WO1994014205A1 - Secondary cell of nonaqueous electrolyte - Google Patents

Secondary cell of nonaqueous electrolyte Download PDF

Info

Publication number
WO1994014205A1
WO1994014205A1 PCT/JP1993/001769 JP9301769W WO9414205A1 WO 1994014205 A1 WO1994014205 A1 WO 1994014205A1 JP 9301769 W JP9301769 W JP 9301769W WO 9414205 A1 WO9414205 A1 WO 9414205A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
electrolyte secondary
carbon material
secondary battery
aqueous electrolyte
Prior art date
Application number
PCT/JP1993/001769
Other languages
English (en)
French (fr)
Inventor
Atsuo Omaru
Masayuki Nagamine
Naoyuki Date
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to DE69319723T priority Critical patent/DE69319723T2/de
Priority to EP94901040A priority patent/EP0634805B1/en
Publication of WO1994014205A1 publication Critical patent/WO1994014205A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery using a carbon material for a negative electrode.
  • an aqueous electrolyte battery such as a lead battery and a nickel-nickel dome battery has been the mainstream.
  • These batteries have excellent cycle characteristics, but are not satisfactory in terms of battery weight and energy density.
  • non-aqueous electrolyte secondary batteries using lithium or lithium alloy for the negative electrode have been actively conducted.
  • This battery has the advantages of high energy density, low self-discharge, and light weight.However, as the charge / discharge cycle progresses, lithium grows in a dendrite form during charging, and the positive electrode This has the disadvantage of reaching an internal short circuit and leading to an internal short circuit, which is a major obstacle to practical application.
  • lithium ion non-aqueous electrolyte secondary batteries that use a carbon material for the negative electrode use lithium doping / de-doping between carbon layers for the negative electrode reaction, and the charge / discharge cycle proceeds.
  • dendrite-like precipitation during charging is not observed, and it is attracting attention because it shows good charge-discharge cycle characteristics.
  • carbon materials are roughly classified into low-crystalline carbon materials such as coke and glassy carbon whose crystal structure is pseudo-graphite structure or turbostratic structure, and high-crystalline carbon materials such as graphites with developed crystal structure.
  • a low-crystalline carbon material has been conventionally used as a negative electrode material of the nonaqueous electrolyte secondary battery. This is because it has good compatibility with PC (propylene carbonate), which is usually used as a non-aqueous solvent for non-aqueous electrolyte secondary batteries.
  • PC propylene carbonate
  • the nonaqueous solvent of the electrolyte is PC ( Propylene carbonate) is mainly used. This is because, in a non-aqueous electrolyte secondary battery using lithium metal as the negative electrode, PC has an advantage that a stable film is formed on lithium metal.
  • the high-crystalline carbon material actually has a higher true density than the low-crystalline carbon material, and has a high electrode filling property to ensure high electrode filling. It is much more advantageous to use a highly crystalline material for the negative electrode material in order to obtain an energy density.
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high electrode filling property and a high energy density. As a result of intensive studies by the present inventors, they have found that a highly crystalline carbon material having predetermined true density and crystal structure parameters is particularly excellent in lithium doping characteristics and electrode filling density.
  • a non-aqueous solvent obtained by mixing a chain ester carbonate with EC as a low-viscosity solvent is suitable for sufficiently exerting the function of a negative electrode made of such a highly crystalline carbon material.
  • the non-aqueous electrolyte secondary battery of the present invention has been completed based on such findings, and has a true density of 2.1 gZ cm 3 or more, and a plane spacing of 0.34.
  • a negative electrode made of a carbon material having a crystallite thickness of less than 1 nm, a C-axis direction of the 02 plane of 16.0 nm or more, and a G value in a Raman spectrum of 2.5 or more; and a unit weight of the carbon material. It consists of a positive electrode made of a transition metal composite oxide containing lithium equivalent to a charge / discharge capacity of 250 mAh or more, and an electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent containing ethylene carbonate. .
  • the carbon material forming the negative electrode has a particle diameter of 1 m or more.
  • non-aqueous solvent of the electrolytic solution is a mixed solvent of ethylene carbonate and chain carbonate.
  • the mixed volume ratio of ethylene carbonate and chain carbonate is from 10:90 to 60:40.
  • the present invention is characterized in that the chain carbonate is getyl carbonate.
  • getyl carbonate and dimethyl carbonate are mixed as chain carbonates in a non-aqueous solvent. Further, it is characterized in that the mixture volume ratio of getyl carbonate and dimethyl carbonate is 30:70 to 80:20.
  • the present invention is characterized in that the chain carbonate is an asymmetric chain carbonate.
  • asymmetric chain carbonate is characterized in that it is methylethyl carbonate.
  • the true density of the negative electrode material 2. 1 g / cm 3 or more, 0 0 spacing of two surfaces to zero. Less than 3 4 nm, 0 0 2 surface of crystallite thickness If a carbon material having a G value of 16.0 nm or more and a G value in a Raman spectrum of 2.5 or more is used, the electrode filling property is improved.
  • the above-mentioned carbon material is used as a negative electrode material, and a transition metal composite oxide containing lithium equivalent to a charge / discharge capacity of 25 O mAh or more per unit weight of the carbon material as a positive electrode material is used as a non-aqueous solvent.
  • a non-aqueous solvent mainly composed of ethylene carbonate is used, the capacity of the carbon material is sufficiently exhibited, and a high energy density is obtained.
  • the carbon material having a particle size of 1 m or more is used, the irreversible capacity that cannot be discharged even when charged is reduced, and the charge / discharge capacity is further increased.
  • FIG. 1 is a characteristic diagram showing the relationship between the EC mixing ratio of a nonaqueous solvent and the conductivity at a temperature of 25'C.
  • FIG. 2 is a characteristic diagram showing the relationship between the EC mixing ratio of a nonaqueous solvent and the electrical conductivity at a temperature of 20 ° C.
  • BEST MODE FOR CARRYING OUT THE INVENTION In the nonaqueous electrolyte secondary battery of the present invention, the true density and the crystal structure parameters are specified as a negative electrode material in order to secure electrode filling properties and obtain a high energy density. Use a carbon material that satisfies the conditions of
  • the true density is related to the electrode filling.
  • a carbon material having a true density of at least 2. lg / cm 3 more preferably at least 2.18 g / cm 3 , high electrode filling properties can be obtained.
  • the crystal structure parameters regulated in the present invention are determined by X-ray diffraction measurement of the plane spacing of the 0.22 plane, the crystallite thickness of the 0.22 plane in the C-axis direction, and further, by Raman spectrum observation.
  • G value The plane spacing of the 0 2 plane and the crystallite thickness of the 0 2 plane in the C-axis direction are indicators of the average crystal structure of the entire material.
  • the G value is represented by the ratio of the area intensity of a signal derived from the graphite structure of a carbon material to the area intensity of a signal derived from an amorphous structure in a Raman spectrum. It is an index of.
  • these crystal structure parameters are true density ⁇ charge / discharge It is involved in the performance as a negative electrode, such as electric capacity.
  • a carbon material having a crystal structure parameter within the following range a high electrode filling property is obtained, a high charge / discharge capacity is obtained, and a high energy density is obtained.
  • the plane spacing of the 0.22 plane is less than 0.334 nm, more preferably 0.335 nm or more and 0.338 nm or less.
  • the element thickness must be 16.0 nm or more.
  • the G value is preferably 2.5 or more. If the G value is less than 2.5, a true density of 2.1 gZ cm 3 or more may not be obtained.
  • Examples of the carbon material having the crystal structure parameter include natural graphite, and artificial graphite produced by carbonizing an organic material and performing high-temperature treatment.
  • Coal, pitch, and the like are typical examples of the organic material used as a starting material when producing the artificial graphite.
  • Pitches include tars obtained by high-temperature pyrolysis of coal tar, ethylene bottom oil, crude oil, etc., distillation from asphalt, etc. (vacuum distillation, atmospheric distillation, steam distillation), thermal polycondensation, extraction, chemical polymerization, etc. There are those obtained by the operation and other pitches generated during wood carbonization.
  • starting materials include high-molecular compound materials such as polyvinyl chloride resin, polyvinyl acetate, polyvinyl butyrate, and 3,5-dimethylphenol resin.
  • coals, pitches, and polymer compounds exist as liquids at a maximum temperature of about 400 ° C during carbonization, and aromatic rings are condensed by holding at that temperature.
  • they are polycyclic and are in a laminated orientation state, and when the temperature reaches about 500 ° C. or more, a solid carbon precursor, that is, a semiconductor is formed.
  • a liquid-phase carbonization process is a typical production process of graphitizable carbon.
  • condensed polycyclic hydrocarbon compounds such as naphthalene, phenanthrene, anthracene, triphenylene, pyrene, perylene, pentaphenyl, pentacene, and the like, and derivatives of these condensed polycyclic hydrocarbon compounds (eg, carboxylic acids, carboxylic acids, and the like) Anhydrides, carboxylic acid imides, etc.) or mixtures thereof, condensed complex ring compounds such as acenaphthylene, indole, isoindole, quinoline, isoquinoline, quinoxaline, phthalazine, carbazole, acridine, phenazine, phenanthridine, and condensed complex complexes thereof Derivatives of ring compounds can also be used as starting materials.
  • the above organic material is carbonized in a nitrogen stream at 300 to 700 ° C., and then heated in a nitrogen stream. Calcination is performed at a speed of 1 to 20 minutes for Z minutes, a reaching temperature of 900 to 150, and a holding time at the reaching temperature of about 0 to 5 hours.
  • the calcined body is further subjected to a heat treatment at 200 ° C. or more, preferably 250 ° C. or more, to obtain artificial graphite.
  • the carbonization or calcination operation may be omitted in some cases.
  • the above carbon material is formed into particles by, for example, pulverization and classification, and supplied to the negative electrode material.
  • the pulverization operation is performed during carbonization, calcination, or high-temperature heat treatment during the heating process. You may go at.
  • the carbon material particles used for the negative electrode material preferably have a particle size of 1 m or more. Particle size less than 1 m in the anode material If the carbon material particles are contained in a large amount, the irreversible capacity that cannot be discharged even if charged at the beginning of the charge / discharge cycle increases. The reason for this is unclear, but it is considered that the carbon material particles having a particle size of less than 1 m have a large specific surface area, and therefore have a large reaction area with the electrolyte and are likely to cause side reactions.
  • the upper limit of the particle diameter of the carbon material particles varies depending on the size and structure of the battery to be applied, and is preferably set to a range that does not exceed at least the thickness of the separator. Therefore, in the case of a cylindrical battery, the electrode has a spiral structure in which the electrode is thin and the electrode and the separator are alternately laminated and wound. The battery can be set to a large particle size range.
  • the material in order to maximize the capacity of the negative electrode, when used as a positive electrode, the material is more than 25 O mAh per g of carbon material, preferably 30 A transition metal compound that can supply lithium equivalent to the charge / discharge capacity of O mAh or more, more preferably 33 O mAh or more, is used.
  • the ion supply capacity is set by measuring the discharge capacity of the battery. Therefore, the ion supply source for achieving the above-mentioned ion supply capacity is not limited to the positive electrode, and it is only necessary that ions corresponding to the above-mentioned charge and discharge capacity exist in the battery system. In addition, the above-mentioned ion supply capacity needs to be maintained in a steady state (for example, after repeating charge and discharge about five times).
  • the transition metal compound serving as the positive electrode material for example, general formula L i x M0 2 (wherein M represents at least one of C o, N i, X is the 0. 0 5 ⁇ x ⁇ 1. 1 0 ) Consisting of a lithium transition metal represented by Intermetallic compounds containing complex metal oxides and Li are preferred.
  • non-aqueous electrolyte secondary battery of the present invention as the non-aqueous electrolyte, one obtained by mixing an electrolyte with a non-aqueous solvent is used.
  • the non-aqueous solvent one of the requirements is that the high-density carbon material constituting the negative electrode is hardly decomposed by the reducing action, and in the present invention, a non-aqueous solvent containing EC is used.
  • E C is stable against reduction of the high-density carbon material, and by constituting the non-aqueous solvent, the capacity of the negative electrode is sufficiently exhibited.
  • the non-aqueous solvent is composed only of EC, sufficient wettability with the resinous porous separator cannot be obtained due to insufficient wettability, and EC has a relatively high melting point of 25.6 ° C. Due to the high properties, the low-temperature properties are not satisfactory. For this reason, it is preferable to add a second component solvent for further improving these properties to the non-aqueous solvent.
  • Examples of the second component solvent include chain carbonates and the like.
  • DEC getyl carbonate
  • DMC dimethyl carbonate
  • MEC methyl ether
  • Asymmetric chain carbonates such as tyl carbonate) and MPC (methyl propyl carbonate) are suitable.
  • the EC: second component solvent (volume ratio) is preferably set in the range of 2: 8 to 8: 2, preferably 1: 9 to 6: 4. If the mixing ratio of EC is less than 10% by volume, the stability of the electrolyte becomes insufficient and the conductivity becomes low. Over 60% by volume Thus, EC has a relatively high melting point and inferior low-temperature characteristics, and as a result, the electrical conductivity, particularly in low-temperature environments, is reduced. However, in a low-temperature environment, the optimum range of the EC mixing ratio varies depending on the second component solvent used. For example, when DEC is mixed as the second component solvent, the EC mixing ratio is reduced to 60% by volume or less.
  • a high conductivity can be obtained by setting the EC mixing ratio to 30% by volume or more when mixing DMC, and by setting the EC mixing ratio to 10 to 60% by volume when mixing MEC. Therefore, when the characteristics under low-temperature environment as well as under normal-temperature environment are problematic, it is desirable to select the EC mixing ratio according to the type of the second component solvent.
  • DMC has low viscosity and high conductivity, but has a high melting point of 0 eC and a high boiling point. This is because the temperature range is as low as 90 ° C and the temperature range in the liquid state is narrow.
  • DEC may raise the battery temperature in response to lithium metal when lithium metal cannot be accommodated in the negative electrode and precipitates because the battery is overcharged, but this danger is mitigated It is also advantageous in terms of ensuring safety.
