ所定のライ ンで分け、 該ライ ンの上部が骨部の透過放射線量 パターンであり、 下部が軟部組織放射線パターンである。 こ こで、 該 2点を結ぶライ ンにより近似された軟部組織パターンを用いて、 軟部組織の補正を行う。 即ち、 透過放射線パターンから該近似され る軟部組織パターンを減算することにより、 該被検骨自体の透過放 射線に関する修正パターン (図 2 8 C ) が得られる。 被検骨周辺軟 部組織の厚さ分布に応じて、 曲線又は直線を使う。 例えば、 第 2中 手骨、 橈骨遠位端の計測を行う際、 透過放射線量パターンの中で骨 に対応する軟部組織がほぼ均一であるので直線を使うのが好適であ る。
こ こで、 パラメ一夕 D及び B M Dの求め方を述べる。
Dは骨幅で、 上記骨と軟部組織の境界点 2点の距離から求められ る。 一方、 B M D ( Bone Mi neral Dens i ty) は上記修正パターンを 標準物質の厚みと透過光量の関係に基づいて標準物質の厚みに変換 してから、 骨幅の全領域または骨幅の中央から割り振った領域の面 積 Sを求め、 該領域幅 (骨幅 Dまたは骨幅の中央から割り振った領 域幅 X ) で割ることで、 図 2 8 D、 図 2 8 Eのように計算できる。
従って、 被検骨を正しく、 精度よく計測を行うためには、 まず、 骨と軟部組織の境界を正しく、 精度よく求めることが必要である。 なぜなら、 境界点がずれると、 例えば骨量指標 B M Dも変わるから である。
次に、 本実施例における骨と軟部組織の境界の求め方を詳細に述 ベる。 図 2 9に示すように、 必要に応じてまず、 透過放射線量パ夕 一ンの各値をパターンの代表値を用いて標準化を行う。 一般に被検- 骨の部位又は個人差により、 透過放射線パターンが異なる。 また X 線フィルムの濃度や、 X線フィル厶の照射する光源強度の変化によ り、 パターンのレベルも変わる。 骨と軟部組織を求める各段階、 所 定の条件を設定するため、 標準化を行う ことが有効である。 例えば、
8 b i t A Z Dに対して、 代表値をパターンの最大値として、 こ の最大値を 2 5 5になるようにパターンの各値をリニァに拡大する のが好適である。
次に、 本実施例における被検骨と軟部組織との境界点を求めるた めに、 1 次近傍点としての傾きの変化の大きい点又は該 1 次近傍点 の近傍点の求め方を述べる。 一般的に数学的に連続的なパターンに 対しては、 2階微分による傾きの変化の大きい点が容易に求められ る。 しかし、 本実施例ではデジタル処理系での離散的なパターンに 対して、 被検骨により 2階差分及び 又は 2階差分と 1 階差分の積 を用いる方が、 目的とする傾きの変化の大きい点又はその近傍点を 正しく求められることを見出した。
こ こで、 図 3 0のような皮質骨の軟部組織の変化が小さ く、 骨と 軟部組織のはっきり区別できるパターンでは、 骨と軟部組織の境界 又はその近傍に対応する透過放射線パターンの 2階差分 y〃 のピー クを左から検索しある値以上の y〃 点のピークとして、 また右から 検索しある値以上の y〃 のピークとして容易に検出できる。
しかし、 軟部組織の変化の大きいパターン (図 3 1 ) では、 骨と 軟部組織の境界点又はその近傍に対応するピーク (A ) と軟部組織 自身の変化により ピーク ( B ) の差が小さ く、 数多くのパターンに 対して一定の条件で該境界点又はその近傍点を正しく検出するのは 不可能であつた。
かかる問題に対して、 本発明者らは鋭意研究した結果、 2階差分 と 1 階差分の積を利用するのが好適であることを見い出し本発明に- 至った。 ここで数学的に 1 階差分と 2階差分の積を式で示すと次の ようになる。
y' (Xi )y" (x > )=
[y(xi +k/2)- y(Xi - k/2)] { [y(xi +k)-y(Xi) ] - [y(x>)
-y(x, -k) ] }
( k = 2、 4、 6 · · · 被検骨の透過放射線量パターンに応じて決 定する)
即ち、 傾きの変化の大きい点だけを強調でき、 図 3 1 の例では求 めている境界点又はその近傍点に対応するピーク (Α' ) と外乱と なっている軟部組織自身の変化により ピーク (Β ' ) の差が、 2階 差分だけを利用する場合と比べて 5倍になり、 目的とする境界点ま たは近傍点を正しく検出することは容易となった。
次に被検骨の周辺に他の骨が存在する場合について述べる。 先ず、 前に記述した 1 階差分と 2階差分の積及び 2階差分を用いる方法で 求めた複数の候補点から被検骨の候補点を選択する必要がある。 例 えば、 図 3 2に示すように橈骨を測定する場合、 候補点 1 (尺骨部) と候補点 2 (橈骨部) が求められるが、 軟部組織のレベルが骨より 低いので、 透過放射線量パターンのレベルの低い方をとることで、 被検骨の候補点 2を選択することができる。 これにより、 被検骨周 辺に他の骨があって測定ライ ンが該被検骨にかかっていても、 測定 ライ ンの長さを調節する必要なく、 被検骨を測定できるようになつ た。
以上に述べたように、 離散的な (デジタル系) パターンから、 骨 と軟部組織の境界 (傾きの変化の大きい点) を求める際、 2階差分 及び 又は 1 階差分と 2階差分の積を利用して 1次近傍点 (候補点 ともいう) .が求められるが、 この候補点は差分の数又は透過放射線 量パターンによって正しい骨と軟部組織の境界点とのズレが生じる- ことが判つた。
方法 1 として、 この候補点 (図 3 3の ) をそのまま使って、 骨と軟部組織からなる透過放射線量パターンから軟部組織を補正し たが、 骨量の計測の誤差が生じ、 よい精度で計測できない場合があ つた。 図 3 3では、 B M Dは全骨幅領域で計算する場合、 この方法 で誤差の量が示されている。
方法 2 としてこの補点から、 さらにより正確な候補点を求めて、 骨と軟部組織からなる透過放射線量パターンから軟部組織を補正す る。 その新たな候補点の求め方は図 3 3に示す。 即ち、 候補点より 被検骨の中心方向へ傾きの最大点の近傍で 1 次回帰直線を求め、 骨 の中心から遠ざかる方向へ所定の領域で 1 次回帰直線を求め、 回帰 直線の交点 ( P 2 )を新たな候補点とする。
図 3 3に示すように、 方法 1 と比べて、 骨量計測におけるデータ 処理の誤差が小さ くなったが、 正しい境界点を求めるという意味で 必要な精度が満たされていない場合がある。 この問題の解決のため さらに研究した結果、 直線回帰領域の設定及び直線回帰の繰り返し 処理により、 上記の問題を解決できさらにょいデータ処理の計測精 度が得られることを見い出した。
次にその内容について図 3 4、 3 5を用いながら詳述する。 まず 本発明にいう所定の範囲 ( 1 ) 〜 ( 4 ) について説明する。 即ち図 3 4 に示す如く所定の範囲 ( 1 ) は被検骨の透過放射線量パターン から近傍点を求める際、 被検骨及び差分の数によって、 統計的な手 段を用いて決定される。 例えば、 橈骨遠位端の場合、 差分の数が 1 1 の場合、 (サンプリ ング 6 3 . 5 〃mの場合、 約 0 . 7 m m長) である場合が好適である。 所定の範囲 ( 2 ) は、 骨のある側で、 傾 きの変化の大きい点の近傍点 (図 3 2でピーク 1、 ピーク 2に対応 する) を使うのが好適である。 なぜなら、 図 3 3の左側に示すよう- に不適当な範囲 (方法 2で傾き最大点の近傍) で回帰することが避 けられるのである。
図 3 5 に示すように、 他の骨の影響が大きい場合には、 傾きの変 化の小さい所定の範囲 ( 4 ) で回帰を行うのが望ましい。 何故なら ば、 被検骨又は被検者によって、 被検骨の周りに軟骨が成長してい るので、 パターンが緩やかに変化していることがある。 即ち、 所定 の範囲 ( 3 ) は近傍点から 1 階差分と 2階差分の積が所定の値より 小さい点までとすればよい。 ここで所定の値は例えば、 橈骨遠位端 の場合、 透過放射線量パターンを標準化した後、 1 階差分と 2階差 分の数は両方とも 1 1 の時、 1 とすれば好適である。 また、 被検骨 の周辺に他の骨が存在する場合、 図 3 5の例に示すように所定の範 囲 ( 4 ) を橈骨と尺骨の距離によって決定する。 橈骨と尺骨の距離 が短い場合 (例えば、 0. 5 mm) は所定の範囲 ( 4 ) での回帰の 変わりに、 該範囲でのパターンの平均値を求め、 該平均を通る一定 の放射線量の直線を求めることが望ま しい。
上記処理を 1 回だけで行っても、 十分な精度が得られない図 3 6 のようなパターンに対して、 複数回の回帰を行わなければならない。 図 3 6 は、 上記の方法で、 候補点 P 1 から 1 回目回帰による新た な候補点 P 2が求められる。 さらに新たな候補点 P 2から、 新たな 候補点 P 3が求められる。 かく して P 1→ P 2→ P 3→ P (正しい 境界点) に近付く ことが判る。 なお、 回帰処理の回数は被検透過放 射線量パターン及び要求される計測精度によって決定される。
図 3 6の如き橈骨に関するパターンを用いて骨量指標 B MDを求 めた場合、 別途にマニュアルで正しいと思われる境界点を用いて得 た B MD値との差が、 上記方法 ( 1 ) で 3 4 %、 1 回直線回帰で 3 . 2 %、 2回直線回帰で 1 . 1 %であった。
被検骨に放射線を照射することにより得られる透過放射線量に基- づく影像を入力するための影像入力手段としては、 X線写真フィル ムの上面又は下面から帯条光源 (L E D) によりフイルムに照射し、 その透過光をライ ンセンサ (C C D) で読み取るものが挙げられる。
