WO1994023321A1 - Terminal of optical fiber, method of its manufacture, and structure for connecting the terminal and optical device - Google Patents

Terminal of optical fiber, method of its manufacture, and structure for connecting the terminal and optical device Download PDF

Info

Publication number
WO1994023321A1
WO1994023321A1 PCT/JP1994/000536 JP9400536W WO9423321A1 WO 1994023321 A1 WO1994023321 A1 WO 1994023321A1 JP 9400536 W JP9400536 W JP 9400536W WO 9423321 A1 WO9423321 A1 WO 9423321A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
terminal
ferrule
connecting member
Prior art date
Application number
PCT/JP1994/000536
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Shigematsu
Hisaharu Yanagawa
Takeo Shimizu
Shiro Nakamura
Kazuya Fukasawa
Tomohiro Watanabe
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to DE69424979T priority Critical patent/DE69424979T2/en
Priority to EP94910583A priority patent/EP0644442B1/en
Priority to US08/335,769 priority patent/US5548675A/en
Priority to CA002135777A priority patent/CA2135777C/en
Publication of WO1994023321A1 publication Critical patent/WO1994023321A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3865Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using moulding techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4237Welding

Definitions

  • Optical fiber terminal part method of manufacturing the same, and connection structure between terminal part and optical device
  • the present invention relates to an optical fiber terminal unit, a method of manufacturing the same, and a connection structure between the terminal unit and an optical device.
  • the optical connection between an optical device such as an optical waveguide component or an optical semiconductor device (LD array: LED array) and an optical device ⁇ c is conventionally defined by a plurality of optical devices.
  • the optical devices are arranged such that the terminals are arranged at predetermined pitches and the optical device ends and the optical devices are abutted or opposed to each other.
  • alignment is performed by aligning the optical axis between the optical fiber 'and the optical device, and the two are bonded with an adhesive such as a thermosetting type or a light (ultraviolet) setting type. After facing each other at a predetermined distance, align the optical axis between the optical fiber and the optical device.
  • the optical fiber is placed on the metal base. It is performed with welding fixed
  • connection between an optical fiber terminal and an optical device for example, the connection between an optical fiber terminal and an optical waveguide is known. It is.
  • the optical fiber terminal section has a plurality of optical fibers in the sheath. It is equipped with tape-shaped pipes arranged at a fixed pitch and a pair of nozzles.
  • the filter has a butted end face facing or butted with the waveguide component, and a plurality of fiber holes formed in parallel with a predetermined pitch. Then, one end of an optical fiber is inserted into each of the fiber holes and is fixed by bonding, and each optical fiber is exposed to the abutting end face.
  • the above-mentioned plastic is the most inexpensive plastic molding using a mold and is a general manufacturing method.
  • the optical waveguide component has a waveguide substrate and a waveguide layer, or further has a cover adhered on the waveguide layer.
  • One or more waveguides are formed, and each waveguide is exposed at the butted end faces on both sides.
  • the cover is formed by approximating the area and shape of the butt end face of the optical waveguide component to the butt end face of the optical fiber end part. This is to secure an effective area for bonding between the parts.
  • optical fiber terminal section After the optical fiber terminal section abuts the optical waveguide component and the butt end face, aligns the optical fiber with the corresponding waveguide, and then bonds the optical fiber component to the optical waveguide component. It is done.
  • the optical fiber terminal and the optical waveguide component are bonded to each other, especially in order to suppress the connection loss at the optical fiber terminal to be small, the optical fiber is particularly required.
  • the optical fiber and the corresponding waveguide are aligned with a submicron order, and both are aligned while maintaining the alignment state. Short It must be fixed in time.
  • thermosetting adhesive such as an epoxy resin that cures at a high speed is used.
  • the ends of the optical fiber and the optical waveguide component are abutted so that the optical path is not interrupted between each optical fiber and the corresponding waveguide.
  • the optical fiber and the waveguide, which are exposed on the end face, are bonded together except for the waveguide.
  • connection between an optical fiber terminal portion having another structure and an optical waveguide component is known.
  • This optical fiber terminal portion includes a tape fiber, a V-groove substrate, and a holding cover, and abutted end faces are formed at both ends.
  • a tape fiber a plurality of optical fibers are arranged at a predetermined pitch in the coating, and the coating is removed from the end to expose the end of each optical fiber. Then, the exposed end of each optical fiber is positioned in each V-groove formed on the V-groove substrate, and each optical fiber is covered by covering the holding groove. Fixed on V-groove substrate.
  • each optical fiber is exposed to the butted end face, and the end face is polished together with the V-groove substrate and the holding cover.
  • Optically transparent material such as steel is used.
  • the optical waveguide component is configured in the same manner as the optical waveguide component of the first example, and the can is an optically transparent material such as glass. Then, the end of the optical fiber and the optical waveguide component are abutted with each other and the end faces are joined to each other, and the alignment is performed between the corresponding optical fiber and the waveguide. After that, they are bonded with a light-curing adhesive while irradiating curing light (ultraviolet light).
  • the transmitted ultraviolet rays are harder than the high-speed curing thermosetting adhesive such as epoxy resin. Since the adhesive is cured in a shorter time, the optical fiber terminal and the optical waveguide component are quickly bonded at the butt end face.
  • connection between the optical fiber terminal of the second example and an optical semiconductor is also known.
  • the optical semiconductor has a heat sink disposed between an LD array in which a plurality of laser diode elements are arranged in a line and a carrier.
  • the carrier element is electrically connected to the carrier by a bonding wire, and the carrier is fixed to a metal mount base.
  • the optical fiber terminal is welded to the metal base via the sub-base, and each optical fiber of the tape fiber is connected to the corresponding laser diode.
  • the base is welded to the mount base in alignment with the base element.
  • the optical waveguide component is, for example, For re co down silica-based optical waveguide component is deposited on a quartz-based waveguide layer on a substrate, about 2 have contact to the linear expansion coefficient of about 2 0 ° C 4 X 1 0 -. Ru 6 Der.
  • the light off ⁇ Lee carbonochloridate terminal unit, plus switch Tsu linear expansion coefficient of the click that make up the full error rule is, For example - dioxide silicic element (S i 0 2) microparticles If the E port key sheet resin containing as a full I la chromatography TMG, about 2 0 ° to have you to C 5 X 1 0 - Ru 6 or on der.
  • the fin rail of the optical fiber terminal is manufactured by plastic molding using a mold, so that a plurality of fiber holes are used. If the coefficient of linear expansion in the array direction differs from the coefficient of linear expansion in the direction perpendicular to the array direction, warpage or other deformations may occur in the phenol layer. There was another problem that it was not possible to form fiber holes with high precision.
  • the optical fiber terminal has conventionally been combined with epoxy resin to add a filler to the resin to reduce the coefficient of linear expansion and improve strength and dimensional accuracy. And the use of optically opaque materials. For this reason, it has been impossible to connect a conventional optical fiber terminal to an optical waveguide component using a light-curing adhesive.
  • the optical fiber terminals shown in the second and third examples are made of a V-groove substrate or a material for the holding boss, in addition to the above-mentioned glass, and silicon. It is also possible to use optically transparent materials such as plastics and ceramics.
  • the optical fiber terminal is assembled by positioning each fine optical fiber in the V-groove, and fixing each optical fiber to the V-groove substrate with a holding knob. For this reason, workability in the assembling work was poor. Since the optical fiber is fixed with the presser cover, the optical fiber is pressed excessively by the presser cover.
  • an optical fiber terminal portion which can be molded with high precision, and thus has excellent connectivity with an optical device, a method of manufacturing the same, and a terminal therefor. It is intended to provide a connection structure between a unit and an optical device.
  • Another object of the present invention is to provide an optical fiber terminal part which is easy to manufacture and inexpensive, and which is hard to break the optical fiber, a method of manufacturing the same, and a terminal part and an optical device.
  • the purpose of this is to provide a connection structure. Disclosure of invention
  • an abutting end face facing or abutting an optical device, and a single fiber are provided. It has a hole or a plurality of fiber holes formed in parallel at a predetermined pitch, and one end of an optical fiber is inserted into each of the fiber holes and bonded and fixed.
  • the optical fiber is connected to an optical device, the optical fiber is connected to an optical device, and the optical fiber is formed of a synthetic resin molded product.
  • at least one connecting member is provided on the end face side of the butt with the optical device.
  • the optical fiber terminal is easy to manufacture, and is connected to the optical device via the connecting member, thereby improving the connectivity. You.
  • the connecting member has a linear expansion coefficient CM smaller than a linear expansion coefficient it FP of the synthetic resin constituting the ferrule.
  • the optical fiber terminal portion suppresses the thermal expansion and shrinkage of the synthetic resin of which the connecting member constitutes the X rule when the ferrule is molded.
  • connection member is an optically transparent material, for example, glass, which is at least partially exposed on the outer periphery of the butt end face of the fuller.
  • the optical fiber terminal is connected to the optical device in a short time using a light-curing adhesive because light transmits through the connecting member.
  • the ferrule is a molded article made of a thermosetting, thermoplastic or photocurable synthetic resin.
  • the optical fiber terminal portion is molded at low cost using a metal mold with a plastic rule.
  • the synthetic resin constituting the ferrule contains silicon dioxide as a coupling agent and a filler.
  • the synthetic resin constituting the above-mentioned cellulose has a refractive index close to the refractive index of the above-mentioned silicon dioxide. More specifically, a coloring component or a carbohydrate is preferred. Optically transparent material that does not contain copper.
  • the optical fiber terminal section is connected to an optical device, the irradiation light is more easily transmitted, and the light-curing adhesive used is shorter. Hardens in time.
  • the absorption of the illuminating light by the phosphor is reduced, so that the heat generated at the end of the optical fiber is also reduced, and the dimensional change due to the temperature rise is reduced. Can be suppressed.
  • the connecting member has a coefficient of linear expansion a CM
  • the coefficient of linear expansion of the constituent materials of the optical device. . I was related to, I «C M - aon I ⁇ 5 X 10- 6 glass satisfies the relationship, and have Ru Oh causes Awa can correspond setting only metallic member and the collision in the position you of the light Device Lee be welded
  • the coefficient of linear expansion MC of the connection member is the coefficient of linear expansion ⁇ ⁇ of the metal member. Seki was I a we- non-M to. A metal that satisfies the relationship 5 x 10 " 6 .
  • the difference in the linear expansion coefficient between the optical fiber terminal and the optical device due to the temporal change in temperature is small, and the optical fiber terminal is exposed to the temperature change.
  • the dimensional change is suppressed to a small extent, and a decrease in performance or loss of function such as a decrease in connection loss over time is suppressed.
  • the connecting member has an opening surrounding the periphery of the butt end face of the ferrule, and the opening is bonded to the ferrule by an optical fiber.
  • the number of fibers is ⁇
  • the area ratio of the connecting member occupying the entire butt end face is set to an appropriate value.
  • a pair of template plates is disposed between the pair of template plates, and a plurality of optical fibers are inserted therethrough.
  • a connecting member is arranged on at least one end of a core having a plurality of forming pins for forming a fiber hole to be formed.
  • a synthetic resin is injected into a cavity formed between the set of template, the core, and the connecting member to form a plastic, and each of the plastics is formed.
  • the optical fiber is inserted through the fiber holes and bonded to each other, thereby fixing one end of each of the optical fibers.
  • the optical fiber terminal is manufactured so that the optical fiber is not easily broken and the manufacturing is easy and inexpensive.
  • the optical fiber terminal section is connected to the optical device so as to face or face-to-face. This is the configuration that was used.
  • the optical device is an optical waveguide component in which a plurality of waveguides having the same arrangement pitch as the plurality of optical fibers are formed.
  • the optical fiber terminal and the optical waveguide component are connected in a short time.
  • the optical device is an optical waveguide component comprising a metal tube formed with a plurality of waveguides having the same arrangement pitch as the plurality of optical fans and surrounding an outer periphery thereof.
  • the connection structure is welded to the optical fiber terminal described in any one of claims 9 to 12 at the end face of the metal cylinder.
  • the optical device is an optical semiconductor in which a plurality of laser diode elements are arranged, and the optical device is provided on a first metal base and an optical fiber.
  • the terminals are arranged on the second metal base so as to face each other and to be aligned between the respective optical fibers and the corresponding laser diode elements.
  • a connection structure in which the first and second metal bases are welded to each other.
  • This provides a connection structure in which the optical waveguide component or the optical semiconductor and the optical fiber terminal are connected by welding.
  • optical transparent means that the transmittance of visible light and ultraviolet light is at least 10% or more.
  • FIG. 1 illustrates a first embodiment of the present invention.
  • FIG. 1 is a perspective view showing an optical fiber terminal part and a connection structure between the terminal part and an optical waveguide component.
  • Fig. 3 is used for the optical fiber terminal section in Fig. 1.
  • Figure 4 is a perspective view of the nozzle
  • Figure 4 is a front view of the nozzle shown in Figure 3
  • Figure 5 is a cross-sectional view of the nozzle shown in Figure 3
  • Figure 6 is a view of the nozzle shown in Figure 3.
  • Fig. 7 is a perspective view of a molding die used for manufacturing the rule.
  • FIG. 1 is a perspective view showing an optical fiber terminal part and a connection structure between the terminal part and an optical waveguide component.
  • Fig. 3 is used for the optical fiber terminal section in Fig. 1.
  • FIG. 6 is a perspective view showing a state in which a tape fiber is inserted into a rule manufactured by the molding die shown in FIG. 6, and FIG. 8 is a diagram in which an adhesive is injected into the rule shown in FIG.
  • FIG. 9 is a perspective view showing a state in which a tape fiber is fixed to form an optical fiber terminal, and FIG. 9 shows a connection structure in which the optical fiber terminal is bonded to an optical waveguide component.
  • Fig. 10 is a cross-sectional view
  • Fig. 10 is a characteristic diagram showing the relationship between the vertical length a of the opening of the connecting member and the cracking rate (%) of the connecting member in the molded phenol rail
  • Fig. 11 is the same.
  • FIG. 14 to FIG. 19 are characteristic diagrams showing a relationship with time
  • FIG. 14 is a perspective view showing a modified example of the optical fiber terminal section
  • FIG. 14 is a perspective view showing a modified example of the optical fiber terminal section
  • FIG. 20 is a view for explaining a second embodiment of the present invention.
  • FIG. 21 is a perspective view illustrating an optical fiber terminal portion and a connection between the terminal portion and the optical waveguide component.
  • FIG. 21 is a perspective view illustrating a connection structure between the optical fiber terminal portion and the optical waveguide component.
  • FIG. 22 is a perspective view showing an optical fiber terminal section and a connection structure between the terminal section and the optical semiconductor for explaining the third embodiment of the present invention.
  • an optical fiber terminal portion (hereinafter, referred to as a “terminal portion”) 10 of the present embodiment has a connecting member 12 and a tape fiber connected to a fin rail 11. Since the fiber 13 is attached, the terminal portion 10 is bonded to the optical waveguide component 20 using an ultraviolet-curable adhesive.
  • Ferrule 11 is formed of an optically transparent synthetic resin having a small heat shrinkage.
  • a synthetic resin for example, 70% by weight or more of silicon dioxide particles are mixed as a filler, and the refractive index of the silicon dioxide is the refractive index of the silicon dioxide. substantially equal said in rather a linear expansion coefficient a FP is 1 2 X 1 0 - had use of Oh Ru thermosetting 6 d poke sheet resin.
  • thermosetting synthetic resin for example, the epoxy resin contains a force-upping agent for increasing the adhesive strength between the silicon dioxide particles. Accordingly, the later-described components. The adhesion between the glass member and the connection member 12 is also high.
  • the phenol rail 11 is a hollow member having a cavity 11 b formed at the rear of the main body 11 a and protrudes from the optical waveguide component 20 at the front.
  • a protruding portion 11c to be fitted is protruded from the body, and an opening 11d communicating with the cavity 11b is formed at an upper portion.
  • the protruding part 1 1 c has a front face that protrudes from the optical waveguide component 20. It is a mating end face 11e, and a concave groove 11f is formed in the periphery.
  • a connection member 12 described later is provided around the concave groove 11f (see FIGS. 1 and 7). As shown in FIGS.
  • the protruding portion 11c has four fiber holes 11g that open to the butt end face lie and communicate with the cavity 11b. Has been formed. Further, as shown in FIGS. 5 and 7, the protruding portion 11c is provided with an optical fiber 13a, which will be described later, at a position adjacent to each fiber hole 11g. A fiber guide 11h is formed to guide the porcelain hole llg to improve penetration.
  • the shapes of the protruding portion 11c and the concave groove 11f are determined by the shape of an opening 12a of the connecting member 12, which will be described later, and the concave groove lf is not necessarily required.
  • Connecting member 12 is optically transparent, Ri linear expansion coefficient of the CM 3. a 0 to 3.6 1 0 6 pie-les-click scan glass or al, waveguides of the optical waveguide component 20 you later 22a. Linear expansion ratio a in the array direction. Uses something close to D.
  • the connection member 12 has an opening 12a surrounding the periphery of the butt end face lie, and is formed into a quadrangular frame shape that abuts with the optical waveguide component 20 together with the butt end face lie. ing.
  • the dimensions of the opening 12a affect the strength and formability of the connection member 12, the time of ultraviolet irradiation when connecting to the optical waveguide component 20, and the like, and the optical fiber shown in FIG.
  • the pitch is small.
  • the connecting member 12 is cracked by the filling pressure of the synthetic resin when the seal 11 is molded, or the connecting member 12 is damaged due to a heat cycle or the like. For this reason, there arise problems such as a decrease in the reliability of the manufactured pen rails 11 and eventually of the terminal unit 10.
  • FIG. 6 shows a molding die used for manufacturing the ferrule 11, which is disposed between the lower die plate 30, the upper die plate 40 and the both die plates 30, 40. It has a core 50.
  • the lower template 30 is moved up and down by a driving means (not shown), and the upper template 40 is opened or clamped to the upper template 40.
  • the lower mold plate 30 is provided with convex portions 30a for positioning the upper mold plate 40 at four corners of a square ⁇ , and a molding die 3 32 at the center.
  • a concave portion 30b is formed in which is disposed.
  • the lower mold plate 30 is provided with runners 30c, 30c from both sides toward the recess 30b.
  • the molding die 31 is a flat plate-shaped member disposed at one end of the concave portion 30b, and has a V-groove 31a on the upper surface for positioning a tip of a molding pin 50d, which will be described later, of the core 50. It has been done.
  • the molding die 32 is a U-shaped member that is disposed substantially at the center of the concave portion 30 b in which the molding die 31 is disposed and supports a body 50 a of the core 50, which will be described later. When the mold plate 40 and the mold plate are clamped, a cavity (not shown) for forming the ferrule 11 is formed at the front portion thereof.
  • the molding die 32 positions a later-described flange portion 50b of the core 50 disposed in the concave portion 30b.
  • the upper template 40 is disposed between the convex portions 30a, 30a of the lower template 30 on both sides of the rectangular plate, and the upper template 40 is attached to the lower template 40.
  • Flange to be positioned with respect to 30 40a, 40 a is provided on the body, and a concave portion 40 b in which the molds 41 and 42 are arranged is formed in the center.
  • the upper mold plate 40 is shown with its upper and lower surfaces inverted for clarity of the configuration. In practice, the upper mold plate 40 is inverted as shown by the one-dot chain line.
  • the lower mold plate 30 is opposed to the lower mold plate 30.
  • the molding dies 41 and 42 are the same as the molding dies except that a V-groove for positioning a molding pin 50 d described later is not formed on the clamping surface 41 a of the molding dies 41. Since the configuration is the same as 31, 32, in the following description and drawings, the corresponding parts are denoted by the same reference numerals, and detailed description is omitted.
  • the core 50 has a flange 50b formed at the rear part of the main body 50a and a hollow lib of the vinyl rail 11 formed at the front part of the main body 50a.
  • a core part 50c and four forming pins 50d for forming the fiber hole llg are protrudingly provided.
  • the forming dies 31 and 32 are formed in the concave portions 30 b of the lower die plate 30 and the concave portions 40 b of the upper die plate 40.
  • the molds 41 and 42 are arranged respectively.
  • the forming pin 50 d is inserted through the connecting member 12, and the connecting member 12 is inserted into the concave portion 30 b between the molds 31 and 32, and the flange portion is formed.
  • 50 b is placed in the concave portion 30 b at the rear of the molding die 32, and the tip of each molding pin 50 d is positioned in the V groove 31 a, and the core 50 is placed on the lower mold plate 30.
  • the lower mold plate 30 is raised by the driving means (not shown), and the corresponding flat of the upper mold plate 40 is formed between the convex portions 30a, 30a. Place flange 40a and tighten the mold.
  • the connecting member 12 and the core 50 are disposed between the concave groove 30 b of the lower template 30 and the concave portion 40 b of the upper template 40, and are provided on the inner portion of the connecting member 12.
  • a predetermined gap for forming the protrusion 11c of the ferrule 11 is formed by inserting the base end of each molding pin 50d.
  • the main body 11a of the ferrule 11 is formed between the lower mold plate 30 and the upper mold plate 40 between the molding dies 32 and 42 located at the rear portion of the connection member 12 not shown. The cavities are formed.
  • the optically transparent epoxy resin mixed with silicon dioxide particles having a small heat shrinkage ratio using the runners 30c, 30c of the lower template 30. Is injected into the above-mentioned cavity, and the rule 11 is formed by forming a transformer.
  • the lower mold plate 30 is lowered to open the mold, and the molded ferrule 11 is taken out.
  • the thus-produced plastic rule 11 is processed as a terminal portion 10 by inserting a tape fiber from the rear side.
  • a tape fiber is a ribbon-like optical fiber in which a plurality of optical fibers are arranged in parallel at a predetermined pitch, and these optical fibers are coated. Fiber bundle.
  • the terminal of the tape fiber is processed to remove the coating by a predetermined length, and the exposed individual optical fibers are filtered. ⁇ Insert into the cavity 11 b from the rear side of the nozzle 11.
  • the phenol rail 11 is inserted into the corresponding fiber hole 11 g of each optical fiber of the tape fiber 13, * 13a.
  • the adhesive A is injected into the cavity 11b from the opening 1Id, and the tape fin 13 is fixed to the main body 11a together with the optical fin 13a. It is.
  • the optical fiber 13a may protrude from the protruding portion 11c, but the protruding optical fiber 13a has a butt end face li.
  • the end surface is polished by tubing or the like together with the butt end surface lie.
  • the linear expansion coefficient a CM of the connecting member 12 is set to be smaller than the linear expansion coefficient ⁇ of the rule 11.
  • the connecting member 12 suppresses the expansion in the width direction and the vertical direction of the protruding portion 11c, and suppresses the shrinkage at the time of cooling after the molding.
  • the fiber hole 11 g opened in the butted end face 11 e is high. Formed with precision.
  • the plurality of optical fibers 13a exposed by removing the coating are protected by being buried in the adhesive A in the cavities 11b of the ferrule 11 (see FIG. 9). Even if stress is applied via the inverter 13, there is no disconnection.
  • the terminal section 10 manufactured in this manner is coated with an ultraviolet-curing adhesive, for example, an epoxy-based or acrylic-based adhesive, between the optical waveguide component 20 and the terminal section 10. It can be adhered in a short time by irradiating ultraviolet rays.
  • an ultraviolet-curing adhesive for example, an epoxy-based or acrylic-based adhesive
  • a waveguide layer 22 made of quartz having a thickness of 10 m is formed on a silicon substrate 21 having a thickness of 1 mm by, for example, a flame deposition method.
  • the upper pi les click Sugara scan or et ing cover 23 that have a near-have linear expansion coefficient in the sheet re co down is placed over the linear expansion coefficient a 0 D about 2.
  • 4 X 1 0 _ 6 parts, that are Tsu Do the longitudinal ends butting end face.
  • the waveguide layer 22 four waveguides 22a are formed in the longitudinal direction in parallel with the plurality of optical fibers 13a at the same pitch.
  • the canopy 23 is designed to make the area and shape of the butted end face of the optical waveguide component 20 approximate to the end face of the terminal part 10, thereby providing an adhesive between the terminal part 10 It secures an effective area.
  • the optical waveguide component 20 may be one having no power bar 23 only by forming the waveguide layer 22 on the silicon substrate 21, and The waveguide 22a to be formed may be singular. In this bonding, the terminal section 10 and the optical waveguide component 20 are bonded by aligning the corresponding optical fiber 13a and the waveguide 22a with a sub-mixer. You.
  • the irradiated ultraviolet light passes through the portions of the rule 11 and the connection member 12, so that the adhesive is cured in a short time.
  • the corresponding optical fin 13a and the waveguide 22a are aligned in the submicron order.
  • the portion of the connecting member 12 is more securely bonded by the ultraviolet curing adhesive Auv .
  • the connecting member 12 is a linear expansion coefficient CM is at 3. 0 ⁇ _3. 6 x 1 0 _ 6, the optical waveguide component 20 linear expansion
  • the ratio a on is about 2.4 X 10 " 6 , and I a CM — satisfies the relationship of D
  • connection structure described above the difference in the linear expansion coefficient between the terminal portion 10 and the optical waveguide component 20 due to the temporal change in temperature is small, and thus the connection structure is not affected by the temperature change.
  • the dimensional change is suppressed to a small extent, and the alignment state between each optical fin 13a and the waveguide 22a is not disturbed. Therefore, by adopting the above-described connection structure, it is possible to prevent performance deterioration and loss of function such as a decrease in cycling loss over time between the terminal section 10 and the optical waveguide component 20. And can be done.
  • the opening 12a of the connecting member 12 made of a pyrex glass has a vertical length a of 0.2 to 5 mm in a range of 0.2 to 0 mm. set the type of value, eight full ⁇ i carbonochloridate hole ll g the full et rules 11 that have a 90, 150, 200 and 250 kg-f / 4 copies Ri pressure that different respective cm 2 Under the above conditions, 30 pieces were each formed by the optically transparent epoxy resin mixed with silicon dioxide particles having a small heat shrinkage rate.
  • the pass rate (%) was determined to be acceptable if there were no troubles such as bending or bending of the molding pin, and that the 30 pinholes were formed. It was calculated as a percentage of
  • HC characteristic fluctuation width (dB) shown in FIG. 11 a total of 10 molded plastic rules 11 corresponding to the vertical length a were hit. The average fluctuation of HC characteristics was shown.
  • each of the 10 filters 11 randomly extracted from the group of 20 pieces of the molded pipes 11 having different vertical lengths a was inserted into the optical waveguide.
  • An ultraviolet-curing adhesive was applied between the component 20 and was bonded by irradiating ultraviolet rays.
  • the irradiation time (min.) Required for the bonding at this time was measured in relation to the vertical length a of the opening 12a, and the results shown in Fig. 13 were obtained.
  • the vertical length a of the opening 12a is preferably set in the range of 0.2 to 1.0 mm.
  • the connecting member 12 has an opening 12a in which the width b is the same as the width of the phenol rail 11, that is, the connecting member 12 has a structure in which the connecting member 12 is vertically divided into two parts. That is not to say.
  • Hue Hue When the vertical length of the protruding portion 11c of the rule 11 corresponds to the vertical length a of the opening 12a, the yield of the rule 11 can be improved in the same manner as described above. It was possible to manufacture well.
  • connection member 12 was a square frame made of a magnetic glass provided on the end face 11 e of the ferrule 11.
  • the connecting member is provided on the butt end face side and the ultraviolet ray passes through the connecting portion between the terminal portion and the optical waveguide component, the arrangement is not limited to the above-described embodiment. Nor.
  • the connecting member may be arranged so that the outer periphery of the ferrule 11 is surrounded by the connecting member 12 together with the butt end face 11 e as shown in FIG. 14, for example.
  • prismatic connecting members 12 and 12 may be arranged on the upper and lower portions of the X rule 11 corresponding to the bonding portion with the optical waveguide component. No.
  • the connecting members may surround the butt end face lie of the ferrule 11 from above and below, and may be two U-shaped connecting members 14 and 15 each having a prismatic shape.
  • a prismatic contact member 16 arranged in the width direction above the butted end face 11 e of the ferrule 11 may be used.
  • the connecting member 18 may have a shape having an opening 18a surrounding the butted end face lie of the fin 11.
  • the ends of the plurality of optical fibers 13a are exposed and arranged in two steps in the upper and lower stages on the butted end face lie.
  • the terminal section 60 of this embodiment has a connecting member 62 attached to a front part of a ferrule 61 and a tape fiber 63 attached to a phenol rail 61 as shown in FIG. 20. Then, as shown in FIG. 21, it is butt-welded to the optical waveguide component 70.
  • phenol rail 61 is configured substantially in the same manner as the phenol rail 11 described in the first embodiment, a detailed description is given by assigning the reference numerals corresponding to the corresponding parts. Is omitted.
  • the linear expansion coefficient of F p is 1 2 X 1 0 - 6 synthetic resin,
  • the rule 61 since the terminal section 60 and the optical waveguide component 70 are brought into contact with each other by welding, the rule 61 does not need to be optically transparent.
  • the connecting member 62 has an opening 62a surrounding the periphery of the butt end face 61e of the rule 61, and can be welded with a small linear expansion coefficient.
  • Metal for example, with a linear expansion coefficient of aMc power of 2 to 4 X 10 — 6 (a registered trademark of Westinghouse Electric Corp. in the United States) is used to form a rectangular frame. It is molded.
  • connection member 62 suppresses the expansion in the width direction and the vertical direction of the protruding portion 61c, and suppresses the contraction at the time of cooling at the end of molding.
  • the fiber hole 61g opened in the butted end face 61e has high accuracy. It is formed by
  • the plurality of optical fibers 63a of the tape fiber 63 are protected by being buried in an adhesive in the cavity 61b of the rule 61, and the tape fiber 63a is protected. Even if stress is applied via the wire, it will not break.
  • the optical waveguide component 70 surrounds a waveguide layer 72 formed on a 1 mm-thick silicon substrate 71 with a cylindrical square sleeve 73 around the outer periphery together with the silicon substrate 71. Therefore, the both end faces are the butt end face.
  • the waveguide layer 72 is formed in parallel with the four waveguides 72a in the longitudinal direction at the same pitch as the plurality of optical fibers 63a. For example, a flame deposition method using quartz or the like is used. Thus, it is formed to have a thickness of several 10 m.
  • the square sleeve 73 has the same or similar linear expansion coefficient as the tang member 62 and is weldable to the connecting member 62, for example, M having a linear expansion coefficient. Is a sleeve consisting of 2 to 4 X 10 _ 6 components .
  • the square sleeve 73 is formed by approximating the area and shape of the optical waveguide component 70 at the butt end face to the connecting member 62 of the terminal part 60, and The effective welding area between the two is ensured.
  • the terminal section 60 of the present embodiment configured as described above is aligned with the optical waveguide component 70 and aligned between each optical fiber 63a and the corresponding waveguide 72a. I do.
  • the connecting member 62 and the square sleeve 73 are welded at an appropriate welding point P by YAG laser beam welding, and the terminal portion 60 is light-guided. Connect to waveguide component 70.
  • the connection member 62 has a linear expansion coefficient aMC of 2 to 4 ⁇ 10 6 and a linear expansion of the square sleeve 73. Rate ⁇ ⁇ .
  • the linear expansion coefficient of the main part of the optical waveguide component 70 consisting of the silicon substrate 71 and the waveguide layer 72. Satisfies the relationship of about 2.4 1 0 — 6 , I a MC-ao I and 5 x 10 — 6 . For this reason, in the above connection structure, there is little or no difference in the linear expansion coefficient between the terminal portion 60 and the optical waveguide component 70 due to temperature change over time.
  • the terminal portion 65 of this embodiment has a connecting member 67 arranged from the front to the lower portion of the ferrule 66 and a taper on the phenolic hole 66.
  • the fitting 68 is attached to this, and it is butt-welded to the optical waveguide component 75.
  • the finaler 66 is configured in substantially the same manner as the rule 11 described in the first embodiment, and a detailed description thereof will be omitted.
  • connection member 67 has an opening 67a surrounding the periphery of the butted end surface 66e of the ferrule 66, and is a weldable metal having a small linear expansion coefficient, for example, a linear expansion coefficient a Mc of 2 to 5. 4 X 1 0 - Tsu by the 6 co bar Le and that is formed in the side view L-shaped.
  • the opening 67a has a vertical length a (mm) within the range of 0.2a ⁇ 1.0 and a horizontal length b (mm) of the fin 66.
  • the number of the holes 66 g, therefore, the number of optical fibers 68 a constituting the tape fin 68 was N, and the array pitch of the optical fibers 68 a was P (mm).
  • the terminal unit 65 the coefficient of linear expansion of F P by Ri small rather than set of full We rule 66 of the linear expansion coefficient of MC of Sennyo member 67 - the constant was, in the molding of the full We Rule 66
  • the connecting member 67 suppresses expansion in the width direction and the vertical direction of the protruding portion 66c, and suppresses shrinkage during cooling at the end of molding.
  • the fiber hole opened in the butt end face 66e can be formed with high accuracy.
  • the plurality of optical fibers 68a are arranged with high precision.
  • the plurality of optical fibers 68a of the tape fiber 68 are protected by being buried in an adhesive in the cavity 66b of the ferrule 66, and the tape fiber is protected. Even if stress is applied via 68, the wire will not break.
  • a heat sink 78 is arranged between an LD array 76 in which a plurality of laser diode elements are arranged in one row and a carrier 77. Therefore, each laser diode element is electrically connected to the carrier 77 by a bonding wire 79, and the carrier 77 is a metal mount. Fixed to base 80. In here, Ma c down preparative base 80, to use a 2 ⁇ 4 X 1 0 one 6 also the closer to the linear expansion coefficient a MC of linear expansion alpha Micromax beta connection member 67.
  • the terminal section 65 of the present embodiment configured as described above is mounted on a base 69 arranged in abutment with the mount base 80 so as to face the optical semiconductor 75. You. At the time, the base 69 has a linear expansion coefficient ⁇ ⁇ that is close to the linear expansion coefficient MC of the connecting member 67.
  • terminal portion 65 and the base 69 and the base 69 and the mount base 80 are welded at appropriate welding points P by YAG laser beam welding, and the terminal portion 65 is illuminated. Connect to semiconductor 75.
  • connection member 67 coefficient of linear expansion of a MC mountain window down bets based 80 coefficient of linear expansion close to the (linear expansion coefficient ⁇ ⁇ ⁇ ) ⁇ Since the terminal section 65 and the optical semiconductor 75 are connected using a screw 69, the difference in linear expansion coefficient
  • the optical fiber terminal section has excellent connectivity with the optical device, is easy to manufacture, and is hard to be disconnected.
  • the manufacturing method and the connection structure between the terminal unit and the optical device are provided.
  • the optical fiber terminal section becomes ⁇ ⁇
  • the connection member suppresses the thermal expansion and contraction of the synthetic resin when molding the rule. Therefore, the fiber can form the fiber hole with high accuracy.
  • connection member is an optically transparent material that is at least partially exposed on the outer periphery of the abutting end face of the ferrule, such as a glass.
  • the light-curing adhesive is used at the end of the cable, making it possible to quickly connect to the optical device. You can connect.
  • the optical fiber's terminal portion is The phenol can be molded inexpensively using a mold.
  • the optical fiber terminal section becomes the ferrule and the glass. Adhesion between the steel connecting member and the metal member is improved.
  • the synthetic resin constituting the fiber X rule is made of an optically transparent material having a refractive index close to the refractive index of the silicon dioxide
  • the optical fiber terminal portion is When connecting to an optical device, the irradiation light is more likely to penetrate, and the photo-curable adhesive used cures more quickly, reducing the time required for connection work with the optical device. Can be shortened.
  • the synthetic resin that constitutes the X rule is made of a material that does not contain a coloring component or carbon, so that the optical filter is used. Heat generation at the end of the fiber can be reduced, and the dimensional change of the ferrule due to temperature rise can be suppressed.
  • the surrounding member has a linear expansion coefficient a CM that is a linear expansion coefficient of a constituent material of the optical device.
  • a CM that is a linear expansion coefficient of a constituent material of the optical device.
  • Ku 5 X 1 0 6 glass satisfies the relationship, have Ru Ah is combined thrust and the metal member provided on the corresponding to that position of the light Device office soluble
  • the linear expansion coefficient of the connection member ⁇ MC is the metal member The coefficient of linear expansion of ⁇ ⁇ . It should be a metal that satisfies the relationship of I a M c — ⁇ ⁇ 0
  • the difference in the linear expansion coefficient between the optical fiber terminal and the optical device due to the temperature change over time is small.
  • the change is suppressed to a small extent, and it is possible to suppress a decrease in performance and a loss of function, such as a decrease in cycling loss over time.
  • connection member has an opening surrounding the periphery of the butt end face of the X-rule, and the opening is bonded to the optical fin by an optical fin.
  • the length a in the direction orthogonal to the arrangement direction of the optical fibers is 0.2 to 1.O mm
  • the optical device includes a plurality of optical fibers and a plurality of arrangement pitches equal to each other.
  • the optical device is connected to the plurality of optical fibers.
  • An optical waveguide component having a plurality of waveguides having the same row pitch and including a metal tube surrounding the outer periphery, and a connection member made of metal at the end face of the metal tube. And the connection structure is welded.
  • the optical device is an optical semiconductor in which a plurality of laser diode elements are arranged, and the optical device is provided on a first metal base and an optical fiber terminal is provided on a second metal base. On each of the metal bases, and are installed so as to be aligned with each of the optical fins and the corresponding laser diode element.
  • the gun base has a metal base that is welded to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical fiber terminal (10) for optically connecting an optical fiber and an optical device comprises a ferrule (11) having an abutting end (11e) which faces an optical device (20) or abuts on it and a single fiber hole or a plurality of fiber holes which are arranged in parallel at given pitches and through which the ends of optical fibers are passed and fixed with adhesive. The ferrule is a molded product of synthetic resin. At least one connecting member (12) is provided on the abutting end (11e). The linear expansion coefficient of the connecting member (12) is smaller than that of the synthetic resin constituting the ferrule.

Description

明 細 光 フ ァ イ バ端末部、 そ の製造方法及 び端末部 と 光デバイ ス と の接続構造 技術分野  Optical fiber terminal part, method of manufacturing the same, and connection structure between terminal part and optical device
本発明 は、 光 フ ァ イ バ端末部、 そ の製造方法及び端末 部 と光デバイ ス と の接続構造に 関す る。 背景技術  The present invention relates to an optical fiber terminal unit, a method of manufacturing the same, and a connection structure between the terminal unit and an optical device. Background art
光導波路部品 や光半導体素子 ( L D ア レ イ: L E D ァ レ ィ ) 等の光デ ノくイ ス と光 フ ァ イ ノく と の間 の光接 ^ cは、 従来、 複数の光 フ ァ イ バを所定 ピ ッ チで配列 した光 フ ァ ィ ノく端末部 と 光デバイ ス と を突 き合わせた り 対向配置 さ せて行 つ て い る。 そ して , 光 フ ア イ パ' と光デバイ ス と の 間で光軸を軸合わせす る 調心を行い、 両者を熱硬化型や 光 (紫外線) 硬化型等の接着剤で接着 した り . 両者を所 定の間 隔 を お いて対向 さ せ、 光 フ ァ イ バ と光デバイ ス と の間で光軸合わせ、 即 ち . 調心を行 っ た後、 金属製の基 台上に 溶接固定 して行われて い  Conventionally, the optical connection between an optical device such as an optical waveguide component or an optical semiconductor device (LD array: LED array) and an optical device ^ c is conventionally defined by a plurality of optical devices. The optical devices are arranged such that the terminals are arranged at predetermined pitches and the optical device ends and the optical devices are abutted or opposed to each other. Then, alignment is performed by aligning the optical axis between the optical fiber 'and the optical device, and the two are bonded with an adhesive such as a thermosetting type or a light (ultraviolet) setting type. After facing each other at a predetermined distance, align the optical axis between the optical fiber and the optical device. Immediately after the alignment, the optical fiber is placed on the metal base. It is performed with welding fixed
こ の よ う な光 フ ァ イ バ端末部 と光デバイ ス と の接続に 関す る 第一の例 と して、 例え ば、 光 フ ァ イ ノく端末部 と 光 導波路 の接続が知 ら れて い る。  As a first example of such connection between an optical fiber terminal and an optical device, for example, the connection between an optical fiber terminal and an optical waveguide is known. It is.
光 フ ァ ィ ノヾ端末部は、 複数の光 フ ァ イ バが被覆内 に所 定 ピ ッ チ で配列 さ れ た テ ー プ フ ア イ パ' と フ ヱ ノレ 一 ノレ と を 備 え て い る。 フ ヱ ル ー ノレ は、 導波路部 品 と 対 向 あ る い は突 き 合わ さ れ る 突合せ端面 と、 所定 ピ ッ チ で平行 に形 成 さ れ た複数の フ ァ イ バ孔 と を有 し、 前記各 フ ァ イ バ孔 に光 フ ァ イ ノくの一端が挿通 さ れて接着固定 さ れ、 各光 フ ア イ バ は突合せ端面 に 露 出 して い る。 上記 フ ヱ ノレー ルは. 金型 を 用 い た プラ ス チ ッ ク 成形が最 も安価で、 一般的な 製法であ る。 The optical fiber terminal section has a plurality of optical fibers in the sheath. It is equipped with tape-shaped pipes arranged at a fixed pitch and a pair of nozzles. The filter has a butted end face facing or butted with the waveguide component, and a plurality of fiber holes formed in parallel with a predetermined pitch. Then, one end of an optical fiber is inserted into each of the fiber holes and is fixed by bonding, and each optical fiber is exposed to the abutting end face. The above-mentioned plastic is the most inexpensive plastic molding using a mold and is a general manufacturing method.
ま た、 光導波路部品 は、 導波路基板 と導波路層、 あ る いは、 導波路層 の上に接着 さ れ る カ バー を更 に有す る も のがあ り、 導波路層 に は単数あ る い は複数の導波路が形 成 さ れ、 各導波路は両側 の突合せ端面に露出 してい る。 こ こ で、 カバ一 は、 光導波路部品 の突合せ端面に お け る 面積や形状を、 光 フ ァ イ バ端末部の突合せ端面に近似 さ せ る こ と に よ り、 光 フ ァ イ バ端末部 と の間 の接着有効面 積を確保す る も のであ る。  In addition, the optical waveguide component has a waveguide substrate and a waveguide layer, or further has a cover adhered on the waveguide layer. One or more waveguides are formed, and each waveguide is exposed at the butted end faces on both sides. Here, the cover is formed by approximating the area and shape of the butt end face of the optical waveguide component to the butt end face of the optical fiber end part. This is to secure an effective area for bonding between the parts.
上記光 フ ァ イ バ端末部は、 光導波路部品 と 突合せ端面 相互を突 き 合わせ、 各光 フ ァ イ バ と 対応する 導波路 と の 間で調心を行 っ た後、 光導波路部品 と 接着 さ れ る。  After the optical fiber terminal section abuts the optical waveguide component and the butt end face, aligns the optical fiber with the corresponding waveguide, and then bonds the optical fiber component to the optical waveguide component. It is done.
と こ ろ で、 上記光 フ ァ イ バ端末部 と光導波路部品 と を 接着す る 場合、 光 フ ァ イ バ端末に お いて接続損失を小 さ く 抑 え る た め に、 特に、 光 フ ァ イ バが シ ン グルモー ド の と き に は、 光 フ ァ イ バ と 対応す る 導波路 と をサブ ミ ク ロ ン オ ー ダーで調心 し、 調心状態を維持 しなが ら 両者を短 時間 で接着固定す る 必要があ る。 At this time, when the optical fiber terminal and the optical waveguide component are bonded to each other, especially in order to suppress the connection loss at the optical fiber terminal to be small, the optical fiber is particularly required. When the fiber is in the single mode, the optical fiber and the corresponding waveguide are aligned with a submicron order, and both are aligned while maintaining the alignment state. Short It must be fixed in time.
こ の よ う な接着手段 と して は、 高速硬化す る、 例え ば. エ ポ キ シ樹脂等 の熱硬化型接着剤が用 い ら れ る。 そ して. 光 フ ァ イ バ端末部 と 光導波路部品 と は、 各光 フ ァ イ バ と 対応す る 導波路 と の間で光路が遮 ら れ る こ と がな い よ う に、 突合せ端面 に 露出 して い る 光 フ ァ イ バ と 導波路 と を 除 い た部分で接着 さ れ る。  As such an adhesive means, a thermosetting adhesive such as an epoxy resin that cures at a high speed is used. The ends of the optical fiber and the optical waveguide component are abutted so that the optical path is not interrupted between each optical fiber and the corresponding waveguide. The optical fiber and the waveguide, which are exposed on the end face, are bonded together except for the waveguide.
ま た、 第二の例 と して、 他の構造の光 フ ァ イ バ端末部 と光導波路部品 と の接続 も知 ら れて い る。  Also, as a second example, connection between an optical fiber terminal portion having another structure and an optical waveguide component is known.
こ の光 フ ァ イ バ端末部は、 テ ー プ フ ァ イ バ、 V 溝基板 及び押え カ バー を備え て お り、 両端に突合せ端面が形成 さ れて い る。 テ ー プフ ァ イ バ'は、 複数の光 フ ァ イ バが被 覆 内 に所定 ピ ッ チで配列 さ れ、 端部か ら被覆を除去 して 各光 フ ァ イ バの端部を露出 さ せ、 露 出 した各光 フ ァ イ バ の端部を V 溝基板に形成 した各 . V 溝で位置決め し、 押え カ ノく一を被せ る こ と に よ り 各光 フ ァ ィ バを V 溝基板 に 固 定 して い る。  This optical fiber terminal portion includes a tape fiber, a V-groove substrate, and a holding cover, and abutted end faces are formed at both ends. In the tape fiber, a plurality of optical fibers are arranged at a predetermined pitch in the coating, and the coating is removed from the end to expose the end of each optical fiber. Then, the exposed end of each optical fiber is positioned in each V-groove formed on the V-groove substrate, and each optical fiber is covered by covering the holding groove. Fixed on V-groove substrate.
こ こ で、 各光 フ ァ イ バ'は、 端面が突合せ端面に 露出 し、 V 溝基板及 び押え カ バー と共に端面が研磨 さ れてお り、 V 溝基板及 び押え カ バー は、 ガラ ス 等の光学的 に透明 な 素材が使用 さ れて い る。  Here, the end face of each optical fiber is exposed to the butted end face, and the end face is polished together with the V-groove substrate and the holding cover. Optically transparent material such as steel is used.
光導波路部品 は、 前記第一の例 の光導波路部品 と 同様 に構成 さ れてお り、 カ ノ 一 は ガ ラ ス 等の光学的 に 透明 な 素材で あ る。 そ して、 光 フ ァ イ バ'端末部 と 光導波路部品 と は、 突合 せ端面相互を突 き 合わせ、 対応す る 各光 フ ァ イ バ と導波 路 と の 間で調心を行 っ た後、 硬化用 の光 (紫外線) を照 射 し な が ら光硬化型接着剤で接着 さ れ る。 The optical waveguide component is configured in the same manner as the optical waveguide component of the first example, and the can is an optically transparent material such as glass. Then, the end of the optical fiber and the optical waveguide component are abutted with each other and the end faces are joined to each other, and the alignment is performed between the corresponding optical fiber and the waveguide. After that, they are bonded with a light-curing adhesive while irradiating curing light (ultraviolet light).
こ の と き、 V 溝基板及 び押え カバ'一は、 光学的 に透明 な素材であ る ので、 高速硬化する 前記エ ポキ シ樹脂等の 熱硬化型接着剤 に比べ、 透過 し た紫外線が接着剤を よ り 短時間 で硬化 さ せ る の で、 光 フ ァ イ バ端末部 と光導波路 部品 と は、 突合せ端面で迅速 に 接着 さ れ る。  At this time, since the V-groove substrate and the cover cover are optically transparent materials, the transmitted ultraviolet rays are harder than the high-speed curing thermosetting adhesive such as epoxy resin. Since the adhesive is cured in a shorter time, the optical fiber terminal and the optical waveguide component are quickly bonded at the butt end face.
更に、 第三の例 と して、 前記第二の例 の光 フ ァ イ バ端 末部 と 光半導体 と の接続 も知 ら れて い る。  Further, as a third example, a connection between the optical fiber terminal of the second example and an optical semiconductor is also known.
光半導体は、 複数の レ ーザダイ オ ー ド素子を 1 列 に配 列 した L D ア レ イ と キ ャ リ ア と の間 に ヒ ー ト シ ン ク を配 置 し た も ので、 各 レ ーザダイ オ ー ド素子はキ ャ リ ア と の 間がボ ン デ ィ ン グ ワ イ ヤで電気的 に 接続 さ れ、 キ ャ リ ア は金属製のマ ウ ン ト ベ ー ス に 固定 さ れて い る。  The optical semiconductor has a heat sink disposed between an LD array in which a plurality of laser diode elements are arranged in a line and a carrier. The carrier element is electrically connected to the carrier by a bonding wire, and the carrier is fixed to a metal mount base. You.
—方、 光 フ ァ イ バ端末部は、 サブベー ス を介 して金属 製のベー ス に溶接 さ れて お り、 テー プフ ァ イ バ の各光 フ ア イ バを対応す る レ ーザダイ オ ー ド素子 と 調心 して、 ベ — ス がマ ウ ン ト ベ ー ス と 溶接 さ れ る。  On the other hand, the optical fiber terminal is welded to the metal base via the sub-base, and each optical fiber of the tape fiber is connected to the corresponding laser diode. The base is welded to the mount base in alignment with the base element.
と こ ろ で、 上記光 フ ァ イ バ端末部 と光デバイ ス と の接 続に お いて は、 以下の よ う な 問題があ つ た。  At the time, there were the following problems in the connection between the optical fiber terminal and the optical device.
先ず、 第一の例 に示 し た光 フ ァ イ バ端末部 と光導波路 部品 と の接続に お いて は、 光導波路部品が、 例え ば、 シ リ コ ン基板上に 石英系導波路層 を堆積形成 し た石英系光 導波路部品 の場合、 線膨張率は約 2 0 °C に お いて約 2 . 4 X 1 0 —6であ る。 こ れ に対 し、 光 フ ァ イ ノく端末部は、 フ エ ルー ルを構成す る プラ ス チ ッ ク の線膨張率が、 例え ば- 二酸化ケ イ 素(S i 0 2 )微粒子を フ ィ ラ ー ト と して含むェ ポ キ シ系樹脂の場合に は、 約 2 0 °C に お いて 5 X 1 0 — 6以 上であ る。 First, in the connection between the optical fiber terminal and the optical waveguide component shown in the first example, the optical waveguide component is, for example, For re co down silica-based optical waveguide component is deposited on a quartz-based waveguide layer on a substrate, about 2 have contact to the linear expansion coefficient of about 2 0 ° C 4 X 1 0 -. Ru 6 Der. This is to be paired, the light off § Lee carbonochloridate terminal unit, plus switch Tsu linear expansion coefficient of the click that make up the full error rule is, For example - dioxide silicic element (S i 0 2) microparticles If the E port key sheet resin containing as a full I la chromatography TMG, about 2 0 ° to have you to C 5 X 1 0 - Ru 6 or on der.
こ の た め、 光 フ ァ イ バ端末部 と 光導波路部品 と を接続 した後 に、 使用 環境 に お け る 経時的 な 温度変化に伴 う 両 者間 の線膨張率 の差 に よ り、 各導波路 と光 フ ァ イ バ と の 間 の調心状態が乱さ れ、 接続損失の低下等、 性能の低下 や機能の消失を招来す る と い う 問題があ っ た。  For this reason, after connecting the optical fiber terminal and the optical waveguide component, the difference in the linear expansion coefficient between the two due to the temperature change over time in the use environment causes There has been a problem in that the alignment between the waveguides and the optical fiber is disturbed, which leads to a reduction in connection loss and the like, leading to a reduction in performance and loss of function.
ま た、 光 フ ァ イ バ端末部の フ ヱ ノレールは、 金型を用 い た プラ ス チ ッ ク 成形 に よ っ て製造 さ れて い る こ と か ら、 複数の フ ア イ バ孔の配列方向 にお け る 線膨張率 と 配列方 向 に直交す る 方向 に お け る 線膨張率 と が異な る と、 フ エ ノレ一ノレ に そ り 等の変形が発生 して し ま い フ ァ イ バ孔を高 い精度で形成す る こ と がで き な い と い う 問題 も あ つ た。  In addition, the fin rail of the optical fiber terminal is manufactured by plastic molding using a mold, so that a plurality of fiber holes are used. If the coefficient of linear expansion in the array direction differs from the coefficient of linear expansion in the direction perpendicular to the array direction, warpage or other deformations may occur in the phenol layer. There was another problem that it was not possible to form fiber holes with high precision.
更に、 光 フ ァ イ バ端末部の フ ヱ ノレ一ノレは、 従来、 ェ ポ キ シ系樹脂 に線膨張率の僅少化や強度, 寸法精度の向上 を 目 的 に フ ィ ラ ー等を配合 し、 .光学的 に不透明 な素材を 用 いて いた。 こ の た め、 従来の光 フ ァ イ バ端末部は、 光 硬化型 の接着剤 を使用 して光導波路部品 と接続す る に は 無理があ つ た。 一方、 第二, 第三の例 に示 した光 フ ァ イ バ端末部は、 V 溝基板や押 さ え カ ノく 一 の素材 と し て、 前記 し た ガラ ス の他に、 シ リ コ ンやセ ラ ミ ッ ク 等の光学的 に 透明 な素材 を使用 す る こ と も可能で あ る。 In addition, the optical fiber terminal has conventionally been combined with epoxy resin to add a filler to the resin to reduce the coefficient of linear expansion and improve strength and dimensional accuracy. And the use of optically opaque materials. For this reason, it has been impossible to connect a conventional optical fiber terminal to an optical waveguide component using a light-curing adhesive. On the other hand, the optical fiber terminals shown in the second and third examples are made of a V-groove substrate or a material for the holding boss, in addition to the above-mentioned glass, and silicon. It is also possible to use optically transparent materials such as plastics and ceramics.
しか し、 ガ ラ ス, シ リ コ ン及びセ ラ ミ ッ ク は、 いずれ も 硬 く て脆い こ と 力、 ら、 V 溝の研削加工が難 し く、 突合 せ端面 の研磨性が悪い等、 加工 コ ス ト がかか る と い う 問 題があ つ た。  However, glass, silicon, and ceramic are all hard and brittle, and the V-groove is difficult to grind and the abutment end face is poorly polished. However, there was a problem that the processing cost was required.
ま た、 光 フ ァ イ バ端末部は、 .微細 な各光 フ ア イ バを V 溝で位置決め し、 押え カ ノく 一で各光 フ ァ イ バを V 溝基板 に 固定 して組み立て る こ と か ら、 組立作業に お け る 作業 性が悪か っ た。 '- しか も、 押え カバーで各光 フ ァ イ ノ 'を 固定す る 構造で あ る た め、 光 フ ア イ バを押え カ バー で過度に圧迫す る と, The optical fiber terminal is assembled by positioning each fine optical fiber in the V-groove, and fixing each optical fiber to the V-groove substrate with a holding knob. For this reason, workability in the assembling work was poor. Since the optical fiber is fixed with the presser cover, the optical fiber is pressed excessively by the presser cover.
V 溝基板か ら 延出 した各光 フ ア イ バ に応力が作用 した と き に、 光 フ ァ イ バが簡単 に 断線 して し ま う こ とがあ っ た, 本発明 は上記の点 に鑑みて な さ れた も ので、 高 い精度 で成形す る こ と がで き、 従 っ て光デバイ ス と の接続性 に 優れた光 フ ァ イ バ端末部、 そ の製造方法及び端末部 と光 デバイ ス と の接続構造を提供す る こ と を 目 的 と す る。 When stress was applied to each of the optical fibers extending from the V-groove substrate, the optical fibers could be easily disconnected. In view of the above, an optical fiber terminal portion, which can be molded with high precision, and thus has excellent connectivity with an optical device, a method of manufacturing the same, and a terminal therefor. It is intended to provide a connection structure between a unit and an optical device.
本発明 の他の 目 的は、 製造が容易 で安価な う え、 光 フ ア イ バが断線 し に く い光 フ ァ イ バ端末部、 そ の製造方法 及 び端末部 と光デバイ ス と の接続構造を提供す る こ と で あ る。 発明 の 開示 Another object of the present invention is to provide an optical fiber terminal part which is easy to manufacture and inexpensive, and which is hard to break the optical fiber, a method of manufacturing the same, and a terminal part and an optical device. The purpose of this is to provide a connection structure. Disclosure of invention
上記 目 的 を達成す る た め本発明 の光 フ ア イ バ端末部 に よ れば、 光デバイ ス と 対向 あ る いは突 き 合わ さ れ る 突合 せ端面 と、 単数 の フ ァ イ バ孔あ る い は所定 ピ ッ チで並行 に形成 さ れた複数の フ ァ イ バ孔 と を有 し、 前記各 フ ア イ バ孔に光 フ ア イ バの一端が挿通 さ れて接着固定 さ れた フ エ ルー ルを備え、 前記光 フ ァ イ バが光デバイ ス と 光接続 さ れ る 光 フ ァ イ バ端末部 に お いて、 前記 フ ヱ ノレ一ノレは、 合成樹脂の成形体か ら な り、 前記光デバイ ス と の突合せ 端面側 に少な く と も 1 つ の接続部材が設け ら れて い る 構 成 と し た も のであ る。  To achieve the above object, according to the optical fiber terminal of the present invention, an abutting end face facing or abutting an optical device, and a single fiber are provided. It has a hole or a plurality of fiber holes formed in parallel at a predetermined pitch, and one end of an optical fiber is inserted into each of the fiber holes and bonded and fixed. The optical fiber is connected to an optical device, the optical fiber is connected to an optical device, and the optical fiber is formed of a synthetic resin molded product. Thus, at least one connecting member is provided on the end face side of the butt with the optical device.
こ の よ う な構成 と する こ と に よ り、 光 フ ァ イ バ端末部 は製造が簡単で、 接続部材を介 して光デバイ ス と 接続 さ れ る こ と か ら 接続性が向上す る。  With this configuration, the optical fiber terminal is easy to manufacture, and is connected to the optical device via the connecting member, thereby improving the connectivity. You.
好ま し く は、 前記接続部材は、 線膨張率 な C Mも前記 フ エ ルールを構成す る 合成樹脂の線膨張率 it F Pよ り も小 さ く 設定す る。 Preferably, the connecting member has a linear expansion coefficient CM smaller than a linear expansion coefficient it FP of the synthetic resin constituting the ferrule.
こ れ に よ り、 光 フ ァ イ バ端末部は、 フ ルールの成形 時に、 接続部材が フ X ルールを構成す る 合成樹脂の熱膨 張や収縮を抑制 す る。  Accordingly, the optical fiber terminal portion suppresses the thermal expansion and shrinkage of the synthetic resin of which the connecting member constitutes the X rule when the ferrule is molded.
ま た好ま し く は、 前記接続部材は、 前記 フ ル ー ル の 突合せ端面外周 に少な く と も一部が露出 す る 光学的 に透 明 な素材、 例え ば、 ガラ ス と する。 こ れ に よ り、 光 フ ァ イ バ端末部は、 接続部材の部分を 光が透過す る こ と か ら、 光硬化型 の接着剤 を 用 いて、 光 デバイ ス と短時間で接続 さ れ る。 Preferably, the connection member is an optically transparent material, for example, glass, which is at least partially exposed on the outer periphery of the butt end face of the fuller. As a result, the optical fiber terminal is connected to the optical device in a short time using a light-curing adhesive because light transmits through the connecting member. You.
好ま し く は、 前記 フ エ ルールを、 熱硬化性、 熱可塑性 あ る い は光硬化性 の いずれかの合成樹脂か ら な る 成形体 と す る。  Preferably, the ferrule is a molded article made of a thermosetting, thermoplastic or photocurable synthetic resin.
こ れ に よ り、 光 フ ァ イ バ端末部は、 フ ヱ ルールが金型 を用 いて安価 に成形 さ れ る。  Accordingly, the optical fiber terminal portion is molded at low cost using a metal mold with a plastic rule.
ま た好 ま し く は、 前記 フ エ ルールを構成す る 合成樹脂 は、 カ ッ プ リ ン グ剤並びに充填材 と して二酸化ケ イ 素を 含む も の と す る。  Also preferably, the synthetic resin constituting the ferrule contains silicon dioxide as a coupling agent and a filler.
こ れ に よ り、 光 フ ァ イ バ端末部は、 フ ヱ ノレ一ノレ と ガラ ス製の接続部材 と の間 の接着性が向上す る。  This improves the adhesiveness between the optical fiber terminal and the glass connecting member in the optical fiber terminal.
更に、 前記 フ ニ ルールを構成す る 合成樹脂は、 そ の屈 折率を前記二酸化ケ イ 素の屈折率に近い も のが好ま し い < よ り 具体的 に は、 着色成分や カ ー ボ ン を含ま な い光学的 に透明 な素材 と す る。  Further, it is preferable that the synthetic resin constituting the above-mentioned cellulose has a refractive index close to the refractive index of the above-mentioned silicon dioxide. More specifically, a coloring component or a carbohydrate is preferred. Optically transparent material that does not contain copper.
こ れ に よ り、 光 フ ァ イ バ端末部は、 光デバイ ス と 接続 す る と き に 照射光が一層透過 し易 く な り、 使用 す る 光硬 化型 の接着剤が よ り 短時間で硬化す る。 ま た、 照射光の フ エ ノレ一ノレ に よ る 吸収 も 少な く な る ので、 光 フ ァ イ バ端 末部に お け る 発熱 も 少な く で き、 温度上昇に よ る 寸法変 化を抑制で き る。  As a result, when the optical fiber terminal section is connected to an optical device, the irradiation light is more easily transmitted, and the light-curing adhesive used is shorter. Hardens in time. In addition, the absorption of the illuminating light by the phosphor is reduced, so that the heat generated at the end of the optical fiber is also reduced, and the dimensional change due to the temperature rise is reduced. Can be suppressed.
好 ま し く は、 前記接続部材は、 線膨張率 a C Mが、 前記 光デバ イ ス の構成素材の線膨張率 ひ 。。に 関 し、 I « C M — a o n I < 5 X 10— 6の関係 を満たすガラ ス、 あ る い は前記 光デバ イ ス の対応す る 位置 に設 けた金属部材 と 突 き 合わ せて溶接 さ れ、 当該接続部材の線膨張率 ひ M Cが、 前記金 属部材の線膨張率 α Μ。に 関 し I a we— ひ M。 l く 5 X 10" 6 の関係 を満たす金属 と す る。 Preferably, the connecting member has a coefficient of linear expansion a CM The coefficient of linear expansion of the constituent materials of the optical device. . I was related to, I «C M - aon I <5 X 10- 6 glass satisfies the relationship, and have Ru Oh causes Awa can correspond setting only metallic member and the collision in the position you of the light Device Lee be welded The coefficient of linear expansion MC of the connection member is the coefficient of linear expansion α of the metal member. Seki was I a we- non-M to. A metal that satisfies the relationship 5 x 10 " 6 .
こ れ に よ り、 光 フ ァ イ バ端末部は、 経時的 な温度変化 に伴 う 光デバイ ス と の間 に お け る 線膨張率の差が小 さ い た め、 温度変化 に伴 う 寸法変化が小 さ く 抑え ら れ、 経時 的な接続損失の低下等、 性能の低下や機能の消失が抑制 さ れる。  As a result, the difference in the linear expansion coefficient between the optical fiber terminal and the optical device due to the temporal change in temperature is small, and the optical fiber terminal is exposed to the temperature change. The dimensional change is suppressed to a small extent, and a decrease in performance or loss of function such as a decrease in connection loss over time is suppressed.
ま た好ま し く は、 前記接続部材は、 前記 フ エ ルー ルの 突合せ端面の周 囲 を囲繞す る 開 口 を有 し、 該開 口 は前記 フ エ ルールに接着固定 さ れ る 光 フ ァ イ バの数を Ν、 光 フ ァ イ ノくの配列 ピ ッ チ を Ρ と した .と き に、 前記光 フ ア イ ノく の配列方向 に 直交す る 方向 の長 さ a が 0. 2 〜 1. Ό m m、 配列方向 の長 さ b が b = P x ( N - 1 ) + a の関係 を満 たす よ う に設定す る。  Preferably, the connecting member has an opening surrounding the periphery of the butt end face of the ferrule, and the opening is bonded to the ferrule by an optical fiber. The number of fibers is Ν, and the array pitch of the optical fibers is Ρ, where the length a in the direction orthogonal to the array direction of the optical fibers is 0.2. ~ 1. Ό mm, length b in the array direction is set to satisfy the relationship of b = P x (N-1) + a.
こ れ に よ り、 光 フ ァ イ バ端末部は、 突合せ端面全体に 占 め る 接続部材の面積比が適正値に 設定さ れ る。'  As a result, in the optical fiber terminal portion, the area ratio of the connecting member occupying the entire butt end face is set to an appropriate value. '
ま た、 本発明 の光 フ ァ イ バ端末部の製造方法に よ れば、 一組の型板 と、 該一組の型板間 に配置 さ れ、 複数の光 フ ア イ バを挿通す る フ ア イ バ孔を成形す る 複数の成形 ピ ン を有す る 中子の少な く と も一端側 に接続部材を配置 し、 前記一組の型板、 前記中 子及 び前記接続部材 の 間 に 形成 さ れ る キ ヤ ビテ ィ 内 に合成樹脂を注入 して フ ヱ ルールを 成形 し、 該 フ ヱ ルー ノレの前記各 フ ァ イ バ孔に 前記光 フ ァ を それぞれ挿通 さ せて接着す る こ と に よ り、 前記各 光 フ ア イ バの一端を 固定す る 構成 と し た も のであ る。 Further, according to the method for manufacturing an optical fiber terminal portion of the present invention, a pair of template plates is disposed between the pair of template plates, and a plurality of optical fibers are inserted therethrough. A connecting member is arranged on at least one end of a core having a plurality of forming pins for forming a fiber hole to be formed. A synthetic resin is injected into a cavity formed between the set of template, the core, and the connecting member to form a plastic, and each of the plastics is formed. The optical fiber is inserted through the fiber holes and bonded to each other, thereby fixing one end of each of the optical fibers.
こ の こ と に よ っ て、 製造が容易で安価な う え、 光 フ ァ ィ バが断線 し に く ぃ光 フ ア イ バ端末部が製造 さ れ る。  As a result, the optical fiber terminal is manufactured so that the optical fiber is not easily broken and the manufacturing is easy and inexpensive.
更 に、 本発明 の光 フ ァ イ バ端末部 と光デバイ ス と の接 続構造 に よ れば、 光 フ ァ イ バ端末部を光デバイ ス と 対向 あ る い は突 き 合わせて接続 さ れて い る 構成 と した も ので あ る。  Further, according to the connection structure between the optical fiber terminal section and the optical device according to the present invention, the optical fiber terminal section is connected to the optical device so as to face or face-to-face. This is the configuration that was used.
こ の と き、 好 ま し く は、 前記光デバイ ス は、 前記複数 の光 フ ア イ バ と 配列 ピ ッ チが等 しい複数の導波路が形成 さ れた光導波路部品で、 前記 フ ニ ルールに設 けた接続部 材の部分で紫外線硬化型 の接着剤 に よ り 請求の範囲第 3 項乃至第 8 項いずれかに 記載の光 フ ア イ バ端末部 と 接着 さ れて い る 接続構造 と す る。  At this time, preferably, the optical device is an optical waveguide component in which a plurality of waveguides having the same arrangement pitch as the plurality of optical fibers are formed. A connection structure in which the optical fiber terminal according to any one of claims 3 to 8 is bonded to the optical fiber terminal according to any one of claims 3 to 8 by an ultraviolet-curing adhesive at a connection member provided in the rule. And
こ れ に よ り、 光 フ ァ イ バ端末部 と 光導波路部品 と が短 時間で接続 さ れ る。  With this, the optical fiber terminal and the optical waveguide component are connected in a short time.
ま た好 ま し く は、 前記光デバイ ス は、 前記複数の光 フ ァ と 配列 ピ ッ チが等 しい複数の導波路が形成 さ れ、 外周 を 囲繞す る 金属筒を備え た光導波路部品 で、 当該金 属筒 の端面で請求の範囲第 9 項乃至第 1 2項いずれか に記 載の光 フ ァ イ バ端末部 と 溶接 さ れて い る 接続構造 と す る, 更 に 好 ま し く は、 前記光デバイ ス は、 複数 の レ ー ザダ ィ オ ー ド素子を配列 し た光半導体で、 第一の金属ベ ー ス 上に、 ま た、 光 フ ァ イ バ端末部は、 第二の金属ベー ス上 に、 それぞれ対向 さ せ る と共 に、 前記各光 フ ァ イ バ と対 応す る レ ーザダイ ォ ー ド素子 と の 間 で調心 し て設置 さ れ. 前記第一及び第二の金属 ベー スが相互に 溶接 さ れて い る 接続構造 と する。 Preferably, the optical device is an optical waveguide component comprising a metal tube formed with a plurality of waveguides having the same arrangement pitch as the plurality of optical fans and surrounding an outer periphery thereof. The connection structure is welded to the optical fiber terminal described in any one of claims 9 to 12 at the end face of the metal cylinder. More preferably, the optical device is an optical semiconductor in which a plurality of laser diode elements are arranged, and the optical device is provided on a first metal base and an optical fiber. The terminals are arranged on the second metal base so as to face each other and to be aligned between the respective optical fibers and the corresponding laser diode elements. A connection structure in which the first and second metal bases are welded to each other.
こ れ に よ り、 光導波路部品 あ る い は光半導体 と 光 フ ァ ィ バ端末部 と を溶接 に よ り 接続 し た接続構造 と な る。  This provides a connection structure in which the optical waveguide component or the optical semiconductor and the optical fiber terminal are connected by welding.
こ こ で、 本明細書に お いて用 い る 「光学的 に透明」 と は、 可視光線及び紫外線 の透過率が少な く と も 1 0 %以 上であ る こ と を い う。  Here, “optically transparent” as used herein means that the transmittance of visible light and ultraviolet light is at least 10% or more.
ま た、 本明細書の以下 の説明 にお いて使用 す る 各種線 膨張率は、 約 2 0 に お け る 値を い う。 図面の簡単な説明  Further, various linear expansion coefficients used in the following description of the present specification have a value of about 20. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明 の第一の実施例を説明す る も ので、 光 フ τ ィ バ端末部及 び端末部 と光導波路部品 と の接続構造を 示す斜視図、 図 2 は図 1 に示す光 フ ァ イ ノく端末部 に お い て、 フ ユ ル ー ル の突合せ端面側 に設 け ら れ る 接続部材の 正面図、 図 3 は 図 1 の光 フ ァ イ バ端末部に用 い る フ ェ ル — ノレ の斜視図、 図 4 は 図 3 に示す フ エ ノレ ー ル の正面図、 図 5 は 図 3 に示す フ エ ノレ 一 ノレ の断面図、 図 6 は 図 3 に示 す フ エ ルールの製造 に 用 い る 成形金型 の斜視図、 図 7 は 図 6 の成形金型 で製造 さ れ た フ ヱ ル ー ル に テ ー プ フ ア イ バを挿着 した状態を示す斜視図、 図 8 は 図 7 の フ ェ ル ー ルに 接着剤を注入 してテ ー プフ ァ イ バを 固定 し、 光 フ ァ ィ バ端末部 と し た状態を示す斜視図、 図 9 は光 フ ァ イ バ 端末部 と 光導波路部品 と を接着 し た 接続構造 の断面図、 図 1 0 は成形 し た フ エ ノレールに お いて、 接続部材の開 口 の縦長 さ a と 接続部材の割れ率 ( % ) と の関係 を示す特 性図、 図 1 1 は、 同 じ く、 接続部材の 開 口 の縦長 さ a と ヒ ー ト サイ ク ノレ ( H C ) 試験に お け る H C 特性変動幅 ( d B ) と の関係を示す特性図、 図 1 2 は、 同 じ く、 接 繞部材の開 口 の縦長 さ a と成形 ピ ン ト ラ ブルに 関す る 合 格率 ( % ) と の関係 を示す特性図、 図 1 3 は成形 した フ エ ノレー ノレ に お け る 接続部材の開 口 の縦長 さ a と、 成形 し た フ エ ルール と 光導波路部品 と を紫外線硬化型 の接着剤 で接着す る 時 に要 し た紫外線の照射時間 と の 関係を示す 特性図、 図 1 4 乃至図 1 9 は光 フ ァ イ バ端末部の変形例 を示す斜視図、 図 2 0 は本発明 の第二の実施例を説明 す る も の で、 光 フ ァ イ バ端末部及び端末部 と光導波路部品 と の接続を説明 す る 斜視図、 図 2 1 は光 フ ァ イ バ端末部 と 光導波路部品 と の接続構造を示す斜視図、 及び図 2 2 は本発明 の第三 の実施例 を説明す る も ので、 光 フ ァ イ バ 端末部及 び端末部 と 光半導体 と の接続構造を示す斜視図 で あ る。 発明 を 実施す る た め の最良の形態 FIG. 1 illustrates a first embodiment of the present invention. FIG. 1 is a perspective view showing an optical fiber terminal part and a connection structure between the terminal part and an optical waveguide component. FIG. The front view of the connecting member installed on the end face of the filter in the fiber terminal section. Fig. 3 is used for the optical fiber terminal section in Fig. 1. Figure 4 is a perspective view of the nozzle, Figure 4 is a front view of the nozzle shown in Figure 3, Figure 5 is a cross-sectional view of the nozzle shown in Figure 3, and Figure 6 is a view of the nozzle shown in Figure 3. Fig. 7 is a perspective view of a molding die used for manufacturing the rule. FIG. 6 is a perspective view showing a state in which a tape fiber is inserted into a rule manufactured by the molding die shown in FIG. 6, and FIG. 8 is a diagram in which an adhesive is injected into the rule shown in FIG. FIG. 9 is a perspective view showing a state in which a tape fiber is fixed to form an optical fiber terminal, and FIG. 9 shows a connection structure in which the optical fiber terminal is bonded to an optical waveguide component. Fig. 10 is a cross-sectional view, Fig. 10 is a characteristic diagram showing the relationship between the vertical length a of the opening of the connecting member and the cracking rate (%) of the connecting member in the molded phenol rail, and Fig. 11 is the same. First, the characteristic diagram showing the relationship between the vertical length a of the opening of the connecting member and the HC characteristic fluctuation width (dB) in the heat cycle (HC) test, and FIG. 12 is the same. Fig. 13 is a characteristic diagram showing the relationship between the vertical length a of the opening of the connecting member and the pass rate (%) of the molding pin trouble. Irradiation of ultraviolet light required when bonding the molded ferrule and the optical waveguide component to each other with the ultraviolet curing adhesive, and the vertical length a of the opening of the connection member in the formed phenol layer. FIG. 14 to FIG. 19 are characteristic diagrams showing a relationship with time, FIG. 14 is a perspective view showing a modified example of the optical fiber terminal section, and FIG. 20 is a view for explaining a second embodiment of the present invention. FIG. 21 is a perspective view illustrating an optical fiber terminal portion and a connection between the terminal portion and the optical waveguide component. FIG. 21 is a perspective view illustrating a connection structure between the optical fiber terminal portion and the optical waveguide component. FIG. 22 is a perspective view showing an optical fiber terminal section and a connection structure between the terminal section and the optical semiconductor for explaining the third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
第一の実施例 First embodiment
以下、 本発明 の第一の実施例 を 図 1 乃至図 1 9 に基づ いて詳細 に説明 す る。  Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. 1 to 19.
本実施例 の光 フ ァ イ バ端末部 (以下、 「端末部」 と い う ) 1 0は、 図 1 に示す よ う に、 フ ヱ ノレー ル 1 1に接続部材 1 2と テ ー プ フ ァ イ バ 1 3と を取 り 付け た も ので、 端末部 1 0 は、 紫外線硬化型 の接着剤を用 い、 光導波路部品 2 0と 突 き 合わせて接着 さ れ る。  As shown in FIG. 1, an optical fiber terminal portion (hereinafter, referred to as a “terminal portion”) 10 of the present embodiment has a connecting member 12 and a tape fiber connected to a fin rail 11. Since the fiber 13 is attached, the terminal portion 10 is bonded to the optical waveguide component 20 using an ultraviolet-curable adhesive.
フ エ ルール 1 1は、 熱収縮率の小 さ い光学的 に透明 な 合 成樹脂で成形 さ れて い る。 本実施例では、 こ の よ う な合 成樹脂 と して、 例え ば、 充填材 と して二酸化ケ イ 素粒子 を 7 0 重量 %以上混合 した、 屈折率が二酸化ケ イ 素の屈 折率 と 実質的 に 等 し く、 線膨張率 a F Pが 1 2 X 1 0 — 6で あ る 熱硬化性のエ ポキ シ樹脂を用 い た。 Ferrule 11 is formed of an optically transparent synthetic resin having a small heat shrinkage. In the present embodiment, as such a synthetic resin, for example, 70% by weight or more of silicon dioxide particles are mixed as a filler, and the refractive index of the silicon dioxide is the refractive index of the silicon dioxide. substantially equal said in rather a linear expansion coefficient a FP is 1 2 X 1 0 - had use of Oh Ru thermosetting 6 d poke sheet resin.
こ こ で、 熱硬化性の合成樹脂、 例え ば、 エ ポ キ シ樹脂 は二酸化ケ イ 素の粒子 と の 間 の接着強度を高 め る 力 ッ プ リ ン グ剤を含んでい る。 従 っ て、 後述す る ノ、。ィ レ ッ ク ス ガ ラ ス製の接続部材 1 2と の間 の接着性 も高い。  Here, the thermosetting synthetic resin, for example, the epoxy resin contains a force-upping agent for increasing the adhesive strength between the silicon dioxide particles. Accordingly, the later-described components. The adhesion between the glass member and the connection member 12 is also high.
フ エ ノレール 1 1は、 図 3 及び図 5 に 示す よ う に、 本体 1 1 a の後部 に空洞 1 1 b が形成 さ れた 中空の部材で、 前部に 光導波路部品 2 0と 突 き 合わ さ れ る 突 出部 1 1 c がー体 に 突 設 さ れ、 上部に は空洞 1 1 b に連通す る 開 口 1 1 d が形成 さ れて い る。 突出 部 1 1 c は、 前面が光導波路部品 2 0と の突 合せ端面 11 e と な っ て お り、 周 囲 に は 凹溝 11 f が形成 さ れて い る。 こ の 凹溝 11 f の周 囲 に は、 後述す る 接続部材 12が設 け ら れ る ( 図 1, 図 7 参照) 。 ま た、 突 出 部 11 c に は、 図 4 及 び図 5 に示す よ う に、 突合せ端面 li e に 開 口 し、 空洞 11 b と 連通す る 4 本の フ ァ イ バ孔 11 g が形成 さ れて い る。 更に、 突出 部 11 c に は、 図 5 及 び図 7 に示 す よ う に、 各 フ ァ イ バ孔 11 g と 隣接す る 位置 に、 後述す る 光 フ ァ イ バ 13 a を フ ァ イ ノく孔 ll g へ案内 して挿通性を 向上 さ せ る フ ァ イ バガイ ド 11 h が形成 さ れて い る。 As shown in FIGS. 3 and 5, the phenol rail 11 is a hollow member having a cavity 11 b formed at the rear of the main body 11 a and protrudes from the optical waveguide component 20 at the front. A protruding portion 11c to be fitted is protruded from the body, and an opening 11d communicating with the cavity 11b is formed at an upper portion. The protruding part 1 1 c has a front face that protrudes from the optical waveguide component 20. It is a mating end face 11e, and a concave groove 11f is formed in the periphery. A connection member 12 described later is provided around the concave groove 11f (see FIGS. 1 and 7). As shown in FIGS. 4 and 5, the protruding portion 11c has four fiber holes 11g that open to the butt end face lie and communicate with the cavity 11b. Has been formed. Further, as shown in FIGS. 5 and 7, the protruding portion 11c is provided with an optical fiber 13a, which will be described later, at a position adjacent to each fiber hole 11g. A fiber guide 11h is formed to guide the porcelain hole llg to improve penetration.
こ こ で、 突出部 11 c 及 び凹溝 11 f の形状は、 後述する 接続部材 12の開 口 12 a の形状に よ っ て決ま り、 凹溝 ll f は必ず し も必要ではな い。  Here, the shapes of the protruding portion 11c and the concave groove 11f are determined by the shape of an opening 12a of the connecting member 12, which will be described later, and the concave groove lf is not necessarily required.
接続部材 12は、 光学的 に透明で、 線膨張率 な C Mが 3. 0 〜 3. 6 1 0 6のパイ レ ッ ク ス ガラ スか ら な り、 後述す る 光導波路部品 20の導波路 22 a .の配列方向 に お け る 線膨 張率 a 。Dに近い も のを使用 して い る。 接続部材 12は、 突 合せ端面 l i e の周 囲 を 囲繞す る 開 口 12 a を有 し、 突合せ 端面 l i e と 共に光導波路部品 20と 突 き 合わ さ れ る 四角 形 の枠体形状 に成形 さ れて い る。 Connecting member 12 is optically transparent, Ri linear expansion coefficient of the CM 3. a 0 to 3.6 1 0 6 pie-les-click scan glass or al, waveguides of the optical waveguide component 20 you later 22a. Linear expansion ratio a in the array direction. Uses something close to D. The connection member 12 has an opening 12a surrounding the periphery of the butt end face lie, and is formed into a quadrangular frame shape that abuts with the optical waveguide component 20 together with the butt end face lie. ing.
開 口 12 a の寸法は、 接続部材 12の強度, 成形性及び光 導波路部品 20と 接続す る 際の紫外線照射時間等を左右す る こ と 力、 ら、 図 2 に示す光 フ ァ イ バの配列方 向 に直交す る 方向 の長 さ (以下、 「縦長 さ 」 と い う ) a (mni)を 0. 2 ≤ a ≤ 1. 0 の範囲 に、 光 フ ァ イ バの配列方向 の長 さ (以 下、 「横長 さ 」 と い う ) b (mm)を、 フ ァ イ バ孔 ll g の数. 従 っ て、 テ ー プ フ ア イ バ 13の後述す る 光 フ ア イ バ 13 a の 数を N、 光 フ ァ イ ノく 13 a の配列 ピ ッ チ を P (mm)と した と き に、 b = P x ( N — l ) + a の関係 に 設定す る。 The dimensions of the opening 12a affect the strength and formability of the connection member 12, the time of ultraviolet irradiation when connecting to the optical waveguide component 20, and the like, and the optical fiber shown in FIG. The length in the direction perpendicular to the array direction of the optical fiber (hereinafter referred to as the “vertical length”) a (mni) within the range of 0.2 ≤ a ≤ 1.0, and the optical fiber array direction Length (below Below, it is referred to as “horizontal length”) b (mm) is the number of fiber holes llg. Accordingly, the optical fiber 13 a of the tape fiber 13, which will be described later, is used. When the number is N and the array pitch of the optical fiber 13a is P (mm), the relationship is set as b = P x (N — l) + a.
こ こ で、 突合せ端面 li e 全体に対す る 接続部材 12の前 面部分 の面積が小 さ く、 従 っ て接続部材 12の面積比が適 正値に 比べて小 さ い と、 フ ヱ ノレ 一ル 11を成形す る と き の 合成樹脂の充填圧力 に よ つ て接続部材 12が割れた り、 ヒ ー ト サ イ ク ル等 に起因 して接続部材 12が破損す る。 こ の た め、 製造 さ れた フ ヱ ノレール 11、 ひいて は端末部 10の信 頼性が低下す る 等の 問題が生ずる。 ま た、 光硬化型 の接 着剤を 用 いて接着す る と き に、 照射光が端面 中心ま で透 過 し難 く 光導波路部品 20と の接着 に 時間がかか る。  Here, if the area of the front surface of the connecting member 12 with respect to the entire butted end face lie is small, and accordingly, the area ratio of the connecting member 12 is smaller than an appropriate value, the pitch is small. The connecting member 12 is cracked by the filling pressure of the synthetic resin when the seal 11 is molded, or the connecting member 12 is damaged due to a heat cycle or the like. For this reason, there arise problems such as a decrease in the reliability of the manufactured pen rails 11 and eventually of the terminal unit 10. In addition, when bonding is performed using a light-curing adhesive, it is difficult for the irradiation light to pass through to the center of the end face, and it takes time to bond the optical waveguide component 20.
—方、 突合せ端面 li e 全体に 占 め る 接続部材 12の前記 面積が大 き く、 前記面積比が適 JE値 に 比べて大 き い と、 接続部材 12の製造に高 い寸法精度が必要 と な る。— こ の た め、 フ エ ルール 11、 従 っ て端末部 10の製造 コ ス ト が上が つ て し ま う。 ま た、 フ ヱ ノレール 11の成形の際 に、 接続部 材 12を成形金型 に セ ッ テ ィ ン グす る セ ッ テ ィ ン グ作業を 慎重 に行わな い と、 成形 さ れた フ ヱ ノレール 11に お いて フ ア イ バ孔 11 g が接続部材 12に接近 し過 ぎ、 成形 ピ ンが接 触 して折れた り 曲が っ た り す る 等の ト ラ ブルが多発す る c 従 っ て、 接続部材 12に お いて は、 開 口 12 a の寸法を上 記の よ う に設定す る。 こ の フ ヱ ル ー ル 11は、 以 下 に 述 べ る 成形金型 を使用 し て製造 さ れ る。 On the other hand, if the area of the connecting member 12 occupying the entire butted end face lie is large and the area ratio is large compared to the appropriate JE value, high dimensional accuracy is required for manufacturing the connecting member 12. It becomes. — For this reason, the manufacturing cost of the ferrule 11 and, therefore, the terminal unit 10 is increased. In addition, when the pen rails 11 are formed, if the setting work for setting the connecting members 12 into the molding die is not carefully performed, the molded rails are not formed. 11 The fiber hole 11 g on the rail 11 approaches the connecting member 12 too much, causing troubles such as breakage or bending due to the contact of the molding pin. c Accordingly , in the connection member 12, the dimensions of the opening 12a are set as described above. This rule 11 is manufactured by using a molding die described below.
図 6 は、 フ ユ ルール 11を製造す る 際 に使用 す る 成形金 型で、 こ の成形金型 は、 下型板 30, 上型板 40及 び両型板 30, 40間 に配置 さ れ る 中子 50を備え て い る。  FIG. 6 shows a molding die used for manufacturing the ferrule 11, which is disposed between the lower die plate 30, the upper die plate 40 and the both die plates 30, 40. It has a core 50.
下型板 30は、 図示 しな い駆動手段 に よ っ て昇降 さ れ、 上型板 40と 型開 き あ る い は型締め さ れ る。 こ の下型板 30 は、 図 示の よ う に、 四角 形の ^の 四隅 に上型板 40を位置 決めす る 凸部 30 a がー体 に設け ら れ、 中央に は成形型 3 32を配置す る 凹部 30 b が形成 さ れて い る。 ま た、 下型板 30は、 凹部 30 b に 向 けて両側か ら ラ ン ナ 30 c , 30 c が設 け ら れて い る。  The lower template 30 is moved up and down by a driving means (not shown), and the upper template 40 is opened or clamped to the upper template 40. As shown in the figure, the lower mold plate 30 is provided with convex portions 30a for positioning the upper mold plate 40 at four corners of a square ^, and a molding die 3 32 at the center. A concave portion 30b is formed in which is disposed. The lower mold plate 30 is provided with runners 30c, 30c from both sides toward the recess 30b.
成形型 31は、 凹部 30 b の一側端 に 配置 さ れ る 平板状の 部材で、 上面に は 中子 50の後述す る 成形 ピ ン 50 d の先端 を位置決めす る V 溝 31 a が形成 さ れて い る。 一方、 成形 型 32は、 成形型 31を配置 し た 凹部 30 b の略中央に 配置 し て 中子 50の後述す る 本体 50 a を支持す る U 字形の部材で、 下型板 30と上型板 40と を型締め した と き に、 そ の前部 に フ エ ルール 11を成形する キ ヤ ビテ ィ ( 図示せず) を形成 す る。 成形型 32は、 凹部 30 b に配置 さ れ る 中 子 50の後述 す る 鍔部 50 b を位置決めす る。  The molding die 31 is a flat plate-shaped member disposed at one end of the concave portion 30b, and has a V-groove 31a on the upper surface for positioning a tip of a molding pin 50d, which will be described later, of the core 50. It has been done. On the other hand, the molding die 32 is a U-shaped member that is disposed substantially at the center of the concave portion 30 b in which the molding die 31 is disposed and supports a body 50 a of the core 50, which will be described later. When the mold plate 40 and the mold plate are clamped, a cavity (not shown) for forming the ferrule 11 is formed at the front portion thereof. The molding die 32 positions a later-described flange portion 50b of the core 50 disposed in the concave portion 30b.
上型板 40は、 図 6 に示 した よ う に、 四角 形 の板の両側 に下型板 30の 凸部 30 a , 30 a 間 に配置 さ れて こ の上型板 40を下型板 30に 対 して位置決めす る フ ラ ン ジ部 40 a , 40 a がー体 に 設け ら れ、 中央 に は成形型 41, 42を配置す る 凹部 40 b 力 形成 さ れて い る。 上型板 40は、 図 6 に お いて は、 構成を 明確 に す る た め、 上下面を反転 さ せて示 して あ り、 実際 に は 1 点鎖線で示す よ う に反転 さ せて、 下型 板 30に 対向配置 さ れ る。 As shown in FIG. 6, the upper template 40 is disposed between the convex portions 30a, 30a of the lower template 30 on both sides of the rectangular plate, and the upper template 40 is attached to the lower template 40. Flange to be positioned with respect to 30 40a, 40 a is provided on the body, and a concave portion 40 b in which the molds 41 and 42 are arranged is formed in the center. In FIG. 6, the upper mold plate 40 is shown with its upper and lower surfaces inverted for clarity of the configuration. In practice, the upper mold plate 40 is inverted as shown by the one-dot chain line. The lower mold plate 30 is opposed to the lower mold plate 30.
こ こ で、 成形型 41, 42は、 成形型 41の型締め面 41 a に 後述す る 成形 ピ ン 50 d を位置決めす る V 溝が形成 さ れて いな い こ と を除 き、 成形型 31, 32と 構成が同一であ る の で、 以 下の説明及 び図 に お いて は、 対応す る 部分 に対応 す る 符号を付 して詳細 な説明 を省略す る。  Here, the molding dies 41 and 42 are the same as the molding dies except that a V-groove for positioning a molding pin 50 d described later is not formed on the clamping surface 41 a of the molding dies 41. Since the configuration is the same as 31, 32, in the following description and drawings, the corresponding parts are denoted by the same reference numerals, and detailed description is omitted.
中子 50は、 図 示の よ う に、 本体 50 a の後部 に鍔部 50 b が形成 さ れ る と共に本体 50 a の前部 に は、 フ ヱ ノレー ル 11 の空洞 li b を成形す る コ ア部 50 c と、 フ ァ イ バ孔 l l g を 成形す る 4 本の成形 ピ ン 50 d が突設 さ れて い る。  As shown in the figure, the core 50 has a flange 50b formed at the rear part of the main body 50a and a hollow lib of the vinyl rail 11 formed at the front part of the main body 50a. A core part 50c and four forming pins 50d for forming the fiber hole llg are protrudingly provided.
そ して、 フ ヱ ノレール 11の製造に 際 して は、 先ず、 図示 の よ う に、 下型板 30の 凹 部 30 b に成形型 31, 32を、 上型 板 40の 凹部 40 b に成形型 41, 42を、 夫 々 配置す る。  When manufacturing the pen rails 11, first, as shown in the figure, the forming dies 31 and 32 are formed in the concave portions 30 b of the lower die plate 30 and the concave portions 40 b of the upper die plate 40. The molds 41 and 42 are arranged respectively.
次に、 図 中 に一点鎖線で示す よ う に、 接続部材 12に成 形 ピ ン 50 d を挿通 し、 接続部材 12を成形型 31, 32の間 の 凹部 30 b に、 ま た、 鍔部 50 b を成形型 32の後部の 凹部 30 b に、 夫 々 配置 し、 各成形 ピ ン 50 d の先端部分を V 溝 31 a で位置決め して 中子 50を下型板 30に配置す る。  Next, as shown by a dashed line in the figure, the forming pin 50 d is inserted through the connecting member 12, and the connecting member 12 is inserted into the concave portion 30 b between the molds 31 and 32, and the flange portion is formed. 50 b is placed in the concave portion 30 b at the rear of the molding die 32, and the tip of each molding pin 50 d is positioned in the V groove 31 a, and the core 50 is placed on the lower mold plate 30.
次いで、 図示 しな い前記駆動手段 に よ っ て 下型板 30を 上昇 さ せ、 凸部 30 a, 30 a 間 に上型板 40の対応す る フ ラ ン ジ部 40 a を配置 して型 締めす る。 Next, the lower mold plate 30 is raised by the driving means (not shown), and the corresponding flat of the upper mold plate 40 is formed between the convex portions 30a, 30a. Place flange 40a and tighten the mold.
こ れ に よ り、 接続部材 12及 び中子 50は、 下型板 30の 凹 溝 30 b と上型板 40の 凹部 40 b と の 間 に配置 さ れ、 接続部 材 12の 内側部分 に は、 各成形 ピ ン 50 d の基端側が挿通 さ れて フ エ ルー ル 11の突 出 部 11 c を成形す る 所定の隙間が 形成 さ れ る。 ま た、 接続部材 12の後部 に位置す る 成形型 32, 42間 の下型板 30と上型板 40と の間 に は、 フ エ ルール 11の本体 11 a を成形す る 図示 しな いキ ヤ ビテ ィ が形成 さ れ る。  As a result, the connecting member 12 and the core 50 are disposed between the concave groove 30 b of the lower template 30 and the concave portion 40 b of the upper template 40, and are provided on the inner portion of the connecting member 12. A predetermined gap for forming the protrusion 11c of the ferrule 11 is formed by inserting the base end of each molding pin 50d. Further, the main body 11a of the ferrule 11 is formed between the lower mold plate 30 and the upper mold plate 40 between the molding dies 32 and 42 located at the rear portion of the connection member 12 not shown. The cavities are formed.
し力、 る 後、 下型板 30の ラ ン ナ 30 c , 30 c を 利用 し、 熱 収縮率が小さ く、 二酸化 ケ イ 素粒子を混合 し た光学的 に 透明 な 前記エ ポ キ シ樹脂を前記キ ヤ ビテ ィ 内 に 注入 し、 ト ラ ン ス フ ァ 一 成形 に よ り フ ヱ ルー ル 11を成形す る。  After the force is applied, the optically transparent epoxy resin mixed with silicon dioxide particles having a small heat shrinkage ratio using the runners 30c, 30c of the lower template 30. Is injected into the above-mentioned cavity, and the rule 11 is formed by forming a transformer.
そ して、 注入 した前記エ ポ キ シ樹脂を加熱硬化 さ せた 後、 下型板 30を 下降 さ せて型を 開 き、 成形 し た フ ェ ル ー ノレ 11を取 り 出す。  After the injected epoxy resin is cured by heating, the lower mold plate 30 is lowered to open the mold, and the molded ferrule 11 is taken out.
しか る 後、 こ の フ ヱ ノレ 一 ノレ 11か ら 中子 50を 引 き 抜いて、 フ エ ル ー ル 11の製造が終了 す る。  Thereafter, the core 50 is pulled out from the nozzle 11 and the production of the valve 11 is completed.
こ の よ う に して製造 さ れた フ ヱ ルール 11は、 後部側か ら テ ー プフ ア イ バが挿着 さ れて端末部 10と して加工 さ れ る。  The thus-produced plastic rule 11 is processed as a terminal portion 10 by inserting a tape fiber from the rear side.
即 ち、 テ ー プ フ ァ イ バは、 複数の光 フ ァ イ バを所定 ピ ツ チで並行 に 配列 し、 こ れ ら の光 フ ァ イ バに 被覆を施 し た リ ボ ン状の フ ア イ バ束であ る。 本実施例の端末部 10に お いて は、 こ のテ ー プフ ァ ィ パ' の端末を処理 して被覆を所定長 さ 除去 し、 露 出 した個 々 の光 フ ァ イ ノく 'を フ ヱ ノレ 一 ル 11の後部側か ら空洞 11 b に差 し込む。 In short, a tape fiber is a ribbon-like optical fiber in which a plurality of optical fibers are arranged in parallel at a predetermined pitch, and these optical fibers are coated. Fiber bundle. In the terminal section 10 of the present embodiment, the terminal of the tape fiber is processed to remove the coating by a predetermined length, and the exposed individual optical fibers are filtered.ヱ Insert into the cavity 11 b from the rear side of the nozzle 11.
そ して、 フ エ ノレール 11は、 図 7 に示す よ う に、 テー プ フ ア イ バ 13の各光 フ ァ イ ノ、 * 13 a が対応する フ ア イ バ孔 11 g に挿通 さ れ、 図 8 に示すよ う に、 開 口 1 I d か ら空洞 11 b に接着剤 Aを注入 し、 テー プフ ァ イ ノく 13が光 フ ア イ ノく 13 a と共に本体 11 a に 固定さ れる。  Then, as shown in FIG. 7, the phenol rail 11 is inserted into the corresponding fiber hole 11 g of each optical fiber of the tape fiber 13, * 13a. As shown in Fig. 8, the adhesive A is injected into the cavity 11b from the opening 1Id, and the tape fin 13 is fixed to the main body 11a together with the optical fin 13a. It is.
こ こ で、 テ ー プフ ァ イ バ 13は、 光 フ ア イ バ 13 a が突出 部 11 c か ら突出す る こ と があ る が、 突出 した光フ ァ イ バ 13a は、 突合せ端面 li e と 略面一 と な る よ う に カ ツ テ ィ ン グ処理さ れた後、 突合せ端面 li e と共に ツ ビ ン グ等 に よ り 端面が研磨処理さ れる。 こ の よ う な工程を経て、 フ エ ルール 11は端末部 10へ と加工さ れる。  In this case, in the tape fiber 13, the optical fiber 13a may protrude from the protruding portion 11c, but the protruding optical fiber 13a has a butt end face li. After the cutting process is performed so that it is substantially flush with e, the end surface is polished by tubing or the like together with the butt end surface lie. Through such a process, the ferrule 11 is processed into the terminal portion 10.
こ の と き、 製造 さ れた端末部 10に お いて は、 接続部材 12の線膨張率 a CMが フ ヱ ルール 11の線膨張率 α よ り も 小さ く 設定 さ れて い る。 こ のため、 フ ヱ ルール 11の成形 に伴 う 高温時に は、 接続部材 12が突出部 11 c の幅.方向及 び上下方向 の膨張を抑制 し、 成形終了 の冷却時に は収縮 を抑制する。 従 っ て、 フ ヱ ノレール 11は、 突出部 11 c の膨 張や収縮が接繞部材 12に よ っ て抑え られる ので、 突合せ 端面 11 e に 開 口 す る フ ァ ィ バ孔 11 g が高い精度で形成さ れ る。 ま た、 被覆を 除去 して 露出 した複数の光 フ ァ イ バ 13 a は、 フ ルール 11の空洞 11 b 内で接着剤 A に 埋設 さ れて 保護 さ れ ( 図 9 参照) 、 テー プフ ァ イ バ 13を介 して応力 が作用 して も、 断線する こ と はな い。 At this time, in the manufactured end portion 10, the linear expansion coefficient a CM of the connecting member 12 is set to be smaller than the linear expansion coefficient α of the rule 11. For this reason, at the time of the high temperature accompanying the molding of the ferrule 11, the connecting member 12 suppresses the expansion in the width direction and the vertical direction of the protruding portion 11c, and suppresses the shrinkage at the time of cooling after the molding. Accordingly, in the rail 11, since the expansion and contraction of the protruding portion 11 c is suppressed by the surrounding member 12, the fiber hole 11 g opened in the butted end face 11 e is high. Formed with precision. Further, the plurality of optical fibers 13a exposed by removing the coating are protected by being buried in the adhesive A in the cavities 11b of the ferrule 11 (see FIG. 9). Even if stress is applied via the inverter 13, there is no disconnection.
こ の よ う に して製造 さ れた端末部 10は、 光導波路部品 20と の間 に紫外線硬化型 の接着剤、 例え ば、 エポキ シ系 やァ ク リ レ ー ト 系 の接着剤を塗布 し、 紫外線を照射す る こ と に よ り 短時間で接着 さ れる。  The terminal section 10 manufactured in this manner is coated with an ultraviolet-curing adhesive, for example, an epoxy-based or acrylic-based adhesive, between the optical waveguide component 20 and the terminal section 10. It can be adhered in a short time by irradiating ultraviolet rays.
光導波路部品 20は、 厚 さ 1 m m の シ リ コ ン基板 21上に 厚さ 数 1 0 m の石英か ら な る導波路層 22が、 例え ば、 火炎堆積法等に よ っ て形成さ れ、 上部に は シ リ コ ン に近 い線膨張率を有す るパイ レ ッ ク スガラ スか ら な る カバー 23が被せ られた、 線膨張率 a 0 Dが約 2. 4 X 1 0 _6の部品 で、 長手方向両端が突合せ端面 と な っ て い る。 In the optical waveguide component 20, a waveguide layer 22 made of quartz having a thickness of 10 m is formed on a silicon substrate 21 having a thickness of 1 mm by, for example, a flame deposition method. is, the upper pi les click Sugara scan or et ing cover 23 that have a near-have linear expansion coefficient in the sheet re co down is placed over the linear expansion coefficient a 0 D about 2. 4 X 1 0 _ 6 parts, that are Tsu Do the longitudinal ends butting end face.
こ こ で、 導波路層 22は、 長手方向 に 4 本の導波路 22 a が、 複数の光 フ ァ イ バ 13 a と 同一 ピ ッ チ で並行に形成さ れて い る。 ま た、 カ ノく一 23は、 光導波路部品 20の突合せ 端面に お け る 面積や形状を、 端末部 10の端面 に近似 さ せ る こ と に よ り、 端末部 10と の間の接着有効面積を確保す る も のであ る。  Here, in the waveguide layer 22, four waveguides 22a are formed in the longitudinal direction in parallel with the plurality of optical fibers 13a at the same pitch. In addition, the canopy 23 is designed to make the area and shape of the butted end face of the optical waveguide component 20 approximate to the end face of the terminal part 10, thereby providing an adhesive between the terminal part 10 It secures an effective area.
尚、 光導波路部品 20は、 シ リ コ ン基板 21上 に導波路層 22を形成 しただけで、 力 バ一 23のな い も のであ っ て も よ く、 ま た、 導波路層 22に形成さ れ る 導波路 22 a は単数で あ っ て も よ い。 こ の接着 に 際 し、 端末部 10と 光導波路部品 20は、 対応 す る 光 フ ア イ バ 13 a と導波路 22 a と をサブ ミ ク 口 ンォ ー ダ一 で調心 して接着 さ れ る。 In addition, the optical waveguide component 20 may be one having no power bar 23 only by forming the waveguide layer 22 on the silicon substrate 21, and The waveguide 22a to be formed may be singular. In this bonding, the terminal section 10 and the optical waveguide component 20 are bonded by aligning the corresponding optical fiber 13a and the waveguide 22a with a sub-mixer. You.
こ の端末部 10と光導波路部品 20と の接続構造に お いて は、 照射 した紫外線がフ ユ ルー ル 11や接続部材 12の部分 を透過する ので、 接着剤が短時間で硬化する。  In the connection structure between the terminal portion 10 and the optical waveguide component 20, the irradiated ultraviolet light passes through the portions of the rule 11 and the connection member 12, so that the adhesive is cured in a short time.
従 っ て、 端末部 10と光導波路部品 20と の接続構造に お いては、 対応す る 光フ ァ イ ノく 13 a と導波路 22 a とがサブ ミ ク ロ ンオー ダーで調心 さ れた状態で、 接続部材 12の部 分に お いて、 図 9 に示す よ う に、 紫外線硬化型の接着剤 A u vに よ り 確実に接着 さ れる。 Accordingly, in the connection structure between the terminal section 10 and the optical waveguide component 20, the corresponding optical fin 13a and the waveguide 22a are aligned in the submicron order. In this state, as shown in FIG. 9, the portion of the connecting member 12 is more securely bonded by the ultraviolet curing adhesive Auv .
しか も、 端末部 10と光導波路部品 20と の接続構造に お いては、 接続部材 12は線膨張率 CMが 3. 0 〜_3. 6 x 1 0 _6で、 光導波路部品 20は線膨張率 a onが約 2. 4 X 1 0 "6 であ り、 I a CM— な 。 D | < 5 x iO— 6の関係を満た して い る。 However also, our Itewa the connection structure of the terminal portion 10 and the optical waveguide part 20, the connecting member 12 is a linear expansion coefficient CM is at 3. 0 ~_3. 6 x 1 0 _ 6, the optical waveguide component 20 linear expansion The ratio a on is about 2.4 X 10 " 6 , and I a CM — satisfies the relationship of D | <5 x iO — 6 .
こ の ため、 上記接続構造に お いて は、 経時的な温度変 化に伴 う 端末部 10と光導波路部品 20と の間 に お け る 線膨 張率の差が小さ いため、 温度変化に伴 う 寸法変化が小 さ く 抑え ら れ、 各光 フ ァ イ ノく 13 a と導波路 22 a と の間 の調 心状態が乱さ れ る こ と はな い。 従 っ て、 上記接続構造を 採用 す る こ と に よ り、 端末部 10と光導波路部品 20と の間 の経時的な接鐃損失の低下等、 性能の低下や機能の消失 を 防 ぐ こ と がで き る。 上記 した フ I ノレー ル 11の製造に際 し、 パイ レ ッ ク ス ガ ラ ス か ら な る 接続部材 12の開 口 12 a を、 縦長 さ a を 0. 2 〜 し 0 mmの範囲 の 5 種類の値に設定 し、 8 本の フ ァ イ ノく 孔 ll g を有す る フ エ ルー ル 11を 90, 150, 200及び 250 kg-f /cm 2の それぞれ異な る 4 通 り の圧力 の下で、 熱収縮率が 小さ く、 二酸化ケ イ 素粒子を混合 した光学的 に透明 な前 記エ ポ キ シ樹脂 に よ っ て各々 3 0 個成形 した。 For this reason, in the connection structure described above, the difference in the linear expansion coefficient between the terminal portion 10 and the optical waveguide component 20 due to the temporal change in temperature is small, and thus the connection structure is not affected by the temperature change. The dimensional change is suppressed to a small extent, and the alignment state between each optical fin 13a and the waveguide 22a is not disturbed. Therefore, by adopting the above-described connection structure, it is possible to prevent performance deterioration and loss of function such as a decrease in cycling loss over time between the terminal section 10 and the optical waveguide component 20. And can be done. In the manufacture of the above-mentioned nozzle 11, the opening 12a of the connecting member 12 made of a pyrex glass has a vertical length a of 0.2 to 5 mm in a range of 0.2 to 0 mm. set the type of value, eight full § i carbonochloridate hole ll g the full et rules 11 that have a 90, 150, 200 and 250 kg-f / 4 copies Ri pressure that different respective cm 2 Under the above conditions, 30 pieces were each formed by the optically transparent epoxy resin mixed with silicon dioxide particles having a small heat shrinkage rate.
こ こ で、 開 口 12 a の横長 さ b ( mm) は、 フ ァ イ バ孔 11 g の配列 ピ ッ チ を P - 0. 2 5 πιπιに設定 した ので、 フ ア イ バ孔 11 g の数 ( = テー プフ ァ イ ノく 13の芯数) が N = 8 で あ る か ら、 前記 b = P x ( N - 1 ) + a の式か ら 1. 9 5 〜 2. 7 5 mmに設定 した。  Here, the width b (mm) of the opening 12a is set to P-0.25ππππι for the array pitch of the fiber holes 11g, so that the fiber holes 11g Since the number (= the number of cores of the tape fin 13) is N = 8, 1.95 to 2.75 mm from the above equation of b = Px (N-1) + a Set to.
こ の と き、 成形 した フ ルール 11において、 接銃部材 12の開 口 12 a の縦長 さ a と、 接銃部材 12の割れ率 ( % ) と の関係 について は全数、 ヒ ー ト サ イ ク ル試験に お け る H C 特性変動幅 ( d B ) 及び成形 ピ ン ト ラ ブルに関す る 合格率 ( % ) と の関係を それぞれ 150 kg'f/cm2での成形 品 につ いて調べた と こ ろ、 図 10乃至図 12に示す結果が得 ら れた。 At this time, in the molded ferrule 11, the relationship between the vertical length a of the opening 12a of the gun contact member 12 and the cracking rate (%) of the gun contact member 12 is 100%, and the heat cycle is 100%. was examined had moldings Nitsu of that you only Le test HC characteristic variation width (d B) and molded pin preparative La pass rate related to Bull relation between the (%) in each 150 kg'f / cm 2 At this time, the results shown in FIGS. 10 to 12 were obtained.
こ こ で、 合格率 ( % ) は、 成形 ピ ン の折れ, 曲が り な どの ト ラ ブルがな か っ た も のを合格 と し、 成形 さ れた各 3 0 個 の フ ヱ ノレール 11に対する 百分率 と して求めた。 ま た、 図 11に示す H C 特性変動幅 ( d B ) に お いて は、 縦 長 さ a に対す る 成形 し た フ ヱ ルール 11の合計 1 0 個 当 た り の平均 の H C 特性変動幅を示 し た。 Here, the pass rate (%) was determined to be acceptable if there were no troubles such as bending or bending of the molding pin, and that the 30 pinholes were formed. It was calculated as a percentage of In addition, in the HC characteristic fluctuation width (dB) shown in FIG. 11, a total of 10 molded plastic rules 11 corresponding to the vertical length a were hit. The average fluctuation of HC characteristics was shown.
更 に、 成形 し た縦長 さ a の異な る 各 2 0 個 の フ ヱ ノレ一 ル 11の群か ら 無作為 に抽 出 した それ ぞれ 1 0 個 の フ ヱ ル ール 11を、 光導波路部品 20と の間 に紫外線硬化型 の接着 剤を塗布 し、 紫外線を照射 して接着 した。 こ の と き の接 着に要 し た照射時間 ( mi n. ) を、 開 口 12 a の縦長 さ a と の関係でそれぞれ測定 した と こ ろ図 13に示す結果が得 ら れた。  In addition, each of the 10 filters 11 randomly extracted from the group of 20 pieces of the molded pipes 11 having different vertical lengths a was inserted into the optical waveguide. An ultraviolet-curing adhesive was applied between the component 20 and was bonded by irradiating ultraviolet rays. The irradiation time (min.) Required for the bonding at this time was measured in relation to the vertical length a of the opening 12a, and the results shown in Fig. 13 were obtained.
従 っ て、 図 10乃至図 13に示 した結果か ら、 フ エ ノレール 11の成形に際 し、 接銃部材 12は、 開 口 12 a の縦長 さ a が 1. 0 mmを越え る と、 割れ率が 50% を超え る と共に、 光導 波路部品 20と の接着に使用する 光硬化性樹脂の照射時間 が 1 時間近 く な っ て好ま し く な い こ と がわかる。  Therefore, from the results shown in FIGS. 10 to 13, when the phenol rail 11 is formed, when the vertical length a of the opening 12 a exceeds 1.0 mm, It can be seen that the cracking rate exceeds 50% and the irradiation time of the photocurable resin used for bonding to the optical waveguide component 20 becomes less than one hour, which is not preferable.
ま た、 開 口 12 a の縦長 さ a が 0. 2 mmよ り 小さ く な る と、 フ エ ルール 11の製造に 際 し、 図 ·6 に示 した成形金型 に お いて、 フ ァ イ バ孔 ll g を形成す る 部分での樹脂の充填空 間が狭 く な る。 こ のため、 図 1 2 に示す合格率 ( 96 ) か ら も 明 ら かな よ う に、 成形時の成形 ピ ン の折れ, 曲が り 等の ト ラ ブルが多発する。  Also, when the vertical length a of the opening 12a is smaller than 0.2 mm, when the ferrule 11 is manufactured, in the forming die shown in FIG. The filling space of the resin in the portion where the hole llg is formed becomes narrower. Therefore, as is clear from the pass rate (96) shown in Fig. 12, there are many troubles such as bending and bending of the molding pin during molding.
したが っ て、 開 口 12 a の縦長 さ a は、 0. 2 〜 1. 0 mmの 範囲 に 設定す る こ と が好ま しい。  Therefore, the vertical length a of the opening 12a is preferably set in the range of 0.2 to 1.0 mm.
こ こ で、 接続部材 12は、 開 口 12 a の横長 さ b がフ エ ノレ ール 11の横幅 と 同一、 即 ち、 接続部材 12が上下に 2 分割 さ れた構造の場合に は開 口 と は いえ な い。 しか し、 フ エ ル ー ル 11の 突 出 部 11 c の上下方向 の長 さ を 開 口 12 a の縦 長 さ a に対応 さ せた と こ ろ、 前記 と 同様に、 フ ヱ ルール 11を歩留 ま り 良 く 製造す る こ と がで き た。 Here, the connecting member 12 has an opening 12a in which the width b is the same as the width of the phenol rail 11, that is, the connecting member 12 has a structure in which the connecting member 12 is vertically divided into two parts. That is not to say. However, Hue When the vertical length of the protruding portion 11c of the rule 11 corresponds to the vertical length a of the opening 12a, the yield of the rule 11 can be improved in the same manner as described above. It was possible to manufacture well.
尚、 上記実施例 の端末部 10に お いて は、 接続部材 12は フ ェ ルーノレ 11の突合せ端面 11 e 側に設けたノ ィ レ ッ ク ス ガラ ス製の四角 形の枠体 と した。 しか し、 接続部材は、 突合せ端面側 に 設けて端末部 と光導波路部品 の接続部に 紫外線が透過すれば、 前記実施例の配置に 限定 さ れ る も のでな い こ と は い う ま で も な い。  In the terminal section 10 of the above embodiment, the connection member 12 was a square frame made of a magnetic glass provided on the end face 11 e of the ferrule 11. However, if the connecting member is provided on the butt end face side and the ultraviolet ray passes through the connecting portion between the terminal portion and the optical waveguide component, the arrangement is not limited to the above-described embodiment. Nor.
従 っ て、 接続部材は、 例え ば、 図 14に示すよ う に、 フ エ ルール 11の外周が突合せ端面 11 e と共に接続部材 12で 囲繞さ れる よ う に配置 して も よ く、 ま た、 図 15に示すよ う に、 光導波路部品 と の接着部分に相 当す る フ X ルール 11の上下の部分 に角柱状の接鎵部材 12, 12を配置す る よ う に して も よ い。  Accordingly, the connecting member may be arranged so that the outer periphery of the ferrule 11 is surrounded by the connecting member 12 together with the butt end face 11 e as shown in FIG. 14, for example. As shown in FIG. 15, prismatic connecting members 12 and 12 may be arranged on the upper and lower portions of the X rule 11 corresponding to the bonding portion with the optical waveguide component. No.
更に、 接続部材は、 図 16に示す よ う に、 フ ュ ルール 11 の突合せ端面 l i e を上下か ら 囲み込む、 一方が U字形、 他方が角柱状の二つの接続部材 14, 15と して も、 あ る い は、 図 17に示す よ う に、 フ エ ルール 11の突合せ端面 11 e の上部 に 幅方向 に配置 さ れる 角柱状の接鐃部材 16と して も よ い。  Further, as shown in FIG. 16, the connecting members may surround the butt end face lie of the ferrule 11 from above and below, and may be two U-shaped connecting members 14 and 15 each having a prismatic shape. Alternatively, as shown in FIG. 17, a prismatic contact member 16 arranged in the width direction above the butted end face 11 e of the ferrule 11 may be used.
ま た、 図 18に示す接続部材 17の よ う に、 2 ケ 所に突出 部 11 c が形成 さ れた フ ヱ ルール 11の 2 つ の突合せ端面 11 e を 囲繞す る 2 つ の 開 口 17 a を有す る 形状 と した り、 あ る い は、 図 19に示す接続部材 18の よ う に、 フ ヱ ノレ 一 ノレ 11 の突合せ端面 li e を 囲繞す る 開 口 18 a を有す る 形状 と し て も よ い。 こ こ で、 接続部材 18を設け る フ ヱ ルール 11は、 突合せ端面 li e に複数の光 フ ア イ バ 13 a の端部が上下 2 段に配列 さ れて露出 して い る。 第二の実施例 Also, as shown in a connecting member 17 shown in FIG. 18, two openings 17 surrounding two abutting end faces 11 e of the ferrule 11 having two projecting portions 11 c formed therein. a Alternatively, as in a connecting member 18 shown in FIG. 19, the connecting member 18 may have a shape having an opening 18a surrounding the butted end face lie of the fin 11. Here, in the rule 11 in which the connecting member 18 is provided, the ends of the plurality of optical fibers 13a are exposed and arranged in two steps in the upper and lower stages on the butted end face lie. Second embodiment
次に、 本発明 の第二の実施例を図 20及び図 21に基づい て詳細 に説明す る。  Next, a second embodiment of the present invention will be described in detail with reference to FIGS.
本実施例 の端末部 60は、 フ エ ルール 61の前部に接続部 材 62を、 フ エ ノレール 61に テー プフ ァ イ バ 63を、 それぞれ 図 20に示すよ う に取 り 付けた も ので、 図 21に示す よ う に 光導波路部品 70と突き合わせて溶接 さ れ る。  The terminal section 60 of this embodiment has a connecting member 62 attached to a front part of a ferrule 61 and a tape fiber 63 attached to a phenol rail 61 as shown in FIG. 20. Then, as shown in FIG. 21, it is butt-welded to the optical waveguide component 70.
フ エ ノレ 一ル 61は、 第一の実施例で説明 した フ ヱ ノレール 11と 略同様に構成さ れて い る ので、 対応する 部分に対応 す る 符号を付す こ と に よ り 詳細な説明 を省略する。  Since the phenol rail 61 is configured substantially in the same manner as the phenol rail 11 described in the first embodiment, a detailed description is given by assigning the reference numerals corresponding to the corresponding parts. Is omitted.
フ エ ノレ ー ル 61は、 線膨張率 な F pが 1 2 X 1 0 - 6の合成 樹脂、 例え ば、 エポキ シ樹脂に よ っ て前記第一の実施例 で説明 した成形金型 30, 40及び中子 50を使用 して製造さ れ る。 本実施例では、 端末部 60と光導波路部品 70と を溶 接に よ っ て接銃する こ と か ら、 フ ヱ ルール 61は光学的 に 透明 で あ る 必要はな い。 Off error Norre Lumpur 61, the linear expansion coefficient of F p is 1 2 X 1 0 - 6 synthetic resin, For example, the molding die 30 described in the first embodiment in Tsu by the Epoxy resin, Manufactured using 40 and core 50. In the present embodiment, since the terminal section 60 and the optical waveguide component 70 are brought into contact with each other by welding, the rule 61 does not need to be optically transparent.
接続部材 62は、 フ ヱ ル ー ル 61の突合せ端面 61 e の周 囲 を 囲繞す る 開 口 62 a を有 し、 線膨張率の小 さ い溶接可能 な金属、 例え ば、 線膨張率 a M c力く 2 〜 4 X 1 0 — 6の コ ノく 一 ノレ (米国 Westinghouse Electric Corp.製、 登録商標) に よ っ て四角 形の枠体形状に成形さ れて い る。 こ こ で、 開 口 62 a は、 第一の実施例 と 同様に、 縦長 さ a (mm)力 0. 2 ≤ a 1. 0 の範囲 に、 横長 さ b ( ram) が、 テー プフ ァ ィ バ 63を構成す る光 フ ァ イ ノく' 63 a の数を N、 光 フ ァ イ ノく 63 a の配列 ピ ッ チを P ( mm) と した と き に、 b = P x ( N - 1 ) + a の関係 に 設定 さ れて い る。 The connecting member 62 has an opening 62a surrounding the periphery of the butt end face 61e of the rule 61, and can be welded with a small linear expansion coefficient. Metal, for example, with a linear expansion coefficient of aMc power of 2 to 4 X 10 — 6 (a registered trademark of Westinghouse Electric Corp. in the United States) is used to form a rectangular frame. It is molded. Here, as in the first embodiment, the opening 62a has a vertical length a (mm) in the range of 0.2 ≤ a1.0, and a horizontal length b (ram), If the number of optical fibers 63a constituting the bar 63 is N, and the array pitch of the optical fibers 63a is P (mm), b = P x (N -1) + a is set.
こ の よ う に、 端末部 60は、 接続部材 62の線膨張率 a M C を フ ヱ ノレール 61の線膨張率 a F Pよ り 小さ く 設定 した ので、 フ エ ルール 61の成形 に伴 う 高温時に は、 接続部材 62が突 出部 61 c の幅方向及び上下方向の:膨張を抑制 し、 成形終 了 の冷却時に は収縮を抑制する。 Ni will Yo of this, the terminal unit 60, the coefficient of linear expansion of a MC of the connecting member 62 so set rather small Ri by the linear expansion coefficient a FP of full We Noreru 61, when accompanied jar high temperature in the molding of full-et-rule 61 The connection member 62 suppresses the expansion in the width direction and the vertical direction of the protruding portion 61c, and suppresses the contraction at the time of cooling at the end of molding.
従 っ て、 フ ヱ ルール 61は、 突出部 61 c の膨張や収縮が 接続部材 62に よ っ て抑え ら れる ので、 突合せ端面 61 e に 開 口 す る フ ア イ バ孔 61 g が高い精度で形成さ れ る。  Accordingly, in the rule 61, since the expansion and contraction of the protruding portion 61c is suppressed by the connecting member 62, the fiber hole 61g opened in the butted end face 61e has high accuracy. It is formed by
ま た、 テー プフ ァ イ ノ 63の複数の光フ ァ イ ノく 63 a は、 フ ヱ ルール 61の空洞 61 b 内で接着剤 に埋設さ れて保護 さ れ、 テ ー プフ ァ イ バ 63を介 して応力が作用 して も、 断線 する こ と はな い。  Further, the plurality of optical fibers 63a of the tape fiber 63 are protected by being buried in an adhesive in the cavity 61b of the rule 61, and the tape fiber 63a is protected. Even if stress is applied via the wire, it will not break.
光導波路部品 70は、 厚 さ 1 m mの シ リ コ ン基板 71上に 形成 さ れた導波路層 72を、 シ リ コ ン基板 71と 共に外周 を 筒状の角 ス リ ー ブ 73で囲繞 した も の で、 両端面が突合せ 端面 と 7よ っ て い 。 導波路層 72は、 長手方向 に 4 本の導波路 72 a カ^ 複数 の光 フ ァ イ バ 63 a と 同一 ピ ッ チで並行に形成 さ れ、 例え ば石英を使用 し た火炎堆積法等に よ っ て厚 さ 数 1 0 m に形成 さ れてい る。 The optical waveguide component 70 surrounds a waveguide layer 72 formed on a 1 mm-thick silicon substrate 71 with a cylindrical square sleeve 73 around the outer periphery together with the silicon substrate 71. Therefore, the both end faces are the butt end face. The waveguide layer 72 is formed in parallel with the four waveguides 72a in the longitudinal direction at the same pitch as the plurality of optical fibers 63a. For example, a flame deposition method using quartz or the like is used. Thus, it is formed to have a thickness of several 10 m.
角 ス リ ー ブ 73は、 接鐃部材 62と 同一あ る い は近似の線 膨張率を有 し、 接続部材 62と 溶接可能な、 例えば、 線膨 張率 な M。が 2 〜 4 X 1 0 _ 6の コ ノ 一 ノレか ら な る ス リ ー ブ であ る。 The square sleeve 73 has the same or similar linear expansion coefficient as the tang member 62 and is weldable to the connecting member 62, for example, M having a linear expansion coefficient. Is a sleeve consisting of 2 to 4 X 10 _ 6 components .
こ こ で、 角 ス リ ー ブ 73は、 光導波路部品 70の突合せ端 面にお け る 面積や形状を、 端末部 60の接続部材 62に近似 さ せる こ と に よ り、 端末部 60と の間 の溶接有効面積を確 保する も のであ る。  Here, the square sleeve 73 is formed by approximating the area and shape of the optical waveguide component 70 at the butt end face to the connecting member 62 of the terminal part 60, and The effective welding area between the two is ensured.
以上の よ う に構成さ れ る本実施例 の端末部 60は、 光導 波路部品 70と突 き合わせて、 各光フ ァ イ バ 63 a と対応す る 導波路 72 a と の間で調心を行う。  The terminal section 60 of the present embodiment configured as described above is aligned with the optical waveguide component 70 and aligned between each optical fiber 63a and the corresponding waveguide 72a. I do.
こ の後、 図 21に示す よ う に、 接続部材 62と 角 ス リ ー ブ 73と を、 適宜箇所の溶接点 P で Y A G レ ーザ ビー ム溶接 に よ り 溶接 し、 端末部 60を光導波路部品 70と 接続する。  Thereafter, as shown in FIG. 21, the connecting member 62 and the square sleeve 73 are welded at an appropriate welding point P by YAG laser beam welding, and the terminal portion 60 is light-guided. Connect to waveguide component 70.
従 っ て、 端末部 60と光導波路部品 70と の上記接続構造 に お いて は、 接続部材 62は、 線膨張率 a MCが 2 〜 4 X 1 0 6で角 ス リ ー ブ 73の線膨張率 α Μ。と 等 し く、 更に シ リ コ ン基板 71及び導波路層 72か ら'な る 光導波路部品 70の主 要部分の線膨張率 。が約 2. 4 1 0 —6、 I a M C - a o I く 5 x 10— 6の関係 を満た して い る。 こ の た め、 上記接続構造に お いて は、 経時的 な 温度変 化 に伴 う 端末部 60と光導波路部品 70と の間 に お け る 線膨 張率の差がな いか殆 ど小 さ いため、 溘度変化 に伴 う 寸法 変化が小 さ く 抑え られ、 各光 フ ァ イ バ 63 a と導波路 72 a と の間 の調心状態が乱 さ れる こ と は な い。 従 っ て、 上記 接続構造を採用 する こ と に よ り、 端末部 60と光導波路部 品 70と の間 の経時的な接続損失の低下等、 性能の低下や 機能の消失を防 ぐ こ と ができ る。 第三の実施例 Accordingly, in the above connection structure between the terminal portion 60 and the optical waveguide component 70, the connection member 62 has a linear expansion coefficient aMC of 2 to 4 × 10 6 and a linear expansion of the square sleeve 73. Rate α Μ. Equivalently, the linear expansion coefficient of the main part of the optical waveguide component 70 consisting of the silicon substrate 71 and the waveguide layer 72. Satisfies the relationship of about 2.4 1 0 — 6 , I a MC-ao I and 5 x 10 — 6 . For this reason, in the above connection structure, there is little or no difference in the linear expansion coefficient between the terminal portion 60 and the optical waveguide component 70 due to temperature change over time. Therefore, a dimensional change due to a change in the degree of module is suppressed to a small extent, and the alignment state between each optical fiber 63a and the waveguide 72a is not disturbed. Therefore, by adopting the above connection structure, it is possible to prevent deterioration in performance and loss of function, such as a decrease in connection loss between the terminal section 60 and the optical waveguide component 70 over time. Can be done. Third embodiment
更に、 本発明 の第三の実施例を図 22に基づいて詳細 に 説明す る。  Further, a third embodiment of the present invention will be described in detail with reference to FIG.
本実施例の端末部 65は、 図 22に示すよ う に、 フ ェ ルー ル 66の前部か ら 下部に亘 つ て接続部材 67を配置す る と共 に、 フ エ ノレー ノレ 66に テー プフ ァ イ ノく 68を取 り 付け /こ も の で、 光導波路部品 75と 突 き合わせて溶接さ れ る。  As shown in FIG. 22, the terminal portion 65 of this embodiment has a connecting member 67 arranged from the front to the lower portion of the ferrule 66 and a taper on the phenolic hole 66. The fitting 68 is attached to this, and it is butt-welded to the optical waveguide component 75.
フ ヱ ノレール 66は、 第一の実施例で説明 した フ ヱ ルール 11と 略 同様に構成 さ れて い る ので、 詳細な説明 を省略す る。  The finaler 66 is configured in substantially the same manner as the rule 11 described in the first embodiment, and a detailed description thereof will be omitted.
フ エ ノレ一 ル 66は、 線膨張率 a F Pが 1 2 X 1 0 ー6の合成 樹脂、 例え ば、 エ ポ キ シ樹脂に よ っ て前記第一の実施例 で説明 した成形金型 30, 40及び中子 50を使用 して製造さ れ る。 本実施例では、 端末部 65と光半導体 75と を溶接に よ っ て接続す る こ と か ら、 フ ヱ ルー ル 66は光学的 に透明 であ る 必要はな い。 Full et Norre one Le 66, linear expansion coefficient a FP 1 2 synthetic resin X 1 0 -6, For example, the molding die described in the first embodiment in Tsu by the e port key sheet resin 30 , 40 and core 50. In this embodiment, since the terminal section 65 and the optical semiconductor 75 are connected by welding, the rule 66 is optically transparent. It does not need to be.
接続部材 67は、 フ ユ ルール 66の突合せ端面 66 e の周 囲 を囲繞する 開 口 67 a を有 し、 線膨張率の小さ い溶接可能 な金属、 例えば、 線膨張率 a M cが 2 〜 4 X 1 0 — 6の コ バ ールに よ っ て側面視 L 形 に成形 さ れて い る。 こ こ で、 開 口 67 a は、 縦長 さ a (mm)が 0. 2 a ≤ 1. 0 の範囲 に、 横 長 さ b ( mm) が、 フ エ ノレ一ノレ 66の フ ァ イ ノく孔 66 g の数、 従 っ て、 テープフ ァ イ ノ 68を構成す る 光フ ァ イ バ 68 a の 数を N、 光フ ァ イ バ 68 a の配列 ピ ッ チを P ( mm) と した と き に、 b = P x ( N — l ) + a の関係 に設定さ れて い る。 The connection member 67 has an opening 67a surrounding the periphery of the butted end surface 66e of the ferrule 66, and is a weldable metal having a small linear expansion coefficient, for example, a linear expansion coefficient a Mc of 2 to 5. 4 X 1 0 - Tsu by the 6 co bar Le and that is formed in the side view L-shaped. Here, the opening 67a has a vertical length a (mm) within the range of 0.2a ≤ 1.0 and a horizontal length b (mm) of the fin 66. The number of the holes 66 g, therefore, the number of optical fibers 68 a constituting the tape fin 68 was N, and the array pitch of the optical fibers 68 a was P (mm). At this time, the relationship is set to b = P x (N — l) + a.
こ の よ う に、 端末部 65は、 接繞部材 67の線膨張率 な M C を フ ヱ ルール 66の線膨張率 な F Pよ り 小さ く 設-定 したので、 フ ヱ ルール 66の成形に伴 う 高温時に は、 接続部材 67が突 出部 66 c の幅方向及び上下方向 の膨張を抑制 し、 成形終 了 の冷却時に は収縮を抑制す る。 Ni will Yo of this, the terminal unit 65, the coefficient of linear expansion of F P by Ri small rather than set of full We rule 66 of the linear expansion coefficient of MC of Sennyo member 67 - the constant was, in the molding of the full We Rule 66 When the temperature is high, the connecting member 67 suppresses expansion in the width direction and the vertical direction of the protruding portion 66c, and suppresses shrinkage during cooling at the end of molding.
従 っ て、 フ ヱ ルール 66は、 突出部 66 c の膨張や収縮が 接続部材 67に よ っ て抑え ら れ る ので、 突合せ端面 66 e に 開 口 す る フ ァ イ バ孔が高い精度で形成さ れる 結果、 複数 の光 フ ア イ バ 68 a は高精度に配列 さ れる。  Therefore, in the rule 66, since the expansion and contraction of the protruding portion 66c is suppressed by the connecting member 67, the fiber hole opened in the butt end face 66e can be formed with high accuracy. As a result, the plurality of optical fibers 68a are arranged with high precision.
ま た、 テー プフ ァ イ ノく 68の複数の光フ ァ イ ノく 68 a は、 フ エ ルール 66の空洞 66 b 内で接着剤 に埋設さ れて保護 さ れ、 テ ー プフ ァ イ バ 68を介 して応力 が作用 して も、 断線 す る こ と はな い。 一方、 光半導体 75は、 複数 の レ ー ザダ イ オ ー ド素子を 1 列 に 配列 し た L D ァ レ イ 76と キ ヤ リ ァ 77と の 間 に ヒ ー ト シ ン ク 78を配置 した も ので、 各 レ ーザダイ オ ー ド素子 はキ ヤ リ ア 77と の間がボ ン デ ィ ン グ ワ イ ヤ 79で電気的 に 接続 さ れ、 キ ャ リ ア 77は金属製のマ ウ ン ト ベー ス 80に 固 定 さ れてい る。 こ こ で、 マ ウ ン ト ベー ス 80は、 線膨張率 α Μ Βが接続部材 67の線膨張率 a MCに近い 2 〜 4 X 1 0 一 6 の も の を使用す る。 Further, the plurality of optical fibers 68a of the tape fiber 68 are protected by being buried in an adhesive in the cavity 66b of the ferrule 66, and the tape fiber is protected. Even if stress is applied via 68, the wire will not break. On the other hand, in the optical semiconductor 75, a heat sink 78 is arranged between an LD array 76 in which a plurality of laser diode elements are arranged in one row and a carrier 77. Therefore, each laser diode element is electrically connected to the carrier 77 by a bonding wire 79, and the carrier 77 is a metal mount. Fixed to base 80. In here, Ma c down preparative base 80, to use a 2 ~ 4 X 1 0 one 6 also the closer to the linear expansion coefficient a MC of linear expansion alpha Micromax beta connection member 67.
以上の よ う に構成さ れ る 本実施例 の端末部 65は、 マ ウ ン ト ベ ー ス 80と 突 き合わせて配置 したベ ー ス 69に光半導 体 75と対向 さ せて載置す る。 ごの と き、 ベー ス 69は、 線 膨張率 α Β が接続部材 67の線膨張率 な MCに近い 2 〜 4 x The terminal section 65 of the present embodiment configured as described above is mounted on a base 69 arranged in abutment with the mount base 80 so as to face the optical semiconductor 75. You. At the time, the base 69 has a linear expansion coefficient α Β that is close to the linear expansion coefficient MC of the connecting member 67.
の も のを使用する。  Use the ones.
次に、 各光フ ァ イ バ 68 a と対応す る 光半導体 75の各 レ —ザダイ オー ド素子 と の間で、 X, Y及び Z の 3 軸方向 並びに光軸方向 にお け る 傾き を調心する。  Next, the inclination in the X-, Y-, and Z-axis directions and the optical axis direction between each optical fiber 68a and each corresponding laser diode element of the optical semiconductor 75 is described. Align.
こ の後、 端末部 65と ベー ス 69並びにベー ス 69と マ ウ ン ト ベー ス 80と を適宜箇所の溶接点 P で Y A G レ ーザ ビー ム溶接 に よ り 溶接 し、 端末部 65を光半導体 75と 接続す る。  Thereafter, the terminal portion 65 and the base 69 and the base 69 and the mount base 80 are welded at appropriate welding points P by YAG laser beam welding, and the terminal portion 65 is illuminated. Connect to semiconductor 75.
こ の よ う に、 上記接続構造に おいては、 接続部材 67 (線膨張率 a M C) やマ ウ ン ト ベー ス 80 (線膨張率 α Μ Β) に近い線膨張率 な Β を有する ベー ス 69を用 いて端末部 65 と光半導体 75と を接続 して い る ので、 線膨張率の差 I ひNi will Yo of this, based having the above Oite the connection structure, the connection member 67 (coefficient of linear expansion of a MC) mountain window down bets based 80 coefficient of linear expansion close to the (linear expansion coefficient α Μ Β) Β Since the terminal section 65 and the optical semiconductor 75 are connected using a screw 69, the difference in linear expansion coefficient
Β - a M C I や I α Β— α Μ Β | 力く 5 x lO— 6よ り 小 さ く な る。 こ の ため、 上記接続構造に お いて は、 経時的な 温度変 ィ匕 に伴 う 端末部 65と光半導体 75と の 間 に お け る 線膨張率 の差が小 さ く、 温度変化に伴 う 寸法変化が小 さ く 抑え ら れる。 こ の結果、 各光フ ァ イ バ 68 a と対応す る 光半導体 75の レ ーザダイ ォー ド素子 と の間 の調心状態が乱さ れ る こ と はな い。 従 っ て、 上記接続構造を採用す る こ と に よ り、 端末部 65と光半導体 75と の間 の経時的な接続損失の 低下等、 性能の低下や機能の消失が抑制 さ れ る。 産業上の利用可能性 Β-a MCI or I α Β — α Μ Β | Powerful 5 x lO— smaller than 6 . For this reason, in the above connection structure, the difference in linear expansion coefficient between the terminal portion 65 and the optical semiconductor 75 due to the temperature change over time is small, and the temperature change causes the difference. The dimensional change is suppressed to a small extent. As a result, the alignment state between each optical fiber 68a and the corresponding laser diode element of the optical semiconductor 75 is not disturbed. Therefore, by adopting the above-mentioned connection structure, a decrease in performance and a loss of function such as a decrease in connection loss between the terminal section 65 and the optical semiconductor 75 over time are suppressed. Industrial applicability
以上の説明で明 ら かな よ う に、 本発明 に よ れば光デバ イ ス と の接続性に優れ、 製造が容易で光フ ァ イ バが断線 しに く い光フ ァ イ バ端末部、 そ の製造方法及.び端末部 と 光デバイ ス と の接続構造が提供さ れる。  As is clear from the above description, according to the present invention, the optical fiber terminal section has excellent connectivity with the optical device, is easy to manufacture, and is hard to be disconnected. The manufacturing method and the connection structure between the terminal unit and the optical device are provided.
こ の と き、 接続部材の線膨張率 a C Mを前記 フ X ルール を構成する 合成樹脂の線膨張率 a F Pよ り も 小 さ く 設定す る と、 光 フ ァ イ バ端末部は、 フ ヱ ルールの成形時に、 接 続部材が合成樹脂の熱膨張や収縮を抑制する。 従 っ て、 フ ェ ル一ルは、 フ ァ イ バ孔を高い精度で形成する こ とが で き る。 At this time, if the linear expansion coefficient a CM of the connecting member is set to be smaller than the linear expansion coefficient a FP of the synthetic resin constituting the X rule, the optical fiber terminal section becomes時 に The connection member suppresses the thermal expansion and contraction of the synthetic resin when molding the rule. Therefore, the fiber can form the fiber hole with high accuracy.
ま た、 前記接続部材は、 前記 フ エ ルー ルの突合せ端面 外周 に少な く と も一部が露出す る 光学的 に透 明な素材、 例え ば、 ガラ ス と す る と、 光フ ァ イ バ端末部は、 光硬化 型 の接着剤を用 い る こ と に よ り、 光デバイ ス と短時間で 接続で き る。 In addition, the connection member is an optically transparent material that is at least partially exposed on the outer periphery of the abutting end face of the ferrule, such as a glass. The light-curing adhesive is used at the end of the cable, making it possible to quickly connect to the optical device. You can connect.
更に、 前記 フ X ル ー ルを、 熱硬化性、 熱可塑性あ る い は光硬化性のいずれかの合成樹脂か ら な る 成形体 と す る と、 光 フ ァ イ バ'端末部は、 フ ヱ ノレ 一ルを金型 を用 いて安 価に成形で き る。  Further, when the X-rule is a molded body made of any of thermosetting, thermoplastic or photo-curable synthetic resin, the optical fiber's terminal portion is The phenol can be molded inexpensively using a mold.
ま た、 前記 フ エ ルールを構成する 二酸化ケ イ 素を含む 合成樹脂を、 カ ッ プ リ ン グ剤を含む も の と す る と、 光 フ ア イ バ端末部は、 フ ヱ ルール と ガラ ス製の接続部材 と の 間の接着性が向上す る。  In addition, if the synthetic resin containing silicon dioxide constituting the ferrule contains a coupling agent, the optical fiber terminal section becomes the ferrule and the glass. Adhesion between the steel connecting member and the metal member is improved.
更に、 前記フ X ルールを構成する 合成樹脂は、 そ の屈 折率が前記二酸化ケ イ 素の屈折率 と近 く、 光学的に透明 な素材 とする と、 光フ ァ イ バ端末部は、 光デバイ ス と接 続する と き に照射光が透過 し易 く な り、 使用 する光硬化 型 の接着剤がよ り 短時間で硬化 し、 光デバイ ス と の接続 作業に要す る 時間を短縮でき る。 特に、 フ X ルールを構 成する 前記合成樹脂を着色成分やカ ー ボ ンを含ま な い素 材 と する と、 照射光の フ エ ルールに よ る 吸収 も少な く な る ので、 光フ ァ イ バ端末部に お け る 発熱 も少な く でき、 温度上昇に よ る フ エ ルールの寸法変化を抑制でき る。  Further, when the synthetic resin constituting the fiber X rule is made of an optically transparent material having a refractive index close to the refractive index of the silicon dioxide, the optical fiber terminal portion is When connecting to an optical device, the irradiation light is more likely to penetrate, and the photo-curable adhesive used cures more quickly, reducing the time required for connection work with the optical device. Can be shortened. In particular, if the synthetic resin that constitutes the X rule is made of a material that does not contain a coloring component or carbon, the absorption of the irradiation light by the ferrule is reduced, so that the optical filter is used. Heat generation at the end of the fiber can be reduced, and the dimensional change of the ferrule due to temperature rise can be suppressed.
ま た、 前記接繞部材は、 線膨張率 a C Mが、 前記光デバ イ ス の構成素材の線膨張率 な 。 Dに関 し、 I a C M— a 0 D | く 5 X 1 0 6の関係 を満たすガラ ス、 あ る いは前記光デバ ィ ス の対応す る 位置 に設けた金属部材 と 突き 合わせて溶 接 さ れ、 当該接続部材の線膨張率 《 M Cが、 前記金属部材 の線膨張率 α Μ。に 関 し I a M c — α Μ 0 | < 5 X 1 0 — 6の関係 を満た す金属 と す る。 In addition, the surrounding member has a linear expansion coefficient a CM that is a linear expansion coefficient of a constituent material of the optical device. And concerning D, I a CM - a 0 D | Ku 5 X 1 0 6 glass satisfies the relationship, have Ru Ah is combined thrust and the metal member provided on the corresponding to that position of the light Device office soluble The linear expansion coefficient of the connection member << MC is the metal member The coefficient of linear expansion of α Μ. It should be a metal that satisfies the relationship of I a M c — α Μ 0 | <5 X 10 — 6 .
こ れ に よ り、 光 フ ァ イ バ端末部は、 経時的な 温度変化 に伴 う 光デバイ ス と の間 に お け る線膨張率の差が小 さ い ため、 温度変化 に伴 う 寸法変化が小 さ く 抑え ら れ、 経時 的な接鐃損失の低下等、 性能の低下や機能の消失を抑制 で き る。  As a result, the difference in the linear expansion coefficient between the optical fiber terminal and the optical device due to the temperature change over time is small. The change is suppressed to a small extent, and it is possible to suppress a decrease in performance and a loss of function, such as a decrease in cycling loss over time.
更に、 前記接続部材は、 前記 フ X ルー ルの突合せ端面 の周 囲 を囲繞す る 開 口 を有 し、 該開 口 は前記 フ エ ノレー ル に接着固定さ れ る 光 フ ァ イ ノくの数を Ν、 光フ ァ イ ノくの配 列 ピ ッ チを Ρ と した と き に、 前記光 フ ァ イ バの配列方向 に直交する 方向 の長さ a が 0. 2 〜 1. O m m、 配列方向 の 長 さ b が b = P x ( N - 1 ) + a の関係を満たすよ う に 設定す る。 こ れに よ り、 光 フ ァ イ バ端末部は、 突合せ端 面全体に 占 め る 接続部材の面積比が適正値に設定で き、 フ エ ノレ ー ルを成形す る と き の歩留 ま り が向上す る。  Further, the connection member has an opening surrounding the periphery of the butt end face of the X-rule, and the opening is bonded to the optical fin by an optical fin. When the number is Ν and the arrangement pitch of the optical fibers is Ρ, the length a in the direction orthogonal to the arrangement direction of the optical fibers is 0.2 to 1.O mm The length b in the array direction is set so as to satisfy the relationship of b = Px (N-1) + a. As a result, in the optical fiber terminal portion, the area ratio of the connecting member occupying the entire butt end face can be set to an appropriate value, and the yield when molding the phenol can be obtained. It is better.
ま た、 本発明 の光フ ァ イ バ端末部 と光デバイ ス と の接 続構造に おいて、 前記光デバイ ス は、 前記複数の光 フ ァ ィ バ と 配列 ピ ッ チが等 し い複数の導波路が形成 さ れた光 導波路部品で、 前記 フ エ ルールに設けた接繞部材の部分 で紫外線硬化型 の接着剤 に よ り 光フ ア イ バ端末部 と 接着 さ れて い る 接続構造 と す る と、 光 フ ァ イ バ端末部 と光導 波路部品 と を秒単位の短時間で接続する こ と がで き る。  Further, in the connection structure between the optical fiber terminal section and the optical device according to the present invention, the optical device includes a plurality of optical fibers and a plurality of arrangement pitches equal to each other. An optical waveguide component having the above-described waveguide formed thereon, and is bonded to an optical fiber terminal portion by an ultraviolet curing adhesive at a portion of a surrounding member provided on the ferrule. With the connection structure, the optical fiber terminal and the optical waveguide component can be connected in a short time in seconds.
更に、 前記光デバイ ス-は、 前記複数の光 フ ァ イ バ と 配 列 ピ ッ チが等 し い複数の導波路が形成 さ れ、 外周 を 囲繞 す る 金属筒を備え た光導波路部品で、 当該金属筒の端面 で接続部材が金属 の光 フ ア イ バ端末部 と 溶接 さ れて い る 接続構造 と す る。 あ る い は、 前記光デバイ ス は、 複数の レ ーザダイ オ ー ド素子を配列 した光半導体で、 第一の金 属ベー ス上に、 ま た、 光 フ ァ イ バ端末部は、 第二の金属 ベー ス上に、 それぞれ対向 さ せ る と共に、 前記各光 フ ァ イ ノ、' と 対応する レ ーザダイ ォー ド素子 と の間で調心 して 設置 さ れ、 前記第一及び第二の金属ベー スが相互に溶接 さ れて い る 接銃構造 と す る。 Further, the optical device is connected to the plurality of optical fibers. An optical waveguide component having a plurality of waveguides having the same row pitch and including a metal tube surrounding the outer periphery, and a connection member made of metal at the end face of the metal tube. And the connection structure is welded. Alternatively, the optical device is an optical semiconductor in which a plurality of laser diode elements are arranged, and the optical device is provided on a first metal base and an optical fiber terminal is provided on a second metal base. On each of the metal bases, and are installed so as to be aligned with each of the optical fins and the corresponding laser diode element. The gun base has a metal base that is welded to each other.
こ れに よ り、 光導波路部品 あ る いは光半導体 と光フ ァ ィ バ端末部 と を溶接に よ り 接続 した接続構造 と する こ と ができ る。  This makes it possible to form a connection structure in which the optical waveguide component or the optical semiconductor and the optical fiber terminal are connected by welding.

Claims

請 求 の 範 囲 The scope of the claims
1. 光デバイ ス と対向 あ る いは突 き 合わ さ れ る 突合せ端 面 と、 単数の フ ァ イ バ'孔あ る い は所定 ピ ッ チ で並行に形 成さ れた複数の フ ァ イ バ孔 と を有 し、 前記各 フ ァ イ バ孔 に光 フ ア イ バの一端が挿通 さ れて接着固定 さ れた フ ェ ル ールを備え、 前記光 フ ァ イ バが光デバイ ス と光接続さ れ る 光 フ ア イ バ端末部において、 . 1. An abutting end face facing or abutting the optical device, and a single fiber hole or a plurality of fibers formed in parallel with a predetermined pitch An optical fiber, wherein one end of the optical fiber is inserted through each of the fiber holes, and the optical fiber is bonded and fixed, and the optical fiber is an optical device. In the optical fiber terminal that is optically connected to the
前記 フ エ ルー ルは、 合成樹脂の成形体か ら な り、 前記 光デバイ ス と の突合せ端面側 に少な く と も 1 つの接続部 材が設け られて い る こ と を特徴 と す る 光フ ア イ バ端末部 t The ferrule is made of a synthetic resin molded body, and at least one connecting member is provided on an end face side of the ferrule to the optical device. off A Lee bus terminal section t
2. 前記接続部材は、 線膨張率 a CMが、 前記フ エ ルー ル を構成する 合成樹脂の線膨張率 a F Pよ り も小 さ く 設定さ れてい る、 請求の範囲第 1 項記載の光 フ ァ イ バ端末部。 2. The connection member according to claim 1, wherein the connection member has a linear expansion coefficient a CM set to be smaller than a linear expansion coefficient a FP of a synthetic resin constituting the ferrule . Optical fiber terminal.
3. 前記接続部材は、 前記 フ ヱ ルー ルの突合せ端 ®外周 に少な く と も一部が露出す る 光学的 に透明 な素材か ら な る、 請求の範囲第 2 項記載の光フ ァ イ バ端末部。  3. The optical fiber according to claim 2, wherein the connection member is made of an optically transparent material that is at least partially exposed at an outer periphery of a butt end of the rule. Iva terminal section.
4. 前記接続部材は、 線膨張率 a CMが、 前記光デバイ ス の構成素材の線膨張率 a 0Dに関 し、 以下の関係を満たす ガラ ス であ る、 請求の範囲第 3 項記載の光 フ ァ イ バ端末 部。 4. The connection member according to claim 3, wherein the connection member is a glass having a linear expansion coefficient a CM that satisfies the following relationship with respect to a linear expansion coefficient a 0D of a constituent material of the optical device. Optical fiber terminal.
I a c M - α 0 D I < 5 x l0-6 I ac M-α 0 DI <5 x l0- 6
5. 前記接続部材は、 前記 フ エ ルー ルの突合せ端面の周 囲を 囲繞す る 開 口 を有 し、 該開 口 は前記 フ エ ルー ル に接 着固 定 さ れ る 光 フ ア イ バ の数を N、 光 フ ア イ バ の配列 ピ ツ チを P と した と き に、 前記光フ ァ イ バの配列方向 に直 交す る 方向 の長 さ 3 が 0. 2 〜 1, 0 01 111、 配列方向 の長 さ b が b = P x ( N - 1 ) + a の関係を満たす、 請求の範 囲第 4 項記載の光 フ ア イ バ端末部。 5. The connection member has an opening surrounding the periphery of the butt end face of the ferrule, and the opening is in contact with the ferrule. Assuming that the number of fixed optical fibers is N and the arrangement pitch of the optical fibers is P, the direction perpendicular to the arrangement direction of the optical fibers is assumed. The optical fiber according to claim 4, wherein the length 3 is 0.2 to 1,001 1111, and the length b in the array direction satisfies the relationship of b = P x (N-1) + a. Terminal section.
6. 前記 フ エ ルールは、 熱硬化性、 熱可塑性あ る い は光 硬化性のいずれかの合成樹脂か ら な る 成形体であ る、 請 求の範囲第 1 項乃至第 5 項いずれか に記載の光 フ ァ イ バ 端末部。  6. The claim according to any one of claims 1 to 5, wherein the ferrule is a molded body made of a thermosetting, thermoplastic, or light-curing synthetic resin. The optical fiber terminal section described in (1).
7. 前記フ エ ルールを構成する 合成樹脂は、 カ ッ プ リ ン グ剤並びに充填材 と して二酸化ケ イ 素を含む、 請求の範 囲第 6 項記載の光 フ ア イ バ端末部。  7. The optical fiber terminal according to claim 6, wherein the synthetic resin constituting the ferrule includes a capping agent and silicon dioxide as a filler.
8. 前記フ エ ルールを構成する 合成樹脂は、 そ の屈折率 が前記二酸化ケ イ 素の屈 折率 と近 く、 光学的 に透明であ る、 請求の範囲第 7 項記載の光フ ァ イ バ端末部。  8. The optical fiber according to claim 7, wherein a refractive index of the synthetic resin constituting the ferrule is close to a refractive index of the silicon dioxide, and is optically transparent. Iva terminal section.
9. 前記接続部材が金属であ る、 請求の範囲第 ·2 項記載 の光 フ ァ イ バ'端末部。  9. The optical fiber 'terminal section according to claim 2, wherein said connection member is metal.
10. 前記接続部材は、 前記光デバイ ス の対応する 位置 に 設けた金属部材 と突 き合わせて溶接 さ れ、 当該接続部材 の線膨張率 a MCが、 前記金属部材の線膨張率 α Μ0に 関 し 以下の関係を満 たす、 請求の範囲第 9.項記載の光 フ ア イ ノヾ端末部。 10. The connecting member is butt- welded with a metal member provided at a corresponding position of the optical device, and a linear expansion coefficient a MC of the connecting member is reduced to a linear expansion coefficient αΜ0 of the metal member. The optical fin terminal section according to claim 9, which satisfies the following relation.
I α M c - a M O I < 5 x 10  I α M c-a M O I <5 x 10
11. 前記接続部材は、 前記 フ ルー ルの突合せ端面の周 囲を 囲繞す る 開 口 を有 し、 該開 口 は前記 フ エ ノレ ー ル に接 着固定 さ れ る 光 フ ァ イ バ'の数を N、 光フ ァ イ バの配列 ピ ツ チを P と した と き に、 前記光 フ ァ イ バの配列方向 に直 交する 方向 の長 さ a が 0 . 2 〜 1 : 0 m m、 配列方向 の長 さ b が b = P x ( N - 1 ) + a の関係を満たす、 請求の範 囲第 1 0項記載の光フ ァ イ バ端末部。 11. The connection member is provided around the butt end face of the ruler. The opening has an opening that surrounds the enclosure, and the opening has a number N of optical fibers that are fixedly attached to the phenol, and an arrangement pitch of the optical fibers. When P, the length a in the direction orthogonal to the array direction of the optical fiber is 0.2 to 1: 0 mm, and the length b in the array direction is b = Px (N−1 The optical fiber terminal according to claim 10, which satisfies the relationship of +) + a.
1 2. 前記 フ ェ ル 一ルは、 熱硬化性、 熱可塑性あ る いは光 硬化性のいずれかの合成樹脂か ら な る 成形体であ る、 請 求の範囲第 9 項乃至第 1 1項いずれか に記載の光 フ ァ ィ バ 端末部。  1 2. The claim is a molded article made of a thermosetting, thermoplastic or photo-curable synthetic resin. The optical fiber terminal according to any one of the above items.
1 3. —組の型板 と、 該一組の型板間 に配置さ れ、 複数の 光フ ァ ィ バを揷通す る フ ァ ィ バ孔を成形す る 複数の成形 ピ ンを有する 中子の少な く と も一端側 に接続部材を配置 し、 前記一組の型板、 前記中芋及び前記接続部材の間 に 形成 さ れ る キ ヤ ビテ ィ 内 に合成樹脂を注入 して フ ェ ルー ルを成形 し、 該 フ ヱ ノレー ルの前記各 フ ァ イ バ孔に前記光 フ ァ イ バを それぞれ挿通 さ せて接着する こ と に よ り、 前 記各光 フ ア イ バの一端を 固定 した こ と を特徴 と す る 光フ ア イ バ端末部の製造方法。  1 3.—having a pair of template plates and a plurality of molding pins that are arranged between the pair of template plates and form fiber holes through which a plurality of optical fibers pass. A connecting member is arranged on at least one end side of the child, and synthetic resin is injected into a cavity formed between the set of template, the middle potato, and the connecting member, and the resin is injected into the cavity. A rule is formed, and the optical fiber is inserted into each of the fiber holes of the nozzle and bonded to each other, thereby forming one end of each of the optical fibers. A method of manufacturing an optical fiber terminal, characterized in that the optical fiber terminal is fixed.
14. 請求の範囲第 1 項の光 フ ァ イ バ端末部が、 光デバイ ス と対向 あ る い は突 き 合わせて接続 さ れて い る こ と を特 徵 と す る 光 フ ァ イ バ端末部 と光デバイ ス と の接続構造。 14. The optical fiber terminal according to claim 1, wherein the optical fiber terminal is connected to the optical device so as to face or face-to-face. Connection structure between terminal unit and optical device.
1 5. 前記光デバイ ス は、 前記複数の光 フ ァ イ バ と配列 ピ ッ チが等 し い複数の導波路が形成 さ れた光導波路部品で、 前記 フ エ ルー ル に 設 け た 接続部材の部分で紫外線硬化型 の接着剤 に よ り 請求 の範囲第 3 項乃至第 8 項いずれかに 記載の光 フ ァ イ バ端末部 と接着 さ れて い る、 光 フ ァ イ バ 端末部 と光デバイ ス と の接続構造。 1 5. The optical device is an optical waveguide component in which a plurality of waveguides having the same arrangement pitch as the plurality of optical fibers are formed, 9. The optical fiber terminal according to any one of claims 3 to 8, wherein a portion of the connecting member provided on the ferrule is bonded to an optical fiber terminal according to any one of claims 3 to 8 by an ultraviolet-curing adhesive. Connection structure between optical fiber terminals and optical devices.
1 6. 前記光デバイ ス は、 前記複数の光 フ ァ イ バ と 配列 ピ ツ チが等 しい複数の導波路が形成さ れ、 外周 を囲繞す る 金属筒を備え た光導波路部品で、 当該金属筒の端面で請 求の範囲第 9 項乃至第 1 2項いずれかに記載の光 フ ア イ バ 端末部 と 溶接 さ れて い る、 光 フ ァ イ バ端末部 と光デバイ ス と の接続構造。  1 6. The optical device is an optical waveguide component having a plurality of waveguides having the same arrangement pitch as the plurality of optical fibers and including a metal cylinder surrounding the outer periphery. The optical fiber terminal and the optical device, which are welded to the optical fiber terminal according to any one of claims 9 to 12 on the end surface of the metal tube. Connection structure.
1 7. 前記光デバイ ス は、 複数の レ ーザダイ オ ー ド素子を 配列 した光半導体で、 第一の金属ベー ス上に、 ま た、 光 フ ァ イ バ端末部は、 第二の金属ベー ス上に、 それぞれ対 向 さ せる と共に、 前記各光 フ ァ イ バ と対応する レ ーザダ ィ オー ド素子 と の間で調心 して設置 さ れ、 前記第 及び 第二の金属ベー スが相互 に溶接 さ れてい る、 光 ラ' ア イ バ 端末部 と光デバイ ス と の接続構造。  1 7. The optical device is an optical semiconductor in which a plurality of laser diode elements are arranged, and the optical fiber terminal portion is provided on the first metal base and the second metal base. The optical fibers are opposed to each other, and are installed so as to be aligned between the respective optical fibers and the corresponding laser diode elements, so that the first and second metal bases are mutually opposed. The connection structure between the optical fiber terminal and the optical device, which are welded to each other.
PCT/JP1994/000536 1993-04-02 1994-03-31 Terminal of optical fiber, method of its manufacture, and structure for connecting the terminal and optical device WO1994023321A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69424979T DE69424979T2 (en) 1993-04-02 1994-03-31 END PIECE OF AN OPTICAL FIBER, METHOD FOR PRODUCING THE SAME AND STRUCTURE FOR CONNECTING THE END PIECE TO AN OPTICAL DEVICE
EP94910583A EP0644442B1 (en) 1993-04-02 1994-03-31 Terminal of optical fiber, method of its manufacture, and structure for connecting the terminal and optical device
US08/335,769 US5548675A (en) 1993-04-02 1994-03-31 Multifiber connector, a method of manufacturing the same, and a construction for connecting the multifiber connector to an optical device
CA002135777A CA2135777C (en) 1993-04-02 1994-03-31 Optical fiber end portion, method for manufacturing the same, and construction for connecting end portion to optical device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP7671193 1993-04-02
JP5/76711 1993-04-02
JP5/340447 1993-12-07
JP34044793 1993-12-07
JP34044693 1993-12-07
JP5/340446 1993-12-07
JP6/8162 1994-01-28
JP816294 1994-01-28

Publications (1)

Publication Number Publication Date
WO1994023321A1 true WO1994023321A1 (en) 1994-10-13

Family

ID=27454888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000536 WO1994023321A1 (en) 1993-04-02 1994-03-31 Terminal of optical fiber, method of its manufacture, and structure for connecting the terminal and optical device

Country Status (6)

Country Link
US (1) US5548675A (en)
EP (1) EP0644442B1 (en)
CN (1) CN1106616A (en)
CA (1) CA2135777C (en)
DE (1) DE69424979T2 (en)
WO (1) WO1994023321A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625730A (en) * 1994-07-21 1997-04-29 Sumitomo Electric Industries, Ltd. Optical waveguide module having waveguide substrate made of predetermined material and ferrule made of material different from that of waveguide substrate

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815621A (en) * 1996-05-23 1998-09-29 Sumitomo Electric Industries, Ltd. Optical fiber connector ferrule with die and method of manufacturing same
KR100191211B1 (en) * 1996-09-13 1999-06-15 윤종용 Optical fiber array module and production method thereof
US5827582A (en) * 1996-11-15 1998-10-27 Ceramtec North America Innovative Object with a small orifice and method of making the same
US5923803A (en) * 1997-07-28 1999-07-13 Molex Incorporated Method of fabricating a fiber optic connector ferrule
US5907651A (en) * 1997-07-28 1999-05-25 Molex Incorporated Fiber optic connector ferrule
US5867620A (en) * 1997-07-28 1999-02-02 Molex Incorporated Fixture for fabricating a fiber optic connector ferrule
US5963691A (en) * 1997-07-28 1999-10-05 Molex Incorporated Alignment system in a connector ferrule for a fiber optic cable
CA2336388C (en) * 1998-07-02 2008-09-09 Tyco Electronics Logistics Ag Ferrule for a pluggable optical connection
EP0994371A3 (en) * 1998-10-12 2004-04-14 Itt Manufacturing Enterprises, Inc. Multi-fiber interconnect system
JP3459787B2 (en) 1999-04-02 2003-10-27 Nec化合物デバイス株式会社 Optical semiconductor module and manufacturing method thereof
JP2001281506A (en) * 2000-03-31 2001-10-10 Ngk Insulators Ltd Optical head
US20020176670A1 (en) * 2001-05-10 2002-11-28 Masao Shinoda Connector ferrule for connecting optical fibers
US20030002805A1 (en) 2001-06-29 2003-01-02 John Trezza Multi-piece fiber optic component and manufacturing technique
US6773166B2 (en) * 2001-06-29 2004-08-10 Xanoptix, Inc. Multi-piece fiber optic component and manufacturing technique
US7831151B2 (en) 2001-06-29 2010-11-09 John Trezza Redundant optical device array
US20030002804A1 (en) * 2001-06-29 2003-01-02 John Trezza Multi-piece fiber optic component and manufacturing technique
EP1399769A4 (en) 2001-06-29 2005-08-17 Xanoptix Inc High-precision female format multifiber connector
US20030002802A1 (en) * 2001-06-29 2003-01-02 John Trezza Multi-piece fiber optic component and manufacturing technique
US6939057B2 (en) 2001-08-01 2005-09-06 Infineon Technologies Ag Optical coupling unit and method for inserting optical wave guides into an optical coupling unit
US6682228B2 (en) 2002-02-19 2004-01-27 Emcore Corporation Connector housing for fiber-optic module
US6764221B1 (en) * 2002-12-30 2004-07-20 Corning Calde Systems Llc Flexible, multi-fiber fiber optic jumper
US7108431B2 (en) * 2003-04-17 2006-09-19 3M Innovative Properties Company Ferrule for use in fiber optic connectors
US6973242B2 (en) * 2003-04-17 2005-12-06 3M Innovative Properties Company Apparatus useful for guiding fiber optic ribbons into ferrules
JP2005025135A (en) * 2003-07-04 2005-01-27 Showa Electric Wire & Cable Co Ltd High reliability optical waveguide type device
US20060171820A1 (en) * 2005-01-31 2006-08-03 Baron Michael P Cooling arrangement for a portable air compressor
CN101032849B (en) * 2006-03-08 2010-06-09 深圳富泰宏精密工业有限公司 Method of forming locating curing tool
WO2010068896A1 (en) * 2008-12-11 2010-06-17 Afl Telecommunications Llc A "secured" fiber optic connecting system and method using different fiber positions of a multi-fiber connector
US8580162B2 (en) * 2009-03-17 2013-11-12 Adc Telecommunications, Inc. Method of directly molding ferrule on fiber optic cable
US8985870B2 (en) * 2011-05-18 2015-03-24 Panasonic Intellectual Property Management Co., Ltd. Semiconductor laser module and method for manufacturing same
CN102323651A (en) * 2011-09-23 2012-01-18 南京普天通信股份有限公司 Luminescent indication patch cord for routing connection
US9897764B2 (en) 2012-09-28 2018-02-20 Commscope Technologies Llc Molded ferrules for optical fibers
WO2014110037A1 (en) * 2013-01-08 2014-07-17 Commscope, Inc. Of North Carolina Selective uv curing of epoxy adjacent to optical fibers by transmitting uv energy through the fiber cladding
TW201504705A (en) * 2013-07-31 2015-02-01 Hon Hai Prec Ind Co Ltd Optical fiber coupling connector and molding die and method for molding optical fiber coupling connector
CN104345399A (en) * 2013-08-09 2015-02-11 鸿富锦精密工业(深圳)有限公司 Optical fiber connector
EP3201666A1 (en) * 2014-09-29 2017-08-09 Corning Optical Communications LLC Ferrule for multi-fiber optical connector
CN104985824A (en) * 2015-05-14 2015-10-21 孟凡英 High polymer material one-dimensional pore manufacturing method
CN105817763A (en) * 2015-07-13 2016-08-03 常州市华晟福涛光电科技有限公司 Plastic optical fiber laser-welding technique and application thereof
CN105278044A (en) * 2015-11-20 2016-01-27 国网山东青州市供电公司 Dot-matrix prefabricated optical cable and manufacture method thereof
US10228520B2 (en) 2016-08-30 2019-03-12 Corning Optical Communications LLC Fiber-to-waveguide optical interface devices and coupling devices with lenses for photonic systems
US10191216B2 (en) 2016-08-30 2019-01-29 Corning Optical Communications LLC Fiber-to-waveguide optical interface device and components for photonic systems
US10591681B2 (en) 2017-07-13 2020-03-17 Nest Technical Services, Inc. Multichannel fiber optic connector, adapter, and contact retention method
US10698163B2 (en) * 2018-10-30 2020-06-30 Hewlett Packard Enterprise Development Lp Polarization diversity optical interface assembly
US20210050922A1 (en) * 2019-08-14 2021-02-18 Prime World International Holdings Ltd. Method of bonding optical components of optical transceiver
JP7380389B2 (en) * 2020-03-31 2023-11-15 住友大阪セメント株式会社 Optical waveguide element, optical modulation device and optical transmitter using the same
DE102022129645A1 (en) 2022-11-09 2024-05-16 FiberBridge Photonics GmbH Fiber optic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014326B2 (en) * 1978-10-02 1985-04-12 日本電信電話公社 Optical fiber multi-core connector
JPS60257410A (en) * 1984-06-04 1985-12-19 Furukawa Electric Co Ltd:The Production for multicore optical connector
JPH0230911U (en) * 1988-08-19 1990-02-27
JPH03167510A (en) * 1989-11-28 1991-07-19 Keru Kk Multi-fiber optical receptacle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014326A (en) * 1983-07-05 1985-01-24 Nec Corp Arithmetic circuit of absolute value
US4647147A (en) * 1984-01-20 1987-03-03 Hughes Aircraft Company Fiber optic to integrated optical chip coupler
JPS60198509A (en) * 1984-03-22 1985-10-08 Sumitomo Electric Ind Ltd Optical connector ferrule and its production
JPS617811A (en) * 1984-06-21 1986-01-14 Sumitomo Electric Ind Ltd Optical connector ferrule and its manufacture
JPH0820577B2 (en) * 1985-08-29 1996-03-04 アンプ・インコーポレーテッド Optical fiber transmission member termination member
US4743084A (en) * 1986-05-14 1988-05-10 Amp Incorporated Optical fiber connector for field application
US4812002A (en) * 1986-10-24 1989-03-14 Hitachi, Ltd. Optical coupling device and method of making the same
JPS63278004A (en) * 1986-12-23 1988-11-15 Sumitomo Electric Ind Ltd Optical fiber coupling member
JPS63162305A (en) * 1986-12-26 1988-07-05 Toray Ind Inc New pneumatic tire
JPH01125409A (en) * 1987-11-06 1989-05-17 Akio Yamamoto Underdrainage tube
IT1221379B (en) * 1988-06-09 1990-06-27 Duebi Srl STRUCTURE OF INTERNAL COMBUSTION ENGINES POWERED BY A ROTARY DISTRIBUTOR
JPH0329905A (en) * 1989-06-27 1991-02-07 Nec Corp Printed wiring board
GB2239104B (en) * 1989-11-28 1993-11-24 Kel Kk Multi-way electro-optic connector assemblies and optical fiber ferrule assemblies therefor
US5231685A (en) * 1989-11-28 1993-07-27 Kel Corporation Multi-way electro-optic connector assemblies and optical fiber ferrule assemblies therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014326B2 (en) * 1978-10-02 1985-04-12 日本電信電話公社 Optical fiber multi-core connector
JPS60257410A (en) * 1984-06-04 1985-12-19 Furukawa Electric Co Ltd:The Production for multicore optical connector
JPH0230911U (en) * 1988-08-19 1990-02-27
JPH03167510A (en) * 1989-11-28 1991-07-19 Keru Kk Multi-fiber optical receptacle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0644442A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625730A (en) * 1994-07-21 1997-04-29 Sumitomo Electric Industries, Ltd. Optical waveguide module having waveguide substrate made of predetermined material and ferrule made of material different from that of waveguide substrate

Also Published As

Publication number Publication date
DE69424979T2 (en) 2000-11-02
EP0644442B1 (en) 2000-06-21
EP0644442A4 (en) 1995-09-20
CA2135777A1 (en) 1994-10-03
CN1106616A (en) 1995-08-09
DE69424979D1 (en) 2000-07-27
EP0644442A1 (en) 1995-03-22
US5548675A (en) 1996-08-20
CA2135777C (en) 2003-03-18

Similar Documents

Publication Publication Date Title
WO1994023321A1 (en) Terminal of optical fiber, method of its manufacture, and structure for connecting the terminal and optical device
US8529138B2 (en) Ferrule for optical transports
US4818059A (en) Optical connector and splicer
CN1049502C (en) Coupling structure of optical fibers and optical waveguides
WO1994023318A1 (en) Optical fiber array
JP2006528786A (en) Optical ferrule
KR20100098342A (en) Glass sheet with protected edge, edge protector and method for making glass sheet using same
JP2011095295A (en) Optical fiber block of optical module and method of manufacturing the same
JP2000193844A (en) Manufacture of optical fiber array
JP2010237642A (en) Optical coupling structure and optical transmission and reception module
WO1997017629A1 (en) Optical switch
JP3433422B2 (en) Multi-core ferrule for optical connector with guide hole
JP3326271B2 (en) Optical fiber terminal and connection structure between terminal and optical device
JPH06148452A (en) Reinforcing device for optical fiber fusion splicing connection part
JP3161656B2 (en) Manufacturing method of optical fiber array
JPH09152522A (en) Structure for connecting optical fiber aligning parts and optical waveguide substrate
WO2022270510A1 (en) Optical fiber assembly, plate, and optical module
JP2011095294A (en) Optical module
JPH0720340A (en) Optical fiber block array and its production
JP4311990B2 (en) OPTICAL COMPONENT, PRODUCT, METHOD FOR PRODUCING OPTICAL COMPONENT, AND ADHESIVE MATERIAL
JPS63115108A (en) Optical connector
Uddin et al. Materials and fabrication issues of optical fiber array
JP3747927B2 (en) Manufacturing method of optical fiber alignment parts
JPH0743558A (en) Pitch conversion optical ferrule, optical connector, and manufacture therefor
JPH11326678A (en) Production of optical fiber array

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 08335769

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2135777

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994910583

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994910583

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994910583

Country of ref document: EP