JPH09152522A - Structure for connecting optical fiber aligning parts and optical waveguide substrate - Google Patents

Structure for connecting optical fiber aligning parts and optical waveguide substrate

Info

Publication number
JPH09152522A
JPH09152522A JP7312157A JP31215795A JPH09152522A JP H09152522 A JPH09152522 A JP H09152522A JP 7312157 A JP7312157 A JP 7312157A JP 31215795 A JP31215795 A JP 31215795A JP H09152522 A JPH09152522 A JP H09152522A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
optical waveguide
alignment component
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7312157A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tamekuni
芳享 為國
Hiroshi Katsushime
洋 勝占
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7312157A priority Critical patent/JPH09152522A/en
Publication of JPH09152522A publication Critical patent/JPH09152522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen the light loss and to attain long-term stability of the case optical fibers and the optical waveguide cores of an optical waveguide substrate are optically and mechanically connected. SOLUTION: The aligning parts 1 constitute a V-groove member provided with V-shaped grooves 3 for positioning the optical fibers 5 to be optically coupled to the optical waveguides. The parts consist of the parts molded by transferring the V-shaped grooves formed in metal molds, the optical fibers 5 adhered and fixed to the transferred V-shaped grooves 3 and a plate member 4 adhered and fixed thereon and have a projecting surface 15 for connection to the optical waveguide substrate. The parts consist of a transparent thermosetting or thermoplastic resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術の分野】本発明は、光ファイバと光
導波路とを低損失かつ安定に接続するための光ファイバ
整列部品及び光導波路基板との接続構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber alignment component for connecting an optical fiber and an optical waveguide with low loss and stability, and a connection structure with an optical waveguide substrate.

【0002】[0002]

【従来の技術】従来、光導波路と複数の光ファイバを接
続する場合、光ファイバの端末部は、光ファイバ整列部
品のV字状の溝(特開平6−51155号公報)によ
り、所定のピッチに整列したのち、多心の光ファイバを
一括して光導波路基板の光導波路と接続する。V字状の
溝は、シリコンや石英材の研削により形成している。光
ファイバ整列部品と光導波路基板とを接着する方法とし
ては、紫外線硬化型樹脂を塗布して、紫外線を照射する
ことにより硬化する方法が用いられるが、紫外線が届か
ない位置の接着については、加熱等により硬化するのが
一般的である。
2. Description of the Related Art Conventionally, when a plurality of optical fibers are connected to an optical waveguide, a terminal portion of the optical fiber has a predetermined pitch by a V-shaped groove (Japanese Patent Laid-Open No. 6-51155) of an optical fiber alignment component. Then, the multi-core optical fibers are collectively connected to the optical waveguide of the optical waveguide substrate. The V-shaped groove is formed by grinding silicon or a quartz material. As a method for adhering the optical fiber alignment component and the optical waveguide substrate, a method of applying an ultraviolet curable resin and curing it by irradiating ultraviolet rays is used. Generally, it is cured by such as.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記従来法
の、研削によるV字状の溝の加工では、加工が困難でコ
ストが高くなるという問題がある。また技術的にも、研
削ブレ−ドが磨耗するので、経時的に、研削したV字状
の溝の形状、深さ等が変化し、光ファイバの位置決め精
度が劣化するという問題がある。紫外線が届かない位置
での接着剤による接着には、加熱等により硬化するのが
一般的であるが、この場合時間がかかり、この間の光フ
ァイバと光導波路との微小な位置ずれにより、接続損失
が生ずるという問題がある。
However, the conventional method of machining a V-shaped groove by grinding has a problem that the machining is difficult and the cost is high. Further, technically, since the grinding blade is worn, the shape, depth, etc. of the ground V-shaped groove changes over time, and there is a problem that the positioning accuracy of the optical fiber deteriorates. Adhesion with an adhesive at a position where ultraviolet rays do not reach is generally cured by heating, but in this case it takes time, and due to a slight misalignment between the optical fiber and the optical waveguide during this time, connection loss There is a problem that occurs.

【0004】このような問題を解決する試みとして、透
明なプラスチックにより細孔を形成した光ファイバ整列
部品が提案されている(W0 94/23321)。し
かし、この細孔を有する型の光ファイバ整列部品では、
形状が複雑であるので、プラスチック成形時の樹脂の流
れが複雑となり、成形温度から常温までの冷却時の熱収
縮の不均一により成形精度を高くできない。従って、ま
た成形後も歪みが残り、使用期間中の長期にわたり変形
が生じ、光損失の原因となる。
As an attempt to solve such a problem, an optical fiber alignment component having pores made of transparent plastic has been proposed (W0 94/23321). However, in this type of optical fiber alignment component having pores,
Since the shape is complicated, the flow of the resin at the time of molding the plastic becomes complicated, and the molding accuracy cannot be increased due to uneven heat shrinkage during cooling from the molding temperature to room temperature. Therefore, distortion remains after molding, and deformation occurs over a long period of use, which causes optical loss.

【0005】[0005]

【課題を解決するための手段】本発明は、光ファイバの
位置を決めるためのV溝部材のV字状の溝を、微細なV
字状の溝を有する金型をプラスチックに転写する方法に
より成形する。この成形方法では、前記細孔型の光ファ
イバ整列部品を成形する方法に比較して、形状が単純
で、本質的には平板の表面に微細なV字状の溝が形成さ
れたものであり、熱収縮も比較的均一でかつ残留歪みも
少ないので、成形精度が高いV溝部材を得ることができ
る。従って、光ファイバを高精度に位置決めし、各光導
波路コアと、光軸を正確に揃えて光学的、機械的に接続
することが可能となるとともに、残留歪みが少ないので
その後の変形を少なくでき、それによる光損失も小さく
出来る。
According to the present invention, a V-shaped groove of a V-groove member for determining the position of an optical fiber is provided with a fine V-shaped groove.
Molding is performed by a method of transferring a mold having a V-shaped groove to plastic. This molding method has a simpler shape as compared with the method of molding the above-mentioned micropore type optical fiber alignment component, and essentially has fine V-shaped grooves formed on the surface of a flat plate. Since the heat shrinkage is relatively uniform and the residual strain is small, it is possible to obtain a V-groove member with high molding accuracy. Therefore, it is possible to position the optical fiber with high accuracy and to connect the optical waveguide cores to the optical axis accurately so that they are optically and mechanically connected. Also, the light loss due to it can be reduced.

【0006】更に、上記の高精度に成形したV溝部材を
透明なプラスチック材料で構成することにより、光ファ
イバ整列部品と光導波路基板との各突合端面に塗布した
接着剤層の全面に紫外線が到達できるようにして、短時
間に強固に接着して、接続時時の微小な位置ずれ等によ
り生ずる光損失を極力小さくするとともに、その後の使
用期間中における熱膨張差に基づく位置ずれを抑制して
光損失を小さくする。
Further, by constructing the V-groove member molded with high precision from a transparent plastic material, ultraviolet rays are applied to the entire surface of the adhesive layer applied to the abutting end faces of the optical fiber alignment component and the optical waveguide substrate. It is possible to reach it and firmly bond it in a short time to minimize the optical loss caused by a minute positional deviation at the time of connection and suppress the positional deviation due to the difference in thermal expansion during the subsequent use period. To reduce light loss.

【0007】具体的には、透明なプラスチック材料とし
て、例えば、エポキシ樹脂にガラス状態のシリカの微粒
子を80%以上混入して、屈折率、熱膨張率ともに石英
に近いものを用いる。これにより、紫外線透過を確保し
て各突合端面に塗布した接着剤を紫外線により短時間で
強固に接着できるようにする。また、プラスチックの大
きな熱膨張により生ずる光導波路基板との位置ずれに基
づく光損失については、ガラス状態のシリカの微粒子を
混入することにより熱膨張差を小さくして解決する。
Specifically, as the transparent plastic material, for example, a material in which 80% or more of silica fine particles in a glass state are mixed in an epoxy resin and which has a refractive index and a thermal expansion coefficient close to that of quartz is used. As a result, it is possible to secure ultraviolet ray transmission and firmly bond the adhesive applied to each abutting end face with ultraviolet rays in a short time. Further, the optical loss due to the positional deviation from the optical waveguide substrate caused by the large thermal expansion of plastic is solved by mixing fine particles of silica in a glass state to reduce the thermal expansion difference.

【0008】[0008]

【発明の実施の形態】以下、添付図面を参照しながら本
発明の実施例を詳細に説明する。なお、図面の説明にお
いて同一の要素には同一の符号を付し、重複する説明を
省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

【0009】第1の実施例について説明する。図1は、
本発明にかかる光ファイバ整列部品の形状を示す。図2
は、図1に示す光ファイバ整列部品のうち、V溝部材を
形成するためのプラスチック用の金型を示す図である。
図3は、図1に示す、光ファイバ整列部品のうち、板状
部材を予め金型内に固定しておくことにより、V溝部材
と板状部材とが一体となった一体型のものを成形するた
めの金型を示す。図4は、図1に示す光ファイバ整列部
品と光導波路基板との接続構造である。
The first embodiment will be described. FIG.
3 shows a shape of an optical fiber alignment component according to the present invention. FIG.
FIG. 2 is a diagram showing a plastic mold for forming a V groove member in the optical fiber alignment component shown in FIG. 1.
FIG. 3 shows an integrated type of the optical fiber alignment component shown in FIG. 1 in which the V-shaped groove member and the plate-shaped member are integrated by previously fixing the plate-shaped member in the mold. A mold for molding is shown. FIG. 4 shows a connection structure between the optical fiber alignment component and the optical waveguide substrate shown in FIG.

【0010】本発明の光ファイバ整列部品の形状を、図
1に基づいて説明する。2はV溝部材であり、光導波路
と接続すべき光ファイバを所定の間隔に整列させるため
のV字状の溝3を有している。5は、光導波路と接続す
べき光ファイバであり、V溝部材に接着、固定するため
に先端部の被覆を剥がしてある。4は、V溝部材のV字
状の溝3に、接着剤を塗布した光ファイバ5を載置し、
その上から加圧して接着固定するとともに、その後は機
械的に保護するための蓋の機能を有する板状部材であ
る。1は、V溝部材2、光ファイバ5、板状部材4を組
合わせて組立た状態の光ファイバ整列部品を示すもの
で、光導波路基板と接着、固定して接続するための突合
端面15を有している。
The shape of the optical fiber alignment component of the present invention will be described with reference to FIG. Reference numeral 2 denotes a V-shaped groove member, which has a V-shaped groove 3 for aligning optical fibers to be connected to the optical waveguide at a predetermined interval. Reference numeral 5 denotes an optical fiber to be connected to the optical waveguide, and the coating of the tip portion is peeled off for adhesion and fixing to the V groove member. 4, an optical fiber 5 coated with an adhesive is placed in the V-shaped groove 3 of the V-groove member,
It is a plate-shaped member having a function of a lid for pressurizing and adhering and fixing from above and mechanically protecting it thereafter. Reference numeral 1 denotes an optical fiber alignment component assembled by assembling the V-groove member 2, the optical fiber 5 and the plate-shaped member 4, and has an abutting end face 15 for bonding and fixing and connecting with an optical waveguide substrate. Have

【0011】V溝部材1は、熱膨張と収縮による光損失
を抑制することを目的として、熱膨張係数を、光導波路
基板のシリコンのそれとほぼ一致させるため、熱硬化性
樹脂である線膨張係数が34.4×10‐6のエポキシ
樹脂17.5体積%に対し、線膨張係数が約2.4×1
‐6/℃のガラス状のシリカ粉82.5体積%を混合
して、線膨張係数を約8×10‐6/℃に調整したプラ
スチック成形材料を用いる。この場合、気泡などの混入
によりV溝部材の成形後の透明度を低下させないため、
屈折率1.4584のガラス状のシリカ粉末を、十分洗
浄した後、真空乾燥し不純物、湿度などを完全に排除し
たのち、着色剤その他の添加剤を含まない純粋な屈折率
1.460のエポキシ樹脂とを上記混合比で十分混合
し、平均屈折率1.4587の透明なプラスチック成形
材料とする。
The V-groove member 1 has a coefficient of thermal expansion that is substantially the same as that of silicon of the optical waveguide substrate for the purpose of suppressing optical loss due to thermal expansion and contraction. Is 34.4 × 10 -6 epoxy resin 17.5% by volume, the linear expansion coefficient is about 2.4 × 1
A plastic molding material having a linear expansion coefficient adjusted to about 8 × 10 −6 / ° C. is used by mixing 82.5% by volume of glassy silica powder of 0 −6 / ° C. In this case, since the V-groove member is not deteriorated in transparency after being molded due to inclusion of air bubbles or the like,
After thoroughly washing glassy silica powder having a refractive index of 1.4584 and vacuum-drying to completely remove impurities and humidity, a pure epoxy resin having a refractive index of 1.460 containing no colorant or other additives. A resin is sufficiently mixed at the above mixing ratio to obtain a transparent plastic molding material having an average refractive index of 1.4587.

【0012】なお、本実施例に用いたプラスチック成形
材料は、エポキシ樹脂にガラス状のシリカ粉末を混入し
たものを用いたが、これに限るものでなく、ポリエステ
ル、ポリカ−ボネ−トなどの透明な熱可塑性プラスチッ
クを用いることもできる。
The plastic molding material used in this embodiment was a mixture of epoxy resin and glassy silica powder, but the material is not limited to this, and transparent materials such as polyester and polycarbonate can be used. It is also possible to use various thermoplastics.

【0013】V溝部材1の成形は、図2に示す金型を用
いて成形加工することにより行なう。まず、上金型7
と、V字状の溝11を有する下金型6を密着させ、成形
温度に加熱した後、前記シリカ粉を含む余熱した熱硬化
性樹脂を樹脂注入孔10から所定圧力で注入する。放冷
後に金型6、7を分解してV溝部材2を取り出す。この
方法で、金型6の高精度のV字状の溝11を樹脂成形に
より転写できるので、高精度のV溝部材を安定して製作
することができ、光ファイバの高精度な整列が可能とな
る。
The V-groove member 1 is molded by molding using the mold shown in FIG. First, the upper mold 7
Then, the lower mold 6 having the V-shaped groove 11 is brought into close contact with it, heated to the molding temperature, and the preheated thermosetting resin containing the silica powder is injected from the resin injection hole 10 at a predetermined pressure. After cooling, the molds 6 and 7 are disassembled and the V groove member 2 is taken out. With this method, the highly accurate V-shaped groove 11 of the mold 6 can be transferred by resin molding, so that the highly accurate V groove member can be stably manufactured and the optical fibers can be aligned with high accuracy. Becomes

【0014】板状部材4は、石英ガラスを研削すること
により作成したものを用いる。
The plate-like member 4 is made by grinding quartz glass.

【0015】光ファイバ整列部品1の組立は、V溝部材
2の前記V字状の溝3に、先端に紫外線硬化型接着剤を
塗布した光ファイバ5を載置して接着し、更に前記板状
部材4を用いてその光ファイバの上部から加圧、固定す
ることにより組立てる。また、本実施例では透明な石英
製の板状部材4を用いたので、この板状部材4の上部か
ら紫外線を照射して、V字状の溝3への光ファイバ5の
接着を短時間で完了することもできる。
To assemble the optical fiber alignment component 1, an optical fiber 5 having an ultraviolet curable adhesive applied to the tip thereof is placed in the V-shaped groove 3 of the V-shaped groove member 2 and adhered to the V-shaped groove 3, and the plate is further attached. Assembling is performed by pressing and fixing the optical fiber from above the optical fiber using the member 4. Further, since the transparent quartz plate member 4 is used in this embodiment, ultraviolet rays are irradiated from the upper portion of the plate member 4 to bond the optical fiber 5 to the V-shaped groove 3 for a short time. You can also complete with.

【0016】光ファイバ整列部品1と接続すべき光導波
路基板100は、図4の一部に示すように、シリコン基
板21の上に、光導波路コア20を含む約200μmの
石英層から成る光導波路22と、その上に透明な石英ガ
ラスから成る補強板23を積層したものを用いる。
An optical waveguide substrate 100 to be connected to the optical fiber alignment component 1 is, as shown in a part of FIG. 4, an optical waveguide comprising a silicon substrate 21 and a quartz layer of about 200 μm including an optical waveguide core 20. 22 and a reinforcing plate 23 made of transparent quartz glass laminated thereon are used.

【0017】本実施例の、光ファイバ整列部品1は、全
体が透明であるので、図4に示す光導波路基板100と
の接続構造からわかるように、各突合端面の紫外線硬化
樹脂層24の全面を紫外線25で照射可能となる。従っ
て、紫外線により短時間で、強固に、光ファイバ整列部
品1と光導波路基板100を接着できる。
Since the entire optical fiber alignment component 1 of this embodiment is transparent, as can be seen from the connection structure with the optical waveguide substrate 100 shown in FIG. Can be irradiated with ultraviolet rays 25. Therefore, the optical fiber alignment component 1 and the optical waveguide substrate 100 can be firmly adhered to each other by the ultraviolet rays in a short time.

【0018】光ファイバ整列部品1の光ファイバ5と、
光導波路基板100の光導波路コア20との機械的、光
学的結合は、光ファイバ整列部品1の突合端面15と光
導波路基板の突合端面26に、紫外線硬化樹脂25が光
学的に透明であって、その屈折率の値が、光ファイバ5
のコアの屈折率1.4662と光導波路コア20の屈折
率1.4584とほぼ同じ屈折率1.460のものを用
いて、透過光量が最大になるように位置決めして、紫外
線を約10分間照射して接着固定した。この場合、光損
失を避けるためには、紫外線硬化樹脂24の屈折率は、
光ファイバ5のコアと光導波路コア20の各屈折率と、
±10%以内で一致することが望ましい。
The optical fiber 5 of the optical fiber alignment component 1,
The mechanical and optical coupling between the optical waveguide substrate 100 and the optical waveguide core 20 is performed by the UV curable resin 25 being optically transparent on the abutting end face 15 of the optical fiber alignment component 1 and the abutting end face 26 of the optical waveguide substrate. , The value of the refractive index of the optical fiber 5
The core has a refractive index of 1.662 and the optical waveguide core 20 has a refractive index of 1.460, which is almost the same as the refractive index of 1.4584, and is positioned so that the amount of transmitted light is maximized. It was irradiated and fixed by adhesion. In this case, in order to avoid light loss, the refractive index of the ultraviolet curable resin 24 is
The respective refractive indices of the core of the optical fiber 5 and the optical waveguide core 20,
It is desirable to match within ± 10%.

【0019】本実施例による、光ファイバ整列部品1と
光導波路基板100との接続に関する温度の影響を調べ
たところ、−40〜+80℃の範囲の温度変化に対して
熱膨張の違いによる光損失は0.2dB以下と極めて低
くすることができた。前記V溝部材の熱膨張係数を光導
波路基板の熱膨張係数なみに小さくしたことと、若干の
熱膨張差は強固な接着によりその影響を抑制したことの
ためである。
When the influence of the temperature on the connection between the optical fiber alignment component 1 and the optical waveguide substrate 100 according to the present embodiment is examined, the optical loss due to the difference in thermal expansion with respect to the temperature change in the range of -40 to + 80 ° C. Was 0.2 dB or less, which was extremely low. This is because the coefficient of thermal expansion of the V-groove member is made as small as the coefficient of thermal expansion of the optical waveguide substrate, and the slight difference in thermal expansion is due to the fact that the effect is suppressed by the strong adhesion.

【0020】本実施例では、板状部材4として石英ガラ
スから成るものを用いたが、これに限られるものでな
く、前記V溝部材の成形に用いたガラス状のシリカを混
入した透明な樹脂を材料とするものであってもよい。
In the present embodiment, the plate member 4 made of quartz glass was used, but the plate member 4 is not limited to this, and a transparent resin mixed with glassy silica used for molding the V groove member is used. May be used as the material.

【0021】なお、V溝部材2を成形する際、図3に示
すように、金型内に予め板状部材4を入れた状態で、成
形加工することにより、V溝部材2と板状部材4とが一
体となった部材を使用することもできる。この場合、図
3に示すように板状部材4を下金型6のキャビテイ8に
挿入し、その上の所定位置にV字状のみぞを形成するた
めの金型12を載置し、これらと図示しない上金型7の
下部に取付けられたV溝部材の外部を形成するための金
型とによって、V溝部材2と板状部材4とが一体となっ
た部材が成形される。但し、金型内に入れる板状部材4
は、その材質が、成形加工に用いる原材料樹脂の軟化温
度よりもかなり高いものである必要がある。この場合
の、光ファイバ整列部品1の組立は、光ファイバ5の先
端の被覆を剥離した部分に紫外線硬化樹脂を塗布した状
態で、上記一体型の部材に挿入し板状部材4の上部から
紫外線を照射して接着固定することにより行なう。
When the V-shaped groove member 2 is molded, as shown in FIG. 3, the V-shaped groove member 2 and the plate-shaped member are formed by molding the plate-shaped member 4 in the mold in advance. It is also possible to use a member that is integrated with 4. In this case, as shown in FIG. 3, the plate member 4 is inserted into the cavity 8 of the lower mold 6, and the mold 12 for forming the V-shaped groove is placed at a predetermined position thereon, A member in which the V-shaped groove member 2 and the plate-shaped member 4 are integrated is molded by a mold for forming the outside of the V-shaped groove member attached to the lower part of the upper mold 7 (not shown). However, the plate-like member 4 to be put in the mold
The material must be much higher than the softening temperature of the raw material resin used for molding. In this case, the optical fiber alignment component 1 is assembled by inserting the ultraviolet-curing resin into the part of the optical fiber 5 from which the coating at the tip of the optical fiber 5 has been peeled off, and inserting the ultraviolet-curing resin into the above-mentioned integrated member from the top of the plate-shaped member 4. It is carried out by irradiating and fixing.

【0022】上記のV溝部材2と板状部材4とが一体と
なった部材は、金型内に板状部材4を予め挿入し一体と
して成形加工したものの他、V溝部材2と板状部材4を
接着剤により接着して製作したものでもよい。
The above-mentioned member in which the V-shaped groove member 2 and the plate-shaped member 4 are integrated is a member in which the plate-shaped member 4 is previously inserted into a mold and integrally molded, and the V-shaped groove member 2 and the plate-shaped member 4 are also formed. It may be manufactured by adhering the member 4 with an adhesive.

【0023】なお、本実施例で用いた光ファイバ整列部
品1の突合端面15は、光ファイバ5の光軸に直角なも
のを用いたが、直角方向に対し5゜乃至は15゜、望ま
しくは8゜傾斜していてもよい。この場合、光ファイバ
整列部品と光導波路基板との接続部で生ずる戻り光を効
果的に抑制でき、この結果ノイズを減らすことが出来
る。
The abutting end surface 15 of the optical fiber aligning component 1 used in this embodiment is perpendicular to the optical axis of the optical fiber 5, but it is preferably 5 ° to 15 ° with respect to the perpendicular direction. It may be inclined at 8 °. In this case, it is possible to effectively suppress the returning light generated at the connecting portion between the optical fiber alignment component and the optical waveguide substrate, and as a result, it is possible to reduce noise.

【0024】第2の実施例について説明する。図5に、
本実施例にかかる光ファイバ整列部品1と光導波路基板
100との接続構造を示す。本実施例は、光ファイバ整
列部品1のV溝部材2と板状部材4を透明なガラス状の
シリカ粉末を混入したエポキシ樹脂で構成し、光導波路
基板100の部材の材料をすべて透明な石英で構成する
ことにより、熱膨張差が比較的大きくなるケ−スであ
る。即ち、前記V溝部材2と板状部材4の熱膨張係数は
8×10‐6/℃であり、光導波路基板を構成する石英
の熱膨張係数は2.4×10‐6/℃であり、その熱膨
張差を5.6×10‐6/℃と比較的大きくしたケ−ス
である。勿論、この場合も紫外線により各突合端面の全
面を照射することができるので、光ファイバ整列部品1
と光導波路基板100を短時間で強固に接着することが
可能である。
The second embodiment will be described. In FIG.
The connection structure of the optical fiber alignment component 1 and the optical waveguide substrate 100 according to the present embodiment is shown. In this embodiment, the V-groove member 2 and the plate-like member 4 of the optical fiber alignment component 1 are made of epoxy resin mixed with transparent glassy silica powder, and the material of the optical waveguide substrate 100 is made of transparent quartz. In this case, the difference in thermal expansion becomes relatively large. That is, the coefficient of thermal expansion of the V-groove member 2 and the plate-shaped member 4 is 8 × 10 −6 / ° C., and the coefficient of thermal expansion of quartz constituting the optical waveguide substrate is 2.4 × 10 −6 / ° C. The thermal expansion difference is 5.6 × 10 −6 / ° C., which is relatively large. Of course, in this case as well, the entire surface of each abutting end face can be irradiated with ultraviolet rays, so that the optical fiber alignment component 1
It is possible to firmly bond the optical waveguide substrate 100 and the optical waveguide substrate 100 in a short time.

【0025】具体的には、実施例1においては、光導波
路基板100の基板21としてはシリコンを用いたが、
本実施例では石英ガラスを用いる。これにより光導波路
基板100の全体が透明な石英で構成される。また、実
施例1では、光ファイバ整列部品1の板状部材4の材料
として石英ガラスを用いたが、本実施例では、前記のガ
ラス状のシリカを混入した透明なエポキシ樹脂を用い
る。これにより、光ファイバ整列部品1のV溝部材2と
板状部材4がこの樹脂で構成される。
Specifically, although silicon is used as the substrate 21 of the optical waveguide substrate 100 in the first embodiment,
In this embodiment, quartz glass is used. As a result, the entire optical waveguide substrate 100 is made of transparent quartz. Further, in Example 1, quartz glass was used as the material of the plate-shaped member 4 of the optical fiber alignment component 1, but in this Example, a transparent epoxy resin mixed with the above glassy silica is used. As a result, the V groove member 2 and the plate member 4 of the optical fiber alignment component 1 are made of this resin.

【0026】本実施例による、光ファイバ整列部品1と
光導波路基板100との接続に関する温度の影響を調べ
たところ、−40〜+80℃の範囲の温度変化に対して
熱膨張の違いによる光損失は0.3dB以下と極めて低
くすることができた。前記V溝部材2と板状部材4の熱
膨張係数8×10‐6/℃と光導波路基板を構成する石
英の熱膨張係数2.4×10‐6/℃との熱膨張差を
5.6×10‐6/℃と、実施例1の場合よりはかなり
大きいが、絶対値としてはかなり小さいことと、若干の
熱膨張差は強固な接着によりその影響を抑制したことの
ためである。
When the influence of the temperature on the connection between the optical fiber alignment component 1 and the optical waveguide substrate 100 according to the present embodiment is examined, the optical loss due to the difference in thermal expansion with respect to the temperature change in the range of -40 to + 80 ° C. Was 0.3 dB or less, which was extremely low. The difference in thermal expansion between the thermal expansion coefficient of the V-groove member 2 and the plate member 4 of 8 × 10 −6 / ° C. and the thermal expansion coefficient of quartz constituting the optical waveguide substrate of 2.4 × 10 −6 / ° C. is 5. This is because 6 × 10 −6 / ° C., which is considerably larger than in the case of Example 1, but is considerably small in absolute value, and a slight difference in thermal expansion suppresses the influence by strong adhesion.

【0027】この熱膨張差が1.4×10‐5/℃を超
えると−40〜+80℃の範囲の温度変化に対して熱膨
張の違いによる光損失は0.5dB以上となるので、熱
膨張差は1.4×10‐5/℃以下とすることが望まし
い。
When the difference in thermal expansion exceeds 1.4 × 10 -5 / ° C, the optical loss due to the difference in thermal expansion becomes 0.5 dB or more with respect to the temperature change in the range of -40 to + 80 ° C. The expansion difference is preferably 1.4 × 10 −5 / ° C. or less.

【0028】[0028]

【効果】以上説明したように、本発明は、光導波路と接
続すべき光ファイバの位置を決めるためのV溝部材のV
字状の溝を、V字状の溝を有する金型を転写する方法に
より高精度に成形するので、光ファイバを正確に位置決
めすることが可能となる。更に、上記高精度に成形した
V溝部材と板状部材を、透明なガラス状のシリカ粉末を
混入した、熱膨張率、屈折率ともに石英に近いプラスチ
ック等を用いて成形するので、これらが透明となり、光
ファイバ整列部品と光導波路基板との各突合端面に塗布
した接着剤層の全面に紫外線が到達できるようにして、
短時間に接続できるので、この間の微小な位置ずれを防
止して、接続損失を小さくできる。また、光導波路基板
との熱膨張差が小さいので、熱膨張による位置ずれを抑
制して使用期間中の長期にわたり光損失が小さく、かつ
安定な光導波路との接続が実現できる。
As described above, according to the present invention, the V of the V groove member for determining the position of the optical fiber to be connected to the optical waveguide.
Since the V-shaped groove is formed with high precision by a method of transferring a die having a V-shaped groove, the optical fiber can be accurately positioned. Further, the V-groove member and the plate-shaped member molded with high precision are molded using a plastic having a thermal expansion coefficient and a refractive index similar to that of quartz mixed with transparent glassy silica powder. Therefore, ultraviolet rays can reach the entire surface of the adhesive layer applied to the abutting end faces of the optical fiber alignment component and the optical waveguide substrate,
Since the connection can be made in a short time, a minute positional deviation during this time can be prevented and the connection loss can be reduced. Further, since the difference in thermal expansion from the optical waveguide substrate is small, it is possible to suppress positional displacement due to thermal expansion, reduce optical loss over a long period during use, and realize stable connection with the optical waveguide.

【0029】[0029]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ファイバ整列部品とその構成部品の
形状を示す図である。
FIG. 1 is a diagram showing shapes of an optical fiber alignment component and its components of the present invention.

【図2】図1に示す光ファイバ整列部品のうち、V溝部
材を成形するためのプラスチック用の金型を示す図であ
る。
FIG. 2 is a view showing a plastic mold for molding a V-groove member of the optical fiber alignment component shown in FIG.

【図3】図2に示す金型内に予め板状部材を固定してお
き、V溝部材と板状部材とが一体となった一体型の部材
を成形するための金型を示す図である。
FIG. 3 is a view showing a mold for fixing a plate-shaped member in advance in the mold shown in FIG. 2 and molding an integrated member in which the V-groove member and the plate-shaped member are integrated. is there.

【図4】実施例1の光ファイバ整列部品と光導波路基板
との接続構造を示す図である。
FIG. 4 is a diagram showing a connection structure between the optical fiber alignment component and the optical waveguide substrate according to the first embodiment.

【図5】実施例2の光ファイバ整列部品と光導波路基板
との接続構造を示す図である。
FIG. 5 is a diagram showing a connection structure between an optical fiber alignment component and an optical waveguide substrate according to a second embodiment.

【符号の説明】[Explanation of symbols]

1:光ファイバ整列部品 2:V溝部材 3:V字状の溝 4:板状部材 5:光ファイバ 6:下金型 7:上金型 8:キャビテイ 9:ゲ−ト 10:樹脂注入孔 11、12:V字状の溝の金型 13:V溝収納溝 15:光ファイバ整列部品の突合端面 20:光導波路コア 21:基板 22:光導波路 23:補強板 24:紫外線硬化型樹脂層 25:紫外線 26:光導波路基板の突合端面 100:光導波路基板 1: Optical fiber alignment component 2: V groove member 3: V-shaped groove 4: Plate-shaped member 5: Optical fiber 6: Lower mold 7: Upper mold 8: Cavity 9: Gate 10: Resin injection hole 11, 12: V-shaped groove mold 13: V-groove storage groove 15: Butt end face of optical fiber alignment component 20: Optical waveguide core 21: Substrate 22: Optical waveguide 23: Reinforcing plate 24: UV curable resin layer 25: ultraviolet ray 26: butt end face of optical waveguide substrate 100: optical waveguide substrate

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 光導波路と光学的に結合すべき光ファイ
バの位置を決める為のV字状の溝を設けた、透明な熱硬
化性又は熱可塑性のプラスチックから成るV溝部材であ
って、金型に設けたV字状の溝を転写することにより成
形したものと、転写したV字状の溝に接着し固定した光
ファイバと、その上に接着固定した透明な板状部材とか
ら成り、かつ前記光導波路を有する光導波路基板と接続
する為の突合端面とを有することを特徴とする光ファイ
バ整列部品
1. A V-groove member made of transparent thermosetting or thermoplastic plastic, which is provided with a V-shaped groove for determining the position of an optical fiber to be optically coupled with an optical waveguide, It is formed by transferring a V-shaped groove provided in a mold, an optical fiber bonded and fixed to the transferred V-shaped groove, and a transparent plate member bonded and fixed on the optical fiber. And an abutting end face for connecting with an optical waveguide substrate having the optical waveguide.
【請求項2】 前記V溝部材が充填剤としてシリカ粉を
含む、熱硬化性又は熱可塑性の透明なプラスチックから
成ることを特徴とする、請求項1に記の光ファイバ整列
部品
2. The optical fiber aligning component according to claim 1, wherein the V-groove member is made of a thermosetting or thermoplastic transparent plastic containing silica powder as a filler.
【請求項3】 前記板状部材が充填剤としてシリカ粉を
含む透明な熱硬化性又は熱可塑性のプラスチック又は石
英ガラスから成ることを特徴とする、請求項1に記載の
光ファイバ整列部品
3. The optical fiber alignment component according to claim 1, wherein the plate member is made of transparent thermosetting or thermoplastic plastic containing silica powder as a filler or quartz glass.
【請求項4】 前記V溝部材と前記板状部材とが、前記
V字状の溝に光ファイバを固定する工程の前に、接着剤
で固定することにより一体構造としたことを特徴とす
る、請求項1に記載の光ファイバ整列部品
4. The V-groove member and the plate-shaped member are integrated with each other by fixing with an adhesive before the step of fixing the optical fiber in the V-shaped groove. An optical fiber alignment component according to claim 1.
【請求項5】 前記板状部材を前記金型内に固定した状
態で、熱硬化性又は熱可塑性のプラスチックを成形する
ことにより前記板状部材と前記V溝部材を一体構造とし
たことを特徴とする請求項1に記載の光ファイバ整列部
5. The plate-shaped member and the V-groove member are integrated with each other by molding a thermosetting or thermoplastic plastic in a state where the plate-shaped member is fixed in the mold. The optical fiber alignment component according to claim 1.
【請求項6】 前記突合端面が光ファイバの光軸に直角
な方向に対し5゜乃至は15゜傾斜していることを特徴
とする、請求項1に記載の光ファイバ整列部品
6. The optical fiber alignment component according to claim 1, wherein the abutting end face is inclined 5 ° to 15 ° with respect to the direction perpendicular to the optical axis of the optical fiber.
【請求項7】 前記V字状の溝に光ファイバを載置し、
接着剤を塗布して接着し、更に前記板状部材を用いてそ
の光ファイバの上部から加圧し、紫外線を照射して硬化
することにより、複数の光ファイバを高精度に整列する
ことを特徴とする、請求項1に記載の光ファイバ整列部
7. An optical fiber is placed in the V-shaped groove,
A plurality of optical fibers are aligned with high accuracy by applying an adhesive to bond them, and further applying pressure from above the optical fibers using the plate-shaped member and irradiating with ultraviolet rays to cure the optical fibers. The optical fiber alignment component according to claim 1.
【請求項8】 前記V溝部材と前記板状部材とを一体構
造とした光ファイバ整列部品のV字状の溝に、前記光フ
ァイバの先端に接着剤を塗布して挿入し、紫外線を照射
して硬化することにより、複数の光ファイバを高精度に
整列することを特徴とする、請求項1に記載の光ファイ
バ整列部品
8. An adhesive is applied to the V-shaped groove of an optical fiber alignment component in which the V-shaped groove member and the plate-shaped member are integrally structured, and the resultant is inserted into the V-shaped groove and is irradiated with ultraviolet rays. The optical fiber aligning component according to claim 1, wherein the plurality of optical fibers are aligned with high accuracy by curing by curing.
【請求項9】 請求項1乃至請求項8のいづれか1項に
記載の光ファイバ整列部品により整列された光ファイバ
と光導波路基板の光導波路コアとが、前記突合端面を相
互に接着剤により接着することにより接続されたことを
特徴とする、前記光ファイバと前記光導波路との接続構
9. An optical fiber aligned by the optical fiber alignment component according to claim 1 and an optical waveguide core of an optical waveguide substrate adhere the abutting end faces to each other with an adhesive. Connection structure by connecting the optical fiber and the optical waveguide.
【請求項10】 前記突合端面を相互に接着する紫外線
硬化樹脂が、光学的に透明であって、その屈折率の値
が、前記光ファイバのコアと前記光導波路コアの各屈折
率の値と±10%の誤差範囲で一致することを特徴とす
る、請求項9に記載の前記光ファイバと前記光導波路と
の接続構造
10. The ultraviolet curable resin for adhering the abutting end faces to each other is optically transparent, and the refractive index values thereof are the same as the refractive index values of the core of the optical fiber and the optical waveguide core. 10. The connection structure between the optical fiber and the optical waveguide according to claim 9, characterized in that they coincide within an error range of ± 10%.
【請求項11】 前記V溝部材の熱膨張係数と前記光導
波路基板の熱膨張係数との差が1.4×10‐5/℃以
下であることを特徴とする、請求項9に記載の前記光フ
ァイバと前記光導波路との接続構造
11. The difference between the coefficient of thermal expansion of the V-groove member and the coefficient of thermal expansion of the optical waveguide substrate is 1.4 × 10 −5 / ° C. or less, according to claim 9. Connection structure between the optical fiber and the optical waveguide
JP7312157A 1995-11-30 1995-11-30 Structure for connecting optical fiber aligning parts and optical waveguide substrate Pending JPH09152522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312157A JPH09152522A (en) 1995-11-30 1995-11-30 Structure for connecting optical fiber aligning parts and optical waveguide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312157A JPH09152522A (en) 1995-11-30 1995-11-30 Structure for connecting optical fiber aligning parts and optical waveguide substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003313859A Division JP3747927B2 (en) 2003-09-05 2003-09-05 Manufacturing method of optical fiber alignment parts

Publications (1)

Publication Number Publication Date
JPH09152522A true JPH09152522A (en) 1997-06-10

Family

ID=18025933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312157A Pending JPH09152522A (en) 1995-11-30 1995-11-30 Structure for connecting optical fiber aligning parts and optical waveguide substrate

Country Status (1)

Country Link
JP (1) JPH09152522A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222967B1 (en) 1997-03-13 2001-04-24 Nippon Telegraph And Telephone Corporation Packaging platform, optical module using the platform, and methods for producing the platform and the module
JP2005215678A (en) * 2004-01-29 2005-08-11 Samsung Electronics Co Ltd Two-way light transmitting/receiving module and two-way light transmitting/receiving package using the same
JP2005242214A (en) * 2004-02-27 2005-09-08 Keio Gijuku Optical function waveguide, optical modulator, array waveguide diffraction grating, and dispersion compensating circuit
CN100357773C (en) * 2005-11-03 2007-12-26 上海交通大学 Mocro mechanical optical fiber locator
WO2009054229A1 (en) * 2007-10-25 2009-04-30 Konica Minolta Opto, Inc. Optical element manufacturing method
US7682691B2 (en) * 2002-02-06 2010-03-23 Sekisui Chemical Co., Ltd. Resin composition of layered silicate
WO2022138587A1 (en) * 2020-12-22 2022-06-30 住友電気工業株式会社 Optical connection structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215204A (en) * 1988-07-04 1990-01-18 Nippon Telegr & Teleph Corp <Ntt> Multicore optical terminal
JPH04212113A (en) * 1990-08-03 1992-08-03 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical parts
JPH06201936A (en) * 1992-12-28 1994-07-22 Matsushita Electric Ind Co Ltd Optical fiber array and its production
JPH07253522A (en) * 1993-04-02 1995-10-03 Furukawa Electric Co Ltd:The Optical fiber terminal part, its production and connecting structure of terminal part and optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215204A (en) * 1988-07-04 1990-01-18 Nippon Telegr & Teleph Corp <Ntt> Multicore optical terminal
JPH04212113A (en) * 1990-08-03 1992-08-03 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical parts
JPH06201936A (en) * 1992-12-28 1994-07-22 Matsushita Electric Ind Co Ltd Optical fiber array and its production
JPH07253522A (en) * 1993-04-02 1995-10-03 Furukawa Electric Co Ltd:The Optical fiber terminal part, its production and connecting structure of terminal part and optical device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222967B1 (en) 1997-03-13 2001-04-24 Nippon Telegraph And Telephone Corporation Packaging platform, optical module using the platform, and methods for producing the platform and the module
US7682691B2 (en) * 2002-02-06 2010-03-23 Sekisui Chemical Co., Ltd. Resin composition of layered silicate
JP2005215678A (en) * 2004-01-29 2005-08-11 Samsung Electronics Co Ltd Two-way light transmitting/receiving module and two-way light transmitting/receiving package using the same
JP2005242214A (en) * 2004-02-27 2005-09-08 Keio Gijuku Optical function waveguide, optical modulator, array waveguide diffraction grating, and dispersion compensating circuit
WO2005083500A1 (en) * 2004-02-27 2005-09-09 Keio University Optical functional waveguide, optical modulator, array waveguide diffraction grating, and dispersion compensation circuit
US7756376B2 (en) 2004-02-27 2010-07-13 Keio University Optical functional waveguide, optical modulator, arrayed waveguide grating, and dispersion compensation circuit
CN100357773C (en) * 2005-11-03 2007-12-26 上海交通大学 Mocro mechanical optical fiber locator
WO2009054229A1 (en) * 2007-10-25 2009-04-30 Konica Minolta Opto, Inc. Optical element manufacturing method
WO2022138587A1 (en) * 2020-12-22 2022-06-30 住友電気工業株式会社 Optical connection structure

Similar Documents

Publication Publication Date Title
KR0139133B1 (en) Coupling structure of optical fiber and optical wave guide
US5481632A (en) Optical waveguide module and method of manufacturing the same
US6368441B1 (en) Method for manufacturing optical fiber array
JPH0688916A (en) Molded waveguide and manufacture thereof
JPH0764033B2 (en) Junction type optical member and manufacturing method thereof
JPH09152522A (en) Structure for connecting optical fiber aligning parts and optical waveguide substrate
JP7372578B2 (en) optical module
JPS63278004A (en) Optical fiber coupling member
JP3747927B2 (en) Manufacturing method of optical fiber alignment parts
WO2002023239A1 (en) Optical fiber array and its production method
JP3326271B2 (en) Optical fiber terminal and connection structure between terminal and optical device
JP2589765Y2 (en) Coupling structure between optical waveguide and optical fiber
US5308555A (en) Molding of optical components using optical fibers to form a mold
JP3279438B2 (en) Coupling structure between optical fiber and optical waveguide
JPS6014206A (en) Optical waveguide
JPH02308207A (en) Formation of reflection preventive film of optical connector
WO2002086567A1 (en) Optical fiber array
JP2006293172A (en) Method for manufacturing optical waveguide module
JPH11211928A (en) Optical fiber connector
JPS62269108A (en) Multicore optical connector ferrule and its manufacture
JPH0713033A (en) Optical fiber array and its production
JP3681439B2 (en) Connection method between optical waveguide and optical fiber
JPH04212113A (en) Waveguide type optical parts
JP2002107564A (en) Optical waveguide module
JP2975504B2 (en) Optical fiber fixing members