また、 入力された影像に関して被検部における計測ラインに沿つ て該被検部の透過放射線量に関するパターンを求める手段と、 該パ ターンにおいて該被検骨の両端部での軟部組織との境界点 2点を求 めて、 該 2点を結ぶラインにより近似される軟部組織に対応した透 過放射線量に関する領域を該パターンから減算することにより該被 検骨自体の透過放射線量に関する修正パターンを得るための手段と、 該修正パターンを用いて該被検骨の計測のための演算処理を行う演 算手段としては、 演算処理のための演算プログラムが入力された R 〇 IV [及び演算. 一時記憶のための RAMから構成されるマイクロコ ンピュー夕等のコンピュー夕手段が挙げられる。
本実施例に係る骨計測方法をフローチヤ一卜で例示すると図 3 7 のようになる。 本実施例に係る骨計測装置の好ましい実施態様例は 既述した図 7の装置によって形成できる。 すなわち、 自動読み取り 部 1 1 はライ ンセンサー (C C D) をフィルム移動方向に直角に並 ベて X線写真フィルムの上面又は下面から帯状光源 (L E D) によ りフィルムを照射し、 その透過光をライ ンセンサー上に焦点を結ぶ ように配置したロッ ドレンズにより集光し、 その X線フィルム濃度 に応じた透過光の強度等の信号を得るようにすると同時にラインセ ンサ一及び帯状光源と直角方向に微少移動することのできるパルス モータを用いた微少フィルム走行手段を具備している。
フィルムフィ一ドコ ン トローラーはかかる X線写真フィルムの特 定部位にしぼって透過光の検知を可能にしたり、 フィルムを所定の 速度で間欠的に走行させることを制御するための制御手段である。 C CD ドライバ一は、 C CDに蓄積されたデータを所定のタイ ミ ン- グで取り出せるように制御する機能を有するものである。 又は L E Dコン トローラは、 X線写真フィルムの濃淡のレベルに合わせて光 源の強さを調節するための光源の光強度調節手段である。
図 3 8 は、 図 7の装置における骨計測データ処理部 1 2における C R Tなる画像表示手段に拡大されて表示された橈骨の例である。 1 が表示画面であり、 2が橈骨であり、 3、 4、 5、 6が骨計測の ため必要とされる基準ボイ ン トの位置を示すものである。 具体的に は 3、 4の中点と 5、 6の中点を結びこれに垂線を 3から所定の位 置にとり基準測定ライ ンとするのが位置再現性を確保するのに好適 である。 そのポイ ン ト入力手段としては、 カーソル位置表示、 指示 制御手段や、 ライ トペン型入力手段、 夕ツチパネルにより外部より 入力する方法等があげられる。
図 7の装置における自動読み取り部 1 1 によって読み取られたデ 一夕群がデータ処理部 1 2におけるイメージ入出力部及びイメージ メモリーから主としてなる影像記憶手段によって記憶されて、 記憶 された影像に関するデータ群は、 C R T C及び C R Tから主として なる画像表示手段によって拡大された被検骨のパターンとして表示 される。
更に、 本実施例の計測装置に含まれる演算手段としては、 ポイン ト入力手段により入力された基準ポイ ン トを基準として、 影像記憶 手段に記憶された被検骨の影像における測定すべき所定の位置を決 定し、 かかる所定位置での被検骨の影像に関する記憶データ群を用 いて骨測定のための演算を行うことができるものであればいかなる ものであってもよい。 その例としては骨計測のための演算プログラ ムが入力された R O M及び演算 · 一時記憶のための R A Mから構成 されるマイクロコンピューター等のコンピュータ一手段があげられ る 上述した本実施例の具体例では X線写真フ イ ルムを用いたものを 示したが、 X線イメージセンサ一上で被検骨に X線を照射して画像 化する装置等にも本発明は容易に適用できる。
かかる本実施例に係る装置の場合の、 X線撮影から骨計測までの 流れを実施するシステムは既述した図 1 0のシステムで実現するこ とができる。 X線源 2 0からの X線を被検骨 1 9 と共に X線ィメー ジセンサーに直接 X線を照射して画像化する装置においては、 従来 の X線撮影法における X線写真フィルムを挟み込んだ力セッテの代 わりにイメージングプレー ト 2 1 を使用して X線撮影を行い、 レ一 ザ一光照射手段 2 2および光検知センサ一 2 3により該イメージン グプレー ト 2 1 に蓄積記録された X線情報にレーザー光を照射する こ とで X線強度に比例した情報を光信号として読み取るこ とができ る。 画像処理装置 2 5 によって、 読み取った光電情報を A Z D変換 して被検骨の X線像 2 4を得て、 該 X線像をもとに、 本実施例にお ける骨計測方法及び装置と同等な骨計測を行う ことができる。
また本実施例には、 被検骨に 7線を照射して得られる透過 7線量 に基づく影像を検出して骨計測を行うフォ トン · アブソープシオメ ト リ一によるものも含まれる。
本実施例によれば、 画像読み取りの際に自動的に骨と軟部組織と の境界を正しく検出できるので、 海綿骨の豊富な骨等の精度よい骨 計測をすることが容易にできる優れた効果が得られる。
以上、 本発明を種々の実施例に基づいて記載したが、 本発明は、 添付の請求の範囲に記載した本発明の技術的思想と精神の範囲で種 々改変、 変更が可能なことは言うまでもない。

Claims

求 の 範 囲
1 . 被検骨の放射線撮影により得られる影像を用いて該被検骨 についての骨計測を行う方法において、
( i ) 該被検骨の影像における関心領域において骨頭部 2点と骨 幹部 2点を指定しそれぞれの中点を結んで骨軸を求める工程と、
( i i ) 該骨頭部 2点及びその中点のいずれかの点を基準に該骨軸 に沿つて所定の距離だけ離れた位置に骨軸に垂直な基準測定ライン を設定する工程と、
( i i i ) 該基準測定ライン又はその近傍の単数又は複数の測定ラ ィ ンに沿って該被検骨の透過放射線量に関するパターンを得る工程 と、
( i v) 該パターンを用いて所定の演算処理を行い該被検骨の骨計 測を行う工程とを有することを特徴とする骨計測方法。
2 . 該被検骨が橈骨であって、 該所定の距離が中手骨の長さを 基準としたものである請求項 1 に記載の骨計測方法。
3 . 該影像が厚さの変化している標準物質と共に X線撮影され た被検骨の X線写真フィルムに光を照射して得られる透過光量の検 知により得られる影像であり、
前記パターンを得る工程が標準物質の厚みと透過光量の関係に基 づいて該被検骨影像の透過放射線量に関するパターンを該標準物質 の厚みに変換することを含む請求項 1 に記載の骨計測方法。
4. 前記複数の測定ラインにそって該被検骨の透過放射線量に 関して得た複数のパターンの群から一部のパターン群を用いて平滑 化し、
同様に別々の他の一部のパターン群に就いて同様な平滑化を繰り 返すことによって複数の平滑化パターンを得るようにし、 該複数の平滑化パターンの各々に就いて、 所定の演算処理を行つ て骨計測のためのパラメータ群を複数個得るようにし、
該複数のパラメータ群を所定の条件で処理して被検骨の計測を行 ラ、
ことを特徴とする請求項 1 に記載の骨計測方法。
5. 前記所定の条件での処理が、 所定の標準値と個々のパラメ 一夕群とを比較し、 該標準値から所定量以上はなれたパラメータ群 を除いたパラメ一夕群に就いて各々パラメ一夕の平均値を求めるこ とを含む請求項 4 に記載の骨計測方法。
6. 該標準値が、 該平滑化パターンにおける骨幅に関するもの である請求項 5 に記載の骨計測方法。
7. 前記で得た複数の平滑化パターンの各々に就き、 該被検骨 の両端部での軟部組織との境界点 2点を求め、 該 2点を結ぶライ ン により近似される軟部組織に対応した透過放射線量に関するパター ン部分を該各平滑パターンから減算することにより該被検骨自体の 透過放射線量に関する修正パターンを得るようにし、 該修正パ夕一 ンを用いて演算処理して該被検骨の計測を行うようにすることを特 徴とする請求項 4 に記載の骨計測方法。
8. 前記被検骨の骨幅に基づいて予め定められた部分領域での み該パターンを用いて前記所定の演算処理して該被検骨の計測を行 う請求項 4に記載の骨計測方法。
9. 前記被検骨の骨幅に基づいて予め定められた部分領域が、 該被検骨における骨幅の中央から割り振った海綿骨に対応した領域 である請求項 8 に記載の骨計測方法。
1 0 . 該複数の平滑化パター ンの各々に就き、 該被検骨の両端 部での軟部組織との境界点 2点の少なく とも 1 点を求めるとき、 該 各平滑化パターンにおいて 1 次近傍点を求め、 該 1次近傍点より被- 検骨の中心方向に所定の範囲 ( 1 ) だけスキップして所定の範囲 ( 2 ) で内側 1次回帰直線を求め、 更に、 該 1次近傍点より被検骨 の中心から遠ざかる方向に所定の範囲 ( 3 ) だけスキップして所定 の範囲 ( 4 ) で外側 1次回帰直線を求め、 該内側 1次回帰直線と外 側 1次回帰直線の交点を 2次近傍点とし、 新たな近傍点が所定の条 件を満たすようになるまでかかる処理を繰り返すものである請求項 7に記載の骨計測方法。
1 1. 該 1次近傍点を求めることが、 該各平滑化パターンにお ける 2階差分値及び/又は 2階差分値と 1階差分値の積を用いるも のである請求項 1 0に記載の骨計測方法。
1 2. 被検骨の放射線撮影により得られる影像を用いて該被検 骨についての骨計測を行うための装置において、
( i ) 該被検骨の影像における関心領域において骨頭部 2点と骨 幹部 2点を指定し、 夫々の中点を結んで骨軸を求める手段と、
(ii) 該骨頭部 2点及びその中点のいずれかの点を基準に該骨軸 に沿って所定の距離だけ離れた位置に骨軸に垂直な基準測定ライ ン を設定する手段と、
(iii ) 該基準測定ライ ン又はその近傍の単数又は複数の測定ラ ィ ンに沿って該被検骨の透過放射線量に関するパターンを得る手段 と、
(iv) 該パターンを用いて所定の演算処理を行い該被検骨の骨計 測を行う手段と、
を具備したことを特徴とする骨計測装置。
1 3. 前記パターンを用いて所定の演算処理を行い該被検骨の 骨計測を行う手段は、 前記被検骨の骨幅に基づいて予め定められた 部分領域でのみ前記パターンを演算処理して該被検骨の計測を行う 手段である請求項 1 2に記載の骨計測装置。 .
1 4 . 前記パターンを用いて.所定の演算処理を行い該被検骨の 骨計測を行う手段は、
( i ) 前記複数の測定ライ ンに沿って該被検骨の透過放射線量に 関するパターンを得る手段によって得た複数のパターンをパターン 群として得て、 該パターン群の一部の群を用いて平滑化するこ とを 別々の部分群に就いて繰り返すことによって複数の平滑化パターン を得るための手段と、
( ϋ ) 該複数の平滑化パターンの各々について所定の演算処理を 行い骨計測のためのパラメ一タ群を得るための手段と、
( iii ) 該複数のパラメータ群を所定の条件で処理して被検骨の計 測を行う演算手段とを、
具備することを特徴とした請求項 1 2に記載の骨計測装置。
1 5 . 前記パターンを用いて所定の演算処理を行い該被検骨の 骨計測を行う手段は、
( i ) 前記複数の測定ライ ンに沿って該被検骨の透過放射線量に 関するパターンを得る手段によって得た複数のパターンの各々にお いて該被検骨の両端部での軟部組織との境界点 2点を求めて、 該 2 点を結ぶラインにより近似される軟部組織に対応した透過放射線量 に関するパターン部分を該パターンから減算することにより該被検 骨自体の透過放射線量に関する各々の修正パターンを得るための手 段と、
( ϋ ) 該各々の修正パターンを用いて該被検骨の計測のための演 算処理を行う演算手段と、
を具備してなることを特徴とする請求項 1 2に記載の骨計測装置。
1 6 . 被検骨の放射線撮影により得られる影像を用いて該被検骨 についての骨計測を行う方法において、
該被検骨についての影像の被検部で単数又は複数の異なる計測ラ- イ ンに沿って該被検骨の透過放射線量に関するパターンを測定する 工程と、
該被検骨の骨幅に基づいて予め定められた部分領域でのみ該パ夕 ーンを演算処理して該被検骨の計測を行う工程と、
を具備したことを特徴とする骨計測方法。
1 7 . 該被検骨の骨幅に基づいて予め定められた部分領域が、 該 被検骨における骨幅の中央から割り振った海綿骨に対応した領域で ある請求項 1 6 に記載の骨計測方法。
1 8 . 該被検骨の骨計測が、 厚さが変化している標準物質と共に 撮影された被検骨の X線写真フィルムに光を照射して得られる透過 光量を検知する影像読み取りによるものであって、
前記演算処理して被検骨の計測を行う工程が、 該 X線フィルムか ら得られる標準物質の厚みと透過光量の関係に基づいて該パターン を標準物質の厚みに変換することを含むものである請求項 1 6 に記 載の骨計測方法。
1 9 . 被検骨の放射線撮影により得られる影像を用いて該被検骨 についての骨計測を行うための装置において、
該被検骨についての影像の被検部で単数又は複数の異なる計測ラ ィ ンに沿って該被検骨の透過放射線量に関するパターンを測定する ための手段と、
該被検骨の骨幅に基づいて予め定められた部分領域でのみ該パ夕 ―ンを演算処理して該被検骨の計測を行う手段と、
を具備したことを特徴とする骨計測装置。
2 0 . 被検骨の放射線撮影により得られる影像を用いて該被検骨 についての骨計測を行う方法において、
(1)該被検骨についての影像における被検部の予め定めた複数の実 質上異なるライ ンに沿って各々の透過放射量に関するバターンを測. 定して透過放射線量パターン群を得て、 該パターン群の一部の群を 用いて平滑化することを別々の部分群について繰り返すことによつ て複数の平滑化パター ンを得る工程と、
(2)該複数の平滑化パターンの各々について所定の演算処理を行な い骨計測のためのパラメータ群を複数得る工程と、
(3)該複数のパラメ一夕群を所定の条件で処理して被検骨の計測を 行う工程と、
を備えたことを特徴とする骨計測方法。
2 1 . 該被検骨の骨計測が、 厚さが変化している標準物質と共に 撮影された被検骨の X線写真フィルムに光を照射して得られる透過 光量を検知する影像読み取りによるものであって、 該透過放射線量 に関するパターンが被検骨の濃度パターンであって、 該所定の演算 処理が該 X線写真フィルムから得られる標準物質の厚みと透過光量 の関係に基づいて該平滑化パターンを標準物質の厚みに変換する処 理を含むものである請求項 2 0に記載の骨計測方法。
2 2 . 被検骨の放射線撮影により得られる影像を用いて該被検骨 についての骨計測を行うための装置において、
(1)該被検骨の影像における被検部の予め定めた複数の実質上異な るラインに沿って各々透過放射線量に関するパターンを測定して透 過放射線量パターン群を得て、 該パターン群の一部の群を用いて平 滑化することを別々の部分群について繰り返すことによって複数の 平滑化パターンを得るための手段と、
(2)該複数の平滑化パターンの各々について所定の演算処理を行な い骨計測のためのパラメ一夕群を複数得るための手段と、
(3)該複数のパラメ一夕群を所定の条件で処理して被検骨の計測を 行うための手段と、
を具備することを特徴とした骨計測装置。 . 2 3 · 骨計測方法であって、
(1)被検骨に放射線を照射するこ とにより得られる透過放射線量に 基づく影像を入力するための影像入力工程と、
(2)入力された影像に関して被検部における計測ライ ンに沿って該 被検部の透過放射線量に関するパターンを求める工程と、
(3)該パターンにおいて該被検骨の両端部での軟部組織との境界点 2点を求める工程と、
(4)前記 2点を結ぶライ ンにより近似される軟部組織に対応した透 過放射線量に関するパターン部分を該パターンから減算することに より該被検骨自体の透過放射線量に関する修正パターンを得る工程 と、
(5)該修正パターンを用いて演算処理して該被検骨の計測を行うェ 程と、
を有した骨計測方法。
2 4 . 該パターンにおいて該被検骨の両端部での軟部組織との境 界点 2点の少なく とも 1 点を求める工程が、
該パターンにおいて 1次近傍点を求め、 該 1 次近傍点より被検骨 の中心方向に所定の範囲 ( 1 ) だけスキップして所定の範囲 ( 2 ) で内側 1 次回帰直線を求め、 さらに該 1 次近傍点より被検骨の中心 から遠ざかる方向に所定の範囲 ( 3 ) だけスキップして所定の範囲 ( 4 ) で外側 1 次回帰直線を求め、 該内側 1 次回帰直線と外側 1 次 回帰直線の交点を 2次近傍点とし、 新たな近傍点が所定の条件を満 たすようになるまで斯かる処理を繰り返すものである請求項 2 3に 記載の骨計測方法。
2 5 . 骨計測装置であって、
(1)被検骨に放射線を照射することにより得られる透過放射線量に 基づく影像を入力するための影像入力手段と、 - (2)入力された影像に関して被検部における計測ライ ンに沿って該 被検部の透過放射線量に関するパターンを求める手段と、
(3)該パターンにおいて該被検骨の両端部での軟部組織との境界点 2点を求め、 該 2点を結ぶラインにより近似される軟部組織に対応 した透過放射線量に関するパター ン部分を該パターンから減算する こ とにより該被検骨自体の透過放射線量に関する修正パターンを得 るための手段と、
(4)該修正パターンを用いて該被検骨の計測のための演算処理を行 う演算手段と、 - を具備したことを特徴とする骨計測装置。
PCT/JP1994/000688 1993-04-23 1994-04-25 Osteometry and osteometric apparatus WO1994024938A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69422130T DE69422130T2 (de) 1993-04-23 1994-04-25 Osteometrie und osteometrische vorrichtung
EP94913815A EP0648467B1 (en) 1993-04-23 1994-04-25 Osteometry and osteometric apparatus
US08/351,282 US5602935A (en) 1993-04-23 1994-04-25 Bone morphometric method using radiation patterns along measuring lines related to a bone axis and apparatus for carrying out the same

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP5/97629 1993-04-23
JP9762993 1993-04-23
JP5/99411 1993-04-26
JP9941193 1993-04-26
JP5/101080 1993-04-27
JP10108093 1993-04-27
JP15888793 1993-06-29
JP5/158887 1993-06-29
JP31813293 1993-12-17
JP5/318132 1993-12-17
JP5/318135 1993-12-17
JP5/318134 1993-12-17
JP31813393 1993-12-17
JP5/318133 1993-12-17
JP31813593 1993-12-17
JP31813493 1993-12-17

Publications (1)

Publication Number Publication Date
WO1994024938A1 true WO1994024938A1 (en) 1994-11-10

Family

ID=27572914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000688 WO1994024938A1 (en) 1993-04-23 1994-04-25 Osteometry and osteometric apparatus

Country Status (5)

Country Link
US (1) US5602935A (ja)
EP (1) EP0648467B1 (ja)
CA (1) CA2138648A1 (ja)
DE (1) DE69422130T2 (ja)
WO (1) WO1994024938A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287538B2 (en) 2008-01-14 2012-10-16 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US8906022B2 (en) 2010-03-08 2014-12-09 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
US8961518B2 (en) 2010-01-20 2015-02-24 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
US9730739B2 (en) 2010-01-15 2017-08-15 Conventus Orthopaedics, Inc. Rotary-rigid orthopaedic rod
US10022132B2 (en) 2013-12-12 2018-07-17 Conventus Orthopaedics, Inc. Tissue displacement tools and methods
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509074A (ja) * 1994-11-23 1998-09-08 ルナー コーポレイション フィルムカセット付き骨濃度計
US6141437A (en) * 1995-11-22 2000-10-31 Arch Development Corporation CAD method, computer and storage medium for automated detection of lung nodules in digital chest images
CA2201057C (en) * 1996-03-29 2002-01-01 Kenji Morimoto A method of processing a sectional image of a sample bone including a cortical bone portion and a cancellous bone portion
US6411729B1 (en) 1996-05-06 2002-06-25 Torsana Osteoporosis Diagnostics A/S Method of estimating skeletal status
GB9609814D0 (en) * 1996-05-10 1996-07-17 Osteometer Meditech As Bone densitometry apparatus
JP2947170B2 (ja) * 1996-05-29 1999-09-13 日本電気株式会社 線対称図形整形装置
GB9702202D0 (en) * 1997-02-04 1997-03-26 Osteometer Meditech As Diagnosis of arthritic conditions
JPH10314147A (ja) * 1997-05-22 1998-12-02 Masayuki Hayashi 頸椎変位量測定方法及び頸椎変位量測定装置
US6442287B1 (en) * 1998-08-28 2002-08-27 Arch Development Corporation Method and system for the computerized analysis of bone mass and structure
US6625303B1 (en) * 1999-02-01 2003-09-23 Eastman Kodak Company Method for automatically locating an image pattern in digital images using eigenvector analysis
US7046834B2 (en) * 2001-05-09 2006-05-16 Electronics And Telecommunications Research Institute Method for measuring bone mineral density by using X-ray image
WO2004008964A1 (en) * 2002-07-22 2004-01-29 Compumed, Inc. Method, code, and system for assaying joint deformity
DE102004026524A1 (de) * 2004-05-25 2005-12-22 Aesculap Ag & Co. Kg Verfahren zur Bestimmung eines knocheneigenen Koordinatensystems
EP2544609A4 (en) * 2010-03-08 2017-05-31 Conventus Orthopaedics, Inc. Apparatus and methods for bone repair
EP2624211A1 (en) 2012-02-06 2013-08-07 Samsung Medison Co., Ltd. Image processing apparatus and method
JP6109482B2 (ja) * 2012-02-24 2017-04-05 東芝メディカルシステムズ株式会社 X線ct装置
CN103284749B (zh) * 2012-02-24 2015-09-09 株式会社东芝 医用图像处理装置
EP2964093A4 (en) * 2013-03-06 2016-12-07 Marika Pty Ltd EVALUATION OF OPTICAL DENSITY GRADIENTS AND VARIATIONS
JP5882277B2 (ja) * 2013-09-26 2016-03-09 日立アロカメディカル株式会社 骨密度測定装置
US10062165B2 (en) * 2014-10-29 2018-08-28 Shimadzu Corporation Image processing device
JP6563671B2 (ja) * 2015-04-08 2019-08-21 株式会社日立製作所 骨塩量測定装置
US20190076195A1 (en) * 2015-11-11 2019-03-14 Think Surgical, Inc. Articulating laser incision indication system
US10631881B2 (en) 2017-03-09 2020-04-28 Flower Orthopedics Corporation Plating depth gauge and countersink instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183748A (ja) * 1986-02-07 1987-08-12 帝人株式会社 骨のx線写真像の評価方法
JPH0484939A (ja) * 1990-07-26 1992-03-18 Teijin Ltd 骨計測方法及び装置
JPH0595940A (ja) * 1991-10-14 1993-04-20 Fuji Photo Film Co Ltd 骨計測装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3687519T2 (de) * 1985-11-11 1993-05-13 Teijin Ltd Verfahren zur beurteilung von knochen.
WO1990009761A1 (en) * 1989-02-23 1990-09-07 Teijin Limited Method of measuring bone shape, apparatus therefor and system for evaluating bone
US5138553A (en) * 1989-03-10 1992-08-11 Expert Image Systems, Inc. Method and apparatus for bone mineral measurement using a measurement region defined at a selected distance from a styloid bone tip
US5228068A (en) * 1992-09-14 1993-07-13 Lunar Corporation Device and method for automated determination and analysis of bone density and vertebral morphology
ATE169808T1 (de) * 1992-06-04 1998-09-15 Teijin Ltd Verfahren und gerät zur knochen-messung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183748A (ja) * 1986-02-07 1987-08-12 帝人株式会社 骨のx線写真像の評価方法
JPH0484939A (ja) * 1990-07-26 1992-03-18 Teijin Ltd 骨計測方法及び装置
JPH0595940A (ja) * 1991-10-14 1993-04-20 Fuji Photo Film Co Ltd 骨計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0648467A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287538B2 (en) 2008-01-14 2012-10-16 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US11399878B2 (en) 2008-01-14 2022-08-02 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US10603087B2 (en) 2008-01-14 2020-03-31 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US9517093B2 (en) 2008-01-14 2016-12-13 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US9788870B2 (en) 2008-01-14 2017-10-17 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US9730739B2 (en) 2010-01-15 2017-08-15 Conventus Orthopaedics, Inc. Rotary-rigid orthopaedic rod
US9848889B2 (en) 2010-01-20 2017-12-26 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
US8961518B2 (en) 2010-01-20 2015-02-24 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
US9993277B2 (en) 2010-03-08 2018-06-12 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
US8906022B2 (en) 2010-03-08 2014-12-09 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
US10022132B2 (en) 2013-12-12 2018-07-17 Conventus Orthopaedics, Inc. Tissue displacement tools and methods
US10076342B2 (en) 2013-12-12 2018-09-18 Conventus Orthopaedics, Inc. Tissue displacement tools and methods
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone

Also Published As

Publication number Publication date
CA2138648A1 (en) 1994-11-10
EP0648467A4 (en) 1995-08-09
EP0648467A1 (en) 1995-04-19
DE69422130T2 (de) 2000-07-20
EP0648467B1 (en) 1999-12-15
US5602935A (en) 1997-02-11
DE69422130D1 (de) 2000-01-20

Similar Documents

Publication Publication Date Title
WO1994024938A1 (en) Osteometry and osteometric apparatus
US4903203A (en) Bone evaluation method
US6064716A (en) Plain x-ray bone densitometry apparatus and method
AU667127B2 (en) Automated determination and analysis of bone morphology
US6038281A (en) Bone densitometer with improved point characterization
US6324252B2 (en) Plain x-ray bone densitometry apparatus and method
US6570955B1 (en) Digital x-ray material testing and bone densitometry apparatus and method
Böttcher et al. Peripheral bone status in rheumatoid arthritis evaluated by digital X-ray radiogrammetry and compared with multisite quantitative ultrasound
US20070116348A1 (en) Adaptive image processing and display for digital and computed radiography images
US7046834B2 (en) Method for measuring bone mineral density by using X-ray image
JP2793502B2 (ja) 骨塩量測定方法および装置
JP2771452B2 (ja) 骨計測方法及びそのための装置
Trouerbach et al. Microdensitometric analysis of bone structures in X-ray images
JP2983421B2 (ja) 骨計測方法及び装置
JP2732979B2 (ja) 骨計測装置
JP2812875B2 (ja) 骨計測方法
JP2812873B2 (ja) 骨計測方法
Rockoff et al. Quantitation of relevant image information: automated radiographic bone trabecular characterization
JP2771451B2 (ja) 骨計測方法及び装置
JP2608128B2 (ja) 骨計測装置及び骨評価システム
Kramer et al. Quantitative analysis of the volar ulnar corner of the distal radius: a reference for intraoperative distal radius fracture reduction
RU2136214C1 (ru) Способ определения содержания минерального вещества в костной ткани
JP2732982B2 (ja) 画像読み取り方法及び装置
Kanthi et al. Quantitative Analysis of Age-Associated Bone Mineral Density Variations via Automated Segmentation: Using CT Scans and Radon Transform to Accurately Examine and Assess the Vertebrae
Tothill Photon absorptiometry

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2138648

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994913815

Country of ref document: EP

Ref document number: 08351282

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994913815

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994913815

Country of ref document: EP