WO1994019794A1 - Magnetoresistive magnetic head - Google Patents

Magnetoresistive magnetic head Download PDF

Info

Publication number
WO1994019794A1
WO1994019794A1 PCT/JP1994/000296 JP9400296W WO9419794A1 WO 1994019794 A1 WO1994019794 A1 WO 1994019794A1 JP 9400296 W JP9400296 W JP 9400296W WO 9419794 A1 WO9419794 A1 WO 9419794A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
head
thickness
ferromagnetic thin
metal layer
Prior art date
Application number
PCT/JP1994/000296
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Suyama
Tetsuo Sekiya
Shuichi Haga
Wataru Ishikawa
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Publication of WO1994019794A1 publication Critical patent/WO1994019794A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Definitions

  • the present invention relates to a magneto-resistance effect type magnetic head suitable for reading out an information signal recorded on a hard disk, for example.
  • Background technology For example, a read-only magnetic head mounted on a hard disk drive or the like has a configuration that reads current resistance and changes in resistance due to signal magnetic flux as a voltage change because of its excellent short-wavelength sensitivity.
  • a magnetoresistive head hereinafter referred to as an MR head is generally used.
  • a magnetoresistive effect element 102 (hereinafter, referred to as an MR element 102) is formed on a substrate 101 made of a nonmagnetic material as a slider.
  • MR element 102 magnetoresistive effect element 102
  • ABS surface 103 sliding surface 103
  • the MR element 102 is arranged such that one side edge in the longitudinal direction is exposed on the ABS 103, and the MR element 102 is provided with 0 A sense current is supplied in parallel with 3
  • the MR element 102 is provided with wiring conductors 104, 105 at both ends perpendicular to the ABS surface 103.
  • the MR element 102 is made of a thin ferromagnetic thin film 102b, 1
  • the MR element 102 is made of a thin ferromagnetic thin film 102b, 1
  • the present invention provides a magnetic field that can greatly improve the reproduction output by the giant magnetoresistance effect without deteriorating the function of the MR element even if the nonmagnetic metal layer of the MR element exposed on the ABS surface is corroded.
  • Resistive magnetic head The purpose is to provide
  • the present invention provides a magnetoresistive element having a laminated film structure in which a pair of ferromagnetic thin films are laminated via a nonmagnetic metal layer,
  • the nonmagnetic metal layer is It is characterized by consisting of Cu.
  • the film thickness of Cu is less than 10 nm.
  • the MR element has a laminated film structure in which a pair of ferromagnetic thin films are laminated via a nonmagnetic metal layer made of Cu. Is greatly improved.
  • the MR element is provided perpendicular to the ABS surface, and the tip electrode laminated on the tip side of the MR element is provided so as to be exposed on the ABS surface. Even if the non-magnetic metal layer (C u) facing the ABS surface is corroded, the magnetic permeability of such a vertical MR head is the area sandwiched between the electrodes. It is sufficiently ensured by the upper and lower ferromagnetic thin films provided between the layers. Therefore, the function of the MR element does not deteriorate in such a vertical MR head as in the horizontal MR head.
  • Fig. 1 is a schematic plan view of a horizontal MR head in which MR elements are arranged parallel to the ABS.
  • FIG. 2 is an enlarged perspective view of the main part of a horizontal MR head in which the MR element is arranged parallel to the ABS.
  • FIG. 4 is an enlarged perspective view of a main part of the MR head to which the present invention is applied, in which an MR element part is partially broken.
  • FIG. 5 is a characteristic diagram showing a resistance change rate when the thickness of a single Fe-Ni film is changed.
  • Fig. 6 is a schematic diagram of an MR head for explaining a reproduction effective gap length.
  • Fig. 7 is a characteristic diagram showing the resistance change of the MR element when the magnetic field is swept positively and negatively in an MR head having a ferromagnetic thin film thickness of 3 Onm.
  • Figure 8 is a characteristic diagram showing the resistance change of the MR element when the magnetic field is swept positively and negatively in an MR head with a ferromagnetic thin film thickness of 10 nm or less.
  • FIG. 9 is a characteristic diagram showing the rate of change of resistance when the film thickness of Cu is changed. ⁇ Best Mode for Carrying Out the Invention Hereinafter, referring to the drawings for specific examples to which the present invention is applied. Shina The power will be described in detail.
  • the wiring conductors 2 for supplying a sense current, 3 is connected to the front end and the rear end, respectively, to form an MR element 4, and a pair of shield magnetic bodies 5, 6 are formed so as to sandwich the MR element 4 from above and below. .
  • the MR element 4 is formed as a pattern having a rectangular planar shape, and its longitudinal direction is perpendicular to the ABS surface 7 which is a sliding surface for the hard disk (perpendicular direction). And one end edge 4 d faces the ABS surface 7.
  • the MR element 4 is made of a ferromagnetic thin film such as Vermalloy, and is formed by vapor deposition or sputtering.
  • the MR element 4 includes a pair of ferromagnetic thin films (MR films) 4 b, 4 b, It has a laminated film structure in which 4c are laminated.
  • Cu is used as the nonmagnetic metal layer 4a, and a Ni—Fe alloy or a Ni—Fe is used for the ferromagnetic thin films 4b and 4c. — Co alloy was used.
  • the wiring conductors 2 and 3 connected to the front end and the rear end of the MR element 4, respectively, are formed on the side facing the shield magnetic body 6 in the upper layer.
  • the wiring conductor 2 provided on the front end side (the ABS surface 7 side) of the MR element 4 has a substantially rectangular planar shape with one edge 2a facing the ABS surface 7. It is formed as a small conductor pattern.
  • the wiring conductor 2 is perpendicular to the MR element 4. And are electrically connected at a portion to be stacked on the MR element 4.
  • the wiring conductor 3 provided on the rear end side also has one end laminated on the rear end of the MR element 4 and the other end electrically connected to the MR element 4.
  • a sense current flows in the MR element 4 in a direction orthogonal to the ABS plane 7 (longitudinal direction of the MR element 4).
  • a bias conductor 8 for applying a bias magnetic field to the MR element 4 is provided between the wiring conductors 2 and 3.
  • the bias conductor 8 is provided on a central portion in the longitudinal direction of the MR element 4 so as to cross (cross) the MR element 4 vertically.
  • the bias conductor 8 is laminated on the MR element 4 via an insulating film 9.
  • the lower shield magnetic member 5 is made of a soft magnetic metal layer such as permalloy. It is formed as a wide pattern having a substantially rectangular planar shape with one end thereof facing.
  • the upper shield magnetic body 6 is also made of a soft magnetic metal layer such as permalloy similarly to the lower shield magnetic body 5, and has a flat rectangular shape with one end facing the ABS surface 7. It is formed as a pattern. Further, the shield magnetic body 6 is bent so as to be close to the MR element 4 on the ABS surface 7 side, so that the distance between the shield magnetic body 6 and the wiring conductor 2 on the distal end side is reduced.
  • the lower layer Magnetic gap for reproduction g! A 1 that functions as a gap film that constitutes
  • a base film 10 composed of 2/3 is provided.
  • the insulating film 1 made of A 1 2 0 3, etc. which serves as a gap film constituting the upper layer of the reproducing magnetic formic Yap g 2 1 is provided.
  • the insulating film 11 is also provided between the MR element 4 and the upper shield magnetic body 6 to prevent magnetic coupling between the MR element 4 and the shield magnetic body 6.
  • a protective film layer 12 for protecting the MR head is laminated on the upper shield magnetic body 6.
  • one end 4 d of the MR element 4 is exposed on the ABS surface 7.
  • the MR element 4 is arranged perpendicular to the ABS surface 7, for example, Even if the one edge 4d of the MR element 4 is corroded, the magnetic permeability is between the wiring conductors 2 and 3, so the magnetic permeability is the upper and lower sides of the nonmagnetic metal layer 4a in this MR sensitive part.
  • the ferromagnetic thin films 4b and 4c are sufficiently secured. Therefore, a decrease in the reproduction output can be suppressed.
  • the frequency characteristics during reproduction are improved, the S / N ratio is increased up to higher frequencies, and even when the track is narrowed, the reproduction output is greatly improved by the giant magnetoresistance effect.
  • the above object can be achieved by defining the film thickness of the MR element 4 in this manner for the following reason.
  • the resistance change rate becomes larger as shown in FIG. It will be big.
  • the rate of change in resistance referred to here indicates the ratio of the change in resistance when a magnetic field is applied until the ferromagnetic material is saturated with respect to the resistance value of the ferromagnetic material in the absence of a magnetic field.
  • the value with a resistance change rate of about 2% at a film thickness of 30 nm rapidly decreases at a thickness of 20 nm or less. The main reason for this is that the resistance increases rapidly as the thickness decreases.
  • the thickness is too thin, for example, 2 O nm or less, it is adopted because the increase in resistance becomes a problem as a head (inductance becomes too high), and the variation in film formation becomes large. Had not been. ''
  • the linear recording density and track density have become extremely large, and have exceeded 100 KFCI and 500 TPI or more. The performance must be achieved. At this high density, the reproduction gap must be 0.15 m and the reproduction head width must be 3 zm or less.
  • the MR element 4 having a laminated film structure in which the thickness of the ferromagnetic thin films 4 b and 4 c is 30 nm and the thickness of the nonmagnetic metal layer 4 a is 10 nm is used.
  • the film thickness increases, the frequency characteristics during reproduction cannot be extended to high frequencies. Also, the stability of the MR element 4 is degraded. Furthermore, a giant magnetoresistance effect cannot be obtained.
  • Play effective gap length L in head to MR which is substantially plus the distance t 2 between the thickness t of the MR element 4, and the MR element 4 shielding magnetic member 6 and Become.
  • the distance between the shield magnetic bodies 5 and 6 is the same when viewed from the MR element 4. Therefore, if the overall thickness of the MR element 4 is about 7 O nm, the distance between the MR element 4 and the shield magnetic body 6 must be 0.1 zm or less. Difficult to create. For this reason, it is advantageous to make the thickness of the MR element 4 significantly smaller, specifically, 20 nm (0.02 mm) or less.
  • the ferromagnetic thin films 4b and 4c be made to have a thickness of 10 nm using a Ni—Fe alloy, and the nonmagnetic metal layer 4a be made to have a thickness of 2 nm using Cu.
  • the thickness of the ferromagnetic thin films 4b and 4c is about 30 nm, as shown in Fig. 7, the current flowing through the MR element 4 by about 10 mA causes Changes in resistance can sometimes show discontinuous values or cause hysteresis. This poses a problem for stability as a playback head.
  • the ferromagnetic thin films 4 b and 4 forming the MR element 4 are formed to have a thickness of 1 Onm or less, and the intermediate nonmagnetic metal layer 4 a is formed of A 12 12 3 ⁇ (4 nm If a layer with a continuity (film formation) with a thickness of about 2 nm, such as Cu or vanadium, is used instead of an element with the same shape, the continuity as shown in Fig. 8 can be obtained. Therefore, stable characteristics without hysteresis can be obtained. This is a necessary condition for obtaining stable characteristics as a reproduction head.
  • the reason why the MR element 4 is stabilized when the film thickness is reduced is that when the width of the MR element 4 is 3 m or less to 1 zm, the influence of the demagnetizing field due to the thickness and the width increases.
  • the rate of change in resistance decreases as shown in FIG. Although it is missing, it is rarely used in the past, but making it thinner is not necessarily a disadvantage. The reason is that the same signal value (current density increases) and the same signal magnetic field When it enters (the magnetic flux density is large), the resistance change increases in proportion to each. (However, it is assumed that the resistance change rate ⁇ has hardly changed.)
  • FIG. 9 shows the results when ⁇ -Fe-Co was used as the ferromagnetic thin films 4b and 4c, the film thickness was reduced to 10 nm or less, and Cu was varied from 1 nm or less to 4 nm. It shows the rate of change in resistance. As can be seen from this figure, it can be seen that the resistance change rate changes periodically depending on the thickness of Cu.
  • the magnetization directions of the ferromagnetic thin films 4 b and 4 c where the giant magnetoresistance effect occurs are different. This is because it is easy to use as an MR head, and the film formation stability, thickness, variation, etc. are superior to 1. Onm. Therefore, by making the film thickness of the ferromagnetic thin films 4 b and 4 c 10 nm or less and using less than 1 Onm (several nm or less) of Cu as the nonmagnetic metal layer 4 a, the MR element 4 becomes stable. In addition, a stable track can be obtained even if the track is narrowed. Furthermore, when a head is used, the adverse effect of the MR element thickness is reduced, good frequency characteristics are easily obtained, and the output can be increased by using the giant magnetoresistance effect by using Cu for the nonmagnetic metal layer 4a.
  • a bias magnetic field may be applied to the MR element 4 by a current. This eliminates the need for the dedicated bias conductor 8, and allows the head to be reduced in size by reducing the number of terminals.
  • the MR element formed by laminating the ferromagnetic thin film via the non-magnetic metal layer is arranged perpendicular to the ABS surface, the MR element facing the ABS surface Even if the edge of the vertical MR head corrodes, the magnetic permeability between the top and bottom electrodes of the vertical MR head is the magnetic sensing part, so the magnetic permeability is the upper and lower ferromagnetic layers provided between the nonmagnetic metal layers.
  • the body thin film is sufficiently ensured, and a decrease in reproduction output can be suppressed.
  • the MR element has a laminated film structure in which a ferromagnetic thin film is laminated via a nonmagnetic metal layer made of Cu, and the film thickness is set to be small.
  • the frequency characteristics at the time are improved, and it is possible to reproduce to a higher frequency with a certain SZN ratio secured.
  • the MR element can be stabilized and the reproduction output by the giant magnetoresistance effect can be greatly increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

This invention discloses a vertical magnetoresistive magnetic head wherein a magnetoresistive element is disposed in a vertical direction with respect to a sliding surface facing a magnetic recording medium, and a tip electrode laminated on a distal end is exposed at the sliding surface. The magnetoresistive element has a laminate film structure formed by laminating a pair of ferromagnetic thin films through a non-magnetic metal layer. The non-magnetic metal layer is made of Cu, having a thickness less than 10 nm. The ferromagnetic thin film is a thin film of a Ni-Fe alloy, Ni-Fe-Co alloy, and so forth, and preferably it has a thickness less than 10 nm. The magnetoresistive element is sandwiched between a pair of shield magnetic substances.

Description

明 細 書 磁気抵抗効果型磁気へッド 技 術 分 野 本発明は、 例えばハードディスクに記録された情報信号を読み出 すのに好適な磁気抵抗効果型磁気へッドに関する。 背 景 技 術 例えば、 ハードディスク · ドライブ装置等に搭載される再生専用 の磁気へッドとしては、 短波長感度に優れることから、 電流を流し て信号磁束による抵抗変化を電圧変化として読み取る構成とされた 磁気抵抗効果型磁気へッド (以下、 MRへッドと称する。 ) が一般 的に使用されている。  TECHNICAL FIELD The present invention relates to a magneto-resistance effect type magnetic head suitable for reading out an information signal recorded on a hard disk, for example. Background technology For example, a read-only magnetic head mounted on a hard disk drive or the like has a configuration that reads current resistance and changes in resistance due to signal magnetic flux as a voltage change because of its excellent short-wavelength sensitivity. In addition, a magnetoresistive head (hereinafter referred to as an MR head) is generally used.
かかる MRヘッドとしては、 例えば図 1に示すように、 スライダ となる非磁性材料からなる基板 1 0 1上に磁気抵抗効果素子 1 0 2 (以下、 MR素子 1 0 2と称する。 ) が、 その長手方向をハードデ イスクとの摺動面 1 0 3 (以下、 A B S面 1 0 3と称する。 ) と平 行となるように配置してなる, いわゆる横型の MRへッドが提案さ れている。  As such an MR head, for example, as shown in FIG. 1, a magnetoresistive effect element 102 (hereinafter, referred to as an MR element 102) is formed on a substrate 101 made of a nonmagnetic material as a slider. A so-called horizontal MR head has been proposed in which the longitudinal direction is arranged so as to be parallel to the sliding surface 103 (hereinafter referred to as ABS surface 103) with the hard disk. .
この横型の MRへッドは、 長手方向における一側縁を A B S面 1 0 3に露出させるようにして MR素子 1 0 2を配置し、 その MR素 子 1 0 2に上記八8 3面1 0 3と平行にセンス電流を通電させるた めの配線導体 1 04, 1 05を、 この MR素子 1 02の両端部に該 ABS面 1 03と垂直に設けることにより構成されている。 In this horizontal MR head, the MR element 102 is arranged such that one side edge in the longitudinal direction is exposed on the ABS 103, and the MR element 102 is provided with 0 A sense current is supplied in parallel with 3 The MR element 102 is provided with wiring conductors 104, 105 at both ends perpendicular to the ABS surface 103.
ところで、 この横型の MRへッドにおいては、 図 2に示すように、 MR素子 1 02を、 非磁性材料よりなる中間層 1 02 aを介して膜 厚の薄い強磁性体薄膜 1 02b, 1 02 c, 1 02 dを積層した積 層膜構造とすることにより、 磁壁の移動に基づくノイズ(バルクハ ゥゼンノイズ) の発生を有効に回避することができる。  By the way, in this horizontal MR head, as shown in FIG. 2, the MR element 102 is made of a thin ferromagnetic thin film 102b, 1 By forming a multilayer film structure in which 02c and 102d are stacked, it is possible to effectively avoid generation of noise (Barkhausen noise) due to domain wall movement.
特に、 強磁性体薄膜 1 02b, 1 02 cに F e— N i、 強磁性体 薄膜 1 02 dに Fe— Mnを使用し、 中間層 1 02 aとして Cuを 用いることにより、 巨大磁気抵抗効果を得ることができる。 したが つて、 再生出力の向上が期待でき、 MRへッドにとって非常に有利 なものとなる。  In particular, by using Fe-Ni for the ferromagnetic thin films 102b and 102c, Fe-Mn for the ferromagnetic thin film 102d, and Cu for the intermediate layer 102a, the giant magnetoresistance effect is obtained. Can be obtained. Therefore, improvement in reproduction output can be expected, which is very advantageous for MR heads.
しかしながら、 上述の横型 MRへッドにおいては、 ABS351 0 3に MR素子 1 02の一側縁が露出することから、 この MR素子 1 02を構成する Cuが腐食した場合には当該 MR素子 1 02の機能 が劣化する。 つまり、 横型の MRへッドでは、 配線導体 2, 3間に 設けられた MR素子 1 02が感磁部となるために、 この部分の Cu が腐食することによりかかる部分の透磁率が低下し、 その結果 MR 素子 1 02の機能が劣化することになる。 発 明 の 開 示  However, in the above-described horizontal MR head, since one side edge of the MR element 102 is exposed to the ABS 35103, if Cu constituting the MR element 102 is corroded, the MR element 102 Function is deteriorated. In other words, in the horizontal MR head, the MR element 102 provided between the wiring conductors 2 and 3 becomes a magnetically sensitive part, and the corrosion of Cu in this part lowers the magnetic permeability of this part. As a result, the function of the MR element 102 deteriorates. Disclosure of the invention
• 本発明は、 A BS面に露出する MR素子の非磁性金属層が腐食し た場合でも、 MR素子の機能が劣化することがなく、 巨大磁気抵抗 効果による再生出力の大幅な向上が図れる磁気抵抗効果型磁気へッ ドを提供することを目的とする。 • The present invention provides a magnetic field that can greatly improve the reproduction output by the giant magnetoresistance effect without deteriorating the function of the MR element even if the nonmagnetic metal layer of the MR element exposed on the ABS surface is corroded. Resistive magnetic head The purpose is to provide
上述の目的を達成するために、 本発明は、 非磁性金属層を介して 一対の強磁性体薄膜を積層してなる積層膜構造の磁気抵抗効果素子 が、 磁気記録媒体に対する摺動面に対して垂直方向に配されるとと もに、 先端側に積層された先端電極を上記摺動面に露出させるよう にした縦型の磁気抵抗効果型磁気へッドにおいて、 上記非磁性金属 層が C uからなることを特徴とする。  In order to achieve the above-mentioned object, the present invention provides a magnetoresistive element having a laminated film structure in which a pair of ferromagnetic thin films are laminated via a nonmagnetic metal layer, In the vertical type magnetoresistive effect type magnetic head in which the tip electrode laminated on the tip side is exposed on the sliding surface, the nonmagnetic metal layer is It is characterized by consisting of Cu.
また、 かかる磁気抵抗効果型磁気ヘッドにおいて、 C uの膜厚が 1 0 n m未満であることを特徴とする。  Further, in such a magneto-resistance effect type magnetic head, the film thickness of Cu is less than 10 nm.
本発明においては、 C uよりなる非磁性金属層を介して一対の強 磁性体薄膜を積層してなる積層膜構造とした MR素子を用いている ので、 巨大磁気抵抗効果が得られ、 再生出力が大幅に向上する。 また、 本発明においては、 A B S面に対して MR素子が垂直に設 けられ、 しかもその MR素子の先端側に積層された先端電極が A B S面に露出するようにして設けられているので、 例えこの A B S面 に臨む非磁性金属層 (C u ) が腐食しても、 かかる縦型 MRへッド では感磁部は電極間で挟まれた領域であることから、 透磁率は上記 非磁性金属層を挾んで設けられる上下の強磁性体薄膜によって十分 に確保される。 したがって、 かかる縦型の MRへッドでは、 横型の MRへッドのように MR素子の機能が劣化するようなことが起こら ない。  In the present invention, a giant magnetoresistive effect is obtained because the MR element has a laminated film structure in which a pair of ferromagnetic thin films are laminated via a nonmagnetic metal layer made of Cu. Is greatly improved. Further, in the present invention, the MR element is provided perpendicular to the ABS surface, and the tip electrode laminated on the tip side of the MR element is provided so as to be exposed on the ABS surface. Even if the non-magnetic metal layer (C u) facing the ABS surface is corroded, the magnetic permeability of such a vertical MR head is the area sandwiched between the electrodes. It is sufficiently ensured by the upper and lower ferromagnetic thin films provided between the layers. Therefore, the function of the MR element does not deteriorate in such a vertical MR head as in the horizontal MR head.
また、 本発明において、 積層膜構造とした MR素子の中間層とし て用いた C uの膜厚を 1 0 nm未満と非常に薄くすれば、 高トラッ ク密度化のためにトラック幅を狭くした場合でも、 安定して媒体か らの再生信号が読み取れ、 しかも磁気抵抗効果が得られる。 図 面 の 簡 単 な 説 明 図 1は MR素子を A B S面に対して平行に配置した横型 MRへッ ドの概略的な平面図である。 Also, in the present invention, if the film thickness of Cu used as the intermediate layer of the MR element having a laminated film structure is made extremely thin, less than 10 nm, the track width is narrowed to increase the track density. Even in this case, the reproduced signal from the medium can be read stably, and the magnetoresistance effect can be obtained. Fig. 1 is a schematic plan view of a horizontal MR head in which MR elements are arranged parallel to the ABS.
図 2は MR素子を A B S面に対して平行に配置した横型 MRへッ ドにおける MR素子部分を一部破断して示す要部拡大斜視図である c 図 3は本発明を適用した MRへッドの拡大断面図である。  Fig. 2 is an enlarged perspective view of the main part of a horizontal MR head in which the MR element is arranged parallel to the ABS. FIG.
図 4は本発明を適用した MRへッドにおける MR素子部分を一部 破断して示す要部拡大斜視図である。  FIG. 4 is an enlarged perspective view of a main part of the MR head to which the present invention is applied, in which an MR element part is partially broken.
図 5は単一の F e -N i膜の厚みを変化させたときの抵抗変化率 を示す特性図である。  FIG. 5 is a characteristic diagram showing a resistance change rate when the thickness of a single Fe-Ni film is changed.
図 6再生実効ギヤップ長を説明するための MRへッドの模式図で ある。  Fig. 6 is a schematic diagram of an MR head for explaining a reproduction effective gap length.
図 7は強磁性体薄膜の膜厚が 3 O n mの MRへッドにおいて、 磁 界を正 ·負に掃引したときの MR素子の抵抗変化を示す特性図であ る。  Fig. 7 is a characteristic diagram showing the resistance change of the MR element when the magnetic field is swept positively and negatively in an MR head having a ferromagnetic thin film thickness of 3 Onm.
図 8は強磁性体薄膜の膜厚が 1 0 n m以下の MRへッドにおいて 磁界を正 ·負に掃引したときの MR素子の抵抗変化を示す特性図で める ο  Figure 8 is a characteristic diagram showing the resistance change of the MR element when the magnetic field is swept positively and negatively in an MR head with a ferromagnetic thin film thickness of 10 nm or less.
図 9は C uの膜厚を変化させたときの抵抗変化率を示す特性図で める ο 発明を実施するための最良の形態 以下、 本発明を適用した具体的な実施例について図面を参照しな 力ら詳細に説明する。 FIG. 9 is a characteristic diagram showing the rate of change of resistance when the film thickness of Cu is changed. Ο Best Mode for Carrying Out the Invention Hereinafter, referring to the drawings for specific examples to which the present invention is applied. Shina The power will be described in detail.
本実施例の MRヘッドは、 図 3に示すように、 スライダーとなる A 1 2 03 —T i C等の非磁性材料からなる基板 1上に、 センス電 流を流すための配線導体 2 , 3が先端部と後端部にそれぞれ接続さ れた MR素子 4が形成されるとともに、 この MR素子 4をその上下 方向から挾み込むようにして一対のシールド磁性体 5 , 6が形成さ れてなる。 MR head of the present embodiment, as shown in FIG. 3, on a substrate 1 made of a nonmagnetic material A 1 2 0 3 -T i C such as a slider, the wiring conductors 2 for supplying a sense current, 3 is connected to the front end and the rear end, respectively, to form an MR element 4, and a pair of shield magnetic bodies 5, 6 are formed so as to sandwich the MR element 4 from above and below. .
MR素子 4は、 図 4に示すように、 平面形状が長方形状をなすパ ターンとして形成され、 その長手方向がハードディスクに対する摺 動面となる A B S面 7に対して直交する方向 (垂直方向) となるよ うに設けられるとともに、 その一端縁 4 dが上記 A B S面 7に臨む ようになつている。 かかる MR素子 4は、 例えばバーマロイ等の強 磁性体薄膜からなり、 蒸着やスパッタリング等によって形成される。 また、 上記 MR素子 4は、 磁壁の移動に基づくノイズ(バルクハ ゥゼンノイズ) の発生を有効に回避するために、 非磁性金属層 4 a を介して一対の強磁性体薄膜 (MR膜) 4 b, 4 cを積層した積層 膜構造とされている。 本実施例では、 巨大磁気抵抗効果を得るため に、 非磁性金属層 4 aとして C uを用レ、、 強磁性体薄膜 4 b , 4 c に N i— F e合金又は N i— F e— C o合金を使用した。  As shown in FIG. 4, the MR element 4 is formed as a pattern having a rectangular planar shape, and its longitudinal direction is perpendicular to the ABS surface 7 which is a sliding surface for the hard disk (perpendicular direction). And one end edge 4 d faces the ABS surface 7. The MR element 4 is made of a ferromagnetic thin film such as Vermalloy, and is formed by vapor deposition or sputtering. The MR element 4 includes a pair of ferromagnetic thin films (MR films) 4 b, 4 b, It has a laminated film structure in which 4c are laminated. In this embodiment, in order to obtain a giant magnetoresistance effect, Cu is used as the nonmagnetic metal layer 4a, and a Ni—Fe alloy or a Ni—Fe is used for the ferromagnetic thin films 4b and 4c. — Co alloy was used.
上記 MR素子 4の先端部と後端部にそれぞれ接続される配線導体 2 , 3は、 上層のシールド磁性体 6と対向する側に形成されている。 これら配線導体 2, 3のうち MR素子 4の先端側(A B S面 7側) に設けられる配線導体 2は、 その一端縁 2 aが A B S面 7に臨むよ うにして、 平面略矩形状をなす小さな導体パターンとして形成され ている。 そして、 この配線導体 2は、 上記 MR素子 4に対して垂直 に設けられ、 該 MR素子 4に積層される部分において電気的に接続 されるようになされている。 The wiring conductors 2 and 3 connected to the front end and the rear end of the MR element 4, respectively, are formed on the side facing the shield magnetic body 6 in the upper layer. Of these wiring conductors 2 and 3, the wiring conductor 2 provided on the front end side (the ABS surface 7 side) of the MR element 4 has a substantially rectangular planar shape with one edge 2a facing the ABS surface 7. It is formed as a small conductor pattern. The wiring conductor 2 is perpendicular to the MR element 4. And are electrically connected at a portion to be stacked on the MR element 4.
一方、 後端側に設けられる配線導体 3は、 やはりその一端が MR 素子 4の後端部に積層されるとともに、 その他端が上記 MR素子 4 に電気的に接続されるようになされている。  On the other hand, the wiring conductor 3 provided on the rear end side also has one end laminated on the rear end of the MR element 4 and the other end electrically connected to the MR element 4.
このように配線導体 2 , 3が MR素子 4に対して設けられること により、 上記 MR素子 4には A B S面 7と直交する方向 (MR素子 4の長手方向) にセンス電流が流れることになる。  By providing the wiring conductors 2 and 3 for the MR element 4 as described above, a sense current flows in the MR element 4 in a direction orthogonal to the ABS plane 7 (longitudinal direction of the MR element 4).
そして、 これら配線導体 2 , 3の間には、 上記 MR素子 4にバイ ァス磁場を印加するためのバイアス導体 8が設けられている。 かか るバイアス導体 8は、 MR素子 4に対して垂直に交わる (横切る) ようにして、 この MR素子 4の長手方向中央部分上に設けられてい る。 なお、 このバイアス導体 8は、 絶縁膜 9を介して該 MR素子 4 上に積層された形となっている。  A bias conductor 8 for applying a bias magnetic field to the MR element 4 is provided between the wiring conductors 2 and 3. The bias conductor 8 is provided on a central portion in the longitudinal direction of the MR element 4 so as to cross (cross) the MR element 4 vertically. The bias conductor 8 is laminated on the MR element 4 via an insulating film 9.
また、 上記 MR素子 4をその上下方向から挾み込むシ一ルド磁性 体 5 , 6のうち、 下層のシールド磁性体 5は、 例えばパーマロイ等 の軟磁性金属層からなり、 上記 A B S面 7にその一端を臨ませるよ うにして平面略矩形状をなす幅広パターンとして形成されている。 一方、 上層のシールド磁性体 6は、 やはり下層のシールド磁性体 5と同様にパーマロイ等の軟磁性金属層からなり、 上記 A B S面 7 にその一端を臨ませるようにして平面略矩形状をなす幅広パターン として形成されている。 また、 かかるシールド磁性体 6は、 上記 A B S面 7側で MR素子 4に近接するようにして屈曲され、 先端側の 配線導体 2との対向距離が狭くなるようになされている。  Of the shield magnetic members 5 and 6 sandwiching the MR element 4 from above and below, the lower shield magnetic member 5 is made of a soft magnetic metal layer such as permalloy. It is formed as a wide pattern having a substantially rectangular planar shape with one end thereof facing. On the other hand, the upper shield magnetic body 6 is also made of a soft magnetic metal layer such as permalloy similarly to the lower shield magnetic body 5, and has a flat rectangular shape with one end facing the ABS surface 7. It is formed as a pattern. Further, the shield magnetic body 6 is bent so as to be close to the MR element 4 on the ABS surface 7 side, so that the distance between the shield magnetic body 6 and the wiring conductor 2 on the distal end side is reduced.
なお、 下層のシールド磁性体 5と MR素子 4との間には、 下層の 再生用磁気ギヤップ g! を構成するギャップ膜として機能する A 1In addition, between the lower shield magnetic body 5 and the MR element 4, the lower layer Magnetic gap for reproduction g! A 1 that functions as a gap film that constitutes
2 〇3 よりなる下地膜 1 0が設けられている。 また、 上層のシール ド磁性体 6と先端側の配線導体 2との間には、 上層の再生用磁気ギ ヤップ g 2 を構成するギャップ膜として機能する A 1 2 03 等から なる絶縁膜 1 1が設けられている。 この絶縁膜 1 1は、 MR素子 4 と上層のシールド磁性体 6との間にも設けられ、 これら MR素子 4 とシールド磁性体 6との磁気的結合を防止するようになっている。 さらに、 上層のシールド磁性体 6の上には、 MRへッドを保護する ための保護膜層 1 2が積層されている。 A base film 10 composed of 2/3 is provided. Between the wiring conductors 2 of the upper shield magnetic body 6 and the front end side, the insulating film 1 made of A 1 2 0 3, etc. which serves as a gap film constituting the upper layer of the reproducing magnetic formic Yap g 2 1 is provided. The insulating film 11 is also provided between the MR element 4 and the upper shield magnetic body 6 to prevent magnetic coupling between the MR element 4 and the shield magnetic body 6. Further, a protective film layer 12 for protecting the MR head is laminated on the upper shield magnetic body 6.
このように構成された MRへッ ドでは、 MR素子 4の一端縁 4 d が A B S面 7に露出するが、 該 MR素子 4は A B S面 7に対して垂 直に配されているので、 例え MR素子 4の一端縁 4 dが腐食しても、 MR感磁部は配線導体 2 , 3間であることから透磁率はこの MR感 磁部における非磁性金属層 4 aを挾んで設けられる上下の強磁性体 薄膜 4 b, 4 cで十分確保される。 したがって、 再生出力の低下を 抑制することができる。  In the MR head configured as described above, one end 4 d of the MR element 4 is exposed on the ABS surface 7. However, since the MR element 4 is arranged perpendicular to the ABS surface 7, for example, Even if the one edge 4d of the MR element 4 is corroded, the magnetic permeability is between the wiring conductors 2 and 3, so the magnetic permeability is the upper and lower sides of the nonmagnetic metal layer 4a in this MR sensitive part. The ferromagnetic thin films 4b and 4c are sufficiently secured. Therefore, a decrease in the reproduction output can be suppressed.
また、 本実施例では、 再生時における周波数特性を改善し、 高い 周波数まで S /N比を高めるとともに、 狭トラック化した場合でも 巨大磁気抵抗効果による再生出力の大幅な向上を図るために、 強磁 性体層 4 b , 4 cの膜厚を 1 0 n m以下、 非磁性金属層 4 aの膜厚 を 1 O n m未満 (数 n m) となるように MR素子 4自体の膜厚を薄 くする。 MR素子 4の膜厚をこのように規定することによって、 上 述の目的が達成できるのは以下の理由による。  Also, in this embodiment, the frequency characteristics during reproduction are improved, the S / N ratio is increased up to higher frequencies, and even when the track is narrowed, the reproduction output is greatly improved by the giant magnetoresistance effect. Reduce the thickness of the MR element 4 itself so that the thickness of the magnetic layers 4 b and 4 c is 10 nm or less, and the thickness of the nonmagnetic metal layer 4 a is less than 10 nm (several nm). I do. The above object can be achieved by defining the film thickness of the MR element 4 in this manner for the following reason.
例えば、 MR素子 4を N i—F e合金の単一膜とし、 その膜厚を 3 O n mとした場合、 抵抗変化率は図 5に示すように膜厚が厚い程 大きいものとなる。 ここに言う抵抗変化率は、 無磁場中の強磁性体 の抵抗値に対し、 磁界を強磁性体が飽和するまで印加したときの抵 抗値の変化分の比を示す。 この図 5からわかるように、 膜厚が 3 0 n mで抵抗変化率が 2 %程度あつた値が、 2 0 n m以下では急速に zj、さくなつていることがわかる。 この理由は、 主として厚さが小さ くなる程、 抵抗値の上昇が急になることに起因する。 したがって、 あまり薄く例えば 2 O n m以下にすると、 抵抗値の増大がへッドと して問題となったり (インダクタンスが高くなり過ぎたり) 、 膜作 成時のばらつきが大きくなる等の理由で採用されていなかった。 ' しかし近年、 ハードディスクドライブに代表されるように高密度 化が極めて進んできた状況下では、 線記録密度、 トラック密度は極 めて大きくなり、 1 0 0 K F C I以上、 5 0 0 0 T P I以上を達成 する性能にする必要がある。 この程度の高密度になると、 再生ギヤ ップは 0 . 1 5 m、 再生へッド幅は 3 zm以下が必要である。 ここで例えば、 強磁性体薄膜 4 b, 4 cの膜厚をそれぞれ 3 0 n m、 非磁性金属層 4 aを 1 0 n mとした積層膜構造の MR素子 4を 用いた場合、 MR素子全体の膜厚が厚くなることにより、 再生時に おける周波数特性が高域まで伸びなくなる。 また、 MR素子 4の安 定性が劣化する。 さらには、 巨大磁気抵抗効果が得られない。 For example, when the MR element 4 is a single film of a Ni—Fe alloy and the film thickness is 3 O nm, the resistance change rate becomes larger as shown in FIG. It will be big. The rate of change in resistance referred to here indicates the ratio of the change in resistance when a magnetic field is applied until the ferromagnetic material is saturated with respect to the resistance value of the ferromagnetic material in the absence of a magnetic field. As can be seen from FIG. 5, the value with a resistance change rate of about 2% at a film thickness of 30 nm rapidly decreases at a thickness of 20 nm or less. The main reason for this is that the resistance increases rapidly as the thickness decreases. Therefore, if the thickness is too thin, for example, 2 O nm or less, it is adopted because the increase in resistance becomes a problem as a head (inductance becomes too high), and the variation in film formation becomes large. Had not been. '' However, in recent years, under the situation of extremely high density, as represented by hard disk drives, the linear recording density and track density have become extremely large, and have exceeded 100 KFCI and 500 TPI or more. The performance must be achieved. At this high density, the reproduction gap must be 0.15 m and the reproduction head width must be 3 zm or less. Here, for example, when the MR element 4 having a laminated film structure in which the thickness of the ferromagnetic thin films 4 b and 4 c is 30 nm and the thickness of the nonmagnetic metal layer 4 a is 10 nm is used, As the film thickness increases, the frequency characteristics during reproduction cannot be extended to high frequencies. Also, the stability of the MR element 4 is degraded. Furthermore, a giant magnetoresistance effect cannot be obtained.
MRへッドにおける再生実効ギャップ長 Lは、 図 6に示すように、 実質的には MR素子 4の厚さ t , と MR素子 4とシールド磁性体 6 間の距離 t 2 を加えたものとなる。 但し、 シールド磁性体 5 , 6間 距離が MR素子 4から見て等しい場合に限る。 したがって、 MR素 子 4の全体の厚みが 7 O n m程あると、 MR素子 4とシールド磁性 体 6間の距離は 0 . 1 zm以下にしなければならず、 MR素子 4の 作成が困難になる。 このため、 MR素子 4の厚さを大幅に薄くして 具体的には 20 nm (0. 02 mm)以下にすると有利である。 例 えば、 強磁性体薄膜 4 b, 4 cを Ni— Fe合金によってその膜厚 が 10 nmとなるようにし、 非磁性金属層 4 aを Cuによってその 膜厚を 2 n mとすることが望ましい。 Play effective gap length L in head to MR, as shown in FIG. 6, which is substantially plus the distance t 2 between the thickness t of the MR element 4, and the MR element 4 shielding magnetic member 6 and Become. However, it is limited to the case where the distance between the shield magnetic bodies 5 and 6 is the same when viewed from the MR element 4. Therefore, if the overall thickness of the MR element 4 is about 7 O nm, the distance between the MR element 4 and the shield magnetic body 6 must be 0.1 zm or less. Difficult to create. For this reason, it is advantageous to make the thickness of the MR element 4 significantly smaller, specifically, 20 nm (0.02 mm) or less. For example, it is desirable that the ferromagnetic thin films 4b and 4c be made to have a thickness of 10 nm using a Ni—Fe alloy, and the nonmagnetic metal layer 4a be made to have a thickness of 2 nm using Cu.
ところで、 強磁性体薄膜 4b, 4 cの厚さが 30 nm程度である と、 図 7のように、 MR素子 4に 10m A程流して磁界を正 ·負に 掃引したときの MR素子 4の抵抗値の変化は所々不連続な値を示し たり、 ヒステリシスを生じたりすることがある。 このことは、 再生' へッドとしての安定性に問題を生じる。  By the way, if the thickness of the ferromagnetic thin films 4b and 4c is about 30 nm, as shown in Fig. 7, the current flowing through the MR element 4 by about 10 mA causes Changes in resistance can sometimes show discontinuous values or cause hysteresis. This poses a problem for stability as a playback head.
したがって、 MR素子 4を形成する強磁性体薄膜 4 b, 4じを1 Onm以下に形成し、 中間の非磁性金属層 4 aには従来より用いら れてきた A 12 〇3 曆 (4 nm〜6 nm厚のもの) に代え、 厚さ 2 nm程度の連続性 (膜形成) の良い Cuやバナジウム等の層を用い ると、 同一の形状素子であっても図 8のような連続性が良くヒステ リシスのない安定した特性を得ることができる。 これは再生へッド として安定した特性を得る必要条件である。 Therefore, the ferromagnetic thin films 4 b and 4 forming the MR element 4 are formed to have a thickness of 1 Onm or less, and the intermediate nonmagnetic metal layer 4 a is formed of A 12 12 3曆 (4 nm If a layer with a continuity (film formation) with a thickness of about 2 nm, such as Cu or vanadium, is used instead of an element with the same shape, the continuity as shown in Fig. 8 can be obtained. Therefore, stable characteristics without hysteresis can be obtained. This is a necessary condition for obtaining stable characteristics as a reproduction head.
何故、 MR素子 4の膜厚を薄くすると安定するかというと、 MR 素子 4の幅が 3 m以下〜 1 zmになると厚さと幅に起因する反磁 界の影響が大きくなるからである。  The reason why the MR element 4 is stabilized when the film thickness is reduced is that when the width of the MR element 4 is 3 m or less to 1 zm, the influence of the demagnetizing field due to the thickness and the width increases.
強磁性体薄膜 4 b, 4 cが 30 nm程に比べ 10 nm以下と薄く なると、 図 5に示したように抵抗変化率が小さくなり、 MR素子 4 の膜厚制御の観点からも安定性に欠けることもあり、 従来は殆ど用 いられていないが、 必ずしも薄くすることは不利ではない。 その理 由として、 同じ電流値 (電流密度が大きくなる) と同じ信号磁界が 入ってきたとき (磁束密度が大きい) 、 抵抗変化がそれぞれに比例 して大きくなるからである。 (但し、 抵抗変化率 ΔρΖρの が ほとんど変化していないと仮定する。 ) When the thickness of the ferromagnetic thin films 4b and 4c is reduced to 10 nm or less compared to about 30 nm, the rate of change in resistance decreases as shown in FIG. Although it is missing, it is rarely used in the past, but making it thinner is not necessarily a disadvantage. The reason is that the same signal value (current density increases) and the same signal magnetic field When it enters (the magnetic flux density is large), the resistance change increases in proportion to each. (However, it is assumed that the resistance change rate ΔρΖρ has hardly changed.)
また、 非磁性金属層 4 aとして Cuを用いた場合、 図 9に示すよ うな特別な挙動を示す。 これを一般的に巨大磁気抵抗効果という。 図 9は、 強磁性体薄膜 4b, 4 cとして Νί— Fe— Coを用い、 その膜厚を 1 0 nm以下とするとともに、 Cuをその膜厚が 1 nm 以下から 4 n mまで変えたときの抵抗変化率を示したものである。 この図からわかるように、 C uの厚さにより周期的に抵抗変化率が 変化していることがわかる。 本実施例では、 2nm (20 A)の C u ¾:選んでレヽる 0 In addition, when Cu is used as the nonmagnetic metal layer 4a, a special behavior as shown in FIG. 9 is exhibited. This is generally called a giant magnetoresistance effect. Figure 9 shows the results when Νί-Fe-Co was used as the ferromagnetic thin films 4b and 4c, the film thickness was reduced to 10 nm or less, and Cu was varied from 1 nm or less to 4 nm. It shows the rate of change in resistance. As can be seen from this figure, it can be seen that the resistance change rate changes periodically depending on the thickness of Cu. In the present embodiment, Cu of 2 nm (20 A): Select and read 0
Cuの膜厚が 1. Onmと 2. Onmのとき、 巨大磁気抵抗効果 の生じる強磁性体薄膜 4 b, 4 cの磁化の向きが異なり、 2. On mのときの方が Hkが小さいため MRへッドとして用い易く、 且つ 膜形成の安定性, 厚さ, ばらつき等が 1. Onmのときに比較し優 れているからである。 したがって、 強磁性体薄膜 4 b, 4 cの膜厚 を 1 0 n m以下にして、 非磁性金属層 4 aとして 1 On m未満 (数 nm以下) の Cuを用いることにより、 MR素子 4として安定する とともに、 狭トラック化しても安定したものを得ることができる。 さらには、 ヘッドにしたとき MR素子厚の悪影響を低減し、 良い周 波数特性が得やすく、 しかも非磁性金属層 4 aに Cuを用いること により巨大磁気抵抗効果を用いて出力を大きくできる。  When the Cu film thickness is 1. Onm and 2. Onm, the magnetization directions of the ferromagnetic thin films 4 b and 4 c where the giant magnetoresistance effect occurs are different. This is because it is easy to use as an MR head, and the film formation stability, thickness, variation, etc. are superior to 1. Onm. Therefore, by making the film thickness of the ferromagnetic thin films 4 b and 4 c 10 nm or less and using less than 1 Onm (several nm or less) of Cu as the nonmagnetic metal layer 4 a, the MR element 4 becomes stable. In addition, a stable track can be obtained even if the track is narrowed. Furthermore, when a head is used, the adverse effect of the MR element thickness is reduced, good frequency characteristics are easily obtained, and the output can be increased by using the giant magnetoresistance effect by using Cu for the nonmagnetic metal layer 4a.
以上、 本発明を適用した具体的な実施例について説明したが、 本 発明は上述の実施例に限定されることなく種々の変更が可能である。 例えば、 先の例では MR素子 4にバイアス磁場を印加する専用のバ ィァス導体 8を用いたが、 後端側に設けられる配線導体 3の一部を MR素子 4を横切るようにして絶縁層 9を介して積層し、 その MR 素子 4を横切る導体部に通電される電流によって M R素子 4にバイ ァス磁場を印加するようにしてもよい。 このようにすれば、 専用の バイアス導体 8が不要となり、 その端子数の削減により、 ヘッドの 小型化が可能となる。 As described above, the specific embodiments to which the present invention is applied have been described. However, the present invention is not limited to the above-described embodiments, and various changes can be made. For example, in the previous example, a dedicated Although the ground conductor 8 is used, a part of the wiring conductor 3 provided on the rear end side is laminated via the insulating layer 9 so as to cross the MR element 4, and electricity is supplied to the conductor crossing the MR element 4. A bias magnetic field may be applied to the MR element 4 by a current. This eliminates the need for the dedicated bias conductor 8, and allows the head to be reduced in size by reducing the number of terminals.
いずれにしても、 本発明においては、 非磁性金属層を介して強磁 性体薄膜を積層してなる MR素子を、 A B S面に対して垂直に配置 しているので、 A B S面に臨む MR素子の端縁部が腐食したとして も、 縦型の MRへッドでは先端電極と後端電極間が感磁部であるこ とから、 透磁率は非磁性金属層を挾んで設けられる上下の強磁性体 薄膜で十分確保され、 再生出力の低下を抑制することができる。 また、 本発明においては、 MR素子を、 C uよりなる非磁性金属 層を介して強磁性体薄膜を積層してなる積層膜構造とするとともに、 その膜厚を薄く設定しているので、 再生時における周波数特性が改 善され、 高い周波数まで S ZN比をある程度確保した上で再生する ことができる。 さらに、 狭トラック化した場合でも MR素子を安定 させることができるとともに、 巨大磁気抵抗効果による再生出力を 大幅に高めることができる。  In any case, in the present invention, since the MR element formed by laminating the ferromagnetic thin film via the non-magnetic metal layer is arranged perpendicular to the ABS surface, the MR element facing the ABS surface Even if the edge of the vertical MR head corrodes, the magnetic permeability between the top and bottom electrodes of the vertical MR head is the magnetic sensing part, so the magnetic permeability is the upper and lower ferromagnetic layers provided between the nonmagnetic metal layers. The body thin film is sufficiently ensured, and a decrease in reproduction output can be suppressed. Further, in the present invention, the MR element has a laminated film structure in which a ferromagnetic thin film is laminated via a nonmagnetic metal layer made of Cu, and the film thickness is set to be small. The frequency characteristics at the time are improved, and it is possible to reproduce to a higher frequency with a certain SZN ratio secured. Furthermore, even if the track is narrowed, the MR element can be stabilized and the reproduction output by the giant magnetoresistance effect can be greatly increased.

Claims

請 求 の 範 囲 The scope of the claims
1 . 非磁性金属層を介して一対の強磁性体薄膜を積層してなる積層 膜構造の磁気抵抗効果素子が、 磁気記録媒体に対する摺動面に対し て垂直方向に配されるとともに、 先端側に積層された先端電極を上 記摺動面に露出させるようにした縱型の磁気抵抗効果型磁気へッド において、 上記非磁性金属層が C uからなることを特徴とする磁気 抵抗効果型磁気へッド。 1. A magnetoresistive element having a laminated film structure in which a pair of ferromagnetic thin films is laminated via a non-magnetic metal layer is disposed in a direction perpendicular to a sliding surface with respect to a magnetic recording medium. A vertical magneto-resistance effect type magnetic head in which the tip electrode laminated on the sliding surface is exposed to the sliding surface, wherein the non-magnetic metal layer is made of Cu. Magnetic head.
2. C uの膜厚が 1 O n m未満であることを特徴とする請求項 1記 載の磁気抵抗効果型磁気へッド。  2. The magnetoresistive head according to claim 1, wherein the thickness of Cu is less than 1 Onm.
3. 強磁性体薄膜の膜厚が 1 0 n m以下であることを特徴とする請 求項 1又は 2記載の磁気抵抗効果型磁気へッド。  3. The magnetoresistive head according to claim 1, wherein the ferromagnetic thin film has a thickness of 10 nm or less.
4 . 磁気抵抗効果素子が一対のシールド磁性体間に配されているこ とを特徵とする請求項 1記載の磁気抵抗効果型磁気へッド。  4. The magnetoresistance effect type magnetic head according to claim 1, wherein the magnetoresistance effect element is disposed between a pair of shield magnetic bodies.
5 . 強磁性体薄膜が N i— F e合金または N i— F e— C o合金の 薄膜であることを特徵とする請求項 1記載の磁気抵抗効果型磁気へ ッ Γ ο 5. The magnetoresistive magnetic head according to claim 1, wherein the ferromagnetic thin film is a Ni—Fe alloy or a Ni—Fe—Co alloy thin film.
PCT/JP1994/000296 1993-02-25 1994-02-24 Magnetoresistive magnetic head WO1994019794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6117493A JPH06251336A (en) 1993-02-25 1993-02-25 Magnetoresistive effect type magnetic head
JP5/61174 1993-02-25

Publications (1)

Publication Number Publication Date
WO1994019794A1 true WO1994019794A1 (en) 1994-09-01

Family

ID=13163530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000296 WO1994019794A1 (en) 1993-02-25 1994-02-24 Magnetoresistive magnetic head

Country Status (2)

Country Link
JP (1) JPH06251336A (en)
WO (1) WO1994019794A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424890A (en) * 1990-02-05 1995-06-13 Sony Corporation Magnetoresistance effect type thin film head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116915A (en) * 1987-10-29 1989-05-09 Sony Corp Magneto-resistance type magnetic head
JPH02165408A (en) * 1988-12-19 1990-06-26 Sony Corp Magneto-resistance effect type magnetic head
JPH02226509A (en) * 1989-02-23 1990-09-10 Nec Corp Magneto-resistance effect head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116915A (en) * 1987-10-29 1989-05-09 Sony Corp Magneto-resistance type magnetic head
JPH02165408A (en) * 1988-12-19 1990-06-26 Sony Corp Magneto-resistance effect type magnetic head
JPH02226509A (en) * 1989-02-23 1990-09-10 Nec Corp Magneto-resistance effect head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424890A (en) * 1990-02-05 1995-06-13 Sony Corporation Magnetoresistance effect type thin film head

Also Published As

Publication number Publication date
JPH06251336A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
US6452765B1 (en) CoNbTi as high resistivity SAL material for high-density MR
US6243288B1 (en) Giant magnetoresistive sensor, thin-film read/write head and magnetic recording apparatus using the sensor
US7554765B2 (en) Magnetic head for perpendicular recording with suppressed side writing and erasing
US5739987A (en) Magnetoresistive read transducers with multiple longitudinal stabilization layers
JP3327375B2 (en) Magnetoresistive transducer, method of manufacturing the same, and magnetic recording apparatus
KR100269820B1 (en) Magneto-resistance effect head
JPH028365B2 (en)
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JPH0773416A (en) Mr type reading transducer and reading method thereof
JPH07272221A (en) Magneto-resistance effect type thin-film head
US6120920A (en) Magneto-resistive effect magnetic head
US20070127162A1 (en) Magnetic head device provided with lead electrode electrically connected to upper shield layer and lower shield layer
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
US6108176A (en) Magnetic head having increased electrode height and increased SVE-electrode contact area for reducing head noise and magnetic storage device having same
JPH087229A (en) Magnetoresistance effect type magnetic head
WO1994019794A1 (en) Magnetoresistive magnetic head
JP2001266310A (en) Magnetic head for perpendicular magnetic recording
JPH0473210B2 (en)
JP2000099925A (en) Spin valve film, magneto-resistive element and magneto- resistive magnetic head
JP3096589B2 (en) Magnetoresistive head
JP2508475B2 (en) Magnetoresistive magnetic head
JPH11175928A (en) Magnetic reluctance effect head and magnetic recording and reproducing device
JP2861714B2 (en) Magnetoresistive head and magnetic disk drive
JPH026490Y2 (en)
JPH01315016A (en) Magneto-resistance effect type head

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase