JPH01176260A - High-strength hydraulic material composition - Google Patents

High-strength hydraulic material composition

Info

Publication number
JPH01176260A
JPH01176260A JP33302887A JP33302887A JPH01176260A JP H01176260 A JPH01176260 A JP H01176260A JP 33302887 A JP33302887 A JP 33302887A JP 33302887 A JP33302887 A JP 33302887A JP H01176260 A JPH01176260 A JP H01176260A
Authority
JP
Japan
Prior art keywords
hydraulic
powder
particle size
strength
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33302887A
Other languages
Japanese (ja)
Other versions
JP2565361B2 (en
Inventor
Etsuro Sakai
悦郎 坂井
Tsutomu Kida
勉 木田
Yasuto Fushii
康人 伏井
Yukio Sasagawa
幸男 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP62333028A priority Critical patent/JP2565361B2/en
Publication of JPH01176260A publication Critical patent/JPH01176260A/en
Application granted granted Critical
Publication of JP2565361B2 publication Critical patent/JP2565361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To provide the title fluid composition having precise transferability, especially excellent in flexural strength, comprising a hydraulic material consisting mainly of alkaline earth metal oxide and Al2O3, ultrafine powder, metallic aggregate and dispersant. CONSTITUTION:(A) A mixture of (i) 95-50wt.% of a hydraulic material with a particle size of 10-30mu consisting mainly of alkaline earth metal oxide and Al2O3 (e.g. alumina cement consisting mainly of calcium aluminate with a molar ratio: CaO/Al2O3<0.5) and (ii) 5-50wt.% of ultrafine powder with its average particle size smaller than the component (i) by one order or more (e.g. silica fume) is incorporated with (B) <=5wt.% times the mixture A, of metallic aggregate with a granular size of 0.1-5mm (e.g. iron powder), (C) 1-5wt.% of a dispersant (beta-naphthalensulfonate formaldehyde condensate), (D) <=35wt.% of water, and, if needed, (E) curing regulator (e.g. Na2SO4), inert inorganic powder, metallic powder etc. followed by kneading, defoaming treatment under a vacuum and vibration treatment, thus obtaining the title composition.

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は、常温で流し込み成形ができる優れた作業性と
、その流し込み面に対して極めて精密な転写性を持つう
え、耐熱性や高強度特性に優れた。 特に、曲げ強度の改善された高強度水硬性物質組成物に
関する。 〈従来の技術及びその問題点〉 水硬性無機材料に、それより1〜2オーダ小さい超微粉
を加え、高性能減水剤と共に用いて緻密な高強度硬化体
を得る技術は既に公知である(特公昭60−59182
公報、特表昭55−500863号)。また、ステンレ
ス粒子を骨材として。 ポルトランドセメント質水硬性材料を組み合せた類似技
術も公知である(特表昭6l−502603)しかしな
がら、これら従来の水硬性材料において、前者は通常の
モルタルやコンクリートと比べて、緻密性が優れている
ため高温時に水蒸気による爆裂が生じ、必ずしも耐熱性
を有しているとは言い難く、成形物を常用できる温度と
しては、250℃〜400℃程度が限界であるといわれ
ている。また、成形物を作る際に熱応力による温度ひび
割れ等が解決すべき問題点となっている。更に、いずれ
の場合も100℃以上の乾燥養生において、曲げ強度が
低下すると云う欠点を有している。 一方、水硬性のキャスタブル耐火物用組成物も知られて
いるが、これらは耐熱性には問題はないものの、高強度
特に曲げ強度の高いものを得ることは難しく、かつ優れ
た流動性を保持したまま流し込み成形によって転写性を
得ることは困難であり、更に中温度域(400〜900
℃)での大きな強度損失や水和物の転移温度が室温付近
にあって不安定であることなど多くの問題が残されてい
る。 以上のごとく、水硬性材料から、特に常温で流し込み成
形ができる優れた作業性と、その流し込み面に対して極
めて精密な転写性と、かつ耐熱性や高強度特性に優れた
水硬性物質組成物を確保するには種々の問題がある。 〈発明の目的〉 本発明の目的は、特に高い曲げ強度を有する水硬性物質
組成物を提供することにある。 本発明の別の目的は、常温で流し込み成形ができる優れ
た作業性と、その流し込み面に対して極めて精密な転写
性を有する高強度水硬性物質組成物を提供することにあ
る。 本発明の更に別の目的は、耐熱性に優れ、高い強度を有
する水硬性物質組成物を提供することにある。 く問題点を解決するための手段〉 本発明によれば、アルカリ土類金属酸化物と酸化アルミ
ニウム(AQzOs)とを主成分とする水硬性物質、水
硬性物質より1オーダー以上平均粒子径の小さな超微粉
、金属骨材及び分散剤を含む高強度水硬性物質組成物が
提供される。 以下本発明を更に詳細に説明する。 本発明で使用されるアルカリ土類金属酸化物と酸化アル
ミニウム(agxoi)とを主成分とする水硬性物質と
しては、Cab、Bad、SrO又はこれら2種以上の
混合物とA Q z O3とを主成分とするものが好ま
しい。特に好ましい水硬性物質としては、アルミナセメ
ント等を挙げることができ、また、Ca O/ A I
! z Osのモル比が0.5未満のカルシウムアルミ
ネート、Ca O/ A’ Q z Ozのモル比が1
.5〜4.0のカルシウムアルミネートを挙げることが
できる。 前記アルミナセメントとしては、 CaO・Al、O,を主成分として含み、他にCaO*
 2Afi、03,12Ca0 ・7AQ、03、又は
これらの混合物を用いることができ、また、例えば、S
 i oat F e203等の固溶体を少量含有して
いてもよい。これらの市販品としては、rデンカアルミ
ナセメント1号」、「デンカアルミナセメント2号」、
「デンカハイアルミナセメ、ント」、(いずれも電気化
学工業(株)11、商品名)、「アサノアルミナセメン
ト」 (日本セメント(株)製、商品名)、rアサヒホ
ンジュ」 (旭硝子(株)、商品名)などがある。 前記C’a O/ A Q 203のモル比が0.5未
満のカルシウムアルミネートとしては、 Ca 0 ・2 A Qx Oa−Ca O” 6 A
 Q z Oa混合物を主成分とするものを挙げること
ができ、更に上述のアルミナセメントを含んでいてもよ
い。この場合には特に耐熱性が向上する。 Ca O/ A Q z Osのモル比が、1.5〜4
.0のカルシウムアルミネートとしては、 12Ca0・7AQ□o3,3CaO−AQ203゜4
C’aO−Au、○、 * p’ 6.03゜6Ca0
・2AQ2o3・Fe2O,又はこれらの混合物を主成
分とするものを挙げることができ、これら以外に少量の
固溶成分を含んでいてもよい。 この場合には、早強性で高い曲げを示すものを得ること
ができる。 また、水硬性物質としてBaAl2O4や5rAQ04
などの構成鉱物及びそれらの混合物等を主成分として含
むものを用いることができる。 水硬性物質の粒度は特に限定されるものではないが、1
0〜30μm位の平均粒径のものが好ましい。 本発明における超微粉とは、水硬性物質の平均粒径の少
なくとも1オーダー以上、好ましくは2オーダー小さな
平均粒径を有するものであり、1μm以下、好ましくは
0.5μm以下のものが好ましい。具体的にはフェロシ
リコンや金属シリコンなどの製造時に副生ずるシリカダ
スト、あるいは上記水硬性物質、高炉スラグ、フライア
ッシュ、アルミナ及びシリカを粉砕・分級したものや、
各々のバクフィルター回収品、さらには、気相法や液相
沈澱法などにより生成した無機質の超微粉などである。 超微粉の使用量は水硬性物質95〜50重量%、好まし
くは90〜80重量%に対し5〜50重量%程度であり
、10〜20重量%程度がより好ましい。5重量%未満
では、混練物の流動性がダイラタンティックとなり、充
分な練り混ぜができない。又50重量%を超えると流動
性を得ることは難しく、いずれの場合でも流し込み面に
対して精密な転写性を有することは難しい。 本発明では金属骨材を水硬性物質組成物中に加える。前
記金属骨材としては、鉄粉、ステンレス粉や例えばフェ
ロシリコン、フェロマンガン、カルシウムシリコンなど
の合金鉄粉、特に水洗乾燥処理などをした合金鉄粉があ
げられる。 曲げ強度の向上と云う点からは鉄粉やステンレス粉、特
にステンレス粉の中でもオーステナイト系ステンレス粉
及びフェロマンガン粉が好ましい。 鉄粉、オーステナイト系ステンレス粉やフェロマンガン
粉を使用すると曲げ強度が特に高い値を示す理由は定か
ではないが、それ自身の強度が高いことと、付着性が優
れているためと思われる。通常粒径は0.1〜5111
1程度であり、特に限定されるものではないが粒径を小
さくすればするほど曲げ強度は向上する。一方、材料の
脆性的な傾向は強くすることにより、0.1〜0.3馬
程度で選定することが好ましい、金属骨材の使用量は水
硬性物質と超微粉の合計量に対し5重量倍量以内で選択
使用されるが、プレプックドやポストパックド工法等の
特殊な成形方法の場合にはこの限りでない。 本発明に用いる分散剤としては、クエン酸等のオキシカ
ルボン酸類、ポリカルボン酸又はその塩又は高性能減水
剤(Super plasticizer)と呼ばれる
ナフタレン或いはアルキルナフタレンスルホン酸又はそ
れらの塩のホルマリン縮合物、メラミン樹脂スルホン酸
又はその塩及び高分子量りゲニンスルホン酸又はその塩
を例示することができ、それらを単独或いは組合せて用
いることができる。 添加量は水硬性物質と超微粉との合計100重量部に対
して1〜5重量部が望ましく、好ましくは1.5〜3重
量部であることが望ましい。この際添加量が1重量部未
満では流動性を得ることが難しく、5重量部を超える場
合は、水和反応の遅延が著しくなるので好ましくないた
め、超微粉の分散という点からいわゆる高性能減水剤の
使用が望ましい。 本発明では必要に応じて水硬性物質に硬化調整剤を加え
ることもでき、硬化調整剤と高性能減水剤とを組合せて
用いることにより特に良好な結果を得ることができる。 前記硬化調整剤としては硫酸、硼酸等の無機酸や硼酸塩
、アルカリ金属の硫酸塩、炭酸塩、炭酸水素塩、クエン
酸等の有機酸やその塩及びリン酸エステルや石コウ等を
挙げることができる。前記硬化調整剤の使用量は、その
目的により異なるが、通常は水硬性物質と超微粉との合
計100重量部に対し3重量部以下であることが好まし
い。 本発明では、水硬性物質に粒径1〜100μmの不活性
無機粉体を加えることもできる。本発明にて使用する前
・記不活性無機粉体とは、水和反応に対して、不活性な
無機質固体材料の粒子から成る粉体であることを意味す
る。その粒径は1粒径が小さくなるほど粒子の表面活性
が大きくなり、混練時に多量の水を使用しなければ流動
性を確保できなくなること、また粒径が大きくなるほど
面の転写性が悪くなることを勘案して、1〜100μm
、好ましくは5〜88μm、さらに好ましくは5〜44
μmのものが良い。この不活性無機粉体の成分的な制限
は特になく、酸化物、非酸化物系のセラミックスなどを
用いることができ、例えば、シリカ、アルミナ、ムライ
ト、マグネシア、スピネル、炭化けい素、窒化物が使用
可能であり、これら粉体は、各種陶磁器や耐火物や骨材
などを粉砕あるいは粉砕分級して調製することができる
。 また、前記不活性無機粉体は水に対し易溶性のものは適
当でなく、吸水率のあまり高くないものが好ましい。更
に成形物に耐熱性が要求される場合は、耐熱性の要求度
に応じて使用する不活性無機粉体が、少なくともその要
求温度以上の高温に耐えるものであることが必要である
。不活性無機粉体の使用量は、水硬性物質に対して任意
に換えることができるが、両者の合計100体積部に対
して不活性無機粉体が20体積部以上であることが流動
性の観点から好ましい。硬化収縮の著しい改善の点から
は50体積部以上が好ましく、更に好ましくは80体積
部以上において、耐熱性に大きな効果が見られ、高温や
熱衝撃等の苛酷な熱環境下での使用には90体積部以上
が好ましい。但し、圧縮強度は問題はないが、曲げ強度
と云う観点からは水硬性物質が両者の合計100体積部
に対し50体積部以上、より好ましくは80体積部以上
含まれていることが好ましく、それにより他の性質が改
善され、高い曲げ強度を維持することができる。 本発明では水硬性物質と略同等の粒径1〜100μmを
有する金属粒子を用いることもできる。 この場合には、加工性及び機械的強度を改善することが
できる。この際の金属粒子粒径は、小さすぎると流動性
が低下し、一定の流動性を得るための水量が増加し、硬
化体の強度が低下してしまうこと、また大きすぎると多
量に添加した場合、粒子の剥落等を生じ、系の機械加工
性が低下するというネガティブ面が強くなり、これらを
勘案して100μm以下1μm以上、即ち、水硬性物質
の粒径と略同程度のものを使用することが重要である。 金属粒子を構成する成分的な制限は特になく、例えば鉄
、ステンレス、フェロクロム等の合金鉄等を用いること
ができる。前記金属粒子の使用割合は、水硬性物質と金
属粒子の合計90〜5体積部に対して、金属粒子が10
〜95体積部置き換えることができる。但し、高い曲げ
強度を維持するためには、水硬性物質が50体積部以上
、より好ましくは80体積部以上含まれていることが好
ましい。 以上の配合の他に、各種繊維や網の配合も可能である。 繊維としては、鋳鉄のびびり切削法による繊維、スチー
ル繊維及びステンレス繊維などの金属繊維、及び、石綿
やアルミナ繊維などの各種天然又は合成鉱物繊維、炭素
繊維、ガラス繊維、更に、ポリプロピレン、ビニロン、
アクリロニトリル及びセルロースなどの天然又は合成の
有機繊維等があげられる。また、補強材として従来より
用いられている銅棒やFRPロッドなどを用いることも
可能であり、特に大型のものにはこれら補強材が必要不
可欠なものである。流動性を損なわないと云う点からは
、3閣程度の長さの金属短繊維やさらにそれよりも短い
ウィスカーなども好ましく用いることができる。また、
あらかじめ形状のあるものを編んでおき、後からペース
トやモルタルを含浸させるいわゆるプレフォームとして
も用いることもできる。さらに、高温での使用を考える
場合には、耐熱のある繊維を用いることが望ましい。 本発明においては、より少量の水を用いることが転化に
よる強度低下の抑制及び高強度を得ることができ、水硬
性物質及び超微粉の合計重量(C)と水重量(W)との
重量比(W/C)が0.35以下、特に好ましくは0.
25以下であることが好ましい。 本発明において、材料の混練方法は、特に限定されるも
のではないが、充分に混練することが好ましい。本発明
においては、さらに真空脱泡処理することが効果的であ
り、具体的には真空鋳込装置(高木製作所(株)製)、
真空オムニミキサ(千代技研工業(株)製)及び真空混
合機((株)三英製作所製)などを用いたり、薄膜を形
成して脱泡する方法などを挙げることができる。脱泡時
には回転速度を低下させることが好ましく、特に薄膜を
形成して脱泡する方法は、脱泡速度が早く効果が著しい
。脱泡条件は、50〜70mml(g程度の真空度とす
るのが、水分の蒸発等を考慮した場合適当である。又、
脱泡時間は特に限定されるものではないが、通常5〜3
0分程度が好ましい。 真空脱泡処理によって、ASTM  C−185−59
に準じて測定する空気量が1〜2%程度以下になること
が好ましく、1%程度以下になることが更に好ましい。 また、成形時に真空脱泡処理と振動を組み合せることも
非常に有効であり脱泡効率が高く、より曲げ強度の高い
高強度水硬性物質組成物による成形体を提供することが
できる。更に成形体を養生するには、通常の常温養生、
常圧蒸気養生、高温高圧養生又は高温水中養生を用いる
ことができる。 本発明において、前記成形体を養生後、更に100℃以
上にて乾燥養生させることが好ましい。 前記乾燥養生を行うことにより力学性状を、より改善す
ることができる。特に400〜600℃程度の高温処理
により著しく力学性状を改善することができるが、この
場合には、あらかじめ110℃程度で予備乾燥しておく
ことが好ましい。養生期限は形状配合等により異なるが
通常3日から7日間程度であり、より高い温度の処理は
数時間最高温度に保持されれば良い。但し、大きさ等に
より内部と外部との温度差を生じさせないようにする必
要があり、その場合には昇温、降温に長時間を要し、1
日〜2日を必要とする。 〈発明の効果〉 本発明による高強度水硬性物質組成物は、従来技術では
不可能である流動性、転写性を高度に維持し、かつ高強
度の特に曲げ強度に優れ、かつ耐熱性に優れた硬化体を
与えるものであり、各種の応用面に優れた成形素材とし
て用いることができる。 その利用例としては、各種のセラミックス代替品や建材
等に用いることができ、特に面の転写性や常温での成形
のし易さを考えると例えば(1)各種金属の鋳造型やそ
の中子、(2)バインダーとして熱硬化性樹脂を使う各
種金属の鋳造型や中子などの製造型、(3)グラビテイ
成形型(低圧鋳造型)(4)ダイキャスト成形型、(5
)各種耐熱性樹脂やエンジニアリングプラスチックス用
の成形型、(6) RI M (Reaotion I
ojectionMold)成形型、(7) SMC(
Sheet MoldingCompound)成形型
、B MC(Bulk MoldingCompoun
d)成形型及びスタンピング(Stamping)成形
型等のFRP用成形型、(8)プラズマ溶射用の元型、
(9)高温焼成用各種粉末冶金型及び(10)ガラスセ
ラミックスの成形型、(11)高温プレス成形型等に利
用することができる。 〈実施例〉 以下本発明を実施例により更に具体的に説明するが、本
発明はこれら実施例に限定されるものではない。 実施例1 下記表−1に示す配合の組成物を用いて、2×2×8a
lの試料を流し込みにより作製し、強度試験をJIS 
 R5201に準じて実施した。 練り混ぜは、真空オムニミキサ〔千代田技研工業(株)
製〕を使用し、10分間練り混ぜ後、低速にて10分間
真空脱泡処理を行った。50℃温水中で、7日間養生さ
せ、その後110℃、3日間の乾燥養生を行い、養生後
の圧縮強度を測定した。その結果も表−1に示す。 表−1に示したように、いずれのセメントを用いても、
乾燥養生により圧縮強度が増大する。 中でもアルミナセメントを用いたものが強度上望ましい
。しかも、アルミナセメント単独の場合は、経時的に強
度低下が認められるが、実験番号3及び4のものを室内
で1年間放置したところ。 強度低下は認められなかった。 なお、使用材料は以下のとおりである。 (使用材料) 白色ポルトランドセメント:秩父セメント(株)製(平
均粒径10.8μm) アルミナセメント: 〔商品名「デンカハイアルミナセ
メント」電気化学工業 (株)113(平均粒径lOμm) 超微粉ニジリカヒユーム〔日本重化学工業(株)製〕 高性能減水剤:β−ナフタレンスルホン酸塩ホルムアル
デヒド縮縮合系〔商品 名「セルフロー110PJ第一 工業製薬(株)製〕 金属骨材二還元鉄粉(商品名「メタレット」日本磁力選
(株)製〕(粒径0.15 醗以下) 繊  維: 〔商品名rsUs430J、(φ50μm
×長さ25alひびり切削 法による)東京製鋼(株)製〕 去】口
<Industrial Field of Application> The present invention has excellent workability that allows casting to be performed at room temperature, extremely precise transferability to the casting surface, and excellent heat resistance and high strength properties. In particular, it relates to high strength hydraulic material compositions with improved flexural strength. <Prior art and its problems> The technology of adding ultrafine powder 1 to 2 orders of magnitude smaller than that of a hydraulic inorganic material and using it together with a high-performance water reducing agent to obtain a dense, high-strength cured product is already known (especially Kosho 60-59182
Publication, Special Publication No. 55-500863). Also, stainless steel particles are used as aggregate. A similar technology combining Portland cement hydraulic materials is also known (Special Publication No. 6l-502603). However, among these conventional hydraulic materials, the former has superior density compared to ordinary mortar and concrete. Therefore, explosions occur due to water vapor at high temperatures, and it is difficult to say that they are necessarily heat resistant, and it is said that the upper limit of the temperature at which molded products can be used regularly is about 250°C to 400°C. In addition, temperature cracking due to thermal stress has become a problem that must be solved when making molded products. Furthermore, in both cases, the bending strength decreases during dry curing at 100° C. or higher. On the other hand, hydraulic castable refractory compositions are also known, but although these have no problems with heat resistance, it is difficult to obtain high strength, especially high bending strength, and they maintain excellent fluidity. It is difficult to obtain transferability by pour molding, and furthermore, it is difficult to obtain transferability in the medium temperature range (400 to 900
Many problems remain, such as large strength loss at temperatures (°C) and instability as the hydrate transition temperature is near room temperature. As described above, hydraulic material compositions have excellent workability, allowing pour molding at room temperature, extremely precise transferability to the pouring surface, and excellent heat resistance and high strength properties. There are various problems in ensuring this. <Object of the invention> An object of the present invention is to provide a hydraulic material composition having particularly high bending strength. Another object of the present invention is to provide a high-strength hydraulic material composition that can be cast at room temperature, has excellent workability, and has extremely precise transferability to the casting surface. Still another object of the present invention is to provide a hydraulic material composition that has excellent heat resistance and high strength. According to the present invention, a hydraulic substance containing an alkaline earth metal oxide and aluminum oxide (AQzOs) as main components, and a hydraulic substance having an average particle diameter of at least one order of magnitude smaller than that of the hydraulic substance. A high strength hydraulic material composition is provided that includes an ultrafine powder, a metal aggregate, and a dispersant. The present invention will be explained in more detail below. The hydraulic substance mainly composed of alkaline earth metal oxide and aluminum oxide (agxoi) used in the present invention is mainly composed of Cab, Bad, SrO, or a mixture of two or more thereof, and A Q z O3. It is preferable to use it as a component. Particularly preferable hydraulic substances include alumina cement, and CaO/AI
! Calcium aluminate with a molar ratio of z Os of less than 0.5, a molar ratio of Ca O / A' Q z Oz of 1
.. Mention may be made of calcium aluminates of 5 to 4.0. The alumina cement contains CaO・Al, O, as a main component, and also contains CaO*.
2Afi, 03,12Ca0 7AQ, 03, or mixtures thereof can be used, and also, for example, S
It may contain a small amount of a solid solution such as i oat Fe203. These commercially available products include ``R Denka Alumina Cement No. 1'', ``Denka Alumina Cement No. 2'',
``Denka High Alumina Cement'' (all manufactured by Denki Kagaku Kogyo Co., Ltd. 11, product name), ``Asano Alumina Cement'' (manufactured by Nippon Cement Co., Ltd., product name), r-Asahi Honju'' (Asahi Glass Co., Ltd.) , product name). The calcium aluminate having a molar ratio of C'a O/A Q 203 of less than 0.5 includes: Ca 0 ・2 A Qx Oa-Ca O” 6 A
Examples include those containing a Q z Oa mixture as a main component, and may further contain the above-mentioned alumina cement. In this case, heat resistance is particularly improved. The molar ratio of CaO/AQzOs is 1.5 to 4
.. As calcium aluminate of 0, 12Ca0・7AQ□o3,3CaO-AQ203゜4
C'aO-Au, ○, *p' 6.03゜6Ca0
・2AQ2o3・Fe2O, or a mixture thereof can be mentioned as a main component, and a small amount of solid solution component may be included in addition to these. In this case, it is possible to obtain a material that exhibits high early strength and high bendability. In addition, BaAl2O4 and 5rAQ04 are used as hydraulic substances.
Those containing constituent minerals such as and mixtures thereof as main components can be used. The particle size of the hydraulic substance is not particularly limited, but 1
Those having an average particle size of about 0 to 30 μm are preferable. The ultrafine powder in the present invention has an average particle size at least one order or more, preferably two orders smaller than the average particle size of the hydraulic substance, and is preferably 1 μm or less, preferably 0.5 μm or less. Specifically, silica dust that is produced as a by-product during the production of ferrosilicon and metal silicon, or the above-mentioned hydraulic substances, blast furnace slag, fly ash, alumina and silica that are crushed and classified,
These include the recovered products of each Bacfilter, as well as ultrafine inorganic powders produced by gas phase methods, liquid phase precipitation methods, and the like. The amount of ultrafine powder used is about 5 to 50% by weight, more preferably about 10 to 20% by weight, relative to 95 to 50% by weight of the hydraulic substance, preferably 90 to 80% by weight. If it is less than 5% by weight, the fluidity of the kneaded product becomes dilatantic and sufficient kneading cannot be achieved. Moreover, if it exceeds 50% by weight, it is difficult to obtain fluidity, and in any case, it is difficult to have precise transferability to the pouring surface. In the present invention, metal aggregate is added to the hydraulic material composition. Examples of the metal aggregate include iron powder, stainless steel powder, alloy iron powder such as ferrosilicon, ferromanganese, calcium silicon, etc., especially alloy iron powder that has been washed and dried with water. From the viewpoint of improving bending strength, iron powder and stainless steel powder are preferred, particularly among stainless steel powders, austenitic stainless steel powder and ferromanganese powder are preferred. It is not clear why the bending strength is particularly high when iron powder, austenitic stainless steel powder, or ferromanganese powder is used, but it is thought to be because they themselves have high strength and have excellent adhesion. Normal particle size is 0.1-5111
It is about 1, and although it is not particularly limited, the smaller the particle size is, the better the bending strength is. On the other hand, by increasing the brittle tendency of the material, it is preferable to select the material at a level of about 0.1 to 0.3.The amount of metal aggregate used is 5 weight per total amount of hydraulic material and ultrafine powder. It is used selectively within double the amount, but this does not apply in the case of special molding methods such as pre-packed and post-packed construction methods. Dispersants used in the present invention include oxycarboxylic acids such as citric acid, polycarboxylic acids or salts thereof, formalin condensates of naphthalene or alkylnaphthalenesulfonic acids or salts thereof called super plasticizers, and melamine. Examples include resin sulfonic acid or a salt thereof and high molecular weight polygenin sulfonic acid or a salt thereof, and these can be used alone or in combination. The amount added is desirably 1 to 5 parts by weight, preferably 1.5 to 3 parts by weight, based on 100 parts by weight of the total of the hydraulic substance and ultrafine powder. At this time, if the amount added is less than 1 part by weight, it is difficult to obtain fluidity, and if it exceeds 5 parts by weight, the hydration reaction will be significantly delayed, which is undesirable. It is recommended to use an agent. In the present invention, a hardening modifier can be added to the hydraulic substance if necessary, and particularly good results can be obtained by using a hardening modifier and a high performance water reducing agent in combination. Examples of the hardening modifier include inorganic acids and borates such as sulfuric acid and boric acid, alkali metal sulfates, carbonates, hydrogen carbonates, organic acids and their salts such as citric acid, phosphoric esters, and gypsum. Can be done. The amount of the curing modifier used varies depending on the purpose, but it is usually preferably 3 parts by weight or less per 100 parts by weight of the total of the hydraulic substance and ultrafine powder. In the present invention, inert inorganic powder having a particle size of 1 to 100 μm can also be added to the hydraulic material. The above-mentioned inert inorganic powder used in the present invention means a powder consisting of particles of an inorganic solid material that is inert to hydration reactions. The smaller the particle size, the greater the surface activity of the particles, making it impossible to ensure fluidity unless a large amount of water is used during kneading, and the larger the particle size, the worse the surface transferability. 1 to 100 μm, taking into account
, preferably 5 to 88 μm, more preferably 5 to 44 μm
A μm one is better. There are no particular restrictions on the composition of this inert inorganic powder, and oxides and non-oxide ceramics can be used. For example, silica, alumina, mullite, magnesia, spinel, silicon carbide, and nitride are used. These powders can be prepared by crushing or crushing and classifying various ceramics, refractories, aggregates, etc. Further, it is not appropriate that the inert inorganic powder is easily soluble in water, and it is preferable that the inert inorganic powder has a not very high water absorption rate. Furthermore, if heat resistance is required for the molded article, the inert inorganic powder used must be able to withstand at least a high temperature higher than the required temperature, depending on the degree of heat resistance required. The amount of inert inorganic powder used can be changed arbitrarily with respect to the hydraulic substance, but in order to improve fluidity, it is preferable that the amount of inert inorganic powder is 20 parts by volume or more per 100 parts by volume of both. Preferable from this point of view. From the viewpoint of significant improvement in curing shrinkage, it is preferable to use 50 parts by volume or more, and more preferably 80 parts by volume or more, as a large effect on heat resistance can be seen and is suitable for use in harsh thermal environments such as high temperatures and thermal shock. 90 parts by volume or more is preferred. However, although there is no problem with compressive strength, from the viewpoint of bending strength, it is preferable that the hydraulic substance is contained in an amount of 50 parts by volume or more, more preferably 80 parts by volume or more, per 100 parts by volume of both. This improves other properties and makes it possible to maintain high bending strength. In the present invention, metal particles having a particle size of 1 to 100 μm, which is approximately the same as that of the hydraulic substance, can also be used. In this case, workability and mechanical strength can be improved. If the particle size of the metal particles is too small, the fluidity will decrease, and the amount of water required to obtain a certain level of fluidity will increase, which will reduce the strength of the cured product. In this case, the negative side is that the particles may peel off and the machinability of the system will be reduced. Taking these into consideration, use particles of 100 μm or more and 1 μm or more, that is, approximately the same particle size as the hydraulic material. It is important to. There are no particular restrictions on the components constituting the metal particles, and for example, iron, stainless steel, ferroalloys such as ferrochrome, etc. can be used. The usage ratio of the metal particles is 10 to 5 parts by volume of the hydraulic substance and metal particles in total.
~95 parts by volume can be replaced. However, in order to maintain high bending strength, it is preferable that the hydraulic substance is contained in an amount of 50 parts by volume or more, more preferably 80 parts by volume or more. In addition to the above formulations, various types of fibers and nets can also be incorporated. Fibers include fibers produced by chatter cutting of cast iron, metal fibers such as steel fibers and stainless steel fibers, various natural or synthetic mineral fibers such as asbestos and alumina fibers, carbon fibers, glass fibers, polypropylene, vinylon,
Examples include natural or synthetic organic fibers such as acrylonitrile and cellulose. Further, it is also possible to use conventionally used copper rods, FRP rods, etc. as reinforcing materials, and these reinforcing materials are indispensable especially for large-sized ones. From the point of view of not impairing fluidity, short metal fibers having a length of about 3 mm or shorter whiskers can also be preferably used. Also,
It can also be used as a so-called preform, which is knitted in advance and later impregnated with paste or mortar. Furthermore, when considering use at high temperatures, it is desirable to use heat-resistant fibers. In the present invention, using a smaller amount of water can suppress strength loss due to conversion and obtain high strength, and the weight ratio of the total weight (C) of the hydraulic substance and ultrafine powder to the water weight (W) (W/C) is 0.35 or less, particularly preferably 0.
It is preferably 25 or less. In the present invention, the method of kneading the materials is not particularly limited, but it is preferable to thoroughly knead them. In the present invention, it is effective to further perform vacuum degassing treatment, specifically, a vacuum casting device (manufactured by Takagi Seisakusho Co., Ltd.),
Examples include using a vacuum omnimixer (manufactured by Chiyogiken Kogyo Co., Ltd.) and a vacuum mixer (manufactured by Sanei Seisakusho Co., Ltd.), and a method of forming a thin film to degas. It is preferable to reduce the rotational speed during defoaming, and in particular, the method of defoaming by forming a thin film has a rapid defoaming speed and is highly effective. As for the defoaming conditions, a degree of vacuum of about 50 to 70 mml (g) is appropriate when considering moisture evaporation, etc.
Defoaming time is not particularly limited, but is usually 5 to 3
About 0 minutes is preferable. ASTM C-185-59 by vacuum degassing process
It is preferable that the amount of air measured according to the method is about 1 to 2% or less, and more preferably about 1% or less. Furthermore, it is very effective to combine vacuum defoaming treatment and vibration during molding, and it is possible to provide a molded article made of a high-strength hydraulic material composition with high defoaming efficiency and higher bending strength. To further cure the molded product, normal temperature curing,
Normal pressure steam curing, high temperature and high pressure curing or high temperature water curing can be used. In the present invention, after curing the molded article, it is preferable to further dry and cure it at 100° C. or higher. By performing the dry curing, the mechanical properties can be further improved. In particular, mechanical properties can be significantly improved by high temperature treatment at about 400 to 600°C, but in this case it is preferable to pre-dry at about 110°C. The curing period varies depending on the shape and composition, but is usually about 3 to 7 days, and for higher temperature treatments, it is sufficient to maintain the maximum temperature for several hours. However, due to the size, etc., it is necessary to avoid creating a temperature difference between the inside and outside, and in that case, it will take a long time to raise and lower the temperature.
It takes 1-2 days. <Effects of the Invention> The high-strength hydraulic material composition according to the present invention maintains a high degree of fluidity and transferability, which is impossible with conventional techniques, and has high strength, especially excellent bending strength, and excellent heat resistance. It provides a cured product that can be used as an excellent molding material for various applications. Examples of its use include (1) various metal casting molds and their cores, especially considering the transferability of the surface and ease of molding at room temperature. , (2) Production molds for various metal casting molds and cores that use thermosetting resin as a binder, (3) Gravity molds (low-pressure casting molds), (4) Die-cast molds, (5)
) Molding molds for various heat-resistant resins and engineering plastics, (6) RI M (Reaion I
injectionMold) mold, (7) SMC(
Sheet Molding Compound) mold, B MC (Bulk Molding Compound)
d) FRP molds such as molds and stamping molds; (8) master molds for plasma spraying;
(9) Various powder metallurgy molds for high-temperature firing, (10) molds for glass ceramics, (11) high-temperature press molds, etc. <Examples> Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 Using the composition shown in Table 1 below, 2×2×8a
1 sample was prepared by pouring, and the strength test was conducted according to JIS
It was carried out according to R5201. For mixing, use a vacuum omni mixer (Chiyoda Giken Industries, Ltd.)
After kneading and mixing for 10 minutes, vacuum defoaming treatment was performed for 10 minutes at low speed. It was cured in warm water at 50°C for 7 days, then dried at 110°C for 3 days, and the compressive strength after curing was measured. The results are also shown in Table-1. As shown in Table 1, no matter which cement is used,
Dry curing increases compressive strength. Among them, those using alumina cement are preferable in terms of strength. Moreover, in the case of alumina cement alone, a decrease in strength is observed over time, but experiments Nos. 3 and 4 were left indoors for one year. No decrease in strength was observed. The materials used are as follows. (Materials used) White Portland cement: Chichibu Cement Co., Ltd. (average particle size 10.8 μm) Alumina cement: [Product name: Denka High Alumina Cement” Denki Kagaku Kogyo Co., Ltd. 113 (average particle size 10 μm) Ultra-fine powder Nijirika Hue [Manufactured by Japan Heavy Chemical Industry Co., Ltd.] High performance water reducing agent: β-naphthalene sulfonate formaldehyde condensation system [Product name: "Cellflow 110PJ" manufactured by Daiichi Kogyo Seiyaku Co., Ltd.] Metal aggregate di-reduced iron powder (Product name: " Metalet” manufactured by Nihon Magnetic Sen Co., Ltd.] (particle size 0.15 mm or less) Fiber: [Product name rsUs430J, (φ50 μm)
× Length 25al (by crack cutting method) Made by Tokyo Steel Co., Ltd.] Mouth

【l 下記表−2に示す配合(重量部)の組成物を用いて、実
施例1と同様の処理を行った。強度試験はJIS  R
5201に準じて、供試体が室温まで冷却した後に実施
した。 練り混ぜは、真空オムニミキサ〔千代田技研工業(株)
11〕を使用し、10分間練り混ぜ後、低速にて10分
間真空脱泡処理を行った。50℃恒温箱中に密封状態で
7日間養生後、下記表−3に示す各種の乾燥養生条件で
乾燥養生を行い1強度を測定した。その結果を表−3に
示す。 表−2 又、表−2と同様の配合において、硬化調整剤を炭酸リ
チウムとクエン酸に変えた結果を表−4になお、実施例
1の実験番号および2の白色ポルトランドセメント系は
、250’C〜300℃で爆裂を起こし、耐熱性を保持
することができなかった。 ここで何故、このような結果になったか、また従来強度
的には不利と考えられていた水和物である3CaO−A
N、O,・6H,O’t’も高強度を得ることができる
のか機構について若干の説明を加える。 表−2の金属骨材や繊維を除いたペースト部分を用いて
機構について考察した。比較のために通常キャスタブル
耐火物等で用いられているアルミナセメントのみを用い
W/Cを0.35として実験を行なった。第1a図及び
第1b図は、粉末に線解析による水和生成物および未反
応物の相対強度比である。なお、図中及び以下の説明中
Cは、CaO,AはAQ203.HはH2Oを示し、数
字はモル数を示す。 アルミナセメントのみを用いて、W/C比(水/水硬性
物質比)0.35とする場合には、未反応セメント(C
A 、 CAm )は急激に減少して、水和生成物であ
るC、AH,とAH3が著しく増加している。それに対
し第1図1bに示されるように表−2の組成に準じたW
/P比(水/水硬性物質+超微粉比)0.2の場合には
、第1a図の場合に比して、未反応セメント(c A、
 c At)は、相対強度比で50%以上も、残存して
おり、また水和生成物はC,AH,とAH3と同じであ
るにもかかわらず、その生成量は少ないものと思われる
。 一般に水和生成物であるC、 A Hsは強度低下を起
こす主な要因と考えられているが、表−2のような組成
においては、生成物がC,A H,であっても高強度を
得ることができる。この原因としては、第2a図及び第
2b図に50℃1日間養生後の硬化体破断面のCryo
−8EM写真を示す通り、通常のアルミナセメントの場
合に比べて非常に生成物が小さいためと考えることがで
きる。 また、表−2の組成に準じた場合、超微粉としてシリカ
ヒユームを用いると、水和物としては、C,AH,、A
H,の他にカルシウムシリケート水和物(C−3−H)
を生成し、従ってC3AHGとAH,の生成比が異なる
こととなる。第3図は、Differencial S
cannig Calurimetry (D 5−C
)によって分析した結果である。これによって、表−2
の場合には、AH,とC,A H,の生成ピーク比が近
づいていることが明らかとなっている。これは次のよう
な反応によって、C,A H,の生成が通常の場合より
抑制されるためと考えることができる。 (水) 従って、この硬化体の模式図は第4図のごとくであり、
密に充てんした未反応セメントCA又はCA、1は1n
ner−fillerとして作用しており、それを小さ
なC3A H,やAH3およびC−8−N2が固化して
いると考えることができる。このような未反応セメント
が多量に存在することは、モルタル、コンクリート中の
単位セメント量が通常のキャスタブル耐火物より、かな
り多量にあっても耐熱性を古す原因と考えられる。この
ことは、高曲げ強度と耐熱性と云う点からは非常に重要
なことである。 また、高温で焼成することにより著しく曲げ強度が改善
されるが、この際200〜400℃の脱水反応において
生成物は異なるためと考えることができる。 C3A H,およびAH3は200℃程度から脱水を開
始C,,A、とCHを生成する。但し、本発明例の場合
には生成したCHは通常の場合と比べて過剰なAH3と
反応をする。このようなリサイクル反応によりCHは残
らなくなる。それ故400℃〜600℃においては、C
,、A、および非晶質AQ、O,およびC−5−Hの混
在した化学結合の含まれた結合によって、硬化体を生成
していると考えることができる。また、C3AHsが小
さいことにより生成するC1□A7も非常に小さいこと
が想定される。 (脱水分解) C3A)Is              Cz * 
A、 + CI高温での処理において5通常のポルトラ
ンドセメントとシリカフィームおよび、高性能減水剤(
Super plastiazer)を組み合せてW/
Pを低くした場合(例えば実施例1の実験番号1又は2
)は、250℃を超えると爆裂現象を生じるが、本発明
例においては、そのようなことはない。これは、硬化体
の細孔構造が異なっているためと考えることができる。 第5図は、実施例1の実験番号1および3のペースト部
分を50℃にて1日間養生後、粉砕したものを、さらに
アセトンで水和停止し、N2気流中で乾燥した試料の水
銀圧入法により求めた細孔径分布である。これにより、
実施例1の実験番号3の方が大きな気孔であることが明
らかとなっている。又昇圧時の全空隙率(A)と降圧時
の全空隙率CB)において、実施例1の実験番号1の場
合(A−B)/Aの比が75〜80%であるのに対し本
発明例では60%程度となった。これは、実施例1の実
験番号1のポルトランドセメント系が本発明に比べて水
銀の抜けにくい例えばインクボトル型あるいはtort
osity (曲がりくねり)の大きな細孔構造を有し
ていると考えることができる。このような細孔構造の相
違も本発明例が爆裂減少を生ずることなく高温処理が可
能な1つの原因と考えられる。 なお、鉄粉のような金属粒子においては、高温処理で酸
化により膨張を生じ、しかもSEM写真によると付着も
増加する傾向にあり、その意味でも本発明例が高い曲げ
強度を示すようになると思われる。 ス】11止 実施例1の表−1で実験番号4で示す配合の組成物を用
いて実施例1と同様にして成形し、次いで下記表−5に
示す各種の養生条件で養生し、その後110℃で3日間
の乾燥養生を行った。それぞれについて圧縮強度を測定
した。その結果を表−5に示す。 表−5 表−5から明らかなように、養生を行った後でも、次に
本発明による乾燥養生を行うと、強度向上に有効である
。 実施例4 表−6に示す配合を用いて、30Q真空オムニミキサー
(千代田技研工業(株)製)にて10分間練り混ぜ、さ
らに10分間50mHgで真空脱泡を実施した。その後
4 X4 X 16cnの供試体を作製しポリエチレン
で対間し50℃で7日間養生を行ない、JIS  R5
201に準じて強度試験を実施した。結果を表−6に併
記する。 (使用材料) セメント:白色ポルトランドセメント、(秩父セメント
製) アルミナセメント:商品名「デンカアルミナセメント1
号」 (電気化学工業製) 超微粉ニジリカヒユーム(日本重化学工業製)高性能減
水剤:商品名「セルフロー110PJ(第−工業製薬製
) 硬化調整剤:硫酸ソーダ試薬1級 骨材A:重しようばん土けつ岩、中国長城焼0゜3nn
下(不二鉱材製) B:金属骨材、商品名rsUs304LJステンレス粉
(大同特殊)100メツシユ以下 C:金属骨材、商品名rsUs316LJステンレン粉
(大同特殊)100メツシュD:金属骨材、商品名rs
Us430LJステンレン粉(大同特殊)100メツシ
ュE:金属骨材、還元鉄粉、商品名「メタレット」(日
本磁力選(株)製)0.15nm下 F:金属骨材、フェロマンガン、(日本重化矢JLLL 表−7に示す配合を用いて実施例4と同様の方法により
、湿空養生温度を変化させ曲げ強度を測定した。いずれ
の場合にもアルミナセメント系の方が高い値を示した。 なお、材令は14日とした。 結果を表−7に併記する。使用材料は実施例4とス】0
1影 20℃80%RHで表−8に示す配合を用いて5Q真真
空台ミキサー(三英製作所(株)製)にて5分間練り混
ぜ70+omHgにて所定の時間真空脱泡を行い流し込
み成形にて4 X4 X 16cymの供試体を作製し
、20℃80%RHで密封し、所定の時間養生を行った
。そのさいJIS  R−5201に準じて3H128
日の強度試験を行った。凝結時間はブロクター貫入試験
機を用いて貫入抵抗値が4tOOOpsiになる時の時
間とした結果を表−8に併記する。 (材料) CA−A:白色ポルトランドセメント、(秩父セメント
(株)製ン 〃 B:アルミナセメント、商品名「デンカハイアルミ
ナセメント」、(電気化学工 業(株)製) #  C:C4AF、CaC0,/Al2O3/Fe2
O,を400/102/160の割合で配合し1350
〜1360℃1 H保持し焼成、平均粒径で12μに粉 砕したもの。 CA  A: C,zA4− CaO/AQ203を4
5155の割合で配合し、1600℃に電 融させ急冷させたものを、平均粒径で 8μに粉砕したもの。 超微粉ニジリカヒユーム(日本重化学工業製)高性能減
水剤;β−ナフタレンスルホン酸塩ホルムアルデヒド縮
縮合系、商品名「セル フロー110PJ  (第一工業製薬(株)製) 金属骨材:還元鉄粉[メタレットJ Q、15m+下、
(日本磁力選(株)製) 繊  維: 5US430.φ50μm×長さ2.5−
びびり切削法による、(東京製鋼 (株)製) 硬化調整剤E : N a t S Os (試薬)F
;硼酸   (試薬) G:クエン酸 (試薬) 去JLIL工 表−9に示す配合を用いて実施例6と同様の方法で混線
を実施し、繊維(SUS  631)を混入し、その後
、成形時にバイブレータ−上で振動を加えながら、真空
脱気を行ない、注意深<4X4X16Qmの供試体を作
製した。その供試体を50℃で7日間ポリエチレン袋で
対間養生を行ないさらに、110℃乾燥を3日間行なっ
た供試体の曲げ強度は805kgf/a&の値を示した
。 叉五且呈 高速攪拌器で表−10に示す配合を練り混ぜテーブルバ
イブレータ−で流し込み振動成形して2X2X8C11
の供試体を作製した。その後50℃7日間温水さらには
110℃乾燥養生を7日実施しJISR−5201に準
じて強度試験を実施した。 (材料) クリンカ−A: C4AF、CaCO3/Al2O3/
Fe2O,を所定のモル比になるよ う配合し1350〜1360℃で 1h保持し焼成後、平均粒径12   −μmに粉砕し
たもの。 クリンカーB : CAz  CAs t Ca C0
3およびAf1201を所定のモル比になるよ う配合し電融後、空中急冷させ平 均粒経10μmに粉砕したもの。 クリンカーC: B a A Q204. B a C
O3およびAQ203を所定のモル比になるよ う配合し1500℃2h保持焼成 後、空中急冷させ平均粒径11゜ 3μmに粉砕したもの。 タリン力−D : CA、、 Ca Co3とAj2.
O,を電融急冷、平均粒径11μmに粉砕 したもの。 超 微 粉ニジリカヒユーム(日本重化学工業層) 分 散 剤:β−ナフタレンスルホン酸塩ホルムアルデ
ヒド縮合物系、商品名 「セルフロー110PJ  (第一工 業製薬(株)製) 金属骨材−E:鉄粉rNcJ  (粒径0.15〜0゜
3m)同和鉄粉工業(株)製 金属骨材−F二鉄粉「A」 (粒径0.15+am以下
)同和鉄粉工業(株)製 硬化調整剤−〇 : N a 2 S O4(試薬)H
:硼酸   (試薬) ■=クエン酸 (試薬) ス】11亀 表−11に示すような配合割合の成分及び所定の水量(
各成分の配合は重量部)とともに2Qモルタルミキサー
で混練し、JIS−R−5201に準じて4 X4 X
 16cmの供試体を作成し、50℃で7日の湿潤養生
を実施し圧縮強度試験を行なった。又、機械加工性を確
認するため、フライス  盤による平面出し、ボール盤
による穴あけを実施した。結果を表−11に示す。 (使用材料) セメントA:商品名「アルミナセメント2号J電気化学
工業(株)製 セメントロ:秩父セメント(株)製白色ポルトランドセ
メント(光透過法による平均 粒径10.3μm) 還元鉄粉:同和鉄粉工業(株)製200メツシュ全通(
ふるい分は法74μm以下) 超 微 粉ニジリカフラワー(TEMによる平均粒径0
.2μm) 高性能減水剤:第一工業製薬製商品名「セルフローll
0PJ  (主成分アルキルナ フタレンスルホン酸ホルムアルデ ヒド縮金物系) ぎ属骨材:鉄粉(0,15〜1.0m)同和鉄粉工業(
株)拳は川砂(粒径0.3〜1゜2m) Na、SO2:試薬 (以下余白)、べ:メ 賀 スm立 表−12に示す配合を用いて20℃80%RHでモルタ
ルミキサーにて3分間混線後、真空ミキサー(三英製作
所製)にて真空脱泡を2分間実施し、2X2X8を振動
流し込み成形した。50℃7日養生(温室)、さらにそ
の後110℃7日後600℃の焼成を3時間実施した。 圧縮強度を表−13に示す。 (使用材料) 以下に示す以外の材料は、実施例1と同様の材料を用し
た。 超微粉:アルミナ(アルコア社製) (A−16SG)(TEMによる平均粒径0,2〜0.
5μm) 分散剤:クエン1flLi(試薬) 表−13 〔圧縮強度(kgf/cd) ] 表−14に示す配合を用いて、モルタルミキサーにより
5分間混練し、4X4X16a++の型枠に注型し、5
0℃で7日、180℃で1日の乾燥養生を行ない、その
後600〜800℃まで焼成を実施した。結果を表−1
4に示す。 (使用材料) 以下に示す他は、実施例1と同様の材料を用いた。 不活性無機粉:コランダム砂、0.3〜1■をボールミ
ルで1日粉砕(光透過法に よる平均粒径18.5μm) 金属骨材:鉄粉NG、A (同和鉄粉工業製)BrO:
青銅100メツシユ セメント:商品名[アルミナセメント1号」電気
[l] The same treatment as in Example 1 was performed using a composition having the formulation (parts by weight) shown in Table 2 below. Strength test is JIS R
5201, after the specimen was cooled to room temperature. For mixing, use a vacuum omni mixer (Chiyoda Giken Industries, Ltd.)
11], and after kneading and mixing for 10 minutes, vacuum defoaming treatment was performed at low speed for 10 minutes. After curing for 7 days in a sealed thermostatic box at 50°C, dry curing was performed under various dry curing conditions shown in Table 3 below, and the strength was measured. The results are shown in Table-3. Table 2 In addition, in the same formulation as Table 2, the results are shown in Table 4 when the hardening modifier was changed to lithium carbonate and citric acid. It exploded at temperatures between 'C and 300C and was unable to maintain heat resistance. Why did this result occur? Also, why did 3CaO-A, a hydrate that was previously thought to be disadvantageous in terms of strength,
Some explanation will be given regarding the mechanism of whether high strength can also be obtained with N, O, .6H, and O't'. The mechanism was discussed using the paste portion shown in Table 2, excluding metal aggregates and fibers. For comparison, an experiment was conducted using only alumina cement, which is usually used in castable refractories, and setting W/C to 0.35. Figures 1a and 1b are the relative intensity ratios of hydration products and unreacted products by powder line analysis. In addition, in the figure and the following explanation, C is CaO, A is AQ203. H represents H2O, and the number represents the number of moles. When using only alumina cement and setting the W/C ratio (water/hydraulic substance ratio) to 0.35, unreacted cement (C
A, CAm) decreased rapidly, and the hydration products C, AH, and AH3 increased significantly. On the other hand, as shown in Figure 1b, W
/P ratio (water/hydraulic substance + ultrafine powder ratio) of 0.2, unreacted cement (c A,
Although more than 50% of c At) remains in relative strength ratio, and the hydration products are the same as C, AH, and AH3, the amount produced seems to be small. Generally, hydration products such as C and A Hs are considered to be the main cause of strength reduction, but in the composition shown in Table 2, even if the products are C and A H, high strength can be achieved. can be obtained. The cause of this is shown in Figures 2a and 2b as shown in Figures 2a and 2b.
As shown in the -8EM photograph, this can be attributed to the fact that the products are much smaller than in the case of normal alumina cement. In addition, according to the composition shown in Table 2, if silica hume is used as the ultrafine powder, the hydrates will be C, AH, A
In addition to H, calcium silicate hydrate (C-3-H)
Therefore, the production ratios of C3AHG and AH are different. Figure 3 shows Differential S
cannig Calurimetry (D 5-C
) is the result of analysis. As a result, Table-2
In the case of , it is clear that the production peak ratios of AH, and C, AH, are close to each other. This can be considered to be because the following reaction suppresses the production of C, A H, more than in the normal case. (Water) Therefore, the schematic diagram of this hardened body is as shown in Figure 4.
Closely packed unreacted cement CA or CA, 1 is 1n
It acts as a ner-filler, and it can be considered that small C3A H, AH3, and C-8-N2 are solidified. The presence of such a large amount of unreacted cement is considered to be the cause of deterioration of heat resistance even if the unit cement amount in mortar or concrete is considerably larger than that of ordinary castable refractories. This is very important from the viewpoint of high bending strength and heat resistance. Furthermore, the bending strength is significantly improved by firing at a high temperature, but this may be due to the fact that the products are different in the dehydration reaction at 200 to 400°C. C3A H and AH3 start dehydrating at about 200°C to produce C,,A, and CH. However, in the case of the example of the present invention, the generated CH reacts with excess AH3 compared to the normal case. Due to such a recycling reaction, no CH remains. Therefore, at 400°C to 600°C, C
, , A, and amorphous AQ, O, and C-5-H. Furthermore, since C3AHs is small, it is assumed that C1□A7 generated is also very small. (Dehydration decomposition) C3A) Is Cz *
A, + CI In processing at high temperature 5 ordinary portland cement and silica film and superplasticizer (
Super plastiazer) in combination with W/
When P is lowered (for example, experiment number 1 or 2 of Example 1)
) causes an explosion phenomenon when the temperature exceeds 250°C, but this does not occur in the examples of the present invention. This can be considered to be because the pore structures of the cured bodies are different. Figure 5 shows the mercury intrusion of samples obtained by curing the paste portions of experiment numbers 1 and 3 of Example 1 for one day at 50°C, pulverizing them, stopping the hydration with acetone, and drying them in a N2 stream. This is the pore size distribution determined by the method. This results in
It is clear that experiment number 3 of Example 1 has larger pores. Furthermore, in terms of the total porosity (A) during pressure increase and the total porosity (CB) during pressure decrease, the ratio of (A-B)/A in Experiment No. 1 of Example 1 was 75 to 80%, whereas in this case In the invention example, it was about 60%. This is because the Portland cement system of Experiment No. 1 of Example 1 is less likely to release mercury than the present invention, for example, in an ink bottle type or a tort cement type.
It can be considered to have a pore structure with large osity (tortuosity). Such a difference in pore structure is considered to be one of the reasons why the examples of the present invention can be subjected to high-temperature treatment without causing detonation. In addition, metal particles such as iron powder expand due to oxidation during high-temperature treatment, and according to SEM photographs, adhesion tends to increase, and in this sense, it is thought that the examples of the present invention exhibit high bending strength. It will be done. 11. Using the composition shown in Experiment No. 4 in Table 1 of Example 1, it was molded in the same manner as in Example 1, and then cured under various curing conditions shown in Table 5 below. Dry curing was performed at 110°C for 3 days. The compressive strength of each was measured. The results are shown in Table-5. Table 5 As is clear from Table 5, even after curing, dry curing according to the present invention is effective in improving strength. Example 4 Using the formulation shown in Table 6, the mixture was mixed for 10 minutes using a 30Q vacuum omnimixer (manufactured by Chiyoda Giken Kogyo Co., Ltd.), and vacuum defoaming was performed at 50 mHg for another 10 minutes. Thereafter, a 4 x 4 x 16 cn specimen was prepared, placed between polyethylene and cured at 50°C for 7 days, and passed JIS R5.
A strength test was conducted according to 201. The results are also listed in Table-6. (Materials used) Cement: White Portland cement (manufactured by Chichibu Cement) Alumina cement: Product name “Denka Alumina Cement 1”
No.'' (manufactured by Denki Kagaku Kogyo) Ultra-fine powdered rainbow kahiyum (manufactured by Japan Heavy Chemical Industry) High-performance water reducing agent: Product name ``Cellflow 110PJ (manufactured by Dai-Kogyo Seiyaku) Hardening regulator: Sodium sulfate reagent Grade 1 aggregate A: Heavy sulfur Earthen rock, China Great Wall ware 0゜3nn
Bottom (manufactured by Fuji Kozai) B: Metal aggregate, product name rsUs304LJ stainless steel powder (Daido Special) 100 mesh or less C: Metal aggregate, product name rsUs316LJ stainless steel powder (Daido Special) 100 mesh D: Metal aggregate, product Name rs
Us430LJ stainless steel powder (Daido Special) 100 mesh E: Metal aggregate, reduced iron powder, trade name "Metalette" (manufactured by Nihon Magnetic Sen Co., Ltd.) 0.15 nm lower F: Metal aggregate, ferromanganese, (Nippon Heavy Industries, Ltd.) Arrow JLLL Using the formulation shown in Table 7, the bending strength was measured by changing the humid air curing temperature in the same manner as in Example 4. In all cases, the alumina cement type showed a higher value. The material age was 14 days. The results are also listed in Table 7. The materials used were Example 4 and S]0
1. Using the formulation shown in Table 8 at 20°C and 80% RH, mix for 5 minutes with a 5Q Shinkushin mixer (manufactured by Sanei Seisakusho Co., Ltd.), vacuum defoaming at 70 + omHg for a specified time, and pour molding. A 4 x 4 x 16 cym specimen was prepared, sealed at 20° C. and 80% RH, and cured for a predetermined period of time. At that time, 3H128 according to JIS R-5201
A strength test was conducted on the following day. The setting time was defined as the time when the penetration resistance value reached 4 tOOOOpsi using a Broctor penetration tester, and the results are also listed in Table 8. (Materials) CA-A: White Portland cement, (manufactured by Chichibu Cement Co., Ltd.) B: Alumina cement, trade name "Denka High Alumina Cement", (manufactured by Denki Kagaku Kogyo Co., Ltd.) #C: C4AF, CaC0, /Al2O3/Fe2
Blend O, in the ratio of 400/102/160 to 1350
Calcined at ~1360°C for 1H and ground to an average particle size of 12μ. CA A: C,zA4- CaO/AQ203 4
5155, electrolyzed to 1600°C, rapidly cooled, and pulverized to an average particle size of 8μ. Ultra-fine powdered rainbow cahuum (manufactured by Japan Heavy Chemical Industry) High-performance water reducing agent; β-naphthalene sulfonate formaldehyde condensation system, trade name "Cellflow 110PJ (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) Metal aggregate: reduced iron powder [Metallet J Q, 15m+ below,
(manufactured by Nippon Magnetic Sensing Co., Ltd.) Fiber: 5US430. φ50μm x length 2.5-
Hardening modifier E: NatSOs (reagent) F by chatter cutting method (manufactured by Tokyo Steel Corporation)
; Boric acid (reagent) G: Citric acid (reagent) Mixing was carried out in the same manner as in Example 6 using the formulation shown in JLIL Table 9, fiber (SUS 631) was mixed, and then during molding. While applying vibration on a vibrator, vacuum degassing was performed to carefully prepare a specimen with dimensions <4X4X16Qm. The specimen was cured in a polyethylene bag at 50° C. for 7 days and then dried at 110° C. for 3 days, and the bending strength of the specimen was 805 kgf/a&. Mix the composition shown in Table 10 with a high-speed stirrer, pour it with a table vibrator, and vibrate mold it to form 2X2X8C11.
A specimen was prepared. Thereafter, it was cured in warm water at 50°C for 7 days and then dried at 110°C for 7 days, and a strength test was conducted according to JISR-5201. (Material) Clinker-A: C4AF, CaCO3/Al2O3/
Fe2O, was blended to a predetermined molar ratio, held at 1350 to 1360°C for 1 hour, fired, and then ground to an average particle size of 12-μm. Clinker B: CAz CAs t Ca C0
3 and Af1201 were blended to a predetermined molar ratio, electrolyzed, rapidly cooled in air, and ground to an average particle size of 10 μm. Clinker C: B a A Q204. B a C
O3 and AQ203 were blended in a predetermined molar ratio, fired at 1500°C for 2 hours, rapidly cooled in air, and pulverized to an average particle size of 11°3 μm. Talin force-D: CA, Ca Co3 and Aj2.
O, which was quenched by electric melting and pulverized to an average particle size of 11 μm. Ultra-fine powder rainbow cahuum (Japan Heavy Chemical Industries) Dispersant: β-naphthalene sulfonate formaldehyde condensate system, trade name: Cellflow 110PJ (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) Metal aggregate-E: Iron powder rNcJ ( Particle size 0.15-0゜3m) Metal aggregate manufactured by Dowa Iron Powder Industries Co., Ltd. - F diiron powder "A" (Particle size 0.15+am or less) Hardening modifier manufactured by Dowa Iron Powder Industries Co., Ltd. -〇 : N a 2 S O4 (reagent) H
:boric acid (reagent) ■ = citric acid (reagent)
The composition of each component is (parts by weight) in a 2Q mortar mixer, and the mixture is 4 x 4 x according to JIS-R-5201.
A 16 cm specimen was prepared, subjected to wet curing at 50° C. for 7 days, and then subjected to a compressive strength test. In addition, to confirm machinability, we flattened the surface using a milling machine and drilled holes using a drill press. The results are shown in Table-11. (Materials used) Cement A: Product name "Alumina Cement No. 2 J" manufactured by Denki Kagaku Kogyo Co., Ltd. Cementro: White Portland cement manufactured by Chichibu Cement Co., Ltd. (average particle size 10.3 μm by light transmission method) Reduced iron powder: Dowa Complete set of 200 meshes manufactured by Tetsuko Kogyo Co., Ltd. (
(The sieve fraction is 74 μm or less) Ultra-fine powdered Nijiri flower (average particle size 0 by TEM)
.. 2 μm) High performance water reducing agent: Daiichi Kogyo Seiyaku product name “Cellflow ll”
0PJ (Main component: alkylnaphthalene sulfonic acid formaldehyde metal condensate) Aggregate: Iron powder (0.15~1.0m) Dowa Iron Powder Kogyo (
Co., Ltd. is a mortar mixer at 20°C and 80% RH using river sand (particle size 0.3-1゜2m), Na, SO2: reagent (see the margin below), and Be: Megasu m using the composition shown in Table-12. After mixing for 3 minutes, vacuum defoaming was performed for 2 minutes using a vacuum mixer (manufactured by Sanei Seisakusho), and 2X2X8 was vibrated and molded. It was cured at 50°C for 7 days (in a greenhouse), then heated to 110°C for 7 days, and then fired at 600°C for 3 hours. The compressive strength is shown in Table-13. (Materials used) The same materials as in Example 1 were used except for the materials shown below. Ultrafine powder: Alumina (manufactured by Alcoa) (A-16SG) (average particle size by TEM 0.2-0.
5μm) Dispersant: 1flLi of citric acid (reagent) Table 13 [Compressive strength (kgf/cd)] Using the formulation shown in Table 14, the mixture was kneaded for 5 minutes with a mortar mixer, poured into a 4X4X16a++ mold, and
Dry curing was performed at 0°C for 7 days and at 180°C for 1 day, followed by firing at 600-800°C. Table 1 shows the results.
4. (Materials used) The same materials as in Example 1 were used except as shown below. Inert inorganic powder: Corundum sand, 0.3 to 1 cm ground for one day in a ball mill (average particle size 18.5 μm by light transmission method) Metal aggregate: Iron powder NG, A (manufactured by Dowa Iron Powder Industries) BrO:
Bronze 100 mesh cement: Product name [Alumina cement No. 1] Electricity

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図及び第1b図は、粉末X線回折による水和生成
物及び未反応物の相対強度比を示すグラフ、第2a図は
1通常のアルミナセメントを用いW/C比が0.35の
硬化体破断面のcryo−3EM写真、第2b図はアル
ミナセメントとシリカヒユーム、高性能減水剤を用いW
/P比が0゜20の硬化体破断面のcryo−8EM写
真、第3図は、Differencial Scann
ing Calorimetry(DSC)によって分
析結果を示すグラフ、第4図は、硬化体の模式図、第5
図は、細孔径分布図である。 1・・未反応セメント(CA又はCA、)、2・・水和
物(C,AH,、AI(、、C−3−H) 、3・・水
和物層(C3A)I、、 A)!、)。 特許出願人  電気化学工業株式会社 代理人弁理士  酒  井     −同      
兼  坂      真岡      兼  坂   
   繁図面の浄書 第4 崗 @1a  図 ! 養15’O”(−ma 110’c 第1b  ffl ! ノー:”150°C時M (h) 第3図 第5図
Figures 1a and 1b are graphs showing the relative intensity ratios of hydrated products and unreacted substances by powder X-ray diffraction. Cryo-3EM photograph of the fractured surface of the hardened material, Figure 2b shows W using alumina cement, silica fume, and high performance water reducing agent.
A cryo-8EM photograph of the fracture surface of the cured product with a /P ratio of 0°20, Figure 3 is a Differential Scan
Fig. 4 is a graph showing the analysis results by ing calorimetry (DSC), and Fig. 5 is a schematic diagram of the cured product.
The figure is a pore size distribution diagram. 1. Unreacted cement (CA or CA,), 2. Hydrate (C, AH,, AI (,, C-3-H), 3. Hydrate layer (C3A) I,, A )! ,). Patent applicant: Denki Kagaku Kogyo Co., Ltd. Representative patent attorney: Sakai
Kane Saka Moka Kane Saka
Engraving of traditional drawing No. 4 Kang@1a Figure! 15'O" (-ma 110'c 1b ffl! No:"M at 150°C (h) Fig. 3 Fig. 5

Claims (1)

【特許請求の範囲】 1)アルカリ土類金属酸化物と酸化アルミニウム(Al
_2O_3)とを主成分とする水硬性物質、水硬性物質
より1オーダー以上平均粒子径の小さな超微粉、金属骨
材及び分散材を含む高強度水硬性物質組成物。 2)前記水硬性物質がアルミナセメントであることを特
徴とする特許請求の範囲第1項記載の組成物。 3)前記水硬性物質がCaO/Al_2O_3モル比0
.5未満のカルシウムアルミネートであることを特徴と
する特許請求の範囲第1項記載の組成物。 4)前記水硬性物質がCaO/Al_2O_3モル比1
.5〜4.0のカルシウムアルミネートであることを特
徴とする特許請求の範囲第1項記載の組成物。 5)前記水硬性物質及び前記超微粉の合計重量(C)と
水重量(W)との重量比(W/C)が0.35以下であ
ることを特徴とする特許請求の範囲第1項記載の組成物
。 6)前記水硬性物質組成物が更に粒径1〜100μmの
不活性無機粉体を含むことを特徴とする特許請求の範囲
第1項記載の組成物。 7)前記水硬性物質組成物が更に硬化調整剤を含むこと
を特徴とする特許請求の範囲第1項記載の組成物。 8)前記水硬性物質組成物が更に粒径1〜100μmの
金属粒子を含むことを特徴とする特許請求の範囲第1項
記載の組成物。 9)前記高強度水硬性物質組成物が真空脱泡処理及び振
動処理されることにより得られることを特徴とする特許
請求の範囲第1項記載の組成物。 10)前記高強度水硬性物質組成物を養生後100℃以
上にて更に乾燥養生することを特徴とする特許請求の範
囲第1項記載の組成物。
[Claims] 1) Alkaline earth metal oxide and aluminum oxide (Al
A high-strength hydraulic substance composition comprising a hydraulic substance mainly composed of _2O_3), ultrafine powder with an average particle size smaller than that of the hydraulic substance by one order or more, a metal aggregate, and a dispersion material. 2) The composition according to claim 1, wherein the hydraulic substance is alumina cement. 3) The hydraulic substance has a CaO/Al_2O_3 molar ratio of 0
.. A composition according to claim 1, characterized in that it has less than 5 calcium aluminates. 4) The hydraulic substance has a CaO/Al_2O_3 molar ratio of 1
.. 5. The composition of claim 1, wherein the composition is a calcium aluminate with a pH of 5 to 4.0. 5) Claim 1, characterized in that the weight ratio (W/C) of the total weight (C) of the hydraulic substance and the ultrafine powder to the water weight (W) is 0.35 or less. Compositions as described. 6) The composition according to claim 1, wherein the hydraulic material composition further contains an inert inorganic powder having a particle size of 1 to 100 μm. 7) The composition according to claim 1, wherein the hydraulic material composition further contains a hardening modifier. 8) The composition according to claim 1, wherein the hydraulic material composition further contains metal particles having a particle size of 1 to 100 μm. 9) The composition according to claim 1, which is obtained by subjecting the high-strength hydraulic material composition to vacuum defoaming treatment and vibration treatment. 10) The composition according to claim 1, wherein the high-strength hydraulic material composition is further dried and cured at 100° C. or higher after curing.
JP62333028A 1987-12-28 1987-12-28 Method for producing high strength hydraulically cured product Expired - Fee Related JP2565361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62333028A JP2565361B2 (en) 1987-12-28 1987-12-28 Method for producing high strength hydraulically cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62333028A JP2565361B2 (en) 1987-12-28 1987-12-28 Method for producing high strength hydraulically cured product

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2504096A Division JP2676688B2 (en) 1996-02-13 1996-02-13 High strength hydraulic substance composition

Publications (2)

Publication Number Publication Date
JPH01176260A true JPH01176260A (en) 1989-07-12
JP2565361B2 JP2565361B2 (en) 1996-12-18

Family

ID=18261463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62333028A Expired - Fee Related JP2565361B2 (en) 1987-12-28 1987-12-28 Method for producing high strength hydraulically cured product

Country Status (1)

Country Link
JP (1) JP2565361B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137043A (en) * 1989-10-19 1991-06-11 Fujita Corp Hydraulic composite material
JPH03137042A (en) * 1989-10-19 1991-06-11 Fujita Corp Hydraulic composite material
JPH03137044A (en) * 1989-10-19 1991-06-11 Fujita Corp Hydraulic composite material
JPH07309657A (en) * 1994-05-16 1995-11-28 Eiichi Tazawa Method for increasing initial strength of highly fluid concrete
JP2002541266A (en) * 1999-02-15 2002-12-03 ニュー・レイク・インターナショナル・リミテッド Coating system with dry powder composition dispersible in water
JP2009062254A (en) * 2007-09-10 2009-03-26 Tokyo Institute Of Technology Ultrahigh strength cement cured body, and method for producing the same
WO2012165966A1 (en) * 2011-06-01 2012-12-06 Elkem As Cement composition based on calcium aluminate cement
JP5486742B1 (en) * 2013-07-09 2014-05-07 株式会社エスイー Method for producing hardened cement paste
JP2015000817A (en) * 2013-06-13 2015-01-05 宇部興産株式会社 Base adjusting material
JP2015001046A (en) * 2013-06-13 2015-01-05 宇部興産株式会社 Construction method of waterproof structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265159A (en) * 1986-05-09 1987-11-18 電気化学工業株式会社 High strength cement composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265159A (en) * 1986-05-09 1987-11-18 電気化学工業株式会社 High strength cement composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137043A (en) * 1989-10-19 1991-06-11 Fujita Corp Hydraulic composite material
JPH03137042A (en) * 1989-10-19 1991-06-11 Fujita Corp Hydraulic composite material
JPH03137044A (en) * 1989-10-19 1991-06-11 Fujita Corp Hydraulic composite material
JPH07309657A (en) * 1994-05-16 1995-11-28 Eiichi Tazawa Method for increasing initial strength of highly fluid concrete
JP2002541266A (en) * 1999-02-15 2002-12-03 ニュー・レイク・インターナショナル・リミテッド Coating system with dry powder composition dispersible in water
JP2009062254A (en) * 2007-09-10 2009-03-26 Tokyo Institute Of Technology Ultrahigh strength cement cured body, and method for producing the same
WO2012165966A1 (en) * 2011-06-01 2012-12-06 Elkem As Cement composition based on calcium aluminate cement
US8876968B2 (en) 2011-06-01 2014-11-04 Elkem As Cement composition based on calcium aluminate cement
JP2015000817A (en) * 2013-06-13 2015-01-05 宇部興産株式会社 Base adjusting material
JP2015001046A (en) * 2013-06-13 2015-01-05 宇部興産株式会社 Construction method of waterproof structure
JP5486742B1 (en) * 2013-07-09 2014-05-07 株式会社エスイー Method for producing hardened cement paste
WO2015004723A1 (en) * 2013-07-09 2015-01-15 株式会社エスイー Method for manufacturing high-strength cement cured product
EP2937195A4 (en) * 2013-07-09 2016-11-09 Se Corp Method for manufacturing high-strength cement cured product

Also Published As

Publication number Publication date
JP2565361B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US4915740A (en) Hydraulic material composition having high strength
Musil et al. In situ mechanical properties of chamotte particulate reinforced, potassium geopolymer
US5147830A (en) Composition and method for manufacturing steel-containment equipment
JP7001594B2 (en) Fire resistant magnesia cement
JP2001174163A (en) Binder for forming granular material
JPH01176260A (en) High-strength hydraulic material composition
CA2039467A1 (en) Concrete composition for the manufacture of moulds, mould and process for the manufacture of a mould
CN106699141B (en) In-situ preparation CM2A8Complex phase enhances pouring materialfor steel ladle and preparation method thereof
Chen et al. Mechanical and microstructural investigations on the low-reactive copper mine tailing-based geopolymer activated by phosphoric acid
CA2027378C (en) Composition and method for manufacturing steel-containment equipment
JP2004315348A (en) High thermal conductive castable refractories and method for manufacturing the same
EP1102730B1 (en) Moulding material for the production of a fire-resistant lining, fired formed part, lining and method for the production of a formed part
Mandal Synthesis of a two-part geopolymer from red mud and silica fume
Gheisari et al. Recent Advancement in monolithic refractories via application of Nanotechnology “A review Paper”
JPH02133359A (en) Production of high strength cement composition and high strength cement hardened body
RU2140407C1 (en) Refractory concrete mix
JP3024723B2 (en) Insulated castable
Enoh et al. Effect of Sodium Silicate to Hydroxide Ratio and Sodium Hydroxide Concentration on the Physico-Mechanical Properties of Geopolymer Binders
JPH0360461A (en) Clinker having spinel structure and corundum structure and refractory
JPH0362528B2 (en)
JP2676688B2 (en) High strength hydraulic substance composition
JPH02221164A (en) Castable refractory containing silicon carbide
JP2751948B2 (en) Method for producing high-strength hardened cement
Al-Husseinawi et al. Research Article The Impact of Molar Proportion of Sodium Hydroxide and Water Amount on the Compressive Strength of Slag/Metakaolin (Waste Materials) Geopolymer Mortar
JP2001146464A (en) Refractory containing lump graphite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees