WO1994014728A1 - Ceramic sintered body having metallic skeleton - Google Patents

Ceramic sintered body having metallic skeleton Download PDF

Info

Publication number
WO1994014728A1
WO1994014728A1 PCT/JP1993/000185 JP9300185W WO9414728A1 WO 1994014728 A1 WO1994014728 A1 WO 1994014728A1 JP 9300185 W JP9300185 W JP 9300185W WO 9414728 A1 WO9414728 A1 WO 9414728A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
ceramic sintered
ceramic
metal
temperature
Prior art date
Application number
PCT/JP1993/000185
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Ikami
Chisato Oota
Original Assignee
Yugengaisha Ado Seramikkusu Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yugengaisha Ado Seramikkusu Kenkyusho filed Critical Yugengaisha Ado Seramikkusu Kenkyusho
Publication of WO1994014728A1 publication Critical patent/WO1994014728A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • C04B35/76Fibres, filaments, whiskers, platelets, or the like

Definitions

  • a ceramic composition which is for example quartz general showed a greater expansion by transformation in the firing Atsushi Nobori process, if it exceeds 570 to 60 0 ° C the thermally expanded is 8 0 X 1 0 - becomes more than Te 7 Bruno , whereas, in the temperature below 600, RiNoboru thermally expanded by including the contraction of the clay component Ri dirt floor and the 5 0 ⁇ 6 0 X 1 0 7 Z ° C as low level, 1 000 ° C At the above sintering temperature, large sintering shrinkage of 5 to 10% is exhibited. Therefore, in the case of the conventional general ceramic composition, as shown in was example, if FIG.
  • a preferred ceramic composition for realizing a ceramic sintered body having a metal as a skeleton of the present invention is (CaO + Mg0 + A123) / Si02.
  • One or more molding aids composed of metal salts and hydraulic cements are contained in the raw material in an amount of 3 to 20% by weight of the raw material. Shown is a composition that is compounded and shrinks within 0.5% of shrinkage.
  • a metal salt such as sodium silicate or calcium silicate
  • the range of 3 to 10% by weight of the raw material is appropriate, and when it is 3% or less, sufficient molding strength is obtained. If it exceeds 10%, there is a problem in terms of economics. ⁇
  • hydraulic cements such as Portland cement and blast furnace cement are used, adjust in the range of 10 to 20% by weight.
  • the auxiliaries can be used alone or in admixture.
  • These metallic materials generally have a greater degree of thermal expansion than the above-mentioned composition, but in order to absorb this difference, an organic paste such as starch, polybutyl alcohol, or M.C. It is also effective to provide a coating of the material.
  • This organic glue material does not easily disappear when the oxygen content in the composition is low, and begins to carbonize at about 350 ° C. Even at 1200 ° C, the surface layer of the rebar as carbon is formed. To be retained. As long as this carbon remains, oxidation of the rebar does not proceed easily.When firing is completed, the incision is made and the state of the rebar surface is observed. Indicates a certain state.
  • the thickness of the organic glue layer may be 0.5% of the rebar diameter according to the results of the experiment, but considering the amount of residual carbon remaining on the surface layer and the absorption of stress due to the longitudinal expansion and contraction of the rebar, the diameter is It is desirable to set it to 1.0% or more. If the thickness of the coating film is required to be 0.05 mm or more, it is effective to mix charcoal powder and paper powder.
  • Starch and charcoal powder were mixed at a weight ratio of 1: 1. After adding 10 to 12 times the amount of water and heating to adjust the glue, it was applied to the rebar surface to a film thickness of about 0.2 mm and dried. .
  • a reinforcing bar (2) was buried almost at the center of the molded composition (1).
  • the crossing of the rebar (2) was loosely bound with a 1.0 mm diameter wire.
  • No. 1 and No. 2 were compacted at a pressure of 150 kg / cm 2 by the powder pressing method, and No. 3 was kneaded as a cement mortar by adding 30 to 50% of water. Then, it was subjected to vibration filling molding between the molds, and cured and cured in 60 steam atmospheres for 24 hours.
  • sintering shrinkage column of Table 2 indicates expansion and-indicates shrinkage.
  • the flexural strength shows the strength value at the time when a crack was found in the composition by observing the surface while applying a load to the center at a span of 200.
  • No. 1, No. 2 and No. 3 did not separate the rebar and the composition even under a load of 1000 kg / cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

A ceramic sintered body in which a linear, rodlike or metallic net-like metallic material is integrally embedded in a predetermined skeleton arrangement. A ceramic sintered body is provided in which a metallic skeleton comprising reinforcing bars or the like is integrally embedded, the integral embedding of such a metallic skeleton being regarded as impossible with the conventional pratices. Thus, a building material is realized that is superior in reliability in terms of strength, as well as in ceramic weatherability.

Description

明細 金属を骨格と した陶磁器質焼結体 技術分野  Description Ceramic sintered body with metal skeleton
この発明は、 金属を骨格と した陶磁器質焼結体に関す る ものである。 さ らに詳し く は、 この発明は、 建築構造 材料あるいは下水道管などの土木材料等と して、 高い破 壊強度が必要な材料分野に利用される陶磁器質焼結体に 関する ものである。  The present invention relates to a ceramic sintered body having a metal as a skeleton. More specifically, the present invention relates to a ceramic sintered body used as a building structural material or a civil engineering material such as a sewer pipe in a material field requiring high breaking strength.
背景技術 Background art
鉄筋で補強された窯業系材料は、 鉄筋コ ンク リ ー ト、 Ceramic materials reinforced with rebar are reinforced concrete,
A . L . C など、 広く 建築や土木分野において使用されてい るが、 いずれもセメ ン ト質材料に限られている。 It is widely used in the construction and civil engineering fields, such as A.L.C, but all are limited to cementitious materials.
また、 ガラス材料の分野では、 板ガラスの内部に金網 を入れて一体化成形した 「網入り ガラス」 が知られてお り、 破損し易いガラス材料を金属で補強したものと して 広く 使用されている。 この板ガラスは、 セラ ミ ッ クスと しては熱膨張率が高く 、 金属に近い材料である こ と、 お よび線径の細い金網を使用 し、 ガラスの凝固温度である 600 〜700 でからの冷却過程において、 熱膨張率の差に よ り内部に発生する潜在応力が比較的小さいこ とによつ て、 実現されている ものである。 In the field of glass materials, `` netted glass '' in which a wire mesh is inserted into a sheet glass and integrally formed is known, and is widely used as a glass material that is easily broken and reinforced with metal. I have. This glass sheet has a high coefficient of thermal expansion as a ceramic, is a material close to metal, uses a wire mesh with a small wire diameter, and has a solidification temperature of 600 to 700, which is the glass solidification temperature. During the cooling process, the latent stress generated inside due to the difference in the coefficient of thermal expansion is relatively small. It has been realized.
このよ う に、 セメ ン ト質材料および板ガラスについて は、 鉄筋や金属網で補強したものが知られているが、 い ずれも極めて限られた材料分野での応用であって、 「脆 く てこわれ易い」 欠点を有する陶磁器質材料については、 未だ金属材料による補強は実用的に完成されていないの が実情である。  As described above, cementitious materials and sheet glass are known to be reinforced with reinforcing bars or metal nets. As for ceramic materials that have the disadvantage of being fragile, reinforcement with metallic materials has not yet been practically completed.
このよ うな状況において、 この発明の発明者によって、 「金属複合セラ ミ ッ クス焼結体」 が提案されているが、 この焼結体は繊維状または切片状の金属 分散させて補 強したものであって、 部分的な補強効果は発揮されるが、 製品と しての骨格を有しないため、 構造材料と しての信 頼度が低く 、 使用分野が制約されていた。  In such a situation, the inventors of the present invention have proposed a “metal composite ceramic sintered body”. This sintered body is obtained by dispersing and reinforcing a fibrous or sectioned metal. Although it has a partial reinforcing effect, it does not have a skeleton as a product, so its reliability as a structural material is low, and its field of use has been restricted.
このため、 陶磁器質焼結体に骨格となる金属材料を一 体化した製品の実現が求められていたが、 このこ とは、 以下の理由によって極めて困難な課題である と考えられ ていた。  For this reason, there has been a demand for the realization of a product in which a skeletal metal material is integrated with a ceramic sintered body, but this was considered to be an extremely difficult task for the following reasons.
( 1 ) 金属は、 一般にセラ ミ ッ クスの約 2倍に近い熱 膨張率を持ち、 焼結時に内部に封入される と金属の膨張 によ り組織が破壊される。  (1) Metals generally have a coefficient of thermal expansion that is about twice that of ceramics, and when encapsulated during sintering, the structure is destroyed by the expansion of the metal.
( 2 ) 鉄筋など金属は、 500 °Cを超える と急激に表面 から酸化して酸化層を形成し、 容積をさ らに拡大する と と もに、 長時間の高温度加熱によ り酸化層が広がり、 鉄 筋が段々 と細く なって補強効果が著し く 低下する。 (2) Metals such as rebar suddenly oxidize from the surface above 500 ° C to form an oxide layer, and when the volume is further expanded, At the same time, the prolonged high-temperature heating causes the oxide layer to spread and the reinforcing bar to become thinner, and the reinforcing effect is significantly reduced.
従って、 金属を骨格と して一体化焼結した陶磁器質材 料は従来技術によ っては実現不可能であった。  Therefore, a ceramic material integrally sintered using a metal as a skeleton could not be realized by the prior art.
発明の開示 Disclosure of the invention
この発明は、 以上の通りの事情に鑑みてなされたもの であり、 従来技術の限界を克服し、 製品強度と して最も 信頼度の高い金属材料を骨格と し、 焼結体内部へ安定状 態で埋設した、 金属を骨格とする陶磁器質焼結体を提供 する こ とを目的と している。 ''  The present invention has been made in view of the above circumstances, and overcomes the limitations of the conventional technology, uses a metal material having the highest reliability as a product strength as a skeleton, and stabilizes the inside of a sintered body. The purpose of the present invention is to provide a ceramic sinter having a metal skeleton embedded in a state. ''
この発明は、 上記の課題を解決する ものと して、 陶磁 器質焼結体であって、 この焼結体に、 線状、 棒状または 金網状の金属材料が所定の骨格配置で埋設一体化されて なる こ とを特徴とする金属を骨格とする陶磁器質焼結体 を提供する。 . ―  The present invention is to solve the above-mentioned problem, and is a ceramic sintered body, in which a linear, rod-shaped or wire mesh-shaped metal material is embedded and integrated in a predetermined skeletal arrangement. The present invention provides a ceramic sintered body having a metal skeleton. . ―
さ らに詳し く は、 この発明は、 焼成、 加熱の過程にお いて、 昇温と と もに 8 0 X 1 0 — 7 Z °C以上の線熱膨張率 を保ちながらほぼ直線的に膨張を続け、 1 000 °C以上の温 度において 0. 5 %以上の焼結収縮を起こすこ とのない、 収縮の少ない陶磁器質組成物に、 所定の骨格位置で線状、 棒状または金網状の金属材料が埋設一体化成形され、 か つ、 1 00 CTC以上 1 250 °C以下の温度で焼結されてなる焼結 体をその態様と してもいる。 More specifically, the present invention provides an almost linear expansion while maintaining a linear thermal expansion coefficient of 80 X 10 — 7 Z ° C or more in the process of firing and heating. The ceramic composition with low shrinkage that does not cause sintering shrinkage of 0.5% or more at a temperature of 1 000 ° C or more can be formed into a linear, rod-like or wire-mesh-like shape at a given skeleton position. A sintering process in which a metal material is embedded and molded integrally and sintered at a temperature of 100 CTC or more and 1250 ° C or less. The body is the embodiment.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
添付した図面は次のものを示している。 すなわち、 第 1 図は、 この発明に係わる鉄筋および組成物の熱膨 張性を、 従来の陶磁器組成物と比較して示した温度相関 図である。  The attached drawings show: That is, FIG. 1 is a temperature correlation diagram showing the thermal expansion properties of the reinforcing bar and the composition according to the present invention in comparison with the conventional ceramic composition.
第 2 図は、 実施例と してのこの発明の焼結体を示した 平断面図および正断面図である。 また、 図中において、 1 は成形体を、 2 は鉄筋を示している。  FIG. 2 is a plan sectional view and a front sectional view showing a sintered body of the present invention as an example. In the figure, 1 indicates a compact and 2 indicates a reinforcing bar.
発明を実現するための最良の形態 '' BEST MODE FOR CARRYING OUT THE INVENTION ''
こ の発明における陶磁器質組成物は、 8 0 X 1 0 " °C以上の熱膨張率をほぼ直線的に示すものと し、 1 000 °C 以上の焼結温度においても焼結による収縮は 0. 5 %を超 えない、 収縮の少ない組成物である こ とを好ま しい要件 と している。  The ceramic composition according to the present invention has a coefficient of thermal expansion of 80 X 10 "° C or more in a substantially linear manner. It is a preferred requirement that the composition not exceed 5% and have low shrinkage.
一般の陶磁器組成物であるたとえば石英は、 焼成昇温 過程において変態によって大きな膨張を示し、 570 〜60 0 °Cを超える とその昇温膨張は 8 0 X 1 0 — 7ノて以上に なるが、 一方で、 600 で以下の温度では、 粘土成分の収 縮などによ り昇温膨張は 5 0 〜 6 0 X 1 0 7 Z °C程度の 低いレベルにと どま り、 1 000 °C以上の焼結温度において は 5 〜 1 0 %の大きい焼結収縮を示す。 このため、 従来一般の陶磁器組成物の場合には、 たと えば図 1 ( A ) に示したよう に、 膨張、 収縮について大 きな変曲点を示し、 たとえば 120 〜 1 50 1 0 7 Zでの 熱膨張によって直線的に膨張する金属材料 (図 1 ( B ) ) との膨張相似性を持ち得ないため、 焼結においてこの 金属材料の膨張による破壊から逃れられない。 A ceramic composition which is for example quartz general showed a greater expansion by transformation in the firing Atsushi Nobori process, if it exceeds 570 to 60 0 ° C the thermally expanded is 8 0 X 1 0 - becomes more than Te 7 Bruno , whereas, in the temperature below 600, RiNoboru thermally expanded by including the contraction of the clay component Ri dirt floor and the 5 0 ~ 6 0 X 1 0 7 Z ° C as low level, 1 000 ° C At the above sintering temperature, large sintering shrinkage of 5 to 10% is exhibited. Therefore, in the case of the conventional general ceramic composition, as shown in was example, if FIG. 1 (A), the expansion, the contraction shows has a significant inflection point, for example 120 ~ 1 50 1 0 7 Z Since it cannot have expansion similarity to a metal material that expands linearly due to thermal expansion (Fig. 1 (B)), it cannot escape from the destruction due to expansion of this metal material during sintering.
しかしながら、 この発明における陶磁器質組成物は、 図 1 ( C ) のよ う に、 金属材料との相似性を維持して直 線的に膨張してい く 。 このため、 組成物と金属材料との 焼結体と しての一体化が可能となる。 ''  However, as shown in FIG. 1 (C), the ceramic composition of the present invention expands linearly while maintaining the similarity with the metal material. Therefore, the composition and the metal material can be integrated as a sintered body. ''
この発明の金属を骨格と した陶磁器質焼結体を実現す るための好適な陶磁器質組成物 と しては、 ( C a O + M g 0 + A 1 2 0 3 ) / S i 0 2 の比が 0. 6 〜1 . 5 の 範囲の化学組成を有し、 かつ、 高温で溶融されてガラス 質と して産出されたものが主原料と して 2 0 〜 9 5 重量 %の範囲内で含まれ、 金属塩および水硬性セ メ ン ト類か らなる成形助剤の 1 種以上が原料の 3〜 2 0重量%配合さ れ、 さ らに必要に応じて非収縮性原料が配合されてなり 、 収縮が 0. 5 %以内で焼結される組成物が示される。 ガ ラス状態で産出される原料は、 高炉水滓などが代表的な ものであ り、 ガラス質水滓は、 加熱過程において 850 〜 950 での温度範囲で発熱反応を起こ しながら結晶化し、 わずかに膨張を示しながら反応焼結する特性を有してい る。 このガラス質物が主原料と して 2 0 %以上含有され た組成物は、 1 000 °C以上の焼結温度において焼結収縮が 0. 5 %以下の範囲に調整される。 配合率が大き く なる と 、 焼結体は膨張性を示すため、 製品の寸法安定性の点か らその配合割合は 2 0〜 9 5 %とするのが好ま しい。 A preferred ceramic composition for realizing a ceramic sintered body having a metal as a skeleton of the present invention is (CaO + Mg0 + A123) / Si02. Has a chemical composition in the range of 0.6 to 1.5, and is produced as a vitreous by melting at a high temperature as a main raw material in a range of 20 to 95% by weight. One or more molding aids composed of metal salts and hydraulic cements are contained in the raw material in an amount of 3 to 20% by weight of the raw material. Shown is a composition that is compounded and shrinks within 0.5% of shrinkage. The raw material produced in the glass state is typically blast furnace slag, and the vitreous slag crystallizes during the heating process in the temperature range of 850 to 950 while causing an exothermic reaction. It has the property of reaction sintering while showing a slight expansion. The composition containing 20% or more of this vitreous material as a main raw material is adjusted to have a sintering shrinkage of 0.5% or less at a sintering temperature of 1,000 ° C or more. When the mixing ratio increases, the sintered body exhibits expandability. Therefore, the mixing ratio is preferably set to 20 to 95% from the viewpoint of dimensional stability of the product.
成形助剤と して珪酸ソーダ、 珪酸カ リ などの金属塩を 用いる場合には、 原料の 3 〜 1 0 重量%の範囲が適当で あり、 3 %以下の場合は充分な成形強度が得られず、 1 0 %を超える と経済性の面で問題がある。' 一方、 ポル ト ラ ン ドセ メ ン ト 、 高炉セ メ ン ト な ど水硬性セ メ ン ト類を 使用する場合には、 1 0 〜 2 0重量%の範囲で調整する < これらの成形助剤は、 単独も し く は混合して使用するこ とができ る。  When a metal salt such as sodium silicate or calcium silicate is used as a molding aid, the range of 3 to 10% by weight of the raw material is appropriate, and when it is 3% or less, sufficient molding strength is obtained. If it exceeds 10%, there is a problem in terms of economics.一方 On the other hand, when hydraulic cements such as Portland cement and blast furnace cement are used, adjust in the range of 10 to 20% by weight. The auxiliaries can be used alone or in admixture.
また組成物には、 目的とする製品の要求される物性や 製品の大き さなどによ り必要に応じて、 予め高温で焼成 されて収縮しないものと した陶磁器や煉瓦等を粉砕した シャモ ッ ト類や、 フライア ッ シュあるいは軽量化の目的 の場合にはパーライ ト等を配合する こ とができる。  In addition, a chamotte made of crushed ceramics, bricks, etc., which have been pre-fired at a high temperature and do not shrink, if necessary, depending on the physical properties required of the target product and the size of the product, etc. For the purpose of fly ash or weight reduction, pearlite etc. can be blended.
さ らにまた、 この発明において焼結体内部に埋設され る金属材料と しては、 鉄筋と しての鉄線、 その他の丸棒 も し く は角棒、 金網等が使用される。 この場合、 鉄材に限られる こ とな く 、 熱膨張が鉄材に 近似した各種の金属材料が好ま し く 使用される こ とは言 う までもない。 Further, as the metal material embedded in the sintered body in the present invention, an iron wire as a reinforcing bar, other round or square bars, a wire mesh, or the like is used. In this case, it is needless to say that not only the iron material but also various metal materials whose thermal expansion is similar to the iron material are preferably used.
これらの金属材料は、 一般的に前記の組成物と比べて 熱膨張の程度が大きいが、 この差を吸収するために、 金 属材料表面に澱粉、 ポリ ビュルアルコール、 M . C など の有機質糊材料の塗膜を付与してお く こ とが有効でもあ る。 この有機質糊材料は、 組成物内部の酸素の少ない状 態では容易に消失する こ とはな く 、 約 350 °Cから炭化が 始ま り、 1 200 °Cにおいても炭素と して鉄筋の表面層に残 留する。 そ して、 この炭素が残留する限り、 鉄筋の酸化 は容易に進行する こ とな く 、 焼成完了後切開して鉄筋表 面の状態を観察する と、 滲炭層のよう に鉄筋表面は光沢 のある状態を示す。 有機質糊層の厚さは実験の結果から は鉄筋直径の 0. 5 %で良いが、 表面層に残る残留炭素量 および鉄筋の長手方向の伸縮によ り応力の吸収を考慮す る と、 直径の 1 . 0 %以上とするのが望ま しい。 また、 塗 膜の厚さが 0. 05 mm以上必要である場合には、 木炭粉、 紙 粉などを混合するのも有効である。  These metallic materials generally have a greater degree of thermal expansion than the above-mentioned composition, but in order to absorb this difference, an organic paste such as starch, polybutyl alcohol, or M.C. It is also effective to provide a coating of the material. This organic glue material does not easily disappear when the oxygen content in the composition is low, and begins to carbonize at about 350 ° C. Even at 1200 ° C, the surface layer of the rebar as carbon is formed. To be retained. As long as this carbon remains, oxidation of the rebar does not proceed easily.When firing is completed, the incision is made and the state of the rebar surface is observed. Indicates a certain state. The thickness of the organic glue layer may be 0.5% of the rebar diameter according to the results of the experiment, but considering the amount of residual carbon remaining on the surface layer and the absorption of stress due to the longitudinal expansion and contraction of the rebar, the diameter is It is desirable to set it to 1.0% or more. If the thickness of the coating film is required to be 0.05 mm or more, it is effective to mix charcoal powder and paper powder.
有機質糊材料が燃焼を開始し、 炭化して容積を減少し 始める約 350 °Cまでの鉄筋と組成物の熱膨張率の差はわ ずかに 0. 1 %以内であ り、 組成物に及ぼす鉄筋の膨張応 力は充分弾性吸収でき る こ とが確認されている。 The difference in the coefficient of thermal expansion between the rebar and the composition up to about 350 ° C, where the organic glue material starts to burn and begins to carbonize and reduce the volume, is only within 0.1%. Effect of reinforcing bar on expansion It has been confirmed that the force can be sufficiently elastically absorbed.
以下、 実施例を示し、 さ らに詳し く この発明について 説明する。  Hereinafter, the present invention will be described in more detail with reference to Examples.
実施例 Example
以下の条件でサイズ 300 mmx 600 mm x 2 0 mmの陶磁器 質成形体の内部に、 直径 5 mm径の鉄筋を埋設成形し、 口 —ラ—ハースキルンを用いて、 昇温速度 2 0 °CZ分で 12 Under the following conditions, a reinforcing rod with a diameter of 5 mm is buried inside a ceramic molded body with a size of 300 mm x 600 mm x 20 mm, and the temperature is raised at a rate of 20 ° CZ using a mouth-lah kiln. At 12
00°Cまで上昇させ、 約 2 0分間保持した後 3 0 °C Z分の 速度で冷却して焼結製品を得た。 The temperature was raised to 00 ° C, held for about 20 minutes, and then cooled at a rate of 30 ° C Z to obtain a sintered product.
( 1 ) 鉄筋の表面処理 ''  (1) Rebar surface treatment ''
澱粉と木炭粉を 1 : 1 の重量比で混合し、 1 0 〜 1 2 倍の水を加えて加温して糊を調整した後、 鉄筋表面に膜 厚約 0.2 mm程度に塗布し乾燥した。  Starch and charcoal powder were mixed at a weight ratio of 1: 1. After adding 10 to 12 times the amount of water and heating to adjust the glue, it was applied to the rebar surface to a film thickness of about 0.2 mm and dried. .
( 2 ) 鉄筋の配列と結着  (2) Rebar arrangement and binding
図 2 に示したよ う に、 組成物成形体 ( 1 ) のほぼ中心 部に鉄筋 ( 2 ) を埋設した。 鉄筋 ( 2 ) の交差部分は 1. 0 mm径の針金でルーズに結着した。  As shown in Fig. 2, a reinforcing bar (2) was buried almost at the center of the molded composition (1). The crossing of the rebar (2) was loosely bound with a 1.0 mm diameter wire.
( 3 ) 陶磁器質組成物の配合 .  (3) Formulation of ceramic composition.
次の表 1 の通りの配合比 (重量比) と した。 表 1 The mixing ratio (weight ratio) was as shown in Table 1 below. table 1
Figure imgf000011_0001
Figure imgf000011_0001
( 4 ) 成形方法 (4) Molding method
No. 1 , No. 2 は粉末加圧成形方法で 150 kg/cm2の圧 力で成形し、 No. 3 は水分 3 0 〜 5 0 %を加えてセ メ ン トモルタ ルと して混練し、 金型間へ振動充塡成形し、 6 0 ての水蒸気雰囲気中で 2 4 時間養生硬化させた。 No. 1 and No. 2 were compacted at a pressure of 150 kg / cm 2 by the powder pressing method, and No. 3 was kneaded as a cement mortar by adding 30 to 50% of water. Then, it was subjected to vibration filling molding between the molds, and cured and cured in 60 steam atmospheres for 24 hours.
( 5 ) 焼結後の製品の外観および内部切開による鉄 筋周辺の亀裂観察  (5) Observation of cracks around rebar due to appearance and internal incision of product after sintering
以下の結果が観察された。  The following results were observed.
No. 1 外観および内部に全く 亀裂部分発生な し No. 2 外観および内部に全く 亀裂部分発生な し No. 3 外観および内部に全く 亀裂部分発生なし ( 6 ) 焼結製品の物性  No. 1 No cracks on appearance and inside No. 2 No cracks on appearance and inside No. 3 No cracks on appearance and inside (6) Physical properties of sintered product
表 2 の物性値が確認された。 表 2 The physical properties in Table 2 were confirmed. Table 2
Figure imgf000012_0001
Figure imgf000012_0001
なお、 前記表 2 の焼結収縮欄の +は膨張を、 -は収縮 を示している。 また、 曲げ強度は、 スパン 200 隱で中央 に荷重をかけながら表面を観察し、 組成物に亀裂が発見 された時点の強度値を示している。 In the sintering shrinkage column of Table 2, + indicates expansion and-indicates shrinkage. The flexural strength shows the strength value at the time when a crack was found in the composition by observing the surface while applying a load to the center at a span of 200.
No. 1 , No. 2 , No. 3 のいずれも力 、 1000kg/cm2の 荷重下において も鉄筋と組成物は分離するこ とはなかつ た。 No. 1, No. 2 and No. 3 did not separate the rebar and the composition even under a load of 1000 kg / cm 2 .
産業上の利用可能性 Industrial applicability
従来、 常識では不可能とされていた鉄筋等の金属骨格 が埋設一体化された陶磁器質焼結体が提供される。 強度 信頼性の高い鉄骨等の金属材料と耐候性の高いセラ ミ ッ ク スの特徴を生かした建築用構造材料と しての新しい素 材が提供される。  There is provided a ceramic sintered body in which a metal skeleton such as a reinforcing bar, which was conventionally impossible with common sense, is embedded and integrated. Strength A new material is provided as a structural material for building that utilizes the features of highly reliable metal materials such as steel frames and ceramics with high weather resistance.

Claims

請求の範囲 The scope of the claims
1 . 陶磁器質焼結体であって、 この焼結体に、 線状、 棒状または金網状の金属材料が所定の骨格配置で埋設一 体化されてなる こ とを特徴とする金属を骨格と した陶磁 器質焼結体。 1. A sinter made of a ceramic material, characterized in that a linear, rod-shaped or wire-mesh-shaped metal material is embedded in a predetermined skeletal arrangement into the sintered body. Ceramic sintered body.
2 . 焼成、 加熱の過程において、 昇温と と もに 8 0 X 1 0 —7Z°C以上の線熱膨張率を保ちながらほぼ直線的に 膨張を続け 1000°C以上の温度をおいて 0.5 %以上の焼結 収縮を起こすこ とのない、 収縮の少ない陶磁器質組成物 に、 所定の骨格位置で線状、 棒状または金網状の金属材 料が埋設一体化成形され、 かつ、 1000°C以上 1250°C以下 の温度で焼結されてなる こ とを特徴とする請求項 1 の陶 磁器質焼結体。 2. In the process of firing and heating, the expansion is continued almost linearly while maintaining the linear thermal expansion coefficient of 80 X 10 — 7 Z ° C or more with the temperature rise, and the temperature is raised to 1000 ° C or more. 0.5% or more sintering Shrinkage-free, low shrinkage porcelain composition, linear, rod-shaped or wire mesh metal material embedded at a given skeletal position and integrally molded, and 1000 ° The ceramic sintered body according to claim 1, wherein the ceramic sintered body is sintered at a temperature of not less than C and not more than 1250 ° C.
3 . ( C a O + M g O + A l 23 ) / S i 02 の比 が 0.6 〜し 5 の範囲の化学組成を有し、 かつ、 高温で溶 融されてガラス質と して産出された ものが主原料と して 2 0 〜 9 5重量%の範囲で含まれ、 金属塩および水硬性 セ メ ン 卜類からなる成形助剤の 1 種以上が原料の 3 〜 2 0重量%配合され、 さ らに必要に応じて非収縮性原料が 配合されてなる組成物からなる請求項 1 または 2 の陶磁 器質焼結体。 3. (C a O + M g O + A l 2 〇 3) / S i 0 2 ratio has a chemical composition in the range of 0.6 to five, and the vitreous is molten at a high temperature The main raw material is contained in the range of 20 to 95% by weight, and one or more molding aids composed of metal salts and hydraulic cements are contained in the raw material in an amount of 3 to 20%. The ceramic sintered body according to claim 1 or 2, wherein the ceramic sintered body is a composition which is blended by weight% and, if necessary, further blended with a non-shrinkable raw material.
4 . 埋設一体化成形される金属材料の表面層と して、 金属材料の直径の 1 %以上の厚さの有機質糊の塗膜が形 成されてなる請求項 2 または 3 の金属を骨格と した陶磁 器質焼結体。 4. The metal according to claim 2 or 3, wherein a coating layer of an organic glue having a thickness of 1% or more of the diameter of the metal material is formed as a surface layer of the metal material to be embedded and integrally molded. Ceramic sintered body.
PCT/JP1993/000185 1992-12-28 1993-02-12 Ceramic sintered body having metallic skeleton WO1994014728A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/348009 1992-12-28
JP34800992A JP3202376B2 (en) 1992-12-28 1992-12-28 Ceramic sintered body with metal skeleton

Publications (1)

Publication Number Publication Date
WO1994014728A1 true WO1994014728A1 (en) 1994-07-07

Family

ID=18394125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000185 WO1994014728A1 (en) 1992-12-28 1993-02-12 Ceramic sintered body having metallic skeleton

Country Status (3)

Country Link
JP (1) JP3202376B2 (en)
CN (1) CN1088898A (en)
WO (1) WO1994014728A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723856A (en) * 2020-12-25 2021-04-30 唐山北方瓷都陶瓷集团卫生陶瓷有限责任公司 Low-deformation ceramic biscuit and preparation process thereof
CN118061697A (en) * 2023-12-26 2024-05-24 德化县万盛陶瓷有限公司 Ceramic handicraft with reinforced body and preparation process thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474312B (en) * 2013-09-09 2016-08-10 电子科技大学 A traveling wave tube clamping rod and its preparation method
CN106045472B (en) * 2016-05-27 2018-10-30 江西萍乡龙发实业股份有限公司 A kind of preparation method of composite material ecological ceramic water-permeable brick
CN106321626A (en) * 2016-10-17 2017-01-11 北京动力机械研究所 High-temperature-resisting knuckle bearing for actuator
CN106851871A (en) * 2017-01-13 2017-06-13 杭州格拉思康科技有限公司 Ceramic layered heating
CN109574638A (en) * 2018-12-29 2019-04-05 山东天汇研磨耐磨技术开发有限公司 A kind of high-bond ceramics section and its manufacturing method applying metal-rubber
CN110614483B (en) * 2019-10-22 2021-04-06 苏师大半导体材料与设备研究院(邳州)有限公司 A kind of production process of ceramic stirrer
CN112142484A (en) * 2020-09-18 2020-12-29 株洲三达电子制造有限公司 Preparation method of ceramic for ceramic sensor
CN116283322A (en) * 2023-04-10 2023-06-23 广东丰鑫智能科技有限公司 Large-scale structural ceramic formula

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111284A (en) * 1980-12-29 1982-07-10 Onoda Cement Co Ltd Reinforcing bar-containing refractory brick and manufacture
WO1990003339A1 (en) * 1988-09-30 1990-04-05 Vesuvius France S.A. Vessel for molten metals, material for such vessel and method for fabricating the material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111284A (en) * 1980-12-29 1982-07-10 Onoda Cement Co Ltd Reinforcing bar-containing refractory brick and manufacture
WO1990003339A1 (en) * 1988-09-30 1990-04-05 Vesuvius France S.A. Vessel for molten metals, material for such vessel and method for fabricating the material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723856A (en) * 2020-12-25 2021-04-30 唐山北方瓷都陶瓷集团卫生陶瓷有限责任公司 Low-deformation ceramic biscuit and preparation process thereof
CN118061697A (en) * 2023-12-26 2024-05-24 德化县万盛陶瓷有限公司 Ceramic handicraft with reinforced body and preparation process thereof

Also Published As

Publication number Publication date
CN1088898A (en) 1994-07-06
JPH06191957A (en) 1994-07-12
JP3202376B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
JP2014533213A (en) CONCRETE COMPOSITION COMPOSITION, MORTAR COMPOSITION COMPOSITION, CONCRETE OR MORTAR CURING AND MANUFACTURING METHOD, CONCRETE OR CONCRETE / CONCRETE OBJECT AND STRUCTURE
KR101773961B1 (en) Cementless binder and application thereof
WO2002096825A1 (en) Hydraulic composition
WO1994014728A1 (en) Ceramic sintered body having metallic skeleton
US4343989A (en) Magnesium oxide based heat storage device
ES2880392T3 (en) Process for the manufacture of a molded part from a dry mixture with graphite particles and the molded part thus manufactured
Mo et al. Utilization of coal fly ash and bottom ash in brick and block products
Zuda et al. Effect of high temperatures on the properties of alkali activated aluminosilicate with electrical porcelain filler
JP2002348167A (en) Hydraulic composition
US5228914A (en) Pumice containing composition
JP2001261414A (en) Concrete with self-wetting curing function and its construction method
JPH01176260A (en) High-strength hydraulic material composition
JPS61245095A (en) Waste treating vessel
JPH0224777B2 (en)
JP3464043B2 (en) Method for producing porous sintered body
JP2007261901A (en) Ceramic formed by using waste as main material, and its manufacturing method
JP4129695B2 (en) Method for producing porous water-absorbing ceramics
JP4045169B2 (en) Explosion-resistant high-strength cementitious cured body and method for producing the same
JP3216034B2 (en) Porous sintered body and method for producing the same
JPH11246279A (en) Lightweight ceramics and its production
JPH049747B2 (en)
JP2019104650A (en) Panel for constructing vault, and manufacturing method therefor
JPS61201651A (en) Supporting material
JP4220945B2 (en) Composite material
KR100521838B1 (en) Concrete comprising Loess and Scoria

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA