WO1994016346A1 - Convertisseur de mesure de pression, de difference de pression et d'ecoulement a fibres optiques, et procede de production de son element de detection - Google Patents

Convertisseur de mesure de pression, de difference de pression et d'ecoulement a fibres optiques, et procede de production de son element de detection Download PDF

Info

Publication number
WO1994016346A1
WO1994016346A1 PCT/RU1993/000006 RU9300006W WO9416346A1 WO 1994016346 A1 WO1994016346 A1 WO 1994016346A1 RU 9300006 W RU9300006 W RU 9300006W WO 9416346 A1 WO9416346 A1 WO 9416346A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensing element
radiation
chτο
ρaznοsτi
Prior art date
Application number
PCT/RU1993/000006
Other languages
English (en)
Russian (ru)
Inventor
Alexandr Alexandrovich Balagur
Viktor Georgievich Borisochev
Grigory Yakovlevic Buimistrjuk
Gennady Gavrilovich Gnutov
Andrei Vladimirovich Yazydzhi
Original Assignee
Alexandr Alexandrovich Balagur
Viktor Georgievich Borisochev
Grigory Yakovlevic Buimistrjuk
Gennady Gavrilovich Gnutov
Andrei Vladimirovich Yazydzhi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alexandr Alexandrovich Balagur, Viktor Georgievich Borisochev, Grigory Yakovlevic Buimistrjuk, Gennady Gavrilovich Gnutov, Andrei Vladimirovich Yazydzhi filed Critical Alexandr Alexandrovich Balagur
Priority to PCT/RU1993/000006 priority Critical patent/WO1994016346A1/fr
Publication of WO1994016346A1 publication Critical patent/WO1994016346A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/38Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
    • G01F1/383Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • G01L11/025Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means using a pressure-sensitive optical fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers

Definitions

  • the absorptive device is used in measuring equipment, and more precisely, in the case of high pressure dis- tance.
  • the 25th day of the year G ⁇ Canal ⁇ ((( ⁇ 988) / ⁇ 4 ⁇ ), which contains a well-known dual-type connector, is one of the connected sources of radiation.
  • the outputs of the amplifier are connected to the inputs of the receivers connected to amplifiers of the normalized signal separation.
  • the coupler connector is placed in a silicone membrane, which is included in an aluminum connector.
  • the device is installed in the box so that it is divided into two unconnected friends with another camera.
  • the unit is able to emit less than 10% of the total area of 5 radiation, which means that there is a need for the use of large specialized sources of radiation.
  • ⁇ dn ⁇ - m ⁇ d ⁇ v ⁇ y ⁇ e ⁇ e ⁇ yazh ⁇ i n ⁇ mi ⁇ vanny ⁇ azme ⁇ m ⁇ d ⁇ v ⁇ g ⁇ ⁇ ya ⁇ na less than in ⁇ eg ⁇ alny ⁇ azme ⁇ m ⁇ d ⁇ v ⁇ g ⁇ ⁇ ya ⁇ na mal ⁇ m ⁇ - d ⁇ v ⁇ y ⁇ e ⁇ e ⁇ yazh ⁇ i
  • ch ⁇ ⁇ iv ⁇ di ⁇ K reduction ⁇ blas ⁇ i vzaim ⁇ - 10 deys ⁇ viya na ⁇ avlyaem ⁇ g ⁇ radiation ma ⁇ e ⁇ ial ⁇ m memb ⁇ any, K increase ⁇ n ⁇ si ⁇ elny ⁇ ⁇ azme ⁇ v ne ⁇ dn ⁇ dn ⁇ s ⁇ ey in ⁇ es ⁇
  • Izves ⁇ en s ⁇ s ⁇ b izg ⁇ vleniya chuvs ⁇ vi ⁇ eln ⁇ g ⁇ elemen ⁇ a v ⁇ l ⁇ nn ⁇ - ⁇ iches ⁇ g ⁇ izme ⁇ i ⁇ eln ⁇ g ⁇ ⁇ e ⁇ b ⁇ az ⁇ va ⁇ elya ( ⁇ , ⁇ , 2457502) with ⁇ m ⁇ schyu radiation S ⁇ ⁇ -laze ⁇ a with dlin ⁇ y 25 v ⁇ lny ⁇ 10,6 m ⁇ m, is ⁇ lzuem ⁇ g ⁇ for sva ⁇ i ⁇ iches ⁇ i ⁇ v ⁇ l ⁇ n vs ⁇ y ⁇ ⁇ a ⁇ ⁇ din ⁇ chny ⁇ , ⁇ a ⁇ and ⁇ a ⁇ e ⁇ a ⁇ .
  • Laser radiation is absorbed from an optional lens.
  • the optical diameter of the laser beam is 60 microns; therefore, the weldable wires are arranged at a distance of 3 mm through Z ' ; ⁇ or at a point where the beam diameter is 800 ⁇ m (the diameter of a single wave is 125 ⁇ m).
  • the focal length of the stump is 26.7 mm.
  • P ⁇ i e ⁇ m ⁇ a ⁇ ⁇ a ⁇ radiation with ddin ⁇ y v ⁇ lny ⁇ 10,6 m ⁇ m e ⁇ ye ⁇ - ⁇ ivn ⁇ ( ⁇ u ⁇ vnyu m ⁇ schn ⁇ s ⁇ i 1/2) ⁇ ni ⁇ ae ⁇ in ⁇ va ⁇ tsevuyu s ⁇ edu 35 to 50 glu ⁇ iyau m ⁇ m, ⁇ ⁇ g ⁇ ev s ⁇ lavlyaemy ⁇ v ⁇ l ⁇ n ⁇ su- sches ⁇ vlyae ⁇ sya with ⁇ sveschaem ⁇ y ⁇ ve ⁇ n ⁇ s ⁇ i on account ⁇ e ⁇ l ⁇ v ⁇ d- n ⁇ s ⁇ i ⁇ the entire cross section.
  • the beam is converted from one pair to the other, and the beam is shared. 5
  • the hand-drawn fibers are heated unequally, since one of the waves is guarded by another. This is a material misstatement of the mains adapter, used at the initial stage of the melting of the processor for a short period of time.
  • the laser radiation is incident on a wave from one side.
  • Depth ⁇ ni ⁇ n ⁇ veniya in ⁇ va ⁇ tsevuyu s ⁇ edu S ⁇ ⁇ -laze ⁇ a radiation ( ⁇ 10,6 m ⁇ m) ⁇ u ⁇ vnyu 1/2 m ⁇ sch- n ⁇ s ⁇ i not ⁇ ev ⁇ s ⁇ di ⁇ 50 m ⁇ m.
  • the ZS body is secured in the device with an obsolete failure, in addition to the use of a silicone membrane. Then the unit is hermetically installed in the casing.
  • 35 is 100-140 microns, which results in irregular heating in the laser beam of fused waves due to the presence of a shaded zone.
  • - 4 In order to stabilize the healthy mode, use is made of a ceramic product with slotted cuts, in which case there is no direct melting.
  • Part of the damaged particles is saturated by the wave and is melted in the normal form of biofeedback, 15 resulting in an increase in noise. Since the ceramic service does not allow for a complete loss of heating, this is said to be a result of the splitter.
  • P ⁇ s ⁇ avlennaya task ⁇ eshae ⁇ sya ⁇ em, ch ⁇ in v ⁇ l ⁇ nn ⁇ - - ⁇ iches ⁇ m izme ⁇ i ⁇ eln ⁇ m ⁇ e ⁇ b ⁇ az ⁇ va ⁇ ele pressure ⁇ az- n ⁇ s ⁇ i pressure ⁇ as ⁇ da, s ⁇ de ⁇ zhaschem chuvs ⁇ vi ⁇ elny ⁇ elemen ⁇ on ⁇ sn ⁇ ve s ⁇ lavn ⁇ g ⁇ ⁇ i ⁇ niches ⁇ g ⁇ ⁇ azve ⁇ vi ⁇ elya, ⁇ din of v ⁇ d ⁇ v ⁇ g ⁇ s ⁇ edilen with is ⁇ chni ⁇ m ⁇ iches ⁇ g ⁇ - 0 - radiation and eg ⁇ ⁇ e ⁇ e ⁇ yazh ⁇ a ⁇ meschena in sili ⁇ n ⁇ vuyu memb ⁇ a- well, za ⁇ lyuchennuyu in ⁇ av
  • the task posed is also solved in that the process of manufacturing a sensitive element is ensured.
  • Fig. 2 is a simple device that implements the manufacturing method of the sensing element of the volatile-industrial device.
  • the source of I contains optical radiation, which is connected to one of the inputs of the sensitive element 2, which is carried out on the basis of the completeness.
  • Binary splitter is made up of a lot of youth optical 3, a small banner 4
  • Outlets 3 are connected to the inputs of the terminals 9.10, the outputs of the outputs are turned off - 7 - usili ⁇ elyu II n ⁇ mi ⁇ vann ⁇ y ⁇ azn ⁇ s ⁇ i ele ⁇ iches ⁇ i ⁇ signe- l ⁇ v, s ⁇ ve ⁇ s ⁇ vuyuschi ⁇ ⁇ iches ⁇ im signals vy ⁇ dny ⁇ ⁇ i- ches ⁇ i ⁇ v ⁇ l ⁇ n 3.
  • the maximum angle of protection of the holder 15 is limited by the condition of ensuring the mutual incidence of rays of the eye
  • the minimum radius of the working environment of the carrier 15 is limited by the diameter of the beam 3 and the laser radius.
  • the minimum length of the holder 15 is limited by the diameter of the laser beam, and the maximum length is made by the dimensions of the supplied coupler.
  • Laser 14 is directly connected to the holder 15 directly, and laser 13 is directly connected to the spherical sphere.
  • the fused wave 3 is located on the axis of the cylindrical gun 15 in the intersection of the optical rays from the lasers 13 and 14.
  • Optical isolation of source I (fig. I) is easy to use; there is a large margin of separation 2; With an alternating voltage of 5, the other and the second optical radiation are divided by the difference between the output signals of the 3 and the other two. And ⁇ 94/16346
  • ⁇ OUTPUT OUTPUT 3 to ELECTRICAL SIGNALS which are fed to the inputs of Amplifier II; ⁇ ( - where ⁇ ⁇ . is the signal at the output of the signal 9; ⁇ 2 is the signal at the output of the signal 10.
  • the output signal of amplifier II is increased by a factor of 12, where » If
  • the third-party optical unit 3 intended for fusion is divided into parts by the owner of 15.
  • the third party, which is subject to fusion, has all rights to merge
  • 35 body 15 expands the extended heating zone with long /.
  • a temperature sensor By means of a temperature sensor, the shaded areas are eliminated and, thereby, the conditions of equal heating are charcoalied and are of great importance.
  • - 9 - u ⁇ avlyayu ⁇ ⁇ m ⁇ y and ⁇ azme ⁇ ami z ⁇ ny nag ⁇ eva in ⁇ tsesse s ⁇ lavl Nia v ⁇ l ⁇ n 3.
  • the signal-to-noise ratio of the converter on the basis of the primary connector, performed by a large number of graduated units ⁇ 3, is higher than the allowance.
  • a low-power bi-coupler 4 is used.
  • the proposed invention with success may be used in on-line measuring and measuring systems and liquid and gas consumables.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

Le convertisseur comprend un élément de détection (2) comportant un répartiteur biconique fusionné composé de fibres optiques multimodes (3) présentant une constriction (4) en mode réduit. La constriction (4) est située à l'intérieur d'une membrane au silicium (5) logée dans un support (6). Le support est fixé dans un logement (7) de manière à diviser l'espace intérieur de ce dernier en deux chambres (8) non communicantes, lesquelles sont connectées à la source de la variable à mesurer. Les sorties de l'élément de détection (2) sont connectées aux entrées des photodétecteurs (9, 10), lesquelles sont reliées à l'amplificateur (11) de la différence normalisée dans les signaux électriques correspondant aux signaux optiques de sortie provenant de l'élément de détection (2). Lorsque l'élément de détection (2) est fabriqué, la constriction (4) est créée par fusionnement des fibres optiques (3) tout en les soumettant à un rayonnement laser monomodal constant provenant de deux sources non focalisées (13, 14).
PCT/RU1993/000006 1993-01-15 1993-01-15 Convertisseur de mesure de pression, de difference de pression et d'ecoulement a fibres optiques, et procede de production de son element de detection WO1994016346A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU1993/000006 WO1994016346A1 (fr) 1993-01-15 1993-01-15 Convertisseur de mesure de pression, de difference de pression et d'ecoulement a fibres optiques, et procede de production de son element de detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU1993/000006 WO1994016346A1 (fr) 1993-01-15 1993-01-15 Convertisseur de mesure de pression, de difference de pression et d'ecoulement a fibres optiques, et procede de production de son element de detection

Publications (1)

Publication Number Publication Date
WO1994016346A1 true WO1994016346A1 (fr) 1994-07-21

Family

ID=20129749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU1993/000006 WO1994016346A1 (fr) 1993-01-15 1993-01-15 Convertisseur de mesure de pression, de difference de pression et d'ecoulement a fibres optiques, et procede de production de son element de detection

Country Status (1)

Country Link
WO (1) WO1994016346A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831304A1 (fr) * 1995-05-15 1998-03-25 Viktor Georgievich Borisochev Debitmetre optoelectronique et procede de fabrication de son capteur differentiel de pression
US6677576B1 (en) 1998-09-18 2004-01-13 European Community Represented By Commission Of The European Communities Fiberoptic coupler sensor and a measurement method
GB2466929A (en) * 2009-01-09 2010-07-14 Smart Fibres Ltd Pressure sensor device comprising flexible diaphragm with integral optical sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457502A1 (fr) * 1979-05-21 1980-12-19 Nippon Telegraph & Telephone Procede et appareil a rabouter les fibres optiques
EP0178806A2 (fr) * 1984-10-17 1986-04-23 Sperry Marine Inc. Coupleur réglable pour détecteur à fibre optique
US4586784A (en) * 1983-06-10 1986-05-06 Canadian Patents & Dev. Limited Modal-insensitive biconical taper couplers
US4593969A (en) * 1983-10-28 1986-06-10 Chevron Research Company Ruggedized grated optical fiber
GB2176626A (en) * 1985-05-29 1986-12-31 Gen Electric Plc Fibre optic coupler
EP0234325A2 (fr) * 1986-02-24 1987-09-02 Allied Corporation Coupleur de fibres optiques multimodes et son procédé de fabrication
EP0409447A2 (fr) * 1989-07-17 1991-01-23 Corning Incorporated Méthode de fabrication d'un coupleur de fibres optiques

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457502A1 (fr) * 1979-05-21 1980-12-19 Nippon Telegraph & Telephone Procede et appareil a rabouter les fibres optiques
US4586784A (en) * 1983-06-10 1986-05-06 Canadian Patents & Dev. Limited Modal-insensitive biconical taper couplers
US4593969A (en) * 1983-10-28 1986-06-10 Chevron Research Company Ruggedized grated optical fiber
EP0178806A2 (fr) * 1984-10-17 1986-04-23 Sperry Marine Inc. Coupleur réglable pour détecteur à fibre optique
GB2176626A (en) * 1985-05-29 1986-12-31 Gen Electric Plc Fibre optic coupler
EP0234325A2 (fr) * 1986-02-24 1987-09-02 Allied Corporation Coupleur de fibres optiques multimodes et son procédé de fabrication
EP0409447A2 (fr) * 1989-07-17 1991-01-23 Corning Incorporated Méthode de fabrication d'un coupleur de fibres optiques

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831304A1 (fr) * 1995-05-15 1998-03-25 Viktor Georgievich Borisochev Debitmetre optoelectronique et procede de fabrication de son capteur differentiel de pression
EP0831304A4 (fr) * 1995-05-15 1999-09-01 Viktor Georgievich Borisochev Debitmetre optoelectronique et procede de fabrication de son capteur differentiel de pression
US6677576B1 (en) 1998-09-18 2004-01-13 European Community Represented By Commission Of The European Communities Fiberoptic coupler sensor and a measurement method
GB2466929A (en) * 2009-01-09 2010-07-14 Smart Fibres Ltd Pressure sensor device comprising flexible diaphragm with integral optical sensor

Similar Documents

Publication Publication Date Title
US4786130A (en) Fibre optic coupler
US4443700A (en) Optical sensing apparatus and method
KR940011933B1 (ko) 측정자를 감지하기 위한 장치 및 방법
EP0007312B1 (fr) Appareil senseur optique
KR870001580B1 (ko) 수동 간섭계식 감지기 어레이
CN103471701B (zh) 一种光纤声波传感器及光纤声波探测方法
JP2005538361A (ja) 機能強化された光ファイバセンサ
CA2445730A1 (fr) Interferometre de fabry-perot a fibre optique et methodes connexes
CN105865614A (zh) 一种新型光纤珐珀超声水听器及其制作方法
JP2016524723A (ja) Tir光ファイバレンズを形成する方法
GB2161931A (en) Remote sensor systems
WO1994016346A1 (fr) Convertisseur de mesure de pression, de difference de pression et d'ecoulement a fibres optiques, et procede de production de son element de detection
WO2015136924A1 (fr) Dispositif à fibre optique
JP2003215389A (ja) 光ファイバコリメータ及びその製造方法
PL164832B1 (pl) Wzmacniacz dla telekomunikacyjnego lacza swiatlowodowego PL PL PL PL PL
CN103438916A (zh) 基于可饱和吸收光纤的光纤光栅波长解调装置
JP4581746B2 (ja) 光検出装置および光源モジュール
JP6915905B2 (ja) 温熱治療器
JPH0219730A (ja) 光ファイバ温度センサ
JP4514312B2 (ja) 半導体レーザモジュールの製造方法
CN115128729B (zh) 一种超声传感器的制备方法、装置及一种超声传感器
JPH0532726B2 (fr)
JPS62285027A (ja) 光ハイドロホン
RU2142831C1 (ru) Устройство для обработки материалов (преимущественно биологических) лазерным излучением (варианты)
Tugendhaft et al. Directional multimode fiber couplers in the mid-infrared

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)