  • the DEC and DMC volume ratio
  • the DEC and DMC volume ratio
  • the DEC and DMC volume ratio
  • the DMC should be set in the range of 2: 8 to 8: 2, preferably 3: 7 to 8: 2. If the DMC exceeds this ratio, the low-temperature characteristics will be poor. If the DEC exceeds this range, the conductivity at room temperature will be slightly insufficient, and the reaction between precipitated lithium and DEC during overcharge will be a problem. become.
  • the electrolytic solution is constituted by adding an electrolyte to such a non-aqueous solvent.
  • an electrolyte if it is used for this type of battery, it can be used.
  • L i C 10 L iAsF 6, L i PF 6, L i BF 4, L i B (C 6 H 5) 4, CH 3 S0 3 L i, CF 3 S0 3 L i, L i C 1, LiBr and the like.
  • coal pitch coke was calcined at 1200 ° C and then heat-treated at 3000 ° C in an inert atmosphere to produce a carbon material, which was further ground to obtain a carbon material powder. Spacing d of 002 surface of obtained carbon material powder. . 2 , 002 face crystallite thickness Lc. . 2 and G value are shown in Table 1. Table 2 shows the density and particle size.
  • the sample powder is fixed on a slide glass, and the excitation light is applied to the sample powder using a spectroscope (trade name: JOB IN YVDN U-100000).
  • the peak area intensity of 1350 cm- 1 derived from the amorphous structure was derived from the amorphous structure.
  • the excitation light was irradiated under the following conditions.
  • Laser light Ar + laser
  • the measurement was performed with an integration time of 4 to 8 seconds per channel and one integration.
  • the carbon material powder was heated in an Ar atmosphere at a heating rate of about 30%.
  • This pre-heat treatment is performed immediately before making the negative electrode mix in the next step.
  • This negative electrode carbon material powder, 10% by weight of polyvinylidene fluoride equivalent to 10% by weight as a binder, and dimethylformamide as a solvent were mixed and dried to prepare a negative electrode mix.
  • 37 mg of the prepared negative electrode mix was mixed with a Ni mesh serving as a current collector and formed into a pellet having a diameter of 15.5 mm to prepare a negative electrode.
  • Electrolyte EC and DEC mixed at a mixing ratio of 1: 1 (volume ratio) and dissolved in a non-aqueous solvent at a ratio of L i PF 6 force ⁇ lmo 1 Z 1
  • a non-aqueous electrolyte solution 2 was prepared in the same manner as in Example 1 except that carbon material powder obtained by pulverizing Madagascar natural graphite was used as a negative electrode material. The next battery was made.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, except that a carbon material powder obtained by pulverizing Sri Lankan natural lead was used as a negative electrode material.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, except that a carbon material powder obtained by pulverizing Chinese natural graphite was used as a negative electrode material.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that carbon material powder obtained by pulverizing artificial graphite KS-75 (manufactured by Lonza) was used as a negative electrode material.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, except that carbon material powder obtained by pulverizing artificial graphite KS-15 (manufactured by Lonza) was used as a negative electrode material. Plane spacing d of the 02 surface of the carbon material powder. . 2, 0 0 dihedral crystallite thickness L c 0 0 2 and G values in Table 1, Table 2 shows the true density and particle size.
  • Non-aqueous electrolysis was performed in the same manner as in Example 1 except that the coal pitch coke was calcined at 120 (TC and then pulverized without heat treatment, and the obtained carbon material powder was used as a negative electrode material.
  • a liquid secondary battery was prepared.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, except that the carbon material powder obtained by pulverizing the carbon material obtained as described below was used as the negative electrode material.
  • a petroleum pitch appropriately selected from an HZC atomic ratio in the range of 0.6 to 0.8 was pulverized and oxidized in an air stream to obtain a carbon precursor.
  • the carbon precursor had a quinoline-insoluble content (JIS centrifugal method: K2425-19883) of 80%, and an oxygen content (based on organic element analysis) of 15.4. % By weight.
  • the carbon precursor is pulverized, and 10 g of the carbon precursor is filled in a crucible, kept at 500 ° C. for 5 hours in a nitrogen stream, and then heated to 110 ° C. for one hour. Time Heat treated to produce carbon material.
  • a non-aqueous electrolyte solution was prepared in the same manner as in Example 1 except that a carbon material powder obtained by grinding natural soil graphite produced in Mexico was used as a negative electrode material. The next battery was made.
  • the capacity and capacity loss were measured as follows.
  • the current density was set to 0.53 mA / cm 2
  • the cut-off voltage was set to the terminal voltage 1.5 V
  • the discharge no-pause cycle such as 1-hour discharge / 2-hour pause was repeated (de-doping process). The amount of discharge electricity was determined.
  • the capacity loss was obtained by subtracting the amount of discharged electricity from the amount of charged electricity.
  • the process of doping lithium into the carbon material is not strictly charging but discharging.
  • the doping process is described here as charging and undoping processes in accordance with actual conditions in actual batteries. Is called discharge.
  • Non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that carbon material powder obtained by pulverizing Madagascar natural graphite (the carbon material powder obtained in Example 2) was used as a negative electrode material. It was created.
  • Example 9 carbon material powder obtained by pulverizing Madagascar natural graphite (the carbon material powder obtained in Example 2) was used as a negative electrode material. It was created.
  • the capacity measured at the 0th cycle was defined as the capacity under a normal temperature environment. Then, the first charge / discharge cycle was performed in an environment at a temperature of ⁇ 20, and the capacity measured in the first cycle was defined as the capacity in a low temperature environment.
  • the batteries of Examples 8 to 11 not only have a high capacity ratio in a normal temperature environment, but also have a low freezing temperature of the electrolyte, and have a low temperature in a low temperature environment.
  • the capacity ratio is also high.
  • a non-aqueous solvent mainly composed of EC and a chain carbonate as the second component solvent is used.
  • batteries that may be left at temperatures below 30 degrees are suitable not only for DMC but also for mixed solvents obtained by mixing DMC and DEC, or an asymmetric chain carbonate ester such as MEC. Understand.
  • one of DEC, DMC, and MEC was stored in a Teflon container and lithium metal pieces were charged. Then, the Teflon container was sealed so as not to be mixed with water and stored in constant temperature baths set at various temperatures, and the state of the solvent and lithium was observed.
  • DEC is the most common of the three solvents. High reactivity with lithium.
  • the reaction does not start immediately because there is a natural oxide film on the lithium metal surface, but the solvent gradually reacts with the lithium. I do.
  • lithium when stored at 60 ° C for one week, lithium disappears and DEC turns brown.
  • the reaction between lithium and the solvent hardly occurs.
  • the reactivity with lithium metal is reduced by mixing DMC. ,
  • Fig. 1 shows the relationship between the EC mixing ratio and the conductivity measured at a temperature of 25 ° C
  • Fig. 2 shows the relationship between the EC mixing ratio and the conductivity measured at a temperature of 25 ° C.
  • the conductivity of the battery is much lower at a temperature of 20 ° C than at a temperature of 25 ° C.
  • the optimal range of the EC mixing ratio differs depending on the second component used.
  • the EC mixing ratio is set to 60% by volume or less
  • the EC mixing ratio is set to 30% by volume or more.
  • the EC mixing ratio is set to 10 to 60% by volume to obtain high conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

明 細 書 非水電解液二次電池 技 術 分 野 本発明は、 炭素材料を負極に用いた非水電解液二次電池に関する ものである。 , 背 景 技 術 近年電子技術のめざましい進歩は、 電子機器の小型 ·軽量化を次 々と実現させている。 それに伴い、 ポータブル用電源である電池に 対しても益々小型 .軽量且つ高エネルギー密度の要求が高まってい る。
従来、 一般用途の二次電池としては鉛電池、 ニッケル '力ドミゥ ム電池等の水溶液電解液系電池が主流であつた。 これらの電池はサ ィクル特性には優れるが、 電池重量やエネルギー密度の点では十分 満足できる特性とは言えなレ、。
最近、 リチウムあるいはリチウム合金を負極に用レ、た非水電解液 二次電池の研究 ·開発が盛んに行われている。 この電池は高工ネル ギー密度を有し、 自己放電も少なく、 軽量という優れた特徴を有す るが、 充放電サイクルの進行に伴い、 リチウムが充電時にデンドラ ィト状に結晶成長し、 正極に到達して内部ショートに至る欠点があ り、 実用化への大きな障害となっている。 これに対して、 負極に炭素材料を使用したリチウムィォン系の非 水電解液二次電池は、 炭素層間へのリチウムのドープ/ /脱ドープを 負極反応に利用するもので、 充放電サイクルが進行しても充電時の デンドライト状の析出は見られず、 良好な充放電サイクル特性を示 すことから注目されている。
ところで、 炭素材料は、 結晶構造が擬黒鉛構造あるいは乱層構造 であるコークス、 ガラス状炭素等の低結晶性炭素材料と、 結晶構造 が発達した黒鉛類等の高結晶性炭素材料に大別される。
このうち、 上記非水電解液二次電池の負極材料としては、 従来、 低結晶性炭素材料が使用されている。 これは、 通常非水電解液二次 電池の非水溶媒に使用されている PC (炭酸プロピレン) との相性 が良いためである。
すなわち、 従来、 金属リチウムを負極に使用する非水電解液二次 電池, 炭素材料を負極に使用する非水電解液二次電池のいずれにお いても、 電解液の非水溶媒には PC (炭酸プロピレン) を主体とす るものが使用されている。 これは、 特に金属リチウムを負極に使用 する非水電解液二次電池において、 P Cが金属リチウ厶に対して安 定な被膜を形成するという利点を有しているからである。
この PCを主体とする非水溶媒を使用する場合において、 負極を 低結晶性炭素材料で構成すれば実用的な充放電容量が得られるもの の、 高結晶性炭素材料で構成すると、 負極中に L iが十分ド一プさ れず実用的な充放電容量が得られない。 これは、 Deyら 〔A. N . Dey and B. P. Su l l i van : J. E l e c t r o c h em. Soc. , vo l. 1 1 7 ( 1 970 ) p. 222〕 によって報告されているように、 高結晶性炭素材料よりなる負極で は、 P Cが表面で分解してプロピレンガス発生及び炭酸リチウム生 成が起こり、 電気量がその反応に消費され、 リチウムをド一プする ことができなくなることが理由であると考えられる。
ところが、 低結晶性炭素材料と高結晶性炭素材料を比較すると、 実際には高結晶性炭素材料の方が低結晶性炭素材料に比べて真密度 が高く、 電極充塡性を確保して高エネルギー密度を得るには高結晶 性材料を負極材料に使用する方が遙に有利である。
そこで、 このような高結晶性炭素材料を使用し得るようにすベく、 PCに ECを混合してなる混合溶媒が報告されている (J. E 1 e c t r ochemi. Soc. , Vo l. 1 37, No 7 (1 99 0) p. 2009) 。 この報告では、 PCと ECの混合溶媒を用い れば黒鉛材料を負極材料として充放電を行えることが示されている。 しかし、 この混合溶媒は、 実用電池で用いられている多孔性ポリ プロピレンフィル厶に対する濡れ性が悪く、 また高粘度であるため、 やはり十分満足のレ、く特性は得られなレ、。
このように高結晶性炭素材料については、 上述の如く適した非水 溶媒が見当たらないことから、 負極としての性能がほとんど検討さ れていないのが実情である。 今後さらに高エネルギー密度化が望ま れる非水電解液二次電池においては、 このような高結晶性炭素材料 を使用してその特性を十分に活かすことが重要であると考えられる。 発 明 の 開 示 本発明は、 電極充塡性が高く、 高エネルギー密度が得られる非水 電解液二次電池を提供することを目的とする。 本発明者らが鋭意検討を重ねた結果、 所定の真密度, 結晶構造パ ラメータを有する高結晶性炭素材料が、 特にリチウ厶ドープ特性, 電極充塡密度に優れることを見い出した。 さらに、 そのような高結 晶性炭素材料よりなる負極の機能を十分に発揮させるには、 E Cに 鎖状炭酸ェステルを低粘度溶媒として混合してなる非水溶媒が好適 であることを見い出した。
本発明の非水電解液二次電池は、 このような知見に基づいて完成 されたものであって、 真密度が 2 . l gZ c m 3 以上、 0 0 2面の 面間隔が 0 . 3 4 n m未満、 0 0 2面の C軸方向の結晶子厚みが 1 6 . 0 n m以上、 ラマンスペクトルにおける G値が 2 . 5以上であ る炭素材料よりなる負極と、 前記炭素材料の単位重量当たり 2 5 0 m A h以上の充放電容量相当のリチウムを含有する遷移金属複合酸 化物よりなる正極と、 炭酸ェチレンを含有する非水溶媒に電解質を 溶解してなる電解液とからなるものである。
また、 負極を構成する炭素材料の粒径が 1 m以上であることを 特徴とするものである。
さらに、 電解液の非水溶媒が炭酸ェチレンと鎖状炭酸エステルの 混合溶媒であることを特徵とするものである。
さらに、 炭酸エチレンと鎖状炭酸エステルの混合体積比が、 1 0 : 9 0〜6 0 : 4 0であることを特徴とするものである。
さらに、 鎖状炭酸エステルがジェチル炭酸エステルであることを 特徵とするものである。
さらに、 非水溶媒に鎖状炭酸エステルとしてジェチルカ一ボネ一 トとジメチルカーボネートが混合されていることを特徴とするもの である。 さらに、 ジェチルカ一ボネートとジメチルカ一ボネー卜の混合体 積比が、 3 0 : 7 0〜8 0 : 2 0であることを特徵とするものであ 。
さらに、 鎖状炭酸エステルが非対称鎖状炭酸エステルであること を特徴とするものである。
さらに、 非対称鎖状炭酸エステルは、 メチルェチル炭酸エステル であることを特徵とするものである。
リチウムィォン系非水電解液二次電池において、 負極材料として 真密度が 2 . 1 g/ c m 3 以上、 0 0 2面の面間隔が 0 . 3 4 n m 未満、 0 0 2面の結晶子厚みが 1 6 . 0 n m以上、 ラマンスぺクト ルにおける G値が 2 . 5以上である炭素材料を用いると、 電極充塡 性が向上する。
さらに負極材料として上記炭素材料を用いるとともに、 正極材料 として前記炭素材料の単位重量当たり 2 5 O mA h以上の充放電容 量相当のリチウムを含有する遷移金属複合酸化物を、 非水溶媒とし て炭酸ェチレンを主体とする非水溶媒を用いると、 上記炭素材料の 容量能が十分に発揮され、 高いエネルギー密度が獲得される。 なお、 上記炭素材料として粒径が 1 m以上のものを使用すると 充電しても放電できない不可逆容量が低減してさらに充放電容量が 増大する。
また、 E Cを主体とする非水溶媒に第 2の成分溶媒として鎖状炭 酸エステル、 より好ましくは非対称鎖状炭酸ェステルあるいは D E Cと DM Eの混合溶媒を添加すると、 高導電率が得られるとともに 低温使用時, 高温使用時の信頼性が向上する。 図 面 の 簡 単 な 説 明 図 1は温度 2 5 'C下における非水溶媒の E C混合率と導電率の関 係を示す特性図である。
図 2は温度一 2 0 °C下における非水溶媒の E C混合率と導電率の 関係を示す特性図である。 発明を実施するための最良の形態 本発明の非水電解液二次電池においては、 電極充塡性を確保し高 エネルギー密度を獲得するために、 負極材料として真密度、 結晶構 造パラメータが所定の条件を満たす炭素材料を使用する。
すなわち、 炭素材料において、 真密度は電極充塡性に関与するも のである。 この真密度が 2. l g/ c m 3 以上、 より好ましくは 2 . 1 8 g / c m 3 以上である炭素材料を使用することにより高い電極 充塡性が得られる。
また、 本発明において規制する結晶構造パラメ一タは、 X線回折 法で測定される 0 0 2面の面間隔及び 0 0 2面の C軸方向の結晶子 厚み、 さらにラマンスぺクトル観測によって求められる G値である。 0 0 2面の面間隔及び 0 0 2面の C軸方向の結晶子厚みは、 材料全 体の平均的な結晶構造の指標となるものである。 また、 G値は、 ラ マンスぺクトルにおいて炭素材料の黒鉛構造に由来するシグナルの 面積強度と非晶質構造に由来するシグナルの面積強度の比で表され るものであり、 ミクロな結晶構造欠陥の指標となるものである。 炭素材料において、 これら結晶構造パラメ一夕は、 真密度ゃ充放 電容量等, 負極としての性能に関与する。 これら結晶構造パラメ一 夕が下記の範囲にある炭素材料を使用することにより高い電極充塡 性が得られるとともに高い充放電容量が獲得され、 高エネルギー密 度が得られることとなる。
すなわち、 上記効果を得るには 0 0 2面の面間隔は 0 . 3 4 n m 未満、 より好ましくは 0 . 3 3 5 n m以上、 0 . 3 3 8 n m以下で あり、 0 0 2面の結晶子厚みが 1 6 . 0 n m以上であることが必要 である。 さらに、 G値は 2 . 5以上であることが好ましく、 G値が 2 . 5未満である場合には、 2 . 1 gZ c m3 以上の真密度が得ら れない場合がある。
前記結晶構造パラメータを有する炭素材料のとしては、 天然黒鉛、 さらには有機材料を炭素化し、 高温処理して生成される人造黒鉛等 が挙げられる。
上記人造黒鉛を生成するに際して出発原料となる有機材料として は、 石炭やピッチ等が代表的である。
ピッチとしては、 コールタール, エチレンボトム油, 原油等の高 温熱分解で得られるタール類、 アスファルトなどより蒸留 (真空蒸 留, 常圧蒸留, スチーム蒸留) , 熱重縮合, 抽出, 化学重合等の操 作によって得られるもの、 その他木材乾留時に生成するピッチ等が あ 。
さらに出発原料としては、 ポリ塩化ビニル樹脂、 ポリビニルァセ テート、 ポリビニルプチラート、 3, 5—ジメチルフエノール樹脂 等の高分子化合物原料が挙げられる。
これら石炭, ピッチ, 高分子化合物は、 炭素化の途中最高 4 0 0 °C程度で液状で存在し、 その温度で保持することで芳香環同士が縮 合、 多環化して積層配向した状態となり、 その後 5 0 0 °C程度以上 の温度になると固体の炭素前駆体則ちセミコ一クスを形成する。 こ のような過程を液相炭素化過程と呼び、 易黒鉛化炭素の典型的な生 成過程である。
その他、 ナフタレン, フエナントレン, アントラセン, トリフエ 二レン, ピレン, ペリレン, ペンタフヱン, ペン夕セン等の縮合多 環炭化水素化合物、 さらにこれら縮合多環炭化水素化合物の誘導体 (例えばこれらのカルボン酸、 カルボン'酸無水物、 カルボン酸イミ ド等) あるいは混合物、 ァセナフチレン, インドール, イソインド ール, キノリン, イソキノリン, キノキサリン, フタラジン, カル バゾール, ァクリジン, フエナジン, フエナントリジン等の縮合複 素環化合物、 さらにこれら縮合複素環化合物の誘導体等も出発原料 として使用できる。
以上の有機材料を出発原料として所望の人造黒鉛を生成するには、 例えば、 上記有機材料を、 窒素気流中、 3 0 0〜7 0 0 °Cで炭化し た後、 窒素気流中、 昇温速度 1〜 2 0で Z分、 到達温度 9 0 0〜 1 5 0 0て、 到達温度での保持時間 0〜5時間程度の条件でか焼する。 そして、 このか焼体を、 さらに 2 0 0 0 °C以上好ましくは 2 5 0 0 °C以上で熱処理することによつて人造黒鉛が得られる。 勿論このと き場合によっては炭化やか焼操作を省略しても良い。
上記炭素材料は、 例えば粉砕, 分級によって粒子状になされて負 極材料に供されるが、 人造黒鉛において粉砕操作は炭化、 か焼、 高 温熱処理の前後あるレ、は昇温過程の間いずれで行つても良い。
なお、 負極材料に供する炭素材料粒子としては、 粒径が 1 m以 上のものを用いることが好ましい。 負極材料中に粒径 1 m未満の 炭素材料粒子が多量に含有されていると、 充放電サイクル初期にお レ、て充電しても放電できない不可逆な容量が増大する。 この理由は 定かではないが、 粒径 1 m未満の炭素材料粒子は比表面積が大き いため、 電解液との反応面積が広く副反応を起こし易いからと考え られる。
炭素材料粒子の粒子径の上限については、 適用する電池の大きさ や構造によって異なり、 少なくともセパレ一夕の厚みを越えない範 囲に設定することが好ましい。 したがって、 円筒型電池の場合、 電 極は薄レ、電極とセパレー夕とを交互に積層し巻回してなる渦巻構造 とされるので粒子径の上限は比較的小粒径範囲に設定され、 大型の 電池であれば大粒径範囲に設定できる。
—方、 正極を構成する正極材料としては、 負極の容量能を最大限 に発揮させるために、 正極としたときに負極に対して炭素材料 1 g 当たり 2 5 O mA h以上、 好ましくは 3 0 O mA h以上、 より好ま しくは 3 3 O mA h以上の充放電容量相当分のリチウムを供給し得 る遷移金属化合物が使用される。
なお、 上記イオン供給能力は、 電池の放電容量を測定することに よつて設定されたものである。 したがつて上記ィォン供給能力を達 成するためのイオン供給源は正極に限らず、 要は電池系内に上記充 放電容量相当分のイオンが存在すれば良い。 また、 上記に示したィ オン供給能力は、 定常状態 (例えば 5回程度充放電を繰り返した後) で保持されている必要がある。
上記正極材料となる遷移金属化合物としては、 例えば一般式 L i x M02 (ただし Mは C o, N iの少なくとも 1種を表し、 Xは 0 . 0 5≤x≤ 1 . 1 0である) で表されるリチウム遷移金属からなる 複合金属酸化物や L iを含んだ層間化合物が好適である。
本発明の非水電解液二次電池において、 非水電解液としては、 非 水溶媒に電解質を混合してなるものが用レ、られる。
ここで、 非水溶媒としては、 負極を構成する上記高密度炭素材料 の還元作用に対して分解し難いことが一要件となり、 本発明では E Cを含有する非水溶媒を使用する。 E Cは、 高密度炭素材料の還元 に対して安定であり、 これで非水溶媒を構成することにより負極の 容量能が十分に発揮されることとなる。 ,
なお、 非水溶媒を E Cのみで構成した場合、 樹脂性多孔質セパレ 一夕との濡れ性が不足して導電率が十分得られず、 また E Cは融点 が 2 5 . 6 °Cと比較的高いため低温特性も満足のいくものとは言え ない。 このため、 非水溶媒にさらにこれら特性を改善するための第 2の成分溶媒を添加することが好ましい。
第 2の成分溶媒としては、 鎖状炭酸エステル等が挙げられ、 特に D E C (ジェチルカ一ボネート) 、 D E C (ジェチルカーボネート) と DM C (ジメチルカ一ボネート) の混合溶媒、 さらに ME C (メ チルェチルカーボネート) や M P C (メチルプロピルカーボネート) 等の非対称鎖状炭酸エステルが適している。 これら鎖状炭酸エステ ルを第 2の成分溶媒として非水溶媒に添加すると、 導電率の向上が 達成されるとともに E Cの分解が抑えられ、 低温使用時及び高温使 用時の信頼性も向上する。
E Cと第 2の成分溶媒を混合するに際しては、 E C :第 2の成分 溶媒 (体積比) は 2 : 8〜8 : 2好ましくは 1 : 9〜6 : 4の範囲 に設定すると良い。 E Cの混合率が 1 0容量%未満の場合には、 電 解液の安定性が不十分になり、 導電率が低くなる。 6 0容量%を超 えると、 E Cは融点が比較的高く、 低温特性に劣ることから、 これ を反映して特に低温環境での導電率が低くなる。 但し、 低温環境下 では、 用いる第 2の成分溶媒によって、 E C混合率の最適範囲が異 なり、 例えば第 2の成分溶媒として D E Cを混合する場合には E C 混合率を 6 0容量%以下に、 DM Cを混合する場合には E C混合率 を 3 0容量%以上に、 ME Cを混合する場合には E C混合率を 1 0 〜6 0容量%とすることにより高い導電率が得られる。 したがって、 常温環境下のみならず低温環境下における特性も問題となる場合に は、 第 2の成分溶媒の種類に応じて E C混合率を選択することが望 ましい。
なお、 DM Cを第 2の成分溶媒に用いるに際して、 D E Cと組み 合わせて用いた方が良いのは、 DMCは粘度が低く、 高い導電率を 示すものの、 融点が 0 eCと高くまた沸点が 9 0 °Cと低く、 液相状態 の温度範囲が狭いからである。
D M Cと E Cのみからなる混合溶媒を電解液に用いた場合、 環境 温度が融点以下になると、 電解液に非常にミクロな部分的な凝固が 起こり、 放電性能が低下する。 そして、 一 3 0て以下になると、 電 解液が電極に含浸されたまま凝固して電極にダメージを与え、 電池 性能が低下する。 一方、 環境温度が 1 0 0 °C以上になると、 電池の 内圧検知型安全機構が誤動作しそれ以上に使用することができない 状態になる。 環境温度一 3 0 °C以下は、 例えば極地を経由して電池 を輸送しょうとする場合にはあり得る状況であり、 1 0 0 °C以上は、 真夏の車中に電池を放置した場合には容易に起こり得る状況であり、 この程度の低温, 高温に耐え得るものでなければ実用十分であると は言えない。 したがって、 DM Cを第 2の非水溶媒として用いる場 合には、 DECと組み合わせる必要がある。
また、 このように DECと DMCを組み合わせると、 DECの欠 点も改善される。 すなわち、 DECは電池が過充電になって負極に リチウム金属が収容しきれず析出したときに、 該リチウム金属と反 応して電池温度を上昇させる可能性があるが、 このような危険性が 緩和され、 安全性確保の点でも有利である。
この DECと DMCを混合するに際しては、 DECと DMC (体 積比) は 2: 8〜8 : 2, 好ましくは 3 : 7〜8 : 2の範囲に設定 すると良い。 DMCがこの混合率を超える場合には低温特性に劣る ものになり、 DECがこの範囲を超える場合には室温での導電率が 若干不足するとともに過充電時における析出リチウムと DECの反 応が問題になる。
電解液はこのような非水溶媒に電解質が添加されて構成されるが、 電解質としてはこの種の電池に用レ、られるものであればレ、ずれも使 用可能である。
例えば、 L i C 104 , L iAsF6 , L i PF6 , L i BF4 , L i B (C6 H5 ) 4 , CH3 S03 L i, CF3 S03 L i, L i C 1, L i Br等が挙げられる。
以下、 本発明を具体的な実施例によって説明するが、 本発明がこ の実施例に限定されないことは言うまでもない。
実施例 1
まず、 石炭ピッチコークスを 1200 °Cでか焼した後、 不活性雰 囲気中, 温度 3000 °Cで熱処理して炭素材料を生成し、 さらに粉 砕して炭素材料粉末を得た。 得られた炭素材料粉末の 002面の面 間隔 d。。2 , 002面の結晶子厚み L c。。2 及び G値を表 1に、 真 密度及び粒径を表 2に示す。
なお、 炭素材料粉末の 002面の面間隔 d。。2 および 0 02面の 結晶子厚み L c。。2 は粉末 X線回折法を用いて測定し、 粒径はレ— ザ回折法、 真密度はピクノメータ法によりそれぞれ測定した。 また、 ラマンスぺクトルにおける G値は以下の方法で測定した。 〔ラマンスぺクトル測定法〕
試料粉末をスライドガラス上に固定し、 該試料粉末に対して励起 光を分光器 (商品名 JOB IN YVDN U— 1 00 0 ) にて
1 nm0のビーム径で照射した。 そして、 その際に発生する散乱光 を疑似後方散乱の配置で集光してスぺクトルを観測し、 次式に基づ いて G値を算出した。
黒鉛構造に由来する 1 580 cm— 1のピーク面積強度
G値:
非晶質構造に由来する 1 350 cm— 1のピーク面積強度 なお、 励起光は以下の条件で照射した。
励起光照射条件
レーザ光: Ar + レーザ
励起波長: 5 1 4. 5 nm
励起強度: 200 mW
スリット幅: 400— 800— 800— 4 00 m
ステップ幅: 2. 0 cm"1
また、 測定は、 積算時間を 1チャンネル当たり 4〜8秒とし、 積 算回数 1回で行った。
このようにして炭素材料粉末を得た後、 負極を作製した。
まず前記炭素材料粉末に対して、 A r雰囲気中, 昇温速度約 30
°CZ分, 到達温度 600 °C, 到達温度保持時間 1時間なる条件で前 熱処理を施した。 なお、 この前熱処理は、 次工程の負極ミックス作 製直前に行う。 この負極炭素材料粉末と、 バインダーとなる 10重 量%相当量のポリフッ化ビニリデン、 溶媒となるジメチルホルムァ ミ ドを混合し、 乾燥して負極ミックスを調製した。 調製した負極ミ ックスのうち 37mgを集電体となる Niメッシュと混合して直径 1 5. 5mmのペレツト状に成形し、 負極を作製した。
そして、 このようにして作製された負極を用いて以下の構成の非 水電解液二次電池を作成した。 ,
非水電解液二次電池の構成
電池形状:コイン型セル (直径 2 Omm、 厚さ 2. 5 mm) 正極: リチウム金属
セパレータ:ボリプロピレン多孔質膜
電解液: ECと DECが 1 : 1 (体積比率) なる混合率で混合さ れてなる非水溶媒に L i PF6 力 ^lmo 1 Z 1なる割合で溶解され てなるもの
集電体:銅箔
実施例 2
石炭ピッチコークスの熱処理温度を 2800°Cに設定したこと以 外は実施例 1と同様にして炭素材料粉末を生成し、 この炭素材料粉 末を負極材料として非水電解液二次電池を作成した。
炭素材料粉末の 002面の面間隔 d。。2 , 002面の結晶子厚み L c oo2 及び G値を表 1に、 真密度及び粒径を表 2に示す。
実施例 3
マダカスカル産天然黒鉛を粉砕して得られた炭素材料粉末を負極 材料として使用したこと以外は実施例 1と同様にして非水電解液二 次電池を作成した。
炭素材料粉末の 0 0 2面の面間隔 d。。2 , 0 0 2面の結晶子厚み L c 0 0 2 及び G値を表 1に、 真密度及び粒径を表 2に示す。
実施例 4
スリランカ産天然黑鉛を粉碎して得られた炭素材料粉末を負極材 料として使用したこと以外は実施例 1と同様にして非水電解液二次 電池を作成した。
炭素材料粉末の 0 0 2面の面間隔 d。。2 , 0 0 2面の結晶子厚み L C o o 2 及び G値を表 1に、 真密度及び粒径を表 2に示す。
実施例 5
中国産天然黒鉛を粉砕して得られた炭素材料粉末を負極材料とし て使用したこと以外は実施例 1と同様にして非水電解液二次電池を 作成した。
炭素材料粉末の 0 0 2面の面間隔 d。。2 , 0 0 2面の結晶子厚み L C o o 2 及び G値を表 1に、 真密度及び粒径を表 2に示す。
実施例 6
人造黒鉛 K S - 7 5 (ロンザ社製) を粉砕して得られた炭素材料 粉末を負極材料として使用したこと以外は実施例 1と同様にして非 水電解液二次電池を作成した。
炭素材料粉末の 0 0 2面の面間隔 d。。 2 , 0 0 2面の結晶子厚み L c 0 0 2 及び G値を表 1に、 真密度及び粒径を表 2に示す。
実施例 7
人造黒鉛 K S— 1 5 (ロンザ社製) を粉砕して得られた炭素材料 粉末を負極材料として使用したこと以外は実施例 1と同様にして非 水電解液二次電池を作成した。 炭素材料粉末の 0 0 2面の面間隔 d。。2 , 0 0 2面の結晶子厚み L c 0 0 2 及び G値を表 1に、 真密度及び粒径を表 2に示す。
比較例 1
石炭ピッチコ一クスを 1 2 0 (TCでか焼した後、 熱処理を施さず に粉砕し、 得られた炭素材料粉末を負極材料として使用すること以 外は実施例 1と同様にして非水電解液二次電池を作成した。
炭素材料粉末の 0 0 2面の面間隔 d。。2 , 0 0 2面の結晶子厚み L C o o 2 及び G値を表 1に、 真密度及び粒径を表 2に示す。
比較例 2
以下のようにして得られた炭素材料を粉碎して得られた炭素材料 粉末を負極材料に使用すること以外は実施例 1と同様にして非水電 解液二次電池を作成した。
すなわち、 炭素材料を生成するには、 HZC原子比が 0 . 6〜0 . 8の範囲から適当に選んだ石油ピッチを粉砕し、 空気気流中で酸 化処理して炭素前駆体を得た。 なお、 この炭素前駆体のキノリン不 溶分 (J I S遠心法: K 2 4 2 5 - 1 9 8 3 ) は 8 0 %であり、 酸 素含有率 (有機元素分析法による) は 1 5 . 4重量%であった。 こ の炭素前駆体を粉砕してこのうち 1 0 gをルツボに充塡し、 窒素気 流中で 5 0 0 °C, 5時間保持した後、 1 1 0 0 °Cに昇温して一時間 熱処理し、 炭素材料を生成した。
炭素材料粉末の 0 0 2面の面間隔 d。。2, 0 0 2面の結晶子厚み L c 0 0 2 及び G値を表 1に、 真密度及び粒径を表 2に示す。
比較例 3
メキシコ産天然土壌黒鉛を粉砕して得られた炭素材料粉末を負極 材料として使用すること以外は実施例 1と同様にして非水電解液二 次電池を作成した。
炭素材料粉末の 0 0 2面の面間隔 d。。2 , 0 0 2面の結晶子厚み L c 0 0 2 及び G値を表 1に、 真密度及び粒径を表 2に示す。
【表 1】
Figure imgf000019_0001
以下余白 【表 2】
Figure imgf000020_0001
以上のようにして実施例 1〜実施例 7及び比較例 1〜比較例 3に おいて作製した非水電解液二次電池について、 炭素材料 1 g当たり の容量. 容量ロス及び活物質充塡密度比を測定した。 その結果を表 3に示す。
なお、 容量, 容量ロスは以下のようにして測定した。
〔電池容量及び容量口スの測定〕
まず、 電池に対して、 電流密度を 0. 5 3mAZcm2 に設定し て 1時間充電した後 2時間休止するといつた充電 休止サイクルを 繰り返し行った (ドープ過程) 。 その際、 休止時における電位変化 を測定して (時間) _1/2に対してプロットし、 プロッ卜において (時間) =∞に外挿して推定される平衡電位が 1 OmV (L i/L i+ ) となったところで上記充電 Z休止サイクルを終了し、 充電電 気量を求めた。
次いで、 電流密度を 0. 53mA/cm2 , カツトオフ電圧を端 子電圧 1. 5 Vに設定して、 1時間放電 / 2時間休止といった放電 ノ休止サイクルをを繰り返し行い (脱ド プ過程) 、 放電電気量を 求めた。
そして、 充電電気量から放電電気量を差し引くことによって容量 ロスを求めた。
なお、 この試験方法において炭素材料にリチウムがドープされる 過程は厳密に言うと充電ではなく放電であるが、 実電池での実態に 対応させて便宜上ここではド一プ過程を充電, 脱ドープ過程を放電 と称する。
以下余白
【表 3】
Figure imgf000022_0001
表 3を見てわかるように、 真密度, 結晶構造パラメ一夕が所定の 条件を満たす炭素材料粉末を負極材料として用いた実施例 1〜実施 例 7の非水電解液二次電池においては、 比較例 1〜比較例 3の非水 電解液二次電池と比べて負極材料が高レ、充塡密度で充塡され、 体積 当たりの容量比が大きな値となっており、 しかも容量ロスが小さい。 したがって、 このことから負極材料として真密度, 結晶構造パラ メータが所定の条件を満たす炭素材料粉末を用いることはエネルギ —密度の高い非水電解液二次電池を得る上で有効であることがわか つた o
実施例 8
マダカスカル産天然黒鉛を粉砕して得られた炭素材料粉末 (実施 例 2において得られた炭素材料粉末) を負極材料として使用したこ と以外は実施例 1 と同様にして非水電解液二次電池を作成した。 実施例 9
非水溶媒として ECと ME Cが EC : ME C= 1 : 1 (体積比) なる混合率で混合されなる非水溶 を使用したこと以外は実施例 8 と同様にして非水電解液二次電池を作成した。
実施例 1 0
非水溶媒として EC, DEC及び DMCが EC : DEC : DMC = 2 : 1 : 1 (体積比) なる混合率で混合されてなる非水溶媒を使 用したこと以外は実施例 8と同様にして非水電解液二次電池を作成 した。
実施例 1 1
非水溶媒として ECと DMCが EC : DMC= 1 : 1 (体積比) なる混合率で混合されてなる非水溶媒を使用したこと以外は実施例 8と同様にして非水電解液二次電池を作成した。
( 1 ) 非水溶媒の種類の検討
作成した非水電解液二次電池について、 温度 20て下, 温度 - 2 0て下における容量比率及び電解液の凍結温度を調べた。 その結果 を表 4に示す。
なお、 容量比率の測定では、 温度 2 0°C環境下、 電流密度を 0. 5 3mA/cm2 に設定して、 1 0 m V (L i ZL i + ) から 1 5 0 OmVまでの定電流充放電サイクルを 1 0サイクル繰り返し、 1 — 1 1 -
0サイクル目に測定された容量を常温環境下での容量とした。 そし て、 1 1サイクル目の充放電サイクルを、 温度— 2 0で環境下で行 い、 この 1 1サイクル目に測定された容量を低温環境下での容量と した。
【表 4】
Figure imgf000024_0001
表 4からわかるように、 実施例 8〜実施例 1 1の電池は、 常温環 境下での容量比率が高いことは勿論のこと、 電解液の凍結温度がい ずれも低く、 低温環境下での容量比率も高い値になっている。
このことから、 結晶構造パラメ一夕, 真密度が所定の条件を満た す炭素材料を負極材料として使用する場合においては、 E Cを主体 とし鎖状炭酸エステルを第 2の成分溶媒とする非水溶媒が適してい ること力 "^わ力、る。
しかし、 D M Cのみを第 2の成分溶媒とする場合には、 他に比べ て電解液の凍結温度が高く、 低温環境下での容量比率が低し、値にな つている。
このことから、 例えば気温一 30て以下で放置される虞れのある 電池には、 DMC単独ではなく DMCと DECを混合した混合溶媒、 あるいは M E C等の非対称鎖状炭酸ェステルが適していることがわ かる。
ところで、 電池では、 過充電状態になると、 リチウム金属が析出 しこれと非水溶媒との反応が問題になる。 そこで、 実施例 8, 実施 例 9, 実施例 1 1の電池の第 2の成分溶媒として用いた DEC, D ME, ME Cのリチウムとの反応性を調べた。
まず、 テフロン製容器中に DEC, DMC, MECのいずれかを 貯留してリチウム金属片を投入した。 そして、 該テフロン製容器を 水分が混入しないように密閉して各種温度に設定した恒温槽内に保 存し、 溶媒, リチウムの様子を観察した。
その結果を表 5に示す。
【表 5】
Figure imgf000025_0001
表 5からわかるように、 上記 3種の溶媒のうちでは D E Cが最も リチウムとの反応性が高 、。 DEC中にリチウムを投入した場合で は、 保存温度をある程度高温にするとリチウム金属表面には自然酸 化膜があるので直ちに反応が始まることはなレ、が徐々に溶媒とリチ ゥムとが反応する。 例えば、 60°Cで一週間保存するとリチウムは 無くなり DECは褐色化する。 一方、 DMCあるいは MEC中にリ チウ厶を投入した場合では、 ほとんどリチウムと溶媒の反応は起こ らない。 なお、 DECの場合、 DMCを混合することによりリチウ ム金属との反応性が低下する。 ,
このことから、 DMCと DECを混合して用いることは、 DEC とリチウム金属との反応を防止し、 電池の安全性の向上を図る上で も有効であることがわかる。
( 2 ) 非水溶媒の混合率の検討
実施例 8, 実施例 9及び実施例 1 1の電池の非水溶媒について、 ECと第 2の成分溶媒の混合比を変化させ、 温度 25"C下, 温度 - 20°C下の導電率を測定した。 温度 25 °C下で測定した EC混合率 と導電率の関係を図 1に、 温度一 25 °C下で測定した EC混合率と 導電率の関係を図 2に示す。
図 1, 図 2を比較してわかるように、 電池の導電率は温度 25 °C 下に比べて一 20°C下では格段に低くなる。
先ず、 温度 25 °C下で測定した図 1を見ると、 いずれの溶媒を第 2の成分溶媒に用レ、た場合にも、 導電率は E C混合率の増大に伴つ て大きくなり、 EC混合率が約 60容量%に至ったところで飽和す る。 この図から、 EC混合率の最適範囲は 1 0〜60容量%である ことがわかる。
そして、 さらに温度— 20°C下でも実用的な導電率を得るべく図 2を検討すると、 図 2に示すように、 いずれの溶媒を第 2の成分溶 媒に用いた場合にも、 導電率は E C混合率がある範囲までは E C混 合率の増大に伴って高くなり、 E C混合率がある範囲を超えると E C混合率の増大に伴つて低下するようになる。
ただし、 低温条件下では、 E C混合率の最適範囲は用いた第 2の 成分によつて異なり、 第 2の成分溶媒として D E Cを混合する場合 には E C混合率を 6 0容量%以下に、 DMCを混合する場合には E C混合率を 3 0容量%以上に、 ME, Cを混合する場合には E C混合 率を 1 0〜6 0容量%とすることにより高い導電率が得られる。
したがつて、 常温環境下のみならず低温環境下における特性も問 題となる場合には、 このようなデータを基に第 2の成分溶媒の種類 に応じて E C混合率を選択することが望ましい。

Claims

請 求 の 範 囲
1. 真密度が 2. l gZcm3 以上、 0 02面の面間隔が 0. 34 nm未満、 0 02面の C軸方向の結晶子厚みが 1 6. 0 nm以上、 ラマンスぺク トルにおける G値が 2. 5以上である炭素材料よりな る負極と、 前記炭素材料の単位重量当たり 2 5 OmAh以上の充放 電容量相当のリチウムを含有する遷移金属複合酸化物よりなる正極 と、 炭酸ェチレンを含有する非水溶媒に電解質を溶解してなる電解 液とからなる非水電解液二次電池。
2. 負極を構成する炭素材料の粒径が 1 m以上である請求項 1記 載の非水電解液二次電池。
3. 電解液の非水溶媒が炭酸ェチレンと鎖状炭酸エステルの混合溶 媒である請求項 2記載の非水電解液二次電池。
4. 炭酸エチレンと鎖状炭酸エステルの混合体積比 (炭酸エチレン :鎖状炭酸エステル) 力、 1 0 : 9 0〜6 0 : 4 0である請求項 3 記載の非水電解液二次電池。
5. 鎖状炭酸エステルがジェチルカーボネートである請求項 3記載 の非水電解液二次電池。
6. 非水溶媒に鎖状炭酸エステルとしてジェチルカーボネートとジ メチルカーボネートが混合されている請求項 3記載の非水電解液二 次電池。
7. ジェチルカーボネートとジメチルカ一ボネートの混合体積比 ( ジェチルカ一ボネ一ト : ジメチルカ一ボネート) 力 \ 3 0 : 70〜 8 0 : 2 0である請求項 6記載の非水電解液二次電池。
8. 鎖状炭酸エステルが非対称鎖状炭酸エステルである請求項 3記 載の非水電解液二次電池。
9 . 非対称鎖状炭酸エステルは、 メチルェチルカーボネートである 請求項 8記載の非水電解液二次電池。
PCT/JP1993/001769 1992-12-04 1993-12-06 Secondary cell of nonaqueous electrolyte WO1994014205A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69319723T DE69319723T2 (de) 1992-12-04 1993-12-06 Sekundärzelle aus wasserfreien elektrolyten
EP94901040A EP0634805B1 (en) 1992-12-04 1993-12-06 Secondary cell of nonaqueous electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/325748 1992-12-04
JP32574892 1992-12-04

Publications (1)

Publication Number Publication Date
WO1994014205A1 true WO1994014205A1 (en) 1994-06-23

Family

ID=18180209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001769 WO1994014205A1 (en) 1992-12-04 1993-12-06 Secondary cell of nonaqueous electrolyte

Country Status (3)

Country Link
EP (1) EP0634805B1 (ja)
DE (1) DE69319723T2 (ja)
WO (1) WO1994014205A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW360987B (en) * 1995-07-25 1999-06-11 Sumitomo Chemical Co Non-aqueous electrolyte and lithium secondary battery
US5660948A (en) * 1995-09-26 1997-08-26 Valence Technology, Inc. Lithium ion electrochemical cell
JPH0992284A (ja) * 1995-09-26 1997-04-04 Kureha Chem Ind Co Ltd 二次電池電極用黒鉛質材料及びその製造方法並びに二次電池
US5756232A (en) * 1996-09-25 1998-05-26 Alliant Techsystems Inc. Lithium metal anodes
US5962720A (en) * 1997-05-29 1999-10-05 Wilson Greatbatch Ltd. Method of synthesizing unsymmetric organic carbonates and preparing nonaqueous electrolytes for alkali ion electrochemical cells
US6153338A (en) * 1998-05-13 2000-11-28 Wilson Greatbatch Ltd. Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
US6746804B2 (en) 1998-05-13 2004-06-08 Wilson Greatbatch Technologies, Inc. Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
US9923239B2 (en) * 2011-07-14 2018-03-20 Nec Energy Devices, Ltd. Lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336315A (ja) * 1986-07-30 1988-02-17 Mitsubishi Electric Corp ジンバル駆動方法
JPS63121248A (ja) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd 非水系二次電池
JPH0210666A (ja) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH0266856A (ja) * 1988-08-31 1990-03-06 Sony Corp 非水電解液電池
JPH0282466A (ja) * 1988-09-20 1990-03-23 Nippon Steel Corp 炭素繊維を両極に用いたリチウム二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69226927T2 (de) * 1991-11-12 1999-03-04 Sanyo Electric Co., Ltd., Moriguchi, Osaka Lithium-Sekundärbatterie

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336315A (ja) * 1986-07-30 1988-02-17 Mitsubishi Electric Corp ジンバル駆動方法
JPS63121248A (ja) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd 非水系二次電池
JPH0210666A (ja) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH0266856A (ja) * 1988-08-31 1990-03-06 Sony Corp 非水電解液電池
JPH0282466A (ja) * 1988-09-20 1990-03-23 Nippon Steel Corp 炭素繊維を両極に用いたリチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0634805A4 *

Also Published As

Publication number Publication date
EP0634805A1 (en) 1995-01-18
EP0634805A4 (en) 1995-09-27
DE69319723D1 (de) 1998-08-20
EP0634805B1 (en) 1998-07-15
DE69319723T2 (de) 1999-03-18

Similar Documents

Publication Publication Date Title
CA2125003C (en) Non-aqueous liquid electrolyte secondary battery
US5561005A (en) Secondary battery having non-aqueous electrolyte
JP3844495B2 (ja) 非水電解液二次電池
JP3436033B2 (ja) 非水電解液二次電池
US5932373A (en) Non-aqueous electrolyte secondary cell using carbonaceous material for negative electrode
JP3430614B2 (ja) 非水電解液二次電池
JPH06275321A (ja) リチウム二次電池
JP3311104B2 (ja) リチウム二次電池
US5639575A (en) Non-aqueous liquid electrolyte secondary battery
JP4150087B2 (ja) 非水電解液二次電池
WO1994014205A1 (en) Secondary cell of nonaqueous electrolyte
JP3421877B2 (ja) 非水電解液二次電池
JP3430706B2 (ja) 負極用炭素材料及び非水電解液二次電池
JPH07302594A (ja) 炭素質粒子及びこれを用いたリチウムイオン二次電池用負極
JP2637305B2 (ja) リチウム二次電池
JPH07335262A (ja) 非水電解液二次電池
JP2000251893A (ja) 非水電解液二次電池、負極材料の製造方法、黒鉛材料評価装置、および黒鉛材料製造装置
JP3557240B2 (ja) 非水電解液二次電池
JP3718855B2 (ja) 非水電解液二次電池
JP4382008B2 (ja) 非水電解液二次電池
JP4421750B2 (ja) 炭素材料の製造方法およびリチウムイオン二次電池
JPH11111297A (ja) リチウム二次電池
JP3787943B2 (ja) 非水電解液二次電池
JPH07320785A (ja) 非水電解液二次電池
JPH08180873A (ja) 負極材料の製造方法及び非水電解液二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 257000

Date of ref document: 19940729

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1994901040

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994901040

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994901040

Country of ref document: EP