WO1994016322A1 - Method of measuring content of polycyclic aromatic compound in lanolin and removal thereof - Google Patents

Method of measuring content of polycyclic aromatic compound in lanolin and removal thereof Download PDF

Info

Publication number
WO1994016322A1
WO1994016322A1 PCT/JP1994/000010 JP9400010W WO9416322A1 WO 1994016322 A1 WO1994016322 A1 WO 1994016322A1 JP 9400010 W JP9400010 W JP 9400010W WO 9416322 A1 WO9416322 A1 WO 9416322A1
Authority
WO
WIPO (PCT)
Prior art keywords
lanolin
pah
activated carbon
ppb
treatment
Prior art date
Application number
PCT/JP1994/000010
Other languages
English (en)
French (fr)
Inventor
Katsunori Myojyo
Mikinobu Sato
Hiromitsu Nemoto
Original Assignee
Yoshikawa Oil & Fat Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Oil & Fat Co., Ltd. filed Critical Yoshikawa Oil & Fat Co., Ltd.
Priority to EP94904003A priority Critical patent/EP0632267A4/en
Publication of WO1994016322A1 publication Critical patent/WO1994016322A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B11/00Recovery or refining of other fatty substances, e.g. lanolin or waxes
    • C11B11/005Lanolin; Woolfat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Definitions

  • the present invention relates to a method for measuring a polycyclic aromatic compound (hereinafter abbreviated as PAH) in lanolins and a method for removing the PAH by activated carbon adsorption.
  • PAH polycyclic aromatic compound
  • the residual amount of P AH which is suspected to be a carcinogen, is a very important issue not only in the food field but also in the cosmetic field from the viewpoint of health safety.
  • sample pretreatment is an essential requirement, and methods such as liquid-liquid extraction, silica gel column purification, and the use of differences in molecular size have been reported as pretreatment.
  • methods such as liquid-liquid extraction, silica gel column purification, and the use of differences in molecular size have been reported as pretreatment.
  • their method is meat This method is for oils, vegetable oils and mineral oils.
  • the clean-up method based on gel permeation chromatography (hereinafter abbreviated as GPC) using Sef-Adex LH20 column proposed in the above is adopted.
  • the concentrated sample was charged onto a 10 g LH20 column, and isopropyl alcohol was added to the sample. It employs a very complicated process that combines four processes, i.e., collecting the 1-minute fraction.It also changes the solvent type, concentration, washing conditions, etc., for the liquid-liquid extraction according to the sample type. It is necessary to set detailed conditions before and after, for example, replacing Kagel with Florisil, and GPC cannot be used to clean up easily. Moreover, according to the GPC method using the Sephadex LH20 column, free fatty acids and PAH can only be separated.
  • Lanolin is a complex mixture of hydrocarbons, higher aliphatic alcohols, higher fatty acids, sterols, and esters thereof, and has a molecular size of 1 carbon atom, such as aliphatic alcohols and fatty acids. There are 2 to 64 carbons, which are esters of these compounds, and the molecule is in the form of straight-chain aliphatics, branched aliphatics such as iso and antiso, cholesterol, and tris. There are various esters with methyl sterol and their esters. Due to differences in molecular size, it is not possible to predict what kind of resin can be used to separate PAH from other components in such a complex mixture.
  • activated clay, activated carbon, etc. may be used for the purpose of decolorization, but in such cases, the use of activated carbon is not intended for the removal of PAH.
  • the presence of PAH in lanolins and even its measurement technology are not known, and adsorption of activated carbon as a means of removing PAH has not been recognized at all.
  • An object of the present invention is to provide a method for measuring and removing PAH in lanolins. Another object of the present invention is to provide a method for measuring the PAH removal activity of activated carbon used for the measurement and removal of PAH and a method for calculating the activated carbon required for lowering PAH.
  • the present inventors have succeeded in establishing a new measurement method capable of quantifying the presence of PAH in lanolins, and by this, for the first time, the presence of PAH that needs to be removed in lanolins. And succeeded in finding a new technology for removing PAH in the lanolin.
  • PAH is completely separated and concentrated from lanolins by the GPC method using a styrene-divinylbenzene copolymer, and the sample that has been subjected to the pretreatment by this cleanup is treated as an octanol.
  • HPLC high-performance liquid chromatography
  • PAH is separated into its components, and these are analyzed in a new lanolin that can be quantified with a fluorescence detector with high sensitivity.
  • a method for measuring PAH is provided.
  • the last PAH fraction contains chlorinated pesticides, but by concentrating this fraction and separating and detecting by HPLC equipped with a fluorescence detector, no chlorinated pesticides are detected and interfered. , Only PAH can be specifically quantified. It is preferable that the mobile phase be dichloromethan, since the lanolin alcohol fraction and the PAH fraction can be sharply fractionated.
  • the method of cleanup by GPC is a known detector other than the above method (ultraviolet spectroscopy detector) or a known separation and quantification means, such as a flame ionization detector. It can be implemented in combination with other means such as gas chromatography (GLC) equipped with (FID).
  • lanolins were obtained from the market by the above measurement method and analyzed.
  • a specific example is wool grease.
  • Fluoranthene hereinafter abbreviated as F
  • benzo b
  • phnoleo lanthene benz 0
  • BbF f1 U0 ra nl hene
  • benzo k
  • BkF (enz 0 (k) f 1 uoranthene, hereinafter abbreviated as BkF), benzo (a) pyrene (abbreviated as B aP hereinafter), indeno (1, 2, 3 -c, d) pyrene (indeno (1,2,3-cd) rene; hereinafter abbreviated as IcP), benzo (g, h, i) perylene (bem 0 (g, h, i) pery 1 ene, abbreviated as B g P
  • Table 1 the total of the 6 types of PAHs is at least 1 229 ppb, at most 1 733 ppb, and the overall average value is 3 4 6 ppb.
  • Table 2 The minimum value is 144 ppb, the maximum value is 523 ppb, the average value is 287 ppb, 3 points below 200 ppb, 2 points below 300 ppb, and more than 300 ppb Scored 4 points o
  • Example 3 the analysis results of 19 lanolin alcohols for sale are shown in Example 1 (Table 3) described below.
  • the minimum value is 234 ppb
  • the maximum value is 6192 ppb
  • the average value is 15 85 ppb, with less than 200 ppb being 0 points, 5 points in the range, 6 points in the range of 500 to 100 O ppb,
  • Example 1 The results of analysis of 11 points of distilled lanolin alcohol are shown in Example 1 (Table 4) below. According to it, the minimum value is 2 15 ppb, the maximum value is 4 25 ppb, the average value is 311 pb, 0 points are less than 200 ppb, 6 points are in the range from 200 to 300 pp, Three points ranged from 300 to 400 ppb, and two points exceeded 400 ppb.
  • PAH in lanolins can be accurately measured.
  • the required amount of activated carbon when the target residual P AH concentration is different can be calculated by obtaining the removal activity again from the above-mentioned isotherm adsorption line and substituting the value into Equation 1.
  • a sample containing PAH is subjected to adsorption treatment by selecting activated carbon having the highest removal activity and treatment conditions using activated carbon having a required amount of activated carbon or more calculated from Equation 1.
  • the PAHs that can be removed by the present invention are mainly the above-mentioned six types of suspected carcinogens, and the remaining amounts of PAHs other than the six types are recognized by the present invention.
  • P A H includes the following 8 types, and of course,
  • P A H can also be removed by the method of the present invention.
  • anthracene (benz (a) anthracene), phenanthrene (ph en anthrene) ⁇ nthracene Pyrene, triphenylene, chrysene (chnsene), dimethylbenz (a) anthracene (7,12- [iimethy enz (a) anthracene , The venus (a,) anthracene ((iil) enz (a, h) antliracene).
  • the activated carbon treatment for removing PAH of the present invention can be carried out in a state where the raw materials are dissolved in a solvent or in a solvent-free system using no solvent.
  • the solvent-free system has the disadvantage that it takes a longer time for PAH to diffuse and adsorb into the pores of the activated carbon than the solvent system, but the same effect can be obtained if sufficient contact time is given. Can be.
  • the above-mentioned removal activity should be measured when the adsorption equilibrium has been sufficiently reached, but in the present invention, the measurement is also performed under conditions where the equilibrium state has not been reached.
  • the removal activity differs even if the conditions such as the amount of activated carbon used, the concentration of the micelle, the temperature, and the treatment time are the same. It may be necessary. However, if the contact conditions are the same, the removal activity has reproducibility, so it can be used effectively when judging which conditions are optimal or when finding the required amount of activated carbon under the same contact conditions. .
  • Solvents usable in the above solvent system are not particularly limited in the case of lanolins other than WG and lanolin, and include pentane, hexane, and cyclohexane (hereinafter abbreviated as CH). , Heptane (HP), n-octane, isooctane, petroleum —Hydrocarbons such as ter, aromatic hydrocarbons such as benzene, toluene, and xylene, methylene chloride, macroform, trichloroethylene, tetrachloroethylene, and tetrachloroethylene Halogenated hydrocarbons such as carbon chloride, methanol, ethanol, n-prono.
  • Alcohol-based solvents such as ethanol, isopropyl alcohol (IPA) and butanol, ketones such as acetate, methylethylketone (MEK), methylisobutylketone, and methylketone.
  • Various solvents such as a solvent, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and an ester solvent of butyl acetate, can be used alone or in combination.
  • the above solvents except hexane can be used. Selection of a solvent suitable for the actual process can be easily performed by the above-described removal activity measurement. Further, a combination of the above solvent system and water is also possible. For example, HP-IPA-water, MEK-water, HP-MT-water, etc. may be appropriately combined.
  • the temperature during the adsorption treatment is also an important factor of the removal activity.
  • PAH can be adsorbed even at a low temperature of room temperature or lower, but the higher the temperature, the more the PAH adsorbed per unit activated carbon weight increases, and the higher the removal activity. Therefore, in the case of no solvent, it is preferable to raise the temperature to a temperature at which coloring by heating does not cause a problem.
  • activated carbon can be used. Consumption of Is small and preferred.
  • the adsorption treatment under pressure has the disadvantage that the equipment is expensive, and in that case, it is preferable to perform the adsorption treatment at a temperature several degrees lower than the boiling point.
  • the raw material is, for example, coal-based activated carbon from peat, lignite, lignite, etc., sawdust, senix, charcoal, wood, cellulose, pulp waste liquid, coconut husk, coconut husk, etc.
  • the activation methods include a chemical activation method using zinc chloride and the like and a gas activation method using water vapor, carbon dioxide gas, air and the like.
  • shape include powdered coal used mainly for batch processing and fixed bed, and granular coal used for fluidized bed processing. Any activated carbon can be used by selecting economically advantageous activated carbon and treatment conditions by measuring the removal activity according to the present invention.
  • Industrial activated carbon treatment methods include a batch method, a fluidized-bed method and a fixed-bed method, and any method can be carried out without any problem in the present invention.
  • a predetermined amount of activated carbon was put into the stock solution to be treated, and sufficient contact with the activated carbon was performed by means such as stirring, gas blowing, and liquid circulation at a predetermined temperature. Thereafter, the activated carbon may be removed by means such as filtration.
  • the linear velocity is preferably as low as possible, and the superficial linear velocity (feed liquid supply rate Z fixed bed cross-sectional area) is generally 0.5 cm / min or more to about 20 cm min. If it is too late, the throughput per hour will decrease. If it is too early, the pressure loss will increase and the contact with the activated carbon will be insufficient, so the throughput per unit activated carbon will decrease.
  • the activated carbon tower has a longer service life (adsorption breakthrough) than the one calculated by Equation 1, because there is a concentration gradient of P AH at the inlet and outlet of the tower. This effect of increasing the life is closely related to the tower length, and tends to increase as the tower length increases.
  • the above raw material in obtaining a lanolin derivative using WG or lanolin as a raw material, the above raw material is heated at a temperature of 150 to 250 ° C. and a degree of vacuum of 0.1 to 0.0001 torr.
  • Another object of the present invention is to provide a method for producing a lanolin derivative from which PAH has been removed, characterized in that residual PAH is removed by distillation under the above conditions.
  • the above method is particularly advantageous when the lanolin derivative is lanolin alcohol.
  • the WG or lanolin subjected to the PAH removal treatment according to the above is then subjected to genolysis according to a conventional method.
  • desired lanolin alcohol and lanolin fatty acid can be obtained together therewith.
  • the vacuum distillation method of the present invention for removing PAH can be used not only for producing lanolin alcohol but also for producing various lanolin derivatives.
  • the derivatives include, for example, liquid lanolin (low-melting lanolin, LL) and high-melting lanolin (hardranolin, HL), WG or lanolin obtained by separating WG or lanolin. Obtained by esterifying Includes esterified lanolin such as cetylated lanolin, and etherified lanolin such as adducts obtained by adding polyoxyethylene, polyoxypropylene, etc. to lanolin. In any case, the desired product from which PAH has been removed by vacuum distillation according to the present invention can be obtained.
  • the production of these various lanolin derivatives can be carried out according to a conventional method, except that the raw material is subjected to the vacuum distillation of the present invention in advance.
  • the vacuum distillation conditions for the above-mentioned raw material WG or lanolin can be appropriately selected from the above range according to the type of raw material, particularly, its PAH content and the degree of PAH removal required for a desired product.
  • the present inventors have found that, when the above WG or lanolin is subjected to boric acid treatment in advance in vacuum distillation, free lanolin alcohol present in the WG or lanolin is converted into borate ester. It was also found that the loss due to the vacuum distillation was reduced.
  • the temperature is 150 to 250 ° C. and the degree of vacuum is 0.1 to
  • Another object of the present invention is to provide a method for producing WG or lanolin from which PAH has been removed, which is characterized by removing residual PAH by distillation under the conditions of 0.001 torr.
  • the boric acid treatment can be performed using such anhydrous boric acid (B 2 03).
  • Their usage is based on the WG or lanolin hydroxyl value,
  • the molar amount is preferably about 0.5 to 5 times, preferably about 1 to 3 times, the molar amount of the theoretical amount of the ester. That is, WG or lanolin contains free lanolin alcohol and an ester having a hydroxyl group derived from a hydroxy fatty acid. According to the boric acid treatment, the lanolin alcohol is converted into a borate ester.
  • boric acid treatment is about 50 to 150. C, preferably at a temperature of about 100 to 120 ° C. for about 0.5 to 8 hours.
  • This esterification reaction can be carried out under normal pressure or under reduced pressure, but is preferably carried out under reduced pressure of usually 100 torr or less, preferably 30 to 1 torr.
  • the obtained borate-treated raw material is subjected to the vacuum distillation of the present invention, whereby PAH present in the raw material can be selectively removed by distillation.
  • the desired ester of WG or lanolin with reduced PAH can be obtained by hydrolyzing the ester obtained as a residue according to a conventional method and washing with water to remove boric acid. Wear.
  • free alcohol is not practically distilled even by vacuum distillation, and the yield of such alcohol is reduced. There are no benefits.
  • WG or lanolin obtained by the vacuum distillation method subsequent to the borate ester treatment of the present invention can be used as a raw material for further fractionation, esterification, or the like as described above.
  • various lanolin derivatives from which PAH has been removed can be derived.
  • lanolins include all kinds of lanolin-derived substances obtained by WG and mainly using the WG as a raw material for purification and / or derivatization. It shall be used in a meaning.
  • the above lanolins other than WG and lanolin purified from the WG may be separately referred to as lanolin derivatives.
  • the lanolin derivative includes liquid lanolin (LL), which is a low melting point portion obtained by fractionating lanolin, hardlanolin (HL), which is a high melting point portion, and lanolin.
  • Linoleic acid high-quality lanolin fatty acid obtained by separating it, hard lanolin fatty acid and its purified product (lanolin fatty acids); lanolin alcohol and its purified product Cholesterol; lanosterol; esters of lanolin fatty acids with alcohol or sterol; esters of cholesterol with fatty acids; lanolin, lanolin fatty acids, Ethers of lanolin alcohol and sterols with polyoxyethylene, etc .; lanolin alcohol and fatty acids And the like. Esters of sterols and fatty acids such as plant sterols and dihydrocholesterol are also included in the above lanolin derivatives.
  • PAH of ppb level in lanolin can be measured easily with good precision, reproducibility.
  • it is possible to measure the PAH removal activity of the activated carbon, economical activated carbon amount of order to remove residual PAH, in can select processing conditions (also present invention method Rano Li emissions such using activated carbon adsorption By treating, safe lanolins with as low residual PAH as possible can be obtained.
  • the residual PAH can be similarly removed by subjecting WG or lanolin to vacuum distillation with or without boric esterification, and thus the treated WG or lanolin obtained.
  • Lanolin is very valuable as a raw material for various lanolin derivatives such as lanolin alcohol because PAH has been removed.
  • the low-PAH lanolins thus obtained do not change in their basic properties before and after the activated carbon treatment and other treatments, and can therefore be used more safely in the fields of conventionally used drugs, cosmetics, etc. .
  • Ester, lanolin fatty acid and lanolin alcohol are eluted up to 256 ml, and PAH is eluted up to the next 104 ml (total of 360 ml).
  • Sample A was dissolved in 100/1 acetate nitrile, and an appropriate amount of 10-50 / i1 was equipped with a fluorescence detector.
  • the excitation wavelength and measurement wavelength for each PAH are as follows (detector: 820-FP type fluorescence detector, JASCO Corporation). PAH name Excitation wavelength Transition wavelength Retention time Sensitivity
  • CV% is represented by the standard deviation Z-average value X100, and the smaller this value is, the smaller the variation of the measured value is.
  • the remaining PAH was measured by the above-mentioned measuring method.
  • Using a log-log graph plot the amount of PAH adsorption per gram of activated carbon on the vertical axis and the residual PAH concentration on the horizontal axis, create an isothermal adsorption line, and use the isothermal adsorption line to make the residual concentration 20 ppb from the isothermal adsorption line.
  • PAH adsorption amount per unit was determined.
  • the removal activity of GL30 was 1900 ppb activated carbon.
  • GL30 ⁇ / ⁇ 90/10 0.70 1058.3 9.0
  • the adsorption treatment was performed by adding 0.3 g to 100 g of a 10% solution of a lanolin alcohol sample AL10610 g at a concentration of 585 ppb before treatment using the same activated carbon.
  • the total PAH after treatment was 10 ppb.
  • the calculated value of the required activated carbon from the removal activity is 0.3 g, as shown in the following formula, which indicates a good agreement.
  • Example 4 The adsorption treatment was performed in the same manner as in Example 13 except that the reciprocating shaker was replaced with a 300 rpm stirrer having a stirring blade of 5 cm in length and 1 cm in width (Example 4-13). Four ) . The result was 2.2 ppb.
  • a solvent having a concentration of 10 to 50% was prepared using the same activated carbon and lanolin alcohol as in Example 7 using 88.7% of £ 1 ⁇ and 1 to 8%, and the solution was prepared at 70 ° C.
  • the results are shown in Table 10. From these results, IPA has a higher removal effect than MEK, but all of them are sufficiently removed, and there is almost no difference in the removal effect depending on the concentration in the range where the viscosity increase is not large by about 10 to 50%. You can see that there is not.
  • the mixture was passed through a column packed with activated carbon, and divided into two fractions according to the flow rate.
  • the solvent in each fraction was removed and the treated lanolin alcohol 464 g (Treatment 1, approx. 0 to 4.3 times the amount of activated charcoal), 498 g (Treatment 2, filling activity) About 4.3 to 9 times the amount of coal).
  • Table 11 shows the changes in P AH before and after the treatment. From this result, it can be seen that P AH can be efficiently removed even by the fixed bed type adsorption treatment.
  • Granular activated carbon GL300 g was packed in a column with a jacket with an inner diameter of 19 mm, and the temperature was 70.
  • the PAH analysis values, general analysis values, and compositions after the treatment are shown in Table 19-11, 19-2, 20 and 21. It is clear that the PAHs other than the six types of PAHs are also reduced, and that the general analysis values and composition, including the color tone, do not change before and after the treatment. 1 9-1 PAH analysis result
  • WZU is the same as Table 15.
  • 2 1 GLC composition (unit:%) Ingredient name Before treatment After treatment Cholesterol 29.5 29.9 Cholesterol 3,5-Gen-1 7-one 3.0 2.9 Desmostellol 1.2 1.3 Latosterol 1.5 1.6 Dihydrolanosterol 8.1 8.0 Lanosterol] 3.0 13.1
  • liquid lanolin which is a low melting point portion obtained by separating lanolin
  • hardlanolin HL:
  • acetylated lanolin alcohol which is an ester of lanolin alcohol (AC100)
  • AC100 lanolin alcohol
  • L30 polyoxyethylene adduct of lanolin alcohol
  • A20 polyoxyethylene 20 mol adduct of lanolin
  • MAC macadamiana anatsu fatty acid cholesteryl
  • Isocholesterol (CH0), (9) Isocholesterol (IC), which is a mixture of dihydrolanosterol and lanosterol extracted from lanolin alcohol, (10) Lanolin fatty acid methyl ester (FAM) and (1) 1) Lanolin fatty acid (LFA) was used as a raw material for the treatment, and 10% of powdered activated carbon (Taiko) was added to each of these raw materials. Activated carbon adsorption treatment was performed by mixing at 1 ° C for 1 hour with stirring. Table 22 shows the P AH values before and after treatment in ppb units.
  • Treatment 7 agents F BbF BkF BaP I cP BgP total ppb ppb ppb PPb PPb PPb ppb
  • MEK means hydrated methyl ethyl ketone solution
  • the residue was subjected to genolysis, extracted and separated into fatty acids and alcohol.
  • the lanolin fatty acid thus obtained had a yield of 64%, and the total remaining amount of PAH was 4 ppb.
  • the yield of lanolin alcohol was 36%, and the residual amount of PAH was 20 ppb.
  • Example 17 To 500 g of the same lanolin (hydroxyl value 35) used in Example 17 was added 10 g of boric acid, and the mixture was reacted at 120 ° C and 5 torr for 5 hours to obtain a boric ester. It has become.
  • This esterified product was subjected to vacuum distillation under the same conditions as in Example 17 and washed with water to remove boric acid to obtain treated lanolin.
  • the PAH in the lanolin was lOppb, which could be subsequently separated into alcohol (yield 45%) and fatty acids by genolysis and extraction.
  • PAH can be removed selectively and with good yield by pre-esterifying lanolin with boric acid and then performing vacuum distillation.
  • the polycyclic aromatic compound (PAH) remaining in lanolins is separated and concentrated using a gel permeation chromatograph using styrene-divinylbenzene copolymer.
  • Quantitative measurement by HPLC equipped with a fluorescence detector, and PAH removal activity of activated carbon is measured by the above-mentioned measurement method, and the optimum adsorption treatment conditions are selected, and the amount of activated carbon used to reduce PAH is determined.
  • the present invention provides a method for removing the residual PAH by contact-mixing the required amount of activated carbon with lanolin to specifically adsorb PAH on the activated carbon. Further, according to the present invention, there is provided a method for removing PAH from WG or lanolin by vacuum distillation with or without borate treatment.
  • PAHs which are carcinogenic substances, and other similar PAHs
  • lanolin containing a total of l OOO ppb of PAH can be reduced to 2 ppb by using 10% of the raw material weight of activated carbon, and the lanolin before and after this treatment can be removed.
  • the lanolins from which P AH has been removed by this method can be used more safely in conventional pharmaceutical and cosmetic applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Fats And Perfumes (AREA)
  • Cosmetics (AREA)

Description

明 細 書
ラノ リ ン類中の多環式芳香族化合物の測定 及び除去法
技 術 分 野
本発明はラノ リ ン類中の多環式芳香族化合物 (以下 P A Hと略記する) の測定法及び該 P A Hを活性炭吸着に より除去する方法に関する。
従 来 技 術
発ガン性物質の疑いがあるとされる P A Hの残存量は 食品分野ではもとより、 化粧品の分野においても、 健康 に対する安全性の観点から、 非常に重要な問題である。
P A Hの測定法に関してはこれまでいく つかの方法が 提案されている。 即ち従来、 水系試料、 大気、 石油製 □
DD
食用油、 穀物、 魚介及び肉類中の P A Hを ppb レベルで 定量する方法の報告はあるが、 精度、 簡便性、 再現性の 全てに優れた方法は提案されていない。 ま して一般油脂 とは構造、 性質を異にするラノ リ ン類の P A H測定法に ついては全く報告はない。
Pb レベルでの測定の場合は、 試料の前処理が必須要 件となり、 この前処理と して液液抽出、 シリ カゲルカラ ムによる精製、 分子サイズの違いを利用する方法等が報 告されている (Int. J. Environ. Anal. Ch em. , vol. 24 , No. 2,· 113-1-31,· 1986)。 しかしながら之等の方法は肉 類、 植物油及び鉱物油を対象と した方法である。 しかも、 この中で提案されているセフ アデッ ク ス L H 2 0 カ ラム を用いたゲルパー ミ エ一シ ョ ンク ロマ ト グラ フ ィ 一 (以 下 G P C と略記) によるク リ ーンア ップ法に しても、 予 め試料をゲ ン化分解し、 液液抽出し、 シ リ カゲルカラム により精製した後、 濃縮試料を 1 0 gの L H 2 0カラム にチャ ージ しイ ソプロ ピルアルコーノレ 3 8〜 1 9 ひ m 1分 画を集めるという 4工程を組合せた非常に複雑な工程を 採用しており、 また試料の種類に応じて液液抽出の溶剤 の種類、 濃度、 水洗条件等を変更したり、 シリ カゲルを フロ リ ジルに代える等、 前後に細かい条件設定を行なう 必要があり、 G P Cだけで簡単にク リ ーンアップを行な う こ とはできない。 しかも、 上記セフアデッ クス L H 2 0カラムを用いた G P C法によれば、 遊離脂肪酸と P A Hとが分離できるだけである。 勿論、 従来スチレン ージビニルベンゼンコポリマーを用いた G P C法による P A H測定のためのク リ ーンア ップ法は知られていない。 一方、 ラ ノ リ ンは炭化水素、 脂肪族高級アルコール、 高級脂肪酸、 ステロール及び之等のエステルからなる複 雑な組成の混合物であり、 分子サイズも脂肪族アルコ — ル、 脂肪酸等の炭素数 1 2から之等のエステルである炭 素数 6 4まで存在しており、 分子の形も直鎖脂肪族、 ィ ソ、 アンティ ソ等の分岐脂肪族、 コ レステロール、 ト リ メ チルステロール及び之等のエステルと種々存在してい る。 このような複雑な組成の混合物中から、 分子サイズ の違いにより、 P A Hとそれ以外の成分を分離するため にどのような種類の樹脂が用い得るかは予測できない。
また従来より、 ラノ リ ン中の残留農薬の測定の前処理 と して、 スチ レ ンー ジビニルベンゼンコポ リ マーを用い た G P C法が知られている。 しかしながらこ の方法は移 動相と してジク ロロメ タ ン Zへキサン = 1 1 を用いる 方法であり、 しかも残留農薬とラノ リ ンとを分離できる こ とを開示するのみである。 P A Hは、 上記残留農薬と は分子の形状、 サイズが全く異なっている。
尚、 P A Hの除去に関しては石油製品につき、 ベンゼ ン、 トルエン及びキシレンの製造法と して液液抽出を原 理と して、 ジエチレングリ コールを抽出溶剤とするュデ ッ ク ス法、 スルフ ォ ラ ンを抽出溶剤とするスルフ ォ ラ ン 法、 N —メ チルピロ リ ドンを抽出溶剤とするァロソルバ ン法、 ジメ チルスルフォキシ ド ( D M S 0 ) を抽出溶剤 とする D M S 0法等が知られているが、 之等の方法は抽 出溶剤の毒性、 回収法に問題があることが判明した。
水中に含まれる P A Hの除去に関してはシ リ カゲルの 表面にォクタデシル基を結合させた逆相系の樹脂の利用、 活性炭の利用等が知られている。 しかし、 脂質中に含ま れる P A Hの除去に活性炭を使用 した例はなく 、 ま して ラノ リ ン類に適用した例は皆無である。 一般的に非水系 における脂質中の特定の脂溶性成分の吸着除去は、 特定 の脂溶性成分 -活性炭間の親和性と、 その他の脂質成分 一活性炭間の親和性との差により行なわれるため、 上記 水中の P A H除去技術を脂質中の P A Hの除去に応用す るこ とは予測できない。
また、 一般油脂類の精製において、 脱色を目的と して 活性白土、 活性炭等を使用する場合があるが、 之等の場 合の活性炭の使用は P A Hの除去を目的とはしていない , ま してラノ リ ン類中に P A Hが存在するこ と及びその測 定技術すら知られていない現在、 P A Hの除去手段と し ての活性炭吸着は全く認識されていない。
尚、 ラノ リ ンの脱色精製においては、 工業用ラノ リ ン について特定の活性炭により吸着処理して脱色効果があ つたという簡単な報告がある。 それによればへキサン ミ セラを中和した後、 2 0— 2 5 °Cまで冷却して吸着処理 するこ とにより、 ソ連産の活性炭のうち 2種類について 脱色効果があつたとされているが具体的な脱色効果等の 記述はなく詳細は不明である。 勿論、 ラノ リ ン以外のラ ノ リ ン類に関しては、 脱色その他の精製手段と しても活 性炭の使用は全く 知られていない。
本発明の目的は、 新しいラノ リ ン類中の P A Hの測定 法及び除去法を提供するこ とにある。 また本発明の他の目的は、 上記 P A Hの測定及び除去 のために利用する活性炭の P A H除去活性度の測定法及 び P A Hを低下させるに必要な活性炭の計算法を提供す る とにの 。
発 明 の 開 示
本発明者らは、 ラノ リ ン類中の P A Hの存在を定量で きる新しい測定方法を確立するに成功する と共に、 これ によって初めてラノ リ ン類中に除去の必要な P A Hが存 在するこ とを見出し、 また該ラノ リ ン中の P A Hの新し い除去技術を見出すに成功した。
即ち、 本発明によれば、 スチ レ ン一ジビニルベ ンゼン コポリ マーを用いた G P C法により P A Hをラノ リ ン類 と完全に分離濃縮し、 このク リ ーンアップにより前処理 の終了した試料をォク夕デシル基結合シリ 力ゲルを固定 相とする高速液体ク ロマ トグラフィ (H P L C) に付す ことにより、 P A Hを各成分に分離し、 之等を蛍光検出 器により高感度に定量する新しいラノ リ ン中の P A Hの 測定法が提供される。
以下、 この測定法につき詳述すれば、 本発明で P A H のク リ ーンアッ プに用い得る樹脂はスチ レ ンージビニル ベンゼンコポリ マーであり、 これは例えばべンゼン中で の排除限界分子量が 1 0 0 0から 3 0 0 0の範囲にある ものが好ま し く 、 具体的にはバイオ · ラ ドラボラ 卜 リ イ 社 ( B i o -R a d Labora tor i e , Ri chmond, Ca l i f. , USA ) のバイオ一ビーズ S X— 2 (排除限界分子量- 2 7 0 0 ) 、 S X - 3 (排除限界分子量 = 2 0 0 0 ) 、 S X - 4 (排除限界分子量 = 1 4 0 0 ) 、 S X - 8 (排 除限界分子量- 1 0 0 0 ) 等を例示できる。
また、 本発明における G P Cは、 例えば代表的には次 のよ う に して実施でき る。 即ち、 まずスチ レ ン一ジ ビニ ルベンゼン コ ポ リ マ一 ( 2 0 0— 3 0 0メ ッ シ ュ、 排除 限界分子量 = 2 0 0 0、 ベンゼン中) を充填したカ ラ ム に、 ジク ロ ロ メ タ ンに溶かしフ イ ノレタ ーで濾過した試料 を注入する。 ジク ロロメ タ ンで溶出すると、 分子サイズ の違いによりエステル分画、 ラノ リ ン脂肪酸、 リ ン系農 薬及びラ ノ リ ンアルコール分画、 塩素系農薬及び P A H 分画の順序で溶出するので、 最後の P AH分画を集める。 最後の P A H分画には塩素系農薬が含まれるが、 この分 画を濃縮し、 蛍光検出器を備えた H P L Cで分離検出す るこ と によ り、 塩素系の農薬は検出されず、 妨害は与え ないので P A Hのみを特異的に定量することができる。 こ こ で移動相をジク ロ ロ メ タ ンにする と、 ラ ノ リ ンアル コール分画と P A H分画とがシャープに分画できるので 好ま しい。 またこの G P Cにより ク リ ーンア ップする方 法は上記の方法以外の公知の検出器 (紫外分光検出器) や公知の分離定量手段、 例えば水素炎イオン化検出器 ( F I D ) 等を備えたガスク ロマ ト グラ フ ィ ( G L C ) 等の手段と組合せて実施する こ と も可能である。
上記測定法によ り市場から各種のラ ノ リ ン類を入手し、 分析を行なっ た。 その具体例と して、 ウールグ リ ース
(以下 W G と略記する) 中の P A Hの定量結果を下記表 1 に示す。
尚、 P A Hには多 く の種類があるが、 本発明では発ガ ン性の疑いが強いと される以下の 6種を主と して測定し た。 フルオラ ンテ ン ( ί l uorantliene、 以下 F と略記) 、 ベンゾ ( b ) フノレオ ラ ンテン ( b e n z 0 (b) f 1 U 0 r a nl h e n e、 以下 B b F と略記) 、 ベンゾ ( k ) フルオラ ンテ ン
( e n z 0 (k) f 1 u o r a n t h e n e 、 以下 B k F と略記) 、 ベン ゾ ( a ) ピレ ン (benzo (a) pyrene、 以下 B a P と略言己) 、 イ ンデノ ( 1 , 2 , 3 - c , d ) ピレ ン ( i ndeno (1, 2, 3 - cd) rene、 以下 I c P と略記) 、 ベンゾ ( g, h , i ) ペリ レ ン ( b e m 0 ( g , h, i ) p e r y 1 e n e、 以下 B g P と略言 ϊ
WG中の P A Hの分析結果 位: ppb 〉 f * nU
Figure imgf000010_0001
即ち、 W G 2 6点を分析した結果、 上記表 1 に示す通 り、 6種類の P A Hの合計は最低 1 2 9 ppb 、 最高 1 7 3 3 ppb 、 全体平均値 3 4 6 ppb であり、 2 0 0 ppb 未満のものが 7点、 2 0 0〜 3 9 9 ppb が 1 3点、 4 0 0 ppb 以上が 6点であり大きなバラツキが認められ また市販ラノ リ ン 9点の分析結果は、 下記表 2に示す 通.りである。 それによると最小値は 1 4 4 ppb 、 最大値 5 2 3 ppb 、 平均値 2 8 7 ppb であり、 2 0 0 ppb 未満 が 3点、 3 0 0 ppb 未満が 2点、 3 0 0 ppb 以上が 4点 であった o
表 2 ラノ リ ン中の P A Hの分析結果
(里位: ppb )
Figure imgf000011_0001
更に巿販ラノ リ ンアルコール 1 9点の分析結果は後記 実施例 1 (表 3 ) に示したが、 それによると最小値は 2 3 4 ppb 、 最大値 6 1 9 2 ppb 、 平均値 1 5 8 5 ppb であり、 2 0 0 ppb 未満が 0点、 2 0 0〜 5 0 0 ppb の 範囲が 5点、 5 0 0〜 1 0 0 O ppb の範囲が 6点、
1 0 0 O ppb 以上が 8点であり大きなバラツキが認めら れた。
蒸留ラ ノ リ ンアルコール 1 1点の分析結果を、 後記実 施例 1 (表 4 ) に示す。 それによると最小値は 2 1 5 ppb 、 最大値 4 2 5 ppb 、 平均値 3 1 1 pb であり、 2 0 0 ppb 未満が 0点、 2 0 0〜 3 0 0 pp の範囲が 6 点、 3 0 0〜 4 0 0 ppb の範囲が 3点、 4 0 0 ppb 以上 が 2点であった。
以上のように、 本発明の測定法によれば、 ラノ リ ン類 中の P A Hを正確に測定できることが判る。
次に活性炭による P A Hの除去活性度の測定法を検討 した。 試料 1 0 gに活性炭を 0. l g〜 5 g添加し、 一 定の温度で所定時間、 撹拌又は振盪させながら吸着処理 した後、 静置沈降させ、 上清を濾過して活性炭を除去す る。 濾液中に残存する P A Hを上記測定法で測定する。 両対数グラフ用紙を用いて、 縦軸にグラム活性炭当りの P A H吸着量、 横軸に残存 P A H濃度をプロ ッ ト し、 等 温吸着線を作成する。 等温吸着線より残存する P A Hの 合計濃度が 2 O ppb になるグラム活性炭当りの P A H吸 着量を求め、 その値をその条件での吸着処理後の目標濃 度 2 O ppb での試料 1 0 gに対する活性炭の除去活性度 とする。 この除去活性度の値を以下の式 1 にあてはめて計算す るこ とによ り、 所望の P A H濃度にするのに必要な活性 炭量を簡単に推定できる。 除去活性度を [ z ] ppb / g 活性炭、 処理前の原料の P A H合計量を [ a ] ppb と し. 所望の処理後の残存 P A H濃度を [ b ] ppb とすると、 必要活性炭量 [ c ] gは以下のよう算出される。
( a - b ) / z = c 式 1
なお目標とする P A H残存濃度が異なる場合の必要活 性炭量は、 上述の等温吸着線より改めて除去活性度を求 め、 その値を式 1 に代入するこ とにより算出できる。
本発明の除去方法によれば、 また P A Hを含む試料を 式 1 から算出される必要活性炭量以上の活性炭を用いて 除去活性度が最も高い活性炭及び処理条件を選択し、 吸 着処理するこ とにより試料中の P A Hを経済的かつ簡単 に、 しかも本来のラノ リ ン類の性質をなんら損なう こ と なく 除去できる。
本発明により除去できる P A Hは、 前記した発ガン性 の疑いの強い 6種を主とするが、 該 6種以外の P A H も 本発明によりその残存量低下が認められる。 之等の
P A Hには次の 8種が含まれ、 また当然之等以外の
P A Hも本発明方法により除去され得る。
ベンズ a ) ア ン 卜 ラセ ン (benz (a) anthracene) 、 フ エ ナ ン 卜 レ ン' (p h en an t h r e n e) ^ ァ ン 卜 ラセ ン nthracene) ピ レ ン (pyrene)、 卜 リ フ エ二 レ ン (triphenylene)、 ク リ セ ン ( c h n s e n e )、 ジメ チルベンズ ( a ) ア ン ト ラ セ ン (7, 12- [iimethy enz (a) anthraceneリ 、 ジベンス ( a , ) ア ン ト ラセ ン ((iil)enz (a, h) antliracene ) 。
本発明の P A H除去のための上記活性炭処理は、 原料 を溶媒に溶かした状態でもまた溶媒を用いない無溶媒系 でも実施できる。 無溶媒系の場合には、 溶媒系と比較し て活性炭の細孔に P A Hが拡散吸着するのに長時間かか るという不利はあるが接触時間を充分に与えれば同様の 効果を得るこ とができる。 前述の除去活性度は理想的に は充分吸着平衡に達した時点での測定であるべきである が、 本発明では平衡状態になつていない条件での測定も 行なっている。 従って処理時の活性炭との接触の状態 (振盪、 撹拌速度等) によ っ ては、 活性炭使用量、 ミ セ ラ濃度、 温度、 処理時間等の条件が同じであっても除去 活性度が違つてく る場合がある。 しかるに接触状態が同 等であれば除去活性度には再現性があるので、 どの条件 が最適であるか判断する場合とか同じ接触条件のときに 必要な活性炭量を求める場合には有効に使用できる。
上記溶媒系で使用できる溶媒と しては、 WG及びラノ リ ンを除く ラノ リ ン類の場合は特に制限はなく 、 ペン夕 ン、 へキサ ン、 シク ロへキサ ン (以下 C Hと略記) 、 へ ブタ ン (H P ) 、 n—オ ク タ ン、 イ ソオ ク タ ン、 石油ェ —テル等の炭化水素系、 ベンゼン、 トルエン、 キシ レ ン 等の芳香族炭化水素系、 塩化メ チ レ ン、 ク ロ口ホルム、 ト リ ク ロルエチ レ ン、 テ ト ラ ク ロルエチ レ ン、 四塩化炭 素等のハロゲン化炭化水素系、 メ タノ ール、 エタ ノ ール、 n—プロノ、。ノ ール、 イ ソプロ ピルアルコール ( I P A ) 、 ブ夕ノ ール等のアルコール系溶媒、 アセ ト ン、 メチルェ チルケ ト ン (M E K ) 、 メ チルイ ソプチルケ ト ン、 ジェ チルケ ト ン等のケ ト ン系、 酢酸メ チル、 酢酸ェチル、 酢 酸プロ ピル、 酢酸イ ソプロ ピル、 酢酸ブチルのエステル 系溶媒等をはじめとする各種の溶媒を単独で又は組合せ て利用できる。 W G及びラノ リ ンの場合にはへキサンを 除く上記の溶媒を使用できる。 実際の工程に適合した溶 媒の選択は、 上述の除去活性度測定により容易に行なう ことができる。 また上記の溶媒系と水の組合せも可能で あり、 例えば H P - I P A —水、 M E K —水、 H P - M T—水等を適宜組合せるこ とがである。
吸着処理時の温度も除去活性度の重要な因子である。 室温又はそれ以下の低温でも P A Hの吸着はできるが、 温度が高いほど単位活性炭重量当り の P A H吸着量は增 加し、 除去量活性度は高く なる。 従つて無溶剤の場合は 加熱による着色が問題にならない温度まで高く するこ と が好ま し く 、 また溶剤を使用する場合には沸点以上であ つても加圧下での吸着処理を行なえば、 活性炭の使用量 は少なく でき好ま しい。 しかしながら加圧下での吸着処 理は装置が高価になる不利があり、 その場合には沸点よ り数度低い温度で行なうのが好ま しい。
活性炭による工業用ラノ リ ンの脱色精製は前述したよ うにへキサン ミ セラで 2 0 - 2 5 °Cまで冷却して脱色効 果があったとされており、 本発明の P A H除去法とはこ の点で明らかに異なっている。
活性炭には原料、 賦活法及び形伏から多く の種類があ る。 原料と しては例えば泥炭、 亜炭、 褐炭等を原料とす る石炭系活性炭、 ノ コクズ、 セ ンイ クズ、 木炭、 木材、 セルロ ース、 パルプ廃液、 やし殻、 ココナツ殻等を原料 とする木質系活性炭等があり、 賦活法には塩化亜鉛等に よる薬品賦活法及び水蒸気、 炭酸ガス、 空気等によるガ ス賦活法がある。 形伏には主と してバッチ処理に使用さ れる粉末炭及び固定床、 流動床処理に使用される粒状炭 等がある。 いずれの活性炭も本発明に従う除去活性度の 測定により経済的に有利な活性炭及び処理条件を選択し て使用し得る。
工業的な活性炭処理の方法と してはバッチ法、 流動床 法及び固定床法があり、 本発明ではいずれの方法も問題 な く実施できる。 バッチ法の場合、 処理原液の中に所定 量の活性炭を投入し、 所定温度にて撹拌、 ガス吹き込み、 液循環等の手段により活性炭との接触を充分行なわせた 後、 濾過等の手段により活性炭を除去すればよい。
固定床の必要べッ ド高さは処理液の分析により定める こ とができ、 一般的には塔長 Z塔怪 = 1 . 5以上とする こ とがシ ョ ー トパスによる除去不足を防ぐ意味から望ま しい。 線速度は遅いほど好ま しく 、 空塔線速度 (原料液 供給速度 Z固定床断面積) で 0 . 5 c m/分以上〜 2 0 c m 分程度が一般的である。 遅すぎると時間当りの処理量 が低下し、 早すぎると圧力損失が増大すると共に活性炭 との接触が不充分となるため、 単位活性炭当りの処理量 が低下してしま う。 活性炭塔の寿命 (吸着破過) はバッ チ式の場合と異なり、 塔の入口と出口で P A Hの濃度勾 配があるため、 式 1で算出されるより寿命は長く なる。 この寿命の増加効果は塔長と密接な関係があり、 塔長が 長く なるほど大き く なる傾向がある。
また本発明者らは、 W G又はラノ リ ンを原料とする各 種ラノ リ ン誘導体の製造に当り、 原料 W G又はラノ リ ン を特定条件下で真空蒸留する時には、 之等に残存する P A Hが除去でき、 かく して P A Hを除去された各種ラ ノ リ ン誘導体が得られることを新たに見出した。
しかるに、 上記真空蒸留の条件は、 ラノ リ ンアルコ一 ルの蒸留範囲と大部分重複するため、 この真空蒸留法は 除去効率及び製品収率を考慮すれば、 これを直接ラノ リ ンアルコールに適用することはできなかった。 本発明者 らによる上記新知見によれば、 まず原料とする W G又は ラノ リ ンを本発明に従い真空蒸留し、 次いでゲン化分解 後、 抽出すれば、 所望の P A Hを除去されたラノ リ ンァ ルコール及びこれと共にラノ リ ン脂肪酸を得ることがで きる。
従って、 本発明は WG又はラノ リ ンを原料と してラノ リ ン誘導体を得るに当り、 上記原料を温度 1 5 0〜 2 5 0 °C、 真空度 0. 1〜 0. 0 0 1 トールの条件下で 蒸留して残存 P A Hを除去しておく こ とを特徴とする P A Hを除去されたラノ リ ン誘導体の製造方法をも提供 する ものである。
上記方法は、 ラノ リ ン誘導体がラノ リ ンアルコ一ルで ある場合に特に有利であり、 この場合上記に従い P A H 除去処理をなされた WG又はラノ リ ンを、 次いで常法に 従ってゲン化分解後、 抽出するこ とにより、 所望のラノ リ ンアルコール及びこれと共にラノ リ ン脂肪酸を得るこ とができ る。
また、 上記 P A H除去のための本発明真空蒸留方法は ラノ リ ンアルコールの製造に限らず、 各種ラノ リ ン誘導 体の製造に利用できる。 該誘導体には、 例えば WG又は ラノ リ ンを分別して得られる液状ラノ リ ン (低融点ラノ リ ン、 L L) 及び高融点ラ ノ リ ン (ハー ドラ ノ リ ン、 H L ) 、 WG又はラノ リ ンをエステル化して得られるァ セチル化ラ ノ リ ン等のエステル化ラ ノ リ ン、 ラ ノ リ ンに ポ リ オキシエチ レン、 ポ リ オキシプロ ピレ ン等を付加さ せて得られる付加物等のエーテル化ラノ リ ン等が包含さ れ、 いずれの場合も本発明に従う真空蒸留により P A H を除去された所望の製品を得るこ とができる。 之等各種 ラノ リ ン誘導体の製造は、 予め原料につき本発明の真空 蒸留を行なう以外は、 常法に従う こ とができる。 また上 記原料 WG又はラノ リ ンの真空蒸留条件は、 原料の種類、 殊にその P A H含量及び所望製品に要求される P A H除 去の程度に応じて、 上記範囲より適宜選択できる。
更に本発明者らは、 上記 WG又はラノ リ ンの真空蒸留 に当って、 予め之等をほう酸処理しておく 時には、 之等 の中に存在する遊離のラノ リ ンアルコールがほう酸エス テル化されて、 その真空蒸留による損失が低減される こ とをも見出した。
従って本発明によれば、 W G又はラノ リ ンをほう酸処 理した後、 温度 1 5 0〜 2 5 0 °C、 真空度 0. 1〜
0. 0 0 1 ト ールの条件下で蒸留して残存 P A Hを除去 するこ とを特徵とする P A Hを除去された WG又はラ ノ リ ンの製造方法をも提供するものである。
上記ほう酸処理は、 ほう酸 (H 3 B 03 ) 、 無水ほう 酸 ( B 2 03 ) 等を用いて実施できる。 それらの使用量 は、 WG又はラノ リ ンの水酸基価を基準と して、 ほう酸 ト リ エステルができ る理論量の約 0 . 5〜 5倍モル量程 度、 好ま し く は約 1 〜 3倍モル量程度とされるのがよい。 即ち、 W G又はラノ リ ン中には遊離のラノ リ ンアルコ一 ル及びヒ ドロキシ脂肪酸に由来する水酸基をもつエステ ルが存在し、 上記ほう酸処理によれば、 該ラノ リ ンアル コールのほう酸エステル化と ヒ ドロキン脂肪酸エステル の ヒ ドロキシエステル化とが競合するため、 これを考慮 して水酸基価基準でのほう酸の所用量を計算する必要が ある。 また、 上記ほう酸処理 (ほう酸エステル化反応) は、 約 5 0〜 1 5 0。C、 好ま し く は約 1 0 0〜 1 2 0 °C の温度条件下に約 0 . 5〜 8時間を要して実施できる。 このエステル化反応はまた常圧下でも減圧下でも実施で きるが、 通常 1 0 0 トール以下、 好ま しく は 3 0〜 1 ト ールの減圧条件下で実施されるのが好ま しい。
上記ほう酸エステル化後、 得られるほう酸エステル処 理された原料を、 前記本発明の真空蒸留に付すことによ り、 原料中に存在する P A Hを選択的に蒸留除去できる。 かく して、 残澄と して得られるエステルを常法に従い加 水分解し、 水洗してほう酸を除去するこ とにより、 所望 の P A Hの低減された W G又はラノ リ ンを得るこ とがで きる。 殊にこのほう酸エステル化処理を伴う本発明方法 によれば、 真空蒸留によっても遊離のアルコール分は実 質的に蒸留されず、 かかるアルコールの収率低下を伴わ ない利点がある。
勿論、 上記本発明のほう酸エステル処理に引 き続く 真 空蒸留法によ り得られる W G又はラ ノ リ ンは、 之等を原 料と して、 更に前述したよ う な分別、 エステル化、 ポ リ エキシエチ レ ン付加等の各種操作を施すこ とによ り、 P A Hを除去された各種ラ ノ リ ン誘導体に誘導でき る。 尚、 本明細書においてラ ノ リ ン類とは、 W G及び主と してそれを原料と して精製及び/"又は誘導化して得られ るラ ノ リ ン由来の各種物質の全てを包含する意味で用い られる ものとする。
また、 本明細書では W G及びそれを精製したラ ノ リ ン を除く 上記ラ ノ リ ン類を別個にラ ノ リ ン誘導体と呼ぶこ とがある。 該ラ ノ リ ン誘導体には、 ラ ノ リ ンを分別して 得られる低融点部分である液状ラ ノ リ ン ( L L ) ; 同高 融点部分であるハ ー ドラ ノ リ ン ( H L ) ; ラ ノ リ ン脂肪 酸、 これを分別した钦質ラノ リ ン脂肪酸、 同硬質ラ ノ リ ン脂肪酸及び之等の蒸留精製物 (ラ ノ リ ン脂肪酸類) ; ラ ノ リ ンアルコ ール及びその蒸留精製物 ; コ レステロ 一 ル ; ラ ノ ステロール ; ラ ノ リ ン脂肪酸類と アルコ ール又 はステロ ールとのエステル ; コ レステロ ールと脂肪酸と のエステル ; ラ ノ リ ン、 ラ ノ リ ン脂肪酸、 ラ ノ リ ンアル コール及びステロールとポ リ オキシエチ レ ン等とのエー テル ; ラ ノ リ ンゃラ ノ リ ンアルコールと脂肪酸とのエス テル等が包含される。 また植物ステロール、 ジヒ ドロコ レステロール等のステロールと脂肪酸のエステルも上記 ラノ リ ン誘導体に含まれる。
本発明によれば、 ラノ リ ン類中の p p b レベルの P A H を精度、 再現性よく 、 簡便に測定できる。 加えて、 活性 炭の P A H除去活性度を測定でき、 残留 P A Hを除去す るための経済的活性炭使用量、 処理条件等を選択できる ( また本発明方法では活性炭を用いてラノ リ ン類を吸着 処理するこ とにより、 残留 P A Hを可及的に低下させた 安全なラノ リ ン類を得るこ とができる。
更に本発明によれば、 W G又はラノ リ ンを、 ほう酸ェ ステル化処理するか又はすることなく、 真空蒸留するこ とによって、 同様に残留する P A Hを除去でき、 かく し て得られる処理 W G又はラノ リ ンは、 P A Hが除去され ているためラノ リ ンアルコールを始めとする各種ラノ リ ン誘導体の原料と して非常に価値がある。
この様にして得られた低 P A Hラノ リ ン類は、 活性炭 処理、 その他の処理の前後で基本特性の変化がなく 、 従 つて従来用いられてきた医薬、 化粧品等の分野において より安全に使用できる。
発明を実施するための最良の形態
以下、 本発明を更に詳し く説明するため、 実施例を挙 げる。 実施例 1 G P C条件
スチ レ ンー ジ ビニルベンゼンコポ リ マー ( 2 0 0 — 3 0 0 メ ッ シュ、 バイオーラ ドラ ボラ 卜 リ イ 社のバイ オ 一 ビーズ S X— 3、 排除限界分子量 = 2 0 0 0 ) 1 3 0 gを内径 2 5 mm—べッ ド長 7 7 0 mmのカラムに充填し、 試料 l gを 1 0 mlジク ロロメ タ ンに溶かし、 0. 2 m フィ ルターで濾過した試料液 5 mlを上記のカラムに注入 する。 ジク ロロメ タ ン 4 πι1/分で溶出する と、 最初の
2 5 6 mlまでにエステル、 ラ ノ リ ン脂肪酸及びラ ノ リ ン アルコールが溶出され、 次の 1 0 4 ml (累計 3 6 0 ml) までに P A Hが溶出される。 P A Hを含む分画を 6 0 °C でエバポレー 卜 し、 内容物をァセ トニ ト リル合計 6 mlで 完全に洗い込み、 減圧条件下又は窒素気流下で乾固する (試料 A ) 。 試料 Aを 1 0 0 / 1 のァセ トニ ト リ ルで溶 解し、 1 0 — 5 0 /i 1 の適当量を蛍光検出器を備えた
H P L Cにィ ンジヱク シ ョ ンし絶対検量線法で定量する, H P L C条件
カラム : Novapak C18, 3. 9 - 300mm (30 °C )
移動相 : ァセ トニ ト リ ル 水 = 7 0 / 3 0
流 速 : 1 . 0 ml,分
検出条件 : 各 P A Hに対する、 励起波長及び測定波長は 下記の通り (検出器 : 日本分光 (株) 8 2 0 - F P型蛍 光検出器) である。 PAH名 励起波長 翻定波長 保持時間 感 度
( nm) ( nm) (分) A r e a/ n g P
F 2 8 4 4 7 0 1 1. 3 574, 627
B b F 3 0 0 1 1 2 3. 1 640, 829
B k F 3 0 0 4 1 1 2 4. 3 7, 696, 765
B a P 3 0 0 4 1 1 2 6. 5
I c P 3 0 0 5 0 0 3 8. 0 180, 361
B g P 3 0 0 4 1 1 3 8. 4 1, 785, 894 上記の測定条件で市販ラ ノ リ ンアルコールの測定を行 なった結果を表 3及び表 4 に示した。
3 ラ ンアルコ-ル中の PAHの分析結果
位: pb ) 試料記号 F B b F B k F B a P I c P B g P 。 ·Γ
Aし一 0 1 70.6 121.5 14.2 B.2 11.3 7.7 233.5
Aし一 02 121.6 136.0 19.3 8.6 11.8 0.0 297.3
AL - 03 163.2 213.1 19.5 7.6 3.9 19.2 426.5
Aし一 04 163.2 213.1 19.5 7.6 19.2 3.9 426.5
AL - 05 194.9 239.5 17.1 6.] 1B.5 6.5 482.6
AL - 06 318.8 218.4 22.8 6.6 9.5 9.1 585.2
AL - 07 322.3 231.5 23.4 9.9 !5.6 110.1 712.8
AL— 00 311.0 341.2 26.8 13.7 18.5 10.4 721-6
AL - 09 311.0 341.2 26.8 13.7 18.5 10.7 721.6
Aし一 1 0 371.6 262.8 29.1 17.1 34.1 26.3 711.0
Aし一 1 1 509.6 289.0 26.7 8.6 9.2 25.9 869.0
AL - 1 2 564.8 309.1 43.7 38.0 22.7 24.5 ]002.8
AL - 1 3 669.9 243.5 31.7 23.5 66.6 20.1 1058.3
AL - 1 4 1087.8 265.5 54.9 38.7 39.8 17.8 1504.5
AL- 1 5 934.7 434.8 73.0 66.B 55.6 45.6 1610.5
AL - 1 6 1440-7 1073.0 B7.7 25.2 0.0 0.0 2606.7
AL - 1 7 3081.1 984.4 217-0 222.8 182.8 103.7 4791.8
Aし一 1 8 4112. Ε 129.1 305.1 318.6 129.4 140.7 5135.5
AL - 1 9 3478.0 1430.8 353.6 357.5 278.9 295.1 6192.2 平均値 959.3 393.6 73.4 63.1 49.8 46.2 1585.3 4 蒸留ラノリンアルコール中の PAHの分析結杲
位 : ppb )
Figure imgf000025_0001
この測定法の再現性を確認するため表 4中の試料 A D 一 1 1 を用いて 5回の測定を行なった。 その結果は表 5 のようになった。 この結果から充分に高い再現性をもつ こ とが明らかである。
表 5 P A H測定の再現性 ,w i. k
位- ppb)
ΪΗ定回数 F B b F B k F B a P I c P D g P
1回目 135.8 164.3 15.1 8.0 25.3 11.4 359.9
20目 181.0 I77-B 16.2 9.1 26.4 12.6 422-9
3回目 148.8 164.1 16-3 8.9 20.8 10.8 369.7
4回目 148.3 IS9.0 1B.1 8.2 22.4 9.6 373.6
5回目 152.7 171.5 17.3 8.7 21.8 11-3 386.3 平均値 Av 153.3 169.9 16.2 8.6 23.3 11.1 382.5 euiis差 std 16.7 6.1 0.8 0.5 2.4 1-1 21.5
CVI 10.9 3.6 1.9 5.6 10-3 9.7 B.4 但し表中、 C V%は標準偏差 Z平均値 X 1 0 0で示さ れ、 この値が小さい程、 測定値のバラツキが少ないこ と を示す。
この測定法での P A Hの回収試験を、 ラ ノ リ ンアルコ ールを含まない標準溶液 ( P A H濃度は各々 3 0〜 5 0 ppb ) を用いて行なった後、 ラノ リ ンアルコールへ既知 量の P A H (各々 1 0〜 : L 2 ppb ) を添加し測定するス パイ ク試験により確認した。 その結果、 標準溶液からの 回収率は F = 7 1 %以外はいずれも 9 0 %以上 (B b F = 9 3 %、 B k F = 9 0 %、 B a P = 9 4 %、 B g P = 1 0 3 %、 I c P = 9 9 %) であり充分な成績であった, スパイ ク試験の結果を下式で表わされる回収率で検討 したが、 l O ppb という極微量の添加であるこ とを考慮 すると、 上記の標準溶液からの回収試験と同様に充分な 回収率を示した。 (F = 9 3 %、 B b F = 9 8 %、 B k F = 9 7 %、 B a P = 9 1 %、 B g P = 1 0 3 %. I c P = 1 1 0
回収率 (%) = (添加後の雜定値) X 1 00ノ (添加前制定值 +添加量) 実施例 2
ラノ リ ンアルコール (表 3中の試料 A L— 1 3 ) 1 0 gを H P P A - 9 0 / 1 0 (重量比) に溶かし 1 0 %溶液をつく り、 この溶液 1 0 0 gに石炭破砕炭 「太閤 G L 3 0」 (二村化学工業、 比表面積 = 1 0 6 0 m 2 / g、 全細孔容積 = 0. 5 6 ml/ g . 0〜: 1 0オ ングス ト ローム (A) = 0. 2 0 mi/ g 1 0〜 5 0 A = 0. 3 2 mlZ g、 5 0〜 1 0 0 A = 0. 0 3 mlZ g、 1 0 0 A 〜= 0. 0 1 ml/ g . メ チレンブルー脱色力 = 1 9 0 ml Zg、 ヨウ素吸着力 = 1 0 0 0 ig/ g ) を粉砕分級後 ( 3 2 5メ ッ シュ、 9 5 %パス) 0. 2 5〜 l g添加し 7 0 °Cで 1時間緩やかに振逢 (振幅 = 2. 5 cm, 1 3 0 往復 Z分) させながら吸着処理し、 静置沈降させ、 上清 を攄過して活性炭を除去した。 滤液を脱溶剤後、 残存す る P A Hを上記測定法で測定した。 両対数グラフを用い て縦軸にグラム活性炭当りの P A H吸着量、 横軸に残存 P AH濃度をプロ ッ ト し、 等温吸着線を作成し等温吸着 線より残存濃度が 2 0 ppb になるグラム活性炭当りの P A H吸着量を求めた。 その結果 G L 3 0の除去活性度 は 1 9 0 0 ppb 活性炭であった。
表 6 G L 3 0添加量と P A H残存濃度
(単位: 〉 活性炭 性戾 処理前 |S度 残存 3S度
SS号 S PPb ppb
GL30 ΗΡ/ΙΡΛ=90/10 0.25 1058.3 no.n
GL30 ΗΡ/ΙΡΛ-90/10 0.50 1058.3 23.6
GL30 ΙΙΡ/ΙΡΑ=90/10 0.70 1058.3 9.0 処理前濃度 5 8 5 ppb のラ ノ リ ンアルコール試料 A L 一 0 6 1 0 gの 1 0 %溶液 1 0 0 gに同じ活性炭を用 いて 0. 3 gを添加して吸着処理を行なった。 処理後の P A Hの合計は 1 0 ppb であった。 除去活性度からの必 要活性炭の計算値は下式のように 0. 3 gであり、 よく 一致していることが解る。
( 5 8 5 - 2 0) ノ 1 9 0 0 = 0. 2 9 7
実施例 3
実施例 2 と同様にして同一のラノ リ ンアルコール、 活 性炭を用い溶媒を変更して残存濃度 20ppb における除去 活性度を求めた。 その結果を表 7に示した。 この実施例 から除去活性度は処理条件により変化することと、 本発 明の除去活性度を求めることにより最適な処理条件を比 較的簡単に設定できることが明らかである。
表 Ί
(■¾fi∑:ppb) 合 St残存》度 (ppb ) 活性 88.7X HP/IPA H P
(g) ME K =95/5
0. 5 16.3 49.2 133.1
1, 0 29.7
2. 0 8.6 28.9
5 - 0 5.4 5.7 14.4 除去活性度 3,200 800 350 実施例 4
同様にして木質系の粉末活性炭 「太閤 」 (二村化学 工業、 比表面積 = 1 0 1 4 m 2 Z g、 全細孔容積- 0. 5 1 mlZ g、 平均細孔半径 = 1 0. 1 A、 細孔径分 布曲線において最大容積を示す細孔半径 = 5. 5 A、 0 〜 1 0 A = 0. 1 0 ml/ g , 1 0〜 5 0 A = 0. 2 8 ml Z g、 5 0〜: L 0 0 A = 0. 0 7 ml/ g 1 0 0 A〜 = 0. 0 7 mlZ g、 メ チ レ ンブルー脱色力 = 2 0 0 mlZ g p H = 5. 7 ) の除去活性度を測定した。 ラノ リ ンアル コール試料 A L— 0 6を用い、 8 8. 7 %M E Kで 1 0 %溶液を調製、 その溶液 1 0 0 gに活性炭を 0. 2 g〜 2. 0 g添加し、 7 0 °Cで 6 0分往復振盪器 ( 1 3 0往 復 Z分、 振幅 = 2. 5 cm) を用いて緩やかに処理した。 その結果を表 8に示したが、 残存濃度 2 0 ppb における 除去活性度は 9 8 0 ppb / g活性炭となった (実施例 4 - D o
同様にして試料 A L— 1 3を用い、 Ή Ρで 1 0 %溶液 を調製、 その 1 0 0 gに活性炭を 0. 5 g〜 2. 0 g添 加し、 7 0 °Cで 6 0分処理した。 その結果を表 8に示し たが、 残存濃度 2Gppl) における除去活性度は 8 2 0 ppb Z g活性炭となった (実施例 4 一 2 ) 。 8
Figure imgf000030_0001
同様にして試料 A L - 1 3を用い、 8 8. 7 % E K で 1 0 %溶液を調製、 その 1 0 0 gに活性炭を 1. O g 添加し、 7 0 °Cで 1時間及び 4 8時間処理した。 その結 果、 1時間処理では 2 1 ppb 、 4 8時間処理では 2. 4 Pb となった (実施例 4 — 3 ) 。
実施例 4 一 3の処理条件を、 往復振盪器を長さ 5 cm、 巾 1 cmの撹拌翼をもつ 3 0 0 rpm の撹拌器にかえた以外 は同じにして吸着処理した (実施例 4 一 4 ) 。 その結果 は 2. 2 ppb となった。
之等の結果から、 混合条件により平衡に達するまでの 時間に差があり、 その結果除去活性度に違いが生じるこ とがわかる。
実施例 5
同様にしてヤ シ殻粒状活性炭 「太閤 CW 1 3 0 B」 (二村化学工業、 比表面積 = 1 1 5 0 m2 / g、 全細孔 容積 = 0. 5 0 ml/ g ^ 0〜 1 0 A= 0. 05 m 1 Z g、 1 0〜 5 0 A = 0. 6 0 ml/ g、 5 0〜 1 0 0 A = 0. 1 5 mlZ g、 1 0 0人〜 = 0. 2 8 ml/ g . メ チ レ ンブルー脱色力 = 2 1 0 ml/ g、 ヨ ウ素吸着力 =
1 1 1 0 m / g、 p H = 9. 8、 粒度 : 0. 5〜 1. 7 mniパス = 9 8 %) の 8 8. 7 %M E K、 1 0 %溶液、 7 0 °C、 5時間処理での除去活性度を測定した。 除去活 性度は 4 0 0 ppb Z g活性炭であった。
実施例 6
同様にして木質活性炭 「太閤 S G」 (二村化学工業、 比表面積 = 1 0 5 0 m2 Zg、 全細孔容積 = 0. 8 4 ml ノ g、 平均細孔半径 = 1 3. 7 A、 細孔径分布曲線にお いて最大容積を示す細孔半径 = 1 1. 3 A、 0〜1 0 A = 0. 0 5 ml/ g、 1 0〜50 A = 0. 5 7 m 1 / g . 5 0〜: 1 00 A= 0. 1 4 ml/ g . 1 00 A〜 =
0. 0 5 ml/ g、 メ チ レ ンブル一脱色力 = 2 1 0 ml, g ョゥ素吸着力 - 1 1 1 0 mg/ g . p H = 9. 8、 粒度 : 0. 5〜: 1. 7 mmパス = 9 8 %) の 8 8. 7 %M E K、 1 0 %溶液、 7 0 °C、 2時間処理での除去活性度を測定 した。 除去活性度は 3 90 ppb Z g活性炭であった。 実施例 7
試料 A L— 1 3、 1 0 gに粉末活性炭 「太閤 K」 l g を添加し、 7 0でで 1時間又は 6時間撹拌処理した後、 活性炭を濾過により除去して処理後の P A Hを測定した , また処理温度を 1 0 0 ° (:、 撹拌時間を 1時間と した場合 及び 8 8. 7 %Μ Ε Κで 1 0 %溶液にしたもの 1 0 0 g に同じ活性炭 1 gを添加し、 7 0 °C及び 4 0 °C 1時間処 理した結果も同様に処理、 測定してその結果を表 9に示 した。
表 9
(里位: PPb)
Figure imgf000032_0001
試料を溶媒で希釈しない場合でも、 処理時間 1時間で 合計 1 3. 5 ppb まで低下しており、 処理 6時間では 6. 2 ppb まで低下している。 この結果より吸着平衡に 達するのに時間は要するが活性炭による吸着により
P A Hが充分に除去されることが明らかである。 また無 溶剤での 7 0 °C 1時間 ( 1 3. 5 p p b ) と 1 0 0 °C 1時 間 ( 4. 3 ppb ) 処理の結果及び M E K希釈での 7 0 °C ( 2. 2 ppb ) と 4 0 °C (4. 5 ppb ) の処理結果から 吸着処理温度は高い方が活性炭の吸着能は充分に発揮さ 3
れることが明らかである。
実施例 8
実施例 7 と同じ活性炭、 ラ ノ リ ンアルコ ールで溶媒を 8 8. 7 % £ 1^及び 1 ?八を用ぃて 1 0〜 5 0 %濃度 の溶液を作り、 7 0 °Cで 1時間撹拌 ( 3 0 0 rpm 分, 撹拌翼 = 5 cmx l cm) により混合し、 吸着処理を行なつ た。 その結果を表 1 0に示した。 この結果から I P Aの 方が M E Kよりは除去効果は高いがいずれも充分に除去 されており、 また 1 0〜 5 0 %程度の粘度増加が大き く ない範囲では濃度による除去効果には殆ど差がないこと がわかる。
表 1 0
(単位: ppb )
Figure imgf000033_0001
実施例 9 石炭破砕粒状炭 ( 2. 3 6〜 0. 5 0 mmパス = 9 6 %- 充填密度 = 0. 4 8 g/ml) 「太閤 G L 3 0J 1 0 7 g を内径 5 cniの ジャ ケ ッ 卜付カ ラムに充填 (充填高さ約
1 2. 5 cm) し、 ラ ノ リ ンアルコ一ル試料 A L— 0 6を H P I P AZ水 = 9 2. 5 /7. 0 / 0. 5混合溶媒 で 1 0 %に希釈した溶液を線速度 2 cmZ分、 処理温度
7 0でで活性炭充填カラムを通過させながら、 通液量に 応.じて 2つの分画に分けた。 各々の分画の溶媒を除去し 処理後のラノ リ ンアルコール 4 6 4 g (処理 1、 充填活 性炭量の約 0〜 4. 3倍) 、 4 9 8 g (処理 2、 充填活 性炭量の約 4. 3〜 9倍) を得た。 処理前後の P A H変 化は表 1 1のようであった。 この結果から固定床方式の 吸着処理でも P A Hが効率よく除去できていることがわ かる。
C単位: pb )
Figure imgf000034_0001
実施例 1 0
石炭破砕炭 「太閤 G L 3 0」 3 0 gを内径 1. 9 cmの ジ ャ ケ ッ ト付カ ラ ムに充填し、 試料 A L _ 0 6の 8 8. 7 %M E K 1 5 %溶液を線速を 2. l cmZ分、 4. 1 cm,分、 1 1. 2 cmZ分、 1 9. 5 cmノ分と変化 させて通液し処理した。 活性炭に対する試料処理量 ( 0 〜 1倍量、 0〜 5倍量、 0〜 1 0倍量) 分画毎に分け P A Hを測定した結果を表 1 2に示した。 この結果より 線速度を下げるこ と により単位活性炭当りの処理量が増 加し、 残存 P A Hの濃度が低下するこ とは明らかである。 表- 1 2
(単位: P P b〉
Figure imgf000035_0001
実施例 1 1
実施例 1 0で用いた活性炭をバイ焼再生 (高温加熱再 生) 法にて再生率 8 8 %で再生し、 それを用いて実施例 1 0の線速度 4. 6 cniZ分の場合と同条件で処理した結 果を表に示したがその結果は実施例 1 0 とほぼ同様であ
3
(- ¾Ei:ppb)
Figure imgf000036_0001
実施例 1 2
ラ ノ リ ンアルコール A L— 0 6 1 5 0 gを 8 8. 7 %ME Kで 1 5 %の溶液と し、 それに粉末活性炭 Κ 1 5. 0 gを添加し、 7 0 °Cで 1時間撹拌した。 その後 濾過して活性炭を除去し更に溶剤を除去してラノ リ ンァ ルコールを得た。 処理前後の P A H分析結果を表 1 4、 一般分析値を表 1 5及び表 1 6に示した。 ラノ リ ンアル コールの組成変化、 分析値を下には活性炭による吸着処 理によりいずれも問題となるような変化はなかった。 4 P A H分析結果
(単位: pb )
Figure imgf000037_0001
但し、 wzuはヮセ リ ン zラノ リ ンアルコール =
9. 4 Z 0. 6混合物での包水力を示す。
表 1 6 G L C組成 (単位 : %)
Figure imgf000037_0002
実施例 1 3
ラ ノ リ ンアルコール試料 A L— 1 3、 1 0 gをそれぞ れの溶媒 9 0 gに溶かし、 粉末活性炭 Kを 1. 0 g添加 して 7 0 °Cで 1時間撹拌した。 その後濾過して活性炭を 除去し更に溶剤を除去してラノ リ ンアルコールを得た。 処理後の結果を表 1 7に示した。 9 8 %以上の良い除去 率を示し、 活性炭により残留 P A Hを低下できることは 明らかである。
表 1 7 P A H分析結果
(単位: ppb )
Figure imgf000038_0001
実施例 1 4 ラノ リ ン試料 L A— 0 9 1 0 gをへキサンで 1 0 % 溶液と した。 この溶液に粉末活性炭 Kを 0. 5 g添加し 3 0 °Cで 1時間撹拌して吸着処理した後 P A Hを測定し た。 処理前後の色調はいずれも G H = 8. 5であり、 ― 方 P A Hは処理前後で合計 5 2 3 ppb から 6. 6 ppb ま で低下していた (実施例 1 4— 1 ) 。 また原料を WGに かえ同様に試験したと ころ色調は処理前後で変わらず、 G H - 1 8であり、 P A Hは 4 8 7 ppb から 3. 5 ppb まで低下していた (実施例 1 4一 2 ) 。 その結果を表
1 に し? 。 1 8 P A H分析結果
(単位: ppb )
Figure imgf000039_0001
—また、 ラノ リ ン試料 L A— 0 9を用いて H P 1 P A = 9 Z 1又は I P Aで 1 0 %溶液と し、 この溶液に粉末 活性炭 Kを 0. 5 g添加し、 7 0 °Cで 1時間撹拌して吸 着処理した後 P A Hを測定した。 その結果は、 それぞれ 4. 3 ppb 、 4. 5 ppb であった。
実施例 1 5
蒸留ラノ リ ンアルコール試料 A D— 0 1 4 5 0 gを H P X I P A = 9 0 / 1 0比率の混合溶媒で 1 0 %原料 ミ セラ と した。 粒伏活性炭 G L 3 0 3 0 gを内径 1 9 mmのジャ ケ ッ 卜付カラムに充填し、 温度 7 0。Cで原料ミ セラを 1 5 ml/分 (線速度 = 5. S cmZ分) の速度で通 液して処理した。 処理後の P A H分析値、 一般分析値及 び組成を表 1 9 一 1、 1 9— 2、 2 0、 2 1に示した。 6種類の P A H以外の P A Hについても低下している こ と、 色調も含めて一般分析値及び組成にも処理前後で変 化のないこ とが明らかである。 1 9 - 1 P A H分析結果
(単位: ppb )
Figure imgf000040_0001
9 - 2 P A H分析結果
(単位: Pb )
Figure imgf000040_0002
2 0 一般分析値
Figure imgf000040_0003
但し、 WZUは表 1 5に同じである。 2 1 G L C組成 (単位 : %) 成分名 処理前 処理後 コレステロール 29.5 29.9 コレスト一 3 , 5—ジェン一 7—オン 3.0 2.9 デスモステロ一ル 1.2 1.3 ラトステロール 1.5 1.6 ジヒドロラノステロール 8.1 8.0 ラノステロール ]3.0 13.1 実施例 1 6
ラノ リ ン類と して、 ( 1 ) ラノ リ ンを分別して得られ た低融点部分である液状ラノ リ ン (L L) 、 ( 2 ) 同高 融点部分であるハ ー ドラノ リ ン (H L:) 、 ( 3 ) ラノ リ ンアルコールのエステルであるァセチル化ラ ノ リ ンアル コーノレ (A C 1 0 0 ) 、 (4 ) ラ ノ リ ンアルコールのポ リ オキシエチレ ン 3 0モル付加物 (L 3 0 ) 、 ( 5 ) ラ ノ .リ ンのポ リオキシエチレン 2 0モル付加物 ( A 2 0 ) 、 ( 6 ) コ レステロールのエステルであるマカダミ アナツ ッ脂肪酸コ レステリル (M A C) 、 (7 ) ラノ リ ン脂肪 酸コ レステ リ ノレ (C L:) 、 ( 8 ) コ レステロール
( C H 0 ) 、 ( 9 ) ラノ リ ンアルコールから抽出したジ ヒ ドロラノステロールとラノ ステロールの混合物である イ ソコ レステロール ( I C) 、 ( 1 0) ラノ リ ン脂肪酸 メチルエステル (F AM) 及び ( 1 1 ) ラノ リ ン脂肪酸 (L F A) をそれぞれ披処理原料と して、 之等各原料に 対して粉末活性炭 (太閤 ) を 1 0 %添加し、 表 2 2に 示した各種溶剤中で、 7 0 °Cで 1時間攪拌により混合し て活性炭吸着処理を行なった。 処理前後の P A H値を ppb 単位で表 2 2に併記する。
上記表より、 いずれのラノ リ ン類を用いる場合にも、 本発明の活性炭処理によれば、 之等各ラノ リ ン類中より P A Hを効 よ く 除去できることがわかる。 2 2
処理 7 剤 F BbF BkF BaP I cP BgP total ppb ppb ppb PPb PPb PPb ppb
L L 処理前 122 119 12 4 11 5 273
Ml ra;& VVV 9 L π u u n u 1
3
H L 処理前 29 37 3 1 4 2 76 n
XS 王 1¾ η HFK n u n u 丄 4
AC100 処理前 128 Ill 11 8 12 7 277
¾1理 ί 1き ΙΡΑ 0 o o o o o 0
L 3 0 処理前 42 49 3 1 0 19 114
3 1 1 n Λ
<ϋί¾ΐ¾ 丄 f h 1 丄 u n u U n u L
A 2 0 処理前 39 41 3 2 2 2 89
了 PA 1 1
丄 1 n u n n u n L
M A C 処理 4 2 0 1 1 1 9
U n//T丄 TpriA n n
I u U u
0 1 ί
1
C L 処理前 5 o 8
n 2
u V n
ϋ u ϋ ϋ
C H O 処理前 2 1 0 0 0 0 3
MT ZS ί<- nr u ft U U U U U U
I C 処理前 4 1 0 0 0 0 5 処理後 MEK 0 0 0 0 0 0 0
F A M 処理前 E 3 1 0 0 0 10 処理後 MEK + 0 0 0 0 0 0 0
L F A 処理前 1 0 0 0 11
7
処璦後 MEK o
Figure imgf000042_0001
0 0 0 0 0 尚、 表中 M E Kは含水メ チルェチルケ ト ン溶液を、 ま た HZ I P Aはヘプタ ン Z I P A = 9 0 Z 1 0 (体積比) 混合溶剤を意味する。
実施例 1 7
6種類の Ρ Α Ηが合計 9 0 ppb のラノ リ ン (F = 4 6 ppb 、 B b F = 3 0 ppb N B k F = 5 ppb 、 B a P = 3 ppb 、 B g P = 2 ppb . I c P = 4 ppb ) を、 2 3 0。 (:、 0. 0 0 5 トールの条件で真空蒸留し、 留分と して 9 %、 残澄と して 9 1 %を得た。
上記残渣の P A H合計は 1 0 ppb ( F = 3 ppb .
B b F = 4 ppb N B k F = 0 ppb . B a P = 0 ppb
B g P = 1 pb 、 I c P = 2 ppb ) であった。
この残渣をゲン化分解し、 抽出して脂肪酸とアルコ ー ルとに分離した。 かく して得られたラノ リ ン脂肪酸は収 率 6 4 %であり、 その P A H合計残量は 4 ppb であった。 また、 ラノ リ ンアルコールは収率 3 6 %であり、 その P A H残量は 2 0 ppb であつた。
尚、 対照試験と して同じ原料ラノ リ ンを真空蒸留する こ とな く 、 ゲン化分解し、 抽出して得られた脂肪酸とァ ルコールとの収率はそれぞれ 5 5 %及び 4 5 %であり、 それぞれの P A H残量は 9 ppb と 1 7 8 ppb であった。
上記結果より、 ラノ リ ンを特定条件下で真空蒸留する こ とによって、 P A Hをほとんど含まない脂肪酸と、 P A Hを含む遊離アルコールとに分離でき、 このアルコ ールからはその後のゲン化分解及び抽出操作によって P A Hを除去できるこ とがわかる。
実施例 1 8
実施例 1 7で用いたと同一のラノ リ ン (水酸基価 3 5 ) 5 0 0 gに、 ほう酸 1 0 gを添加し、 1 2 0 °C、 5 トー ルで 5時間反応させて、 ほう酸エステル化した。
このエステル化物を実施例 1 7 と同一条件で真空蒸留 し、 水洗し、 ほう酸を除去して処理ラノ リ ンを得た。
このラ ノ リ ン中の P A Hは l O ppb であり、 これはそ の後、 ゲ ン化分解及び抽出する こ とによって、 アルコ一 ノレ (収率 4 5 % ) と脂肪酸とに分離できた。
このこ とから、 ラノ リ ンを予めほう酸を用いてエステ ル化した後、 真空蒸留するこ とによって、 P A Hを選択 的に且つ収率よく蒸留除去できるこ とがわかる。
産業上の利用可能性
本発明によれば、 ラノ リ ン類中に残存する多環式芳香 族化合物 (P A H) をスチ レ ン—ジビニルベンゼンコポ リ マーによるゲルパー ミ エーシ ョ ンク ロマ ト グラ フ ィ 一 を用いて分離濃縮し、 蛍光検出器を備えた H P L Cによ り定量して測定する方法、 及び上記測定法により活性炭 の P A H除去活性度を測定し、 最適吸着処理条件を選択 すると共に P A H低下に必要な活性炭使用量を算出する 方法、 この必要量の活性炭とラノ リ ン類とを接触混合さ せて、 P A Hを特異的に活性炭に吸着させるこ とによる 該残存 P A Hの除去方法が提供される。 また、 本発明に よれば、 ほう酸エステル処理を行なうか行なう こ となく 真空蒸留して、 WG又はラノ リ ンから P A Hを除去する 方法が提供される。
上記本発明の P A H除去方法によれば、 発ガン性物質 である 6種類の P A H及びその他の類似の P A Hが、 簡 便に精度、 再現性よ く 除去できる。 その除去は、 例えば 合計 l O O O ppb の P A Hを含むラノ リ ン類を、 原料重 量の 1 0 %の活性炭の使用により、 2 ppb にまで低下で きるものであり、 しかもこの処理前後でのラノ リ ン類の 組成、 物性には変化はなく 、 収率も高い。 この方法によ P A Hを除去されたラノ リ ン類は従来用いられてきた 医薬、 化粧品用途により安全に使用できる。

Claims

請 求 の 範 囲
1 ラノ リ ン類中に含まれる多環式芳香族化合物をスチ レン一ジビニルベンゼンコポリマーによるゲルパー ミ エ ーシ ヨ ンク ロマ ト グラ フ ィ 一を用いて分離濃縮し、 測定する方法。 ·
2 ラノ リ ン類を活性炭で吸着処理して該ラノ リ ン類中 に含まれる多環式芳香族化合物を除去する方法。
3 ラノ リ ン類がウールグリース及びラノ リ ンを除く ラ ノ リ ン誘導体である請求の範囲第 2項に記載の方法。 4 ラ ノ リ ン誘導体がラノ リ ンアルコールである請求の 範囲第 2項に記載の方法。
5 ラノ リ ン類がウールグリ ース及びラノ リ ンであり、 活性炭による吸着処理が 3 0 °C以上で行なわれる請求 の範囲第 2項に記載の方法。
6 ラノ リ ン類がウールグリ ース及びラノ リ ンであり、 活性炭による吸着処理が無溶媒又はへキサン以外の有 機溶媒中で行なわれる請求の範囲第 2項に記載の方法 , 7 ウールグリ ース又はラノ リ ンを原料と してラノ リ ン 誘導体を得るに当り、 上記原料を温度 1 5 0 〜 2 5 0 。C、 真空度 0 . 1 〜 0 . 0 0 1 トールの条件下で蒸留 して残存多環式芳香族化合物を除去しておく ことを特 徵とする多環式芳香族化合物を除去されたラノ リ ン誘 導体の製造方法。 ラ ノ リ ン誘導体がラ ノ リ ンアルコールである請求の 範囲第 7項に記載の方法。
ウールグリ ース又はラ ノ リ ンをほう酸処理した後、 温度 1 5 0〜 2 5 0。C、 真空度 0. 1〜 0. 0 0 1 ト —ルの条件下で蒸留することを特徴とするウールグリ
—ス又はラノ リ ンから多環式芳香族化合物を除去する 方法。
PCT/JP1994/000010 1993-01-12 1994-01-07 Method of measuring content of polycyclic aromatic compound in lanolin and removal thereof WO1994016322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94904003A EP0632267A4 (en) 1993-01-12 1994-01-07 PROCESS FOR MEASURING AND SEPARATING POLYCYCLIC AROMATIC COMPOUNDS CONTAINED IN LANOLIN.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/36033 1993-01-12
JP3603393 1993-01-12

Publications (1)

Publication Number Publication Date
WO1994016322A1 true WO1994016322A1 (en) 1994-07-21

Family

ID=12458408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000010 WO1994016322A1 (en) 1993-01-12 1994-01-07 Method of measuring content of polycyclic aromatic compound in lanolin and removal thereof

Country Status (2)

Country Link
EP (1) EP0632267A4 (ja)
WO (1) WO1994016322A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941979A (zh) * 2017-11-13 2018-04-20 舟山市食品药品检验检测研究院 一种水产加工品中胆固醇氧化物含量检测方法
CN113663599A (zh) * 2021-08-19 2021-11-19 浙江花园营养科技有限公司 一种制备微粒状医药级羊毛醇的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075422A (ja) * 2001-09-05 2003-03-12 Showa Denko Kk 生体試料中の内分泌撹乱物質類の分析方法及び分析装置
EP2295529B2 (en) 2002-07-11 2022-05-18 Basf As Use of a volatile environmental pollutants-decreasing working fluid for decreasing the amount of pollutants in a fat for alimentary or cosmetic use
SE0202188D0 (sv) 2002-07-11 2002-07-11 Pronova Biocare As A process for decreasing environmental pollutants in an oil or a fat, a volatile fat or oil environmental pollutants decreasing working fluid, a health supplement, and an animal feed product
BRPI0410330A (pt) * 2003-05-13 2006-05-23 Cargill Inc determinação de hidrocarbonos aromáticos em produtos de óleo comestìveis
DE102012220494A1 (de) * 2012-11-09 2014-05-15 Beiersdorf Ag Verfahren zu Aufkonzentration von wichtigen Lanolinbestandteilen
DE102012220487A1 (de) * 2012-11-09 2014-05-15 Beiersdorf Ag Verfahren zur Reinigung von Lanolinwachs und Lanolinprodukten
CN106872608B (zh) * 2017-03-24 2020-08-18 海南出入境检验检疫局检验检疫技术中心 同时检测化妆品中24种禁限用过敏原香精物质的方法
EP3870358A4 (en) * 2018-10-25 2022-10-19 Douglas T. Gjerde COLUMNS AND METHODS FOR USE FOR ANALYTICAL STANDARDS AND COMPOUNDS
CN109839495B (zh) * 2019-03-22 2021-07-23 广东辛孚科技有限公司 一种根据分子组成计算轻质石油馏分馏程的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853930A (en) * 1972-02-04 1974-12-10 T Richey Process for treating lanolin and lanolin derivatives
DE2364333C3 (de) * 1973-12-22 1979-10-11 Deutsche Texaco Ag, 2000 Hamburg Verfahren zur Abtrennung von aromatischen Kohlenwasserstoffen aus n-Paraffingemischen durch Behandlung mit einem wasserfreien makroporösen Kationenaustauscherharz
JPS5247009A (en) * 1975-10-09 1977-04-14 Kao Corp Non-allergenic lanolin and its derivatives, and process for preparing the same
DE3215912A1 (de) * 1982-04-29 1983-11-03 Henkel Kgaa Wollwachs-ersatzprodukt
WO1990002789A1 (en) * 1988-09-14 1990-03-22 Yoshikawa Oil & Fat Co., Ltd. Process for purifying lanolins

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INT. J. ENVIRON. ANAL. CHEM., vol. 24, no. 2, 1986, pages 113 - 131
J. Chromatogr., Vol. 189, No. 2, (1980), JACK. L. ROBINSON et al., "Liquid-Solid Chromatography on Amberlite XAD-2 and other Styrene-Divinylbenzene Adsorbents. I. Development of a Solvent Eluotrpic Scale", p. 145-167. *
J. Chromatogr., Vol. 625, No. 2, (1992), PILAR, FERNANDEZ et al., "Use of Offline Gel Permeation Chromatography-Normal-Phase Liquid Chromatography for the Determination of Polycyclic Aromatic Compounds in Environmental Samples and Standard Reference Materials (Air Particulate Matte and Marine Sediment)", p. 141-149. *
See also references of EP0632267A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941979A (zh) * 2017-11-13 2018-04-20 舟山市食品药品检验检测研究院 一种水产加工品中胆固醇氧化物含量检测方法
CN113663599A (zh) * 2021-08-19 2021-11-19 浙江花园营养科技有限公司 一种制备微粒状医药级羊毛醇的方法

Also Published As

Publication number Publication date
EP0632267A1 (en) 1995-01-04
EP0632267A4 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
Machado et al. Supercritical fluid extraction using CO2: main applications and future perspectives
Deiana et al. Novel approach to study oxidative stability of extra virgin olive oils: importance of α-tocopherol concentration
Passos et al. Supercritical fluid extraction of grape seed (Vitis vinifera L.) oil. Effect of the operating conditions upon oil composition and antioxidant capacity
Gironi et al. Temperature and solvent effects on polyphenol extraction process from chestnut tree wood
WO1994016322A1 (en) Method of measuring content of polycyclic aromatic compound in lanolin and removal thereof
CA2040816C (en) Labiatae derived antioxidants and a process for extracting antioxidants from labiatae herbs
FI96853C (fi) Pitkäketjuisten rasvahappomonoglyseridien selektiivinen esteröinti keskipitkäketjuisilla rasvahapoilla
CN107666904A (zh) 多不饱和脂肪酸的纯化组合物、其制备方法及其用途
Li et al. Preparative separation of cacao bean procyanidins by high-speed counter-current chromatography
Oprescu et al. Does the ultrasonic field improve the extraction productivity compared to classical methods–Maceration and reflux distillation?
Zhao et al. Effect of activated charcoal treatment of alkaline hydrolysates from sugarcane bagasse on purification of p-coumaric acid
JP2003512481A (ja) 超臨界圧溶剤を用いた数種の成分からなる原料の分留方法
Ishidate et al. Macromolecular helicity induction and memory in a poly (biphenylylacetylene) bearing an ester group and its application to a chiral stationary phase for high-performance liquid chromatography
Hoe et al. Direct recovery of palm carotene by liquid-liquid extraction
Xie et al. Effect of chemical refining on the levels of bioactive components and hazardous substances in soybean oil
CN100374534C (zh) 从植物油精制的副产物回收植物甾醇的方法
Cai et al. Changes in PAH and 3-MCPDE contents at the various stages of Camellia oleifera seed oil refining
Suzuki et al. Behavior of chlorophyll derivatives in canola oil processing
Vaisman et al. The isolation of ricinoleic acid from castor oil by salt‐solubility‐based fractionation for the biopharmaceutical applications
Choudhury et al. Effect of extraction methods on physical and chemical properties and shelf life of black cumin (Nigella sativa L.) oil
Winkler-Moser et al. Comparison of the impact of γ-oryzanol and corn steryl ferulates on the polymerization of soybean oil during frying
da Cruz Francisco et al. Application of supercritical carbon dioxide for the extraction of alkylresorcinols from rye bran
San-Martín et al. Tropane alkaloids from Schizanthus grahamii
Bonveh et al. A laboratory study of the bleaching process in stigmasta-3, 5-diene concentration in olive oils
BG104549A (bg) Метод за екстракция на органична молекула(и) при използване на разтворител съдържащ хидрофлуороетер

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 295671

Date of ref document: 19940908

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1994904003

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994904003

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 692121

Date of ref document: 19960805

Kind code of ref document: A

Format of ref document f/p: F

WWW Wipo information: withdrawn in national office

Ref document number: 1994904003

Country of ref document: EP