WO1994006948A1 - Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same - Google Patents

Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same Download PDF

Info

Publication number
WO1994006948A1
WO1994006948A1 PCT/JP1993/001314 JP9301314W WO9406948A1 WO 1994006948 A1 WO1994006948 A1 WO 1994006948A1 JP 9301314 W JP9301314 W JP 9301314W WO 9406948 A1 WO9406948 A1 WO 9406948A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
hot
steel sheet
weight
temperature
Prior art date
Application number
PCT/JP1993/001314
Other languages
English (en)
French (fr)
Inventor
Kohsaku Ushioda
Naoki Yoshinaga
Yoshikazu Matsumura
Osamu Akisue
Kunio Nishimura
Hidekuni Murakami
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27454804&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1994006948(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP4245307A external-priority patent/JPH0693377A/ja
Priority claimed from JP24530692A external-priority patent/JP3175063B2/ja
Priority claimed from JP5007817A external-priority patent/JPH06212354A/ja
Priority claimed from JP5060782A external-priority patent/JP2984884B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US08/240,782 priority Critical patent/US5486241A/en
Priority to DE69325791T priority patent/DE69325791D1/de
Priority to KR1019940701624A priority patent/KR0128986B1/ko
Priority to EP93919662A priority patent/EP0612857B1/en
Publication of WO1994006948A1 publication Critical patent/WO1994006948A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing

Definitions

  • the present invention relates to a cold-rolled single-phase cold-rolled sheet for normal-temperature non-aging deep drawing, hot-dip galvanized sheet, and methods for producing the same.
  • the cold-rolled steel sheet and the hot-dip galvanized steel sheet according to the present invention are those used for press forming of automobiles, household electric appliances, buildings, etc.
  • the steel sheet according to the present invention has both strength and workability. Since it is a steel plate, its thickness can be reduced compared to conventional steel plates, that is, its weight can be reduced. Therefore, it is expected to contribute to global environmental conservation. Background art
  • ultra-low carbon steel sheets generally have at least one of Ti and Nb. That is, Ti and Nb have strong attraction interaction with the interstitial solid solution element (C> N) in ⁇ . Carbonitride is easily formed. Therefore, interstitial free steel (IF ⁇ ) free of interstitial solid solution elements is obtained. IF ⁇ is characterized by non-aging and extremely good workability because it does not contain interstitial solid solution elements that cause strain aging and deterioration of workability.
  • Ti The addition of Nb and Nb also plays an important role in reducing the crystal grain size of the hot-rolled sheet of ultra-low carbon steel, which tends to become coarse, and improving the deep drawability of cold-rolled annealed sheets.
  • ultra-low carbon added with Ti or Nb has the following problems.
  • manufacturing costs are high. In other words, in addition to the vacuum processing cost for ultra-low carbon, expensive ⁇ and Nb must be added.
  • Ti and Nb are strong oxide-forming elements, and these oxides degrade the surface quality.
  • JP-A-60-197846 and JP-A-63-72830 disclose ultra-low carbon steel sheets to which Ti and Nb are not added and a method for producing the same.
  • high-temperature annealing was used to transform some o into r, and controlled the cooling rate to produce low-temperature transformation products from r.
  • the above problem has been solved.
  • the ( ⁇ 17 ”) two-phase region of ultra-low carbon steel is extremely narrow, and it is difficult to control the temperature with high accuracy.
  • ⁇ ⁇ is composed of an ⁇ -single-phase structure.
  • Japanese Patent Application Laid-Open No. 59-80727 Japanese Patent Application Laid-Open No. Japanese Patent Laid-Open Publication No. 11-184251 discloses a cold rolled steel sheet which does not add expensive elements such as Ti and Nb and has a C content of 0.0015% or less and a method for producing the same.
  • B which is one of the features of the present invention, is not added. If the total C content is 0.0015% or less, even if Ti or Nb is not added, it is present at the crystal grain boundaries. C is extremely reduced and secondary working embrittlement occurs. Further, in Japanese Patent Application Laid-Open No.
  • the present invention uses ultra-low carbon steel that does not use expensive additional elements such as Ti and Nb, and is non-aging at room temperature, has good secondary work embrittlement resistance, paint bake hardening properties, and good deep drawing properties.
  • the present inventors first developed expensive carbonitride forming elements such as Ti and Nb.
  • the use of ultra-low carbon A1 ⁇ with a single-phase structure or with a controlled total C content below a certain amount This was found to be extremely effective.
  • N can be fixed as A1N in the product plate, so it is necessary to specify the amount of C that causes strain aging.
  • the present inventors can stably de-age at room temperature even at a temper reduction rate of 0.5%, which is lower than usual. It was determined.
  • ⁇ having the composition shown in Table 1 was vacuum-melted in a laboratory. That is, in the group of steel A (A-1 to A-5) and ⁇ B (B-1 to B_5), the amount of C changes five levels from 0.0003% to 0.0030%. Here, the P content is ⁇ A is 0.015% and ⁇ B is 0.050%. On the other hand, in the groups of steel C (C1-1 to C-6) and ⁇ D (D-1 to D-6), the P content changes six levels from 0.0002% to 0.04%. Here, ⁇ C has a C content of 0.0005%, and ⁇ D has a C content of 0.0012%.
  • An ingot having such a chemical composition was hot-rolled at a slab heating temperature of 1150, a finishing temperature of 910, and a winding temperature of 710 to obtain a 4.0 mm thick steel sheet. After pickling, it is cold rolled at a rolling reduction of 80% to form a 0.8 mm cold rolled sheet. Then, continuous sintering is performed at a heating rate of 15'C / sec, soaking at 780'CX 50sec, and a cooling rate of 20 ° CZsec. Did. Furthermore, temper rolling at a rolling reduction of 0.8% was performed and subjected to a tensile test.
  • Paint bake hardenability is the amount of rise in the yield point when a bake equivalent of 170 to 20 minutes is performed after a 2% tensile prestrain and a tensile test is performed again.
  • Figure 1 shows the experimental results. As is clear from the figure, when the total C content becomes 0.0015% or less without adding Ti or Nb, the yield point elongation (YP-E1) after heat treatment for 100 to 11 hours becomes 0.2% or less. Thus, the goal of non-aging at room temperature can be achieved.
  • the present inventors have studied the deep drawability of ultra-low carbon substrates to which elements such as Ti and Nb are not added.
  • cooling is performed at a cooling rate of 50 / sec or more within 1.0 second after completion of hot rolling. It was found that the grains were further refined. The reason for 1) above is not always clear, but it is presumed that the addition of P causes a) a) r grains to become finer grains b) suppressed the growth of transformed grains. . On the other hand, it is considered that the addition of B suppresses the rate of transformation, so that the particle size after transformation becomes smaller. In addition, rapid cooling after hot rolling finish suppresses grain growth and reduces? "It seems that the increase in Zo ratio was effective in reducing the grain size.
  • Fig. 2 shows the results.
  • the addition of P of 0.01% or more, low r value is a disadvantage of extremely low carbon steel without the addition of Ti and Nb, particularly r 45 value (r value of 45 ° direction to the rolling direction) Has been significantly improved to a level sufficient for deep drawing.
  • Mn is a solid solution strengthening element and is an effective element for increasing the strength without increasing the yield strength, and it is said that lowering the Mn is preferable for improving the r-value compared to the past. I have.
  • the present inventors have obtained a new finding that, when Mn coexists with P, the grain size of the hot-rolled sheet of ultra-low carbon steel is refined when it coexists with P. In general, it seems to work in such a way as to offset the Ar 3 temperature, and that both elements kinetically delay the transformation from r to or. Therefore, when the amount of Mn is significantly increased, the r value generally deteriorates sharply. However, as in the present invention, the extremely low carbon with the P amount of 0.01% or more is used. It was also found that the raw material did not deteriorate so much even when added up to 3.0%.
  • Mn was added with 0.15%, and even if Mn was contained in a large amount, a higher r value could be obtained by adding P at 0.01%. Can be.
  • the present inventors further investigated the relationship between Mn and P.
  • Mn in the range of 0.2% or more, P in 0.01% or more, and Mn in the range of 20P0.3 When adding Mn in the range of 0.2% or more, P in 0.01% or more, and Mn in the range of 20P0.3, the fine structure of the hot rolled sheet was reduced. Since the granulation can be performed remarkably, it has been found that the strength can be increased while maintaining the r value at a high value. Such knowledge was obtained by the following experiment.
  • B has the effect of improving the secondary work embrittlement resistance and the effect of refining the structure of the hot-rolled sheet of the steel of the present invention, Is an extremely effective element for achieving its purpose.
  • Cr is also an effective element for increasing the strength, like Si, Mn and P.
  • a predetermined amount of Cr is further added.
  • Cr + 20 P ⁇ 0, 2% it is extremely effective to add Cr + 20 P ⁇ 0, 2%.
  • the present invention is also directed to a hot-dip galvanized steel plate.
  • the steel of the present invention has excellent adhesion characteristics because it does not include Ti or Nb which basically deteriorates the adhesion.
  • the hot rolling should be finished at a finishing temperature of (Ar 3 — 100) or more, Within 1 second after completion of hot rolling in order to refine the grain size of the structure of the strip, especially Mn is 0.2% or more in relation to Mn10P ⁇ 0.3 or Cr is 0.1% in relation to Cr + 20P0.2 %,
  • the present invention can be manufactured by cooling at a cooling rate of 50 / sec or more within 0.5 seconds.
  • FIG. 1 is a graph showing the relationship between the amount of BH, the amount of YP-El (after heat treatment for 100 to 1 hr), and the amount of C.
  • Figure 2 is a diagram showing the relationship between r value and r 45 value and the P amount in the case of 0.15% Mn.
  • FIG. 3 shows the relationship between r value and P amount at 0.5% and 1% Mn.
  • C is a very important element that determines the material properties of products. If the amount of C exceeds 0.0015%, it will no longer be normal temperature non-aging, so the upper limit is made 0.0015%. On the other hand, if the C content is less than 0.0001%, secondary working embrittlement occurs. In addition, it is an area that is extremely difficult to reach due to manufacturing technology, and costs rise significantly. Therefore, the lower limit is 0.0001%.
  • the upper limit of C is set to 0.0018% in order to suppress penetration of the hot-dip zinc plating into grain boundaries.
  • Si is an element that increases the strength at low cost. However, if it exceeds 1.2%, problems such as a decrease in chemical conversion property and a decrease in plating property occur. Therefore, the upper limit is set to 1.2%. When hot-dip galvanizing is applied, plating failure occurs at over 0.7%, so the upper limit is preferably set to 0.7%.
  • Mn is an element effective for increasing the strength, similar to Si. Further, in the present invention (2) in which Ti or the like is not added, since Mn fixes S, ⁇ plays a role of preventing cracking during hot rolling. It has been conventionally said that lowering Mn is preferable for increasing the r-value, but if the Mn content is less than 0.03%, cracks occur during hot rolling. Therefore, the lower limit of the amount of Mn is set to 0.03%. On the other hand, in the case of extremely low carbon P in which P is added at 0.01% or more, even if Mn is added to 3.0%, the r value hardly decreases, so the upper limit of the amount of Mn in the steel of the present invention is as follows. Assuming that it is added in the range of 0.15%, set it to 3.0%.
  • P is also known as an element that increases the strength, similar to Si and Mn, and the amount of addition varies depending on the intended strength level. Moreover
  • the grain size of the hot-rolled sheet of ultra-low carbon steel to which Ti or Nb is not added is generally remarkably reduced by adding P with a coarsening force of 0.01% or more. Therefore, the lower limit of P is set to 0.01%.
  • the addition amount exceeds 0.15%, the cold rolling property deteriorates and secondary working embrittlement occurs. Therefore, the upper limit of the P content is set to 0.15%. Also, as described above, the effect of pulverization becomes more remarkable when coexisting with Mn.
  • the crystal grains of the hot-rolled sheet can be more effectively refined. be able to.
  • A1 Although A1 is used for deoxidation adjustment, if it is less than 0.005%, it will be difficult to perform stable deoxidation. On the other hand, if it exceeds 0.1%, the cost will rise. Therefore, these values are defined as the lower limit and the upper limit.
  • N is preferably low. However, if it is less than 0.0001%, a significant increase in cost will be caused. On the other hand, if it exceeds 0.0080%, it is no longer possible to fix N with A1, and solute N, which causes strain aging, remains, and the fraction of A1N increases, resulting in poor workability. I do. Therefore, 0.0080% is set as the upper limit of N content.
  • B is deflected to the grain boundaries, is effective in preventing embrittlement in secondary working, and has the effect of reducing the grain size of the hot-rolled sheet.
  • Cr Like C iMn, P and S i, it is an effective element to increase the strength. is there. If the added amount of Cr exceeds 3%, the r value decreases, and furthermore, the chemical conversion property and the adhesion are deteriorated. Therefore, the upper limit is set to 3%. If the amount is less than 0.1%, the effect of increasing the strength is insufficient.
  • Elements such as Cr, P, and B suppress recrystallization in the r region, as in Mn, and increase the frequency of transformation nucleation by reducing the transformation temperature, and suppress the growth of transformed o grains. It is presumed that fine graining is achieved.
  • a slab having the above-described elements is heated in a range of 1000 to 1350, and hot-rolled.
  • the finishing temperature (hot rolling end temperature) should be (Ar 3 — 100) 'C or higher to ensure the workability (r value) of the product sheet.
  • the obtained steel strip is wound in the range of 600 to 750'C. If the coiling temperature exceeds 750'C, the pickling property deteriorates and the material becomes uneven in the longitudinal direction of the coil. On the other hand, when the temperature is less than 600'C, the A1N is not sufficiently protruded from the hot-rolled sheet, so that the workability of the product sheet deteriorates. Therefore, this is the lower limit.
  • the above band is cold-rolled, and the rolling reduction is set to 60% or more for the purpose of securing the r-value of the product sheet.
  • hot-dip galvanizing When hot-dip galvanizing is applied to a cold-rolled steel strip, the steel is fed into a continuous hot-dip galvanizing machine, for example, of the Zenzimer type, and softened and annealed, hot-dip galvanized, and if necessary, alloyed. A chemical heat treatment is performed.
  • the firing temperature is 600-900 ° C. If the sintering temperature is lower than 600, recrystallization is insufficient and the workability of the product plate becomes a problem. Although the workability improves as the annealing temperature increases, if it exceeds 900'C, the temperature is too high and the sheet breaks and the flatness of the sheet deteriorates.
  • the present invention has been built on the basis of new ideas and new knowledge. According to the present invention, non-aging at room temperature and secondary resistance can be performed without adding expensive elements such as Ti and Nb.
  • a thin steel sheet or a hot-dip galvanized steel sheet with good work embrittlement properties, baking hardening properties, and deep drawing properties, and with excellent plating properties can be obtained.
  • the steel having the chemical composition shown in Table 2 is melted and manufactured on the scale of an actual machine, followed by hot rolling (heating temperature: 1200, finishing temperature: 930'C, winding temperature: 710t), and cold rolling ( The rolling reduction was 80%), continuous quenching (780'C-consisting of a holding time of 40 sec and overaging of 400 to 12 mii), and temper rolling (0.8%).
  • Paint bake hardenability is the amount of rise in yield point when a bake equivalent treatment at 170'C for 20 minutes is performed after 2% tensile prestrain, and a tensile test is performed again.
  • the secondary workability is as follows: The annealed plate is punched into a disk, squeezed with a drawing ratio of 1.6 to a force, and the material changed at various temperatures is laid down on a frustoconical tool, from a height of 1 m. Drop a 300kg weight and apply an impact to destroy The evaluation was made based on the ductile-brittle transition temperature, and a value of less than 20'C was considered good. '
  • ⁇ 3-1 and 3-2 are strengths obtained by simultaneous addition of P and Mn, and are strong, and have good r-values and r- 45 values despite high Mn. This is thought to be because the simultaneous addition of P and Mn is also effective in refining hot-rolled sheets.
  • the cooling conditions after the completion of hot rolling were examined using actual equipment using ⁇ 11-1, 2-1 in Table 2. And hot rolling conditions in Table 4, showing the relation between r value and r 45 value of the product sheet.
  • cooling conditions after finishing particularly the time until the start of quenching and the cooling rate, were examined as hot rolling conditions.
  • the rolling reduction is 80% and the thickness is 0.8 mm.
  • the steel was subjected to continuous annealing at 780'C for 40 sec and temper rolling at a rolling reduction of 0.8%.
  • the r-value and r- 45 value for deep drawing are satisfied under normal conditions, but preferably, quenching is performed as quickly as possible after hot rolling is completed.
  • the r value, especially the r 45 value is significantly improved. This is thought to be because the crystal grain size of the hot-rolled sheet is reduced by rapid cooling immediately after hot rolling.
  • ⁇ having the composition shown in Table 5 was vacuum-melted in a laboratory. ⁇ In A, the amount of C was changed from 0.0004% to 0.0030%. On the other hand, in ⁇ B, the amount of -Mn was changed in the range of 0.10% to 1.20%, and the amount of P was changed in the range of 0.005% to 0.06%.
  • the obtained piece was hot-rolled under the following conditions. That is, the slab was heated at a temperature of 1150 '(:, a finishing temperature of 910, cooled at a cooling rate of 80 s within 0.2 seconds after finishing, and wound up at 710. The sheet thickness was 4.0 mm. After washing, cold-rolled with a rolling reduction of 80% to give a 0.8 mm cold-rolled sheet.
  • the yield point elongation (YP-E1) after heat treatment for 100 Attains the non-aging goal at room temperature.
  • Mn ⁇ 0.2%, P ⁇ 0.0010%, and Mn tens 20P ⁇ 0.3 are specified for ultra-low carbon steel with a C content of about 0.0007%, and the r value is obtained by performing cooling control after hot rolling.
  • the r value is remarkably improved, which is a sufficient level as a steel sheet for deep drawing. Therefore, according to the present invention, it is possible to obtain a cold-rolled steel sheet which is non-aging at room temperature and excellent in deep drawability without adding an expensive element such as Ti or Nb.
  • the present invention shows good secondary workability.
  • Example 3 Based on the knowledge of Example 3, a steel having the chemical composition shown in Table 7 was melted and manufactured on a commercial scale, followed by hot rolling (heating temperature: 1200, ⁇ : raising temperature: 930, Cooling after finishing: Cooling to 740'C at 100'C s after 0.3 seconds after finishing hot rolling, winding temperature: 680 ° C), cold rolling (rolling reduction: 80%), continuous galvanizing ( Maximum heating temperature: 820, molten zinc plating: 460 (A1 concentration in bath 0.11%), alloying treatment: 520
  • the adhesion of the plating was determined by performing 180 ° contact bending, and the peeling state of the zinc film was determined from the amount of peeling plating adhered to the tape after peeling off the tape after bonding the tape to the bent portion.
  • the evaluation was based on the following five levels. 1 One large peel, 2-Large peel, 3-Small peel, 4-Fine peel,
  • the Fe concentration in the plating layer was determined by X-ray diffraction.
  • the steel of the present invention provides a non-aging cold-dip galvannealed steel sheet with excellent hot-dip galvanizing properties, and has a secondary work embrittlement resistance. Is also good.
  • Example 4 continuous hot-dip galvanizing without alloying treatment was performed.
  • the sample was No. 3 in Example 4, and the conditions for continuous hot-dip galvanizing were a maximum heating temperature of 780 and a hot-dip galvanizing temperature of 460 ° C. After temper rolling (0.8%), the same evaluation as in Example 2 was performed.
  • the characteristic values are as shown in Table 5, and according to the present invention, a non-aging cold-dip galvanized steel sheet for deep drawing can be manufactured.
  • Table 10 shows the relationship between the r value and r 4 5 value of a product plate.
  • the hot rolling conditions The cooling conditions after finishing, especially the time until the start of quenching and the cooling rate were examined.
  • the rolling reduction is 80% and the thickness is 0.8 mm. It was subjected to continuous annealing at 780 to 40 s and temper rolling at a reduction of 0.8.
  • the hot finish rolling temperature of the steel component of the present invention is to cool to a temperature of 750 ⁇ or less at a cooling rate of 50 nos or less within 0.5 seconds after the end of hot rolling. Regardless, it is important to improve the r value, especially the r 45 value.
  • the paint bake hardening property is the increase in yield point when a test equivalent to paint bake is performed for 17 CTC-20 minutes after a 2% tensile prestrain, and a tensile test is performed again.
  • BH property The paint bake hardening property
  • blanks with a diameter of OOmni were punched from temper-rolled steel sheets, and then cup-formed with punches having a diameter of 50 mm, followed by up to 20 mm with conical punches having a vertical angle of 53 ° at various temperatures. Evaluation was made based on the transition temperature between ductility and brittleness when indentation and fracture occurred.
  • the yield point elongation (YP-E1) after heat treatment at 100'C—1 hr is 0.2% when the total C content is 0.0015% or less without adding ⁇ or Nb. Attains the non-aging goal at room temperature. Also, as is clear from the table, for ultra-low carbon with a C content of 0.0006 to 0.0013%, Cr ⁇ 0.1%, P ⁇ 0.01%, Cr + 20P ⁇ 0.2%, and hot rolling By performing the cooling control later, the r-value, especially the r- 45 value, is remarkably improved, and is at a level sufficient for a deep drawing plate.
  • Example 7 Based on the findings of Example 7, a steel having the chemical composition shown in Table 13 was melted and manufactured on an actual machine scale, followed by hot rolling. (Heating temperature: 1200, Finishing temperature: 930, Finishing Subsequent cooling: Cooling to 740'C at 100 / sec 0.3 seconds after hot rolling finish, winding temperature: 710'C), cold rolling (84% reduction), continuous molten zinc plating (maximum heating) Temperature: 820, molten zinc plating: 460 (A1 concentration in the bath: 0.11%), alloying treatment: 52CTC X20 seconds). The steel was subjected to temper rolling (0.8%). The tensile test method was the same as in Example 7, and the plating characteristics were evaluated as plating adhesion and the Fe concentration in the plating film was measured. Here, the plating adhesion was determined by the same method as in Example 4.
  • the Fe concentration in the plating layer was determined by X-ray diffraction.
  • the method for evaluating the secondary workability is exactly the same as in Example 7.
  • the steel of the present invention has excellent hot-dip galvanizing property. It is a non-aging cold-drawn alloyed hot-dip galvanized steel sheet for deep drawing, and has good paint bake hardening properties and good secondary work embrittlement resistance.
  • Example 8 continuous hot-dip galvanizing without alloying treatment was performed.
  • the sample is No. 3 of Example 8, and the continuous hot-dip galvanizing condition is a maximum heating temperature of 780 and a hot-dip galvanizing temperature of 460 °.
  • temper rolling 0.8%, the same evaluation as in Example 2 was performed.
  • the characteristic values are as shown in Table 15, and according to the present invention, a room-temperature non-ageing hot-dip galvanized steel sheet for deep drawing can be manufactured.
  • Table 16 shows the ⁇ the r value and r 45 value of the product sheet.
  • cooling conditions after finishing particularly the time until the start of rapid cooling and the cooling rate, were examined as hot rolling conditions.
  • the rolling reduction is 84% and the sheet thickness is 0.8. It was subjected to continuous annealing at 780'C for 40 seconds and temper rolling at a rolling reduction of 0.8%.
  • the r value As is evident from Table 16, in the steel composition of the present invention, after the completion of hot rolling, cooling to a temperature of 750 or less at a cooling rate of 50'C / sec or more within 0.5 seconds, the r value, particularly r It is important for improvement of 45 value.
  • ⁇ A (A-1 to A-5) is the amount of C changed by 5 levels from 0.0003% to 0.0030%, and the P amount is 0.050%.
  • ⁇ B (B 1 to B 6) is a steel in which the P content changed by six levels from 0.0002% to 0.04%, and the C content was 0.0009%.
  • An ingot having such a chemical composition was hot-rolled at a slab heating temperature of 1150, a finishing temperature of 910, and a winding temperature of 710'C to obtain a 4.0 mm thick steel sheet.
  • the yield point elongation (YP—) after heat treatment for 100 to 11 hours becomes 0.2% or less, achieving the target of non-aging at room temperature. .
  • the total C content is 0.0001% or more, it is possible to impart BH properties that are extremely difficult with ultra-low carbon steel to which ⁇ and Nb are added.
  • the addition amount of P to 0.01% or more low r value is a disadvantage of extremely low carbon steel without the addition of ⁇ and Nb, particularly improved markedly is r 45 value sufficiently as a deep drawing steel sheet Level.
  • Example 11 Based on the knowledge of Example 11, a steel having the chemical composition shown in Table 18 and Table 18 was melted and manufactured on an actual scale, followed by hot rolling (heating temperature: 1200
  • Example 1 Upper temperature: 930'C, winding temperature: 710'C), cold rolling (rolling reduction: 80%), continuous hot-dip galvanizing (maximum heating temperature: 820, hot-dip galvanizing: 460'C (bath) Medium A1 concentration 0.11%), alloying treatment: 520'C X20sec), and subjected to temper rolling (0.8%).
  • the tensile test is the same as in Example 1.
  • the plating properties were evaluated and the Fe concentration in the plating film was measured.
  • plating adhesion was performed in the same manner as in Example 4.
  • the Fe concentration in the plating layer was determined by X-ray diffraction.
  • the annealed plate was punched into a disk, drawn down to a cup at a draw ratio of 1.6, and the material changed at various temperatures was laid down on a frustoconical tool, from a height of 1 m. It was evaluated by the ductile-brittle transition temperature when a 300kg weight was dropped and subjected to an impact and fractured. A value of -20'C or less was determined to be good. The results are shown in Table 19.
  • a cold-rolled sheet excellent in deep drawability at room temperature and without aging can be obtained without adding an expensive element such as Ti or Mb. It can also impart brittleness and paint bake hardenability.
  • the present invention can be applied to a surface-treated plate for performing electroplating, fusion plating, and the like, and its manufacture. As described above, the present invention not only enables the production of a board having excellent performance inexpensively and stably as compared with the conventional technology, but also secures the earth resources of expensive elements, Alternatively, the use of the high-strength steel plate according to the present invention is considered to contribute to global environmental protection, and the effect is remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

明 細 書 耐二次加工性脆化特性と塗装焼付け硬化特性に優れた常温非時効性 深絞り用フユ ラ イ ト単相冷延鐧板および溶融亜鉛めつき鋼板ならび にそれらの製造方法 技術分野
本発明は、 常温非時効深絞り用フユ ライ ト単相冷延鐧板および溶 融亜鉛めつき鐧扳ならびにそれらの製造方法に関する。
本発明が係わる冷延鋼板および溶融亜鉛めつき鋼板とは、 自動車. 家庭電気製品、 建物などのプレス成形を して使用される ものである < 本発明による鋼板は、 強度と加工性を兼ね備えた鐧板であるので、 使用に当っては今までの鋼板より扳厚を減少できる こ と、 すなわち 軽量化が可能となる。 したがって、 地球環境保全に寄与でき る もの と期待される。 背景技術
溶鋼の真空脱ガス処理の最近の進歩により、 極低炭素鋼の溶製が 容易になった現在、 良好な加工性を有する極低炭素鋼板の需要は益 々増加しつつある。
このよう な極低炭素鋼板は、 一般的に Tiおよび Nbのう ち少な く と も 1種を舍有する こ とはよ く知られている。 すなわち、 Tiおよび Nb は、 鐧中の侵入型固溶元素 ( C > N ) と強い引力の相互作用を持ち. 炭窒化物を容易に形成する。 したがって、 侵入型固溶元素の存在し ない鐧 (IF鐧 : Interstitial Free Steel)が得られる。 IF鐧は、 歪 時効や加工性を劣化させる原因となる侵入型固溶元素を舍まないの で、 非時効で極めて良好な加工性を有する特徴がある。 さ らに、 Ti や Nbの添加は粗大化しやすい極低炭素鋼の熱間圧延板の結晶粒径を 細粒化し、 冷延焼鈍板の深絞り性を改善する重要な役割も持つ。 し かし、 Tiや Nbを添加した極低炭素鐧は次のよう な問題を有する。 第 一に製造コス トが高 く つ く 点である。 すなわち、 極低炭素化のため の真空処理コス トに加え、 高価な Πや Nbの添加を必要とする点であ る。 第二に製品板に固溶 Cや Nが残存しないので、 二次加工脆化が 発生したり塗装焼き付け硬化が消失したりする。 第三に Tiや Nbは強 い酸化物形成元素であり、 これらの酸化物が表面品質を劣化させた りする。
IF鋼のこのよう な問題を解決する目的で、 従来から多 く の研究開 発が行われてきた。 例えば、 特開昭 60— 197846号公報および特開昭 63-72830号公報では、 Tiや Nbを添加しない極低炭素鋼板およびその 製造方法が開示されており、 基本的には C量が 0.0010〜 0.0080%の 鐧を連続焼鈍するに際し、 高温焼鈍を用いていったん一部の o を r に変態させ、 冷却速度を制御して r からの低温変態生成物を生成し. これと との混合組織にする こ とにより、 上記課題を解決している , しかし、 極低炭素鋼の ( α十 7" ) 二相域は極めて狭く 、 精度よ く 温 度制御する こ とは困難であり、 また高温焼鈍に付随する種々 の問題 例えば高温通板性が不良、 板形状が悪い、 ヱネルギ一消費量が多い などの問題が発生する。 したがって、 本発明の鐧扳は α単相の組織 から成る ものとする。 また、 特開昭 59-80727号公報、 特開昭 60_ 103129号公報、 特開平 1 一 184251号公報などにおいては、 Tiや Nbな どの高価な元素を添加せず、 C量が 0.0015%以下の領域を舍む冷延 鐧板およびその製造方法が開示されている。 しかし、 これらの場合 には、 本発明の 1 つの特徴である Bが添加されていない。 全 C量が 0.0015%以下となる と、 たとえ Tiや Nbが添加されていな く とも、 結 晶粒界に存在する Cが極度に減少し、 二次加工脆化が発生する。 さ らに、 特開昭 58— 141335号公報においては、 C量が 0.0015%以下の 領域を舍み、 かつ Bを 0.0005〜0.0020%添加している。 しかし、 C 量が 0.0015%以下の領域となる と、 一般的に熱間圧延板の結晶粒径 が粗大となり、 冷延焼鈍板の r値 (平均ラ ンクフ ォ ー ド値) が確保 できない。 したがって、 添加元素あるいは熱間圧延方法に何らかの 対策が必要となる。
一方、 ゼンジマー方式の連続溶融亜鉛めつき設備で溶融亜鉛めつ き鋼板を製造するにあたり、 Tiや Nbなど酸化物を容易に形成して安 定化する元素が添加されている と、 めっき処理前に還元しても酸化 膜が表面に残存する傾向にある。 このよ うな酸化膜は、 めっき濡れ 性や Feと Znの合金化反応に影響し、 高品質の鐧板の安定製造を困難 にする。 発明の開示
本発明は Tiや Nbなどの高価な添加元素を使用しない極低炭素鋼を 用いて、 常温非時効で、 耐二次加工脆化特性、 塗装焼き付け硬化特 性、 深絞り特性が良好であり、 さ らに溶融亜鉛めつき特性にも優れ た冷延鋼板または溶融亜鉛めつき鐧扳を提供する こ とを目的とする, 本発明者らは先ず Ti, Nbなどの高価な炭窒化物形成元素を使用せ ずに常温非時効特性を得るこ との手段について鋭意研究を行った結 果、 全 C量を一定量以下に制御した or単相の組織からなる極低炭素 A1キル ド鐧を用いる こ とが極めて有効である こ とを見出した。
すなわち、 本発明鐧では A1を添加する こ とにより製品板において Nを A1Nと して固定しう るので、 歪時効の原因となる Cの量を特定 する必要がある。 本発明者らは全 C量を 15ppm 以下に減少せしめる と、 たとえ調質圧延率が 0.5%と通常より'低圧延率でも、 安定的に 常温で非時効にする こ とができ る こ とを究明したのである。 か 、 る新規知見は下記の実験によって得られた。
第 1 表に示す組成を有する鐧を実験室的に真空溶製した。 すなわ ち、 鋼 A ( A— 1 〜A— 5 ) と鐧 B ( B — 1 〜 B _ 5 ) のグループ は、 C量が 0.0003%から 0.0030%まで 5水準変化している。 こ こで P量が、 鐧 Aは 0.015%であり、 鐧 B は 0.050%である。 一方、 鋼 C ( C 一 1 〜 C — 6 ) と鐧 D ( D — 1 〜 D — 6 ) のグループは、 P 量が 0.0002%から 0.04%まで 6水準変化している。 こ こで、 鐧 Cは C量が 0.0005%であり、 鐧 Dは C量が 0.0012%である。
このよう な化学組成を持つィ ンゴッ トを、 スラブ加熱温度 1150て · 仕上温度 910て、 巻取温度 710てで熱間圧延し、 4.0mm厚の鋼板と した。 酸洗後 80%の圧下率の冷間圧延を施し、 0.8mmの冷延板と し. 次いで加熱速度 15'C /sec 、 均熱 780'C X 50sec 、 冷却速度 20°C Z sec の連続焼钝をした。 さ らに、 0.8%の圧下率の調質圧延をし、 引張試験に供した。
引張試験方法は JIS2241記載の方法に従った。 塗装焼付け硬化性 (BH性) は、 2 %引張予歪ののち 170て 一 20min の焼き付け相当処 理を行い、 再度引張試験をした時の降伏点の上昇量である。
実験結果を第 1 図に示す。 該図から明らかなよう に、 Tiや Nbなど を添加せずとも全 C量が 0.0015%以下になる と、 100て 一 1 hrの熱 処理後の降伏点伸び (YP— E1 ) が 0.2%以下となり常温非時効の目 標を達成する こ とができる。
なお、 T iや Nbを添加した極低炭素鐧では全 C量が 0.0001 %以上に なる と良好な BH性を付与する こ とが困難になるが、 本発明鋼では第 1 図で示すよう に、 全 C量が 0.0001〜 0.0015 %の範囲で良好な BH量 を付与する ことができる。 第 1 表
Figure imgf000007_0001
次に、 本発明者らは耐二次加工脆化特性について研究した。
と ころが、 二次加工脆化の問題は、 全 C量を上述の 15p pm 以下に する と発生しやす く なるこ とが判明したのである。 これは、 粒界を 強化する C量が著し く 減少したためと考えられる。
さ らにこの問題は深絞り性の改善や強度の上昇のために Pを添加 する こ とにより、 さ らに容易に発生する こ とが判った。
か る問題を解決するためには、 本発明鐧において、 Bを添加す る こ とが極めて有効である こ とが究明された。
第三に、 本発明者らは T iや Nbなどの元素を添加しない極低炭素鐧 板の深絞り性について研究した。
一般に、 T iや N bを添加しない鐧において、 全 C量を低減する と熱 間圧延板の結晶粒径は大き く なり、 特に全 C量が 1 5 P P R1 以下の領域 となる と著し く 大き く なり、 時には板厚方向に延びた極めて粗大な 柱状晶となる。 しかし、 深絞り性に好ま しい板面 U 11 } 方位粒は 初期結晶粒界から優先的に核生成する ので、 極低炭素化しても r値 はむしろ低下する。 そこで、 T iや Nbなど高価な元素を添加せずとも 熱間圧延板の結晶粒径を細粒化する方策について検討を加えた結果 1 ) P添加が効果的であり、 0.01%以上の添加が好ま しい、 2 ) B と共存する とこの効果がさ らに顕著となる、 3 ) さ らに好ま し く は 熱間圧延終了後 1.0秒以内に 50て /sec 以上の冷却速度で冷却する と、 さ らに細粒化する こ とが判明した。 上記 1 ) については理由が かならずしも明確でないが、 Pを添加すると a ) r粒が細粒化する b ) 変態した の粒成長が抑制される、 こ となどが原因となったも のと推察する。 一方、 Bの添加は変態の速度を抑制するので変態後 の 粒径が小さ く なる ものと考えられる。 また、 熱間圧延仕上げ後 の急冷は、 粒成長の抑制や ?" Z o 比の増加などにより細粒化に有効 であったものと思われる。
こ で第 1 図の場合と同じ条件で P添加による r値の変化につい て実験を行った。
その結果を第 2図に示す。 該図から明らかなよう に、 Pを 0.01% 以上添加すると、 Tiや Nbを添加しない極低炭素鋼の欠点である低い r値、 特に r 45値 (圧延方向に対し 45° 方向の r値) が著し く 改善 され、 深絞り用鐧板と して十分なレベルとなった。
また、 Mnは固溶体強化元素と して降伏強度をあま り上舁させずに 強度を上昇させるのに有効な元素である力 従来より r値の向上に は低 Mn化が好ま しいと言われている。
しかしながら、 本発明者らの研究により、 Mnは P と共存する と極 低炭素鋼の熱間圧延板の結晶粒径を細粒化する という新知見を得た, これは、 両元素が熱力学的には Ar3温度に対して相殺する方向に働 き、 かつ両元素とも r から orへの変態を速度論的には遅らせるため と思われる。 したがって、 Mn量を著し く 増加させる と一般的には r 値が激し く 劣化するが、 本発明のよう に P量が 0.01%以上の極低炭 素鐧では 3.0%まで添加してもそれほど劣化しないという有益な知 見も得た。
すなわち、 第 2図に示す実験例では Mnが 0.15%添加されている力く、 このよう に Mnが多量に舍まれていても、 Pを 0.01%添加する こ とに より高い r値を得る こ とができる。
さ らに本発明者らが Mnと P との関係を究明したところ Mnを 0.2% 以上、 Pを 0.01%以上、 かつ Mn十 20 P 0.3 の範囲で添加する と熱 間圧延板の組織の細粒化を顕著に行う こ とができるので、 r値を高 い値に維持したま ^強度を高く する こ とができ る こ とを知見した。 か る知見は下記の実験によ って得られた。
Fe-0.0010% C - 0.01%Si - 0.003 % S - 0.04 % A 1 - 0.0012 % N に 0.5%または 1 %Mnおよび 0 〜0.05% Pを舍有する鐧を実験室的 に溶製した。 得られた鐧片を 1100てに加熱し、 880〜 930'Cの仕上 げ温度(Ar3点直上の温度) で熱間圧延を行い、 圧延終了後 0.5sec以 内に 70'C Zsec の冷延速度で冷却し、 700'Cで巻取った。
その後 85ての圧下率で 0.7mm厚の冷延板と し、 次いで加熱速度 10 ΐ /sec 、 均熱 770。C X 40sec 、 冷却速度 60'C /sec の焼钝を施し た。 このよ う に して得られた試料の実験結果を第 3図に示す。 該図 から明らかのよう に、 Pが零のときは、 Mn添加量が高いために r値 は 1.1〜1.2 と極めて低いが、 Pが 0.01%添加される と r 値は急激 に上昇し、 1.6〜1.7 の値が得られた。
すなわち、 Mnを 0.2%以上、 Pを 0.01%以上、 かつ Mn + 20 P 0.3 の範囲で添加する と r値を高い値に維持したま ゝ、 熱間圧延板の結
Θ粒の細粒化の効果を顕著に得る こ とができ、 強度を大幅に向上す る こ とができ るのである。
なお、 B は耐二次加工脆化特性を改善する とともに本発明鋼の熱 間圧延板の組織を細粒化せしめる効果を有しているので、 本発明鐧 がその目的を達成するために極めて有効な元素である。
すなわち、 Bは変態の速度を抑制するので 態後の α粒径が小さ く なる ものと考えられ、 Ρ と共存する こ とにより この結晶細粒化効 果がさ らに顕著になるのである。
また、 Crも Si, Mn, P と同様強度を上昇させるのに有効な元素で ある。
したがって、 本発明のよう に C量が 0.0015%以下の超極低炭素鐧 の熱延板の組織の結晶粒径を微細化して強度の上昇を達成するため に、 さ らに Crを所定量、 特に Cr + 20 P ≥ 0 , 2 %の範囲で添加する こ とは極めて有効である。
本発明は、 また、 溶融亜鉛めつき鐧板も対象とするが、 本発明鋼 にはめつき性を基本的に劣化させる T iや Nbを舍まないので優れため つき特性を有する。
一方、 本発明の鐧板を製造するに際し、 製品板の加工性 ( r値) を確保するために、 (Ar 3— 100) 以上の仕上げ温度で熱間圧延を終 了する こ とと、 熱延板の組織の結晶粒径の微細化のために熱間圧延 終了後 1 秒以内、 特に Mnを Mn十 20P ≥0.3 の関係で 0.2%以上また は Crを Cr + 20 P 0.2 の関係で 0.1 %以上添加する場合は 0.5秒以 内に 50て /sec 以上の冷却速度で冷却する こ とにより本発明鐧を製 造する こ とができ る。 図面の簡単な説明
第 1 図は BH量および YP - El (100て — 1 hrの熱処理後) と C量との 閬係を示す図である。
第 2図は 0.15% Mnの場合の r値および r 45値と P量との関係を 示す図である。
第 3図は 0.5%および 1 % Mnの場合の r値と P量との閬係を示 す図である。 発明を実施するための最良の形態
まず、 本発明の化学成分について説明する。
C : Cは製品の材質特性を決定する極めて重要な元素である。 C 量が 0.0015%超となる と、 もはや常温非時効でな く なるので、 上限 を 0.0015%とする。 一方、 C量が 0.0001 %未満となると、 二次加工 脆化が発生する。 また、 製鐧技術上極めて到達困難な領域であり、 コ ス ト も著し く 上昇する。 したがって、 下限は 0.0001 %とする。 なお、 本発明の鐧板に溶融亜鉛めつきを施す場合、 常温非時効性 より もプレス成形性を重視する ときには、 溶融亜鉛めつきの粒界へ の浸入を抑制するため、 Cの上限を 0.0018%にする。
Si : Siは安価に強度を上舁させる元素であるが、 1.2%超となる と化成処理性の低下ゃメ ツキ性の低下などの問題が生じるので、 そ の上限を 1.2%とする。 なお、 溶融亜鉛めつきを施す場合は 0.7% 超でめっき不良が生じるので上限を 0.7%にするのが好ま しい。
Mn : Mnは Siと同様に強度を上昇させるのに有効な元素である。 ま た、 T iなどを添加しない本発明鐧では Mnが Sを固定するので、 ^は 熱間圧延時の割れを防止する役割をもつ。 低 Mn化は従来から r値の 向上に好ま しいと言われているが、 Mn量が 0.03%未満では熱間圧延 時に割れが生じる。 したがって、 Mn量の下限を 0.03%とする。 一方. Pが 0.01%以上添加されている極低炭素鐧では Mnを 3.0%まで添加 しても r値をほとんど低下せしめないので、 本発明鋼での Mn量の上 限は、 Pを 0.01〜0.15%の範囲で添加する こ とを前提と して、 3.0 %とする。
P : P も Si, Mnと同様に強度を上昇させる元素と して知られてお り、 その添加量は狙いとする強度レベルに応じて変化する。 さ らに Tiや Nbを添加しない極低炭素鋼の熱間圧延板の結晶粒径は一般的に 粗粒化する力 0.01%以上の Pの添加により、 顕著に細粒化する。 したがって、 P量の下限値を 0.01%とする。 しかし、 添加量が 0.15 %超となる と、 冷間圧延性の劣化、 二次加工脆化などが発生するの で、 P量の上限値を 0.15%とする。 また、 記述したように、 Pの細 粒化効果は Mnと共存する とさ らに顕著となる。
なお、 本発明鐧において、 Mnが 0.2%以上の場合は Mn + 20 P ≥0.3 %の範囲で Mnおよび Pを添加する こ とにより、 より効果的に熱延板 の結晶粒を細粒化する こ とができる。
S : S量は低いほうが好ま しい力;、 0.0010%未満になる と製造コ ス トが上昇するので、 これを下限値とする。 一方、 0.020%超にな る と MnSが数多 く 析出して加工性が劣化するので、 これを上限値と する。
A1 : A1は脱酸調整に使用するが、 0.005%未満では安定して脱酸 する こ とが困難となる。 一方、 0.1%超になる とコス ト上昇を招 く 。 したがって、 これらの値を下限値および上限値とする。
N : Nは低い方が好ま しい。 しかし、 0.0001%未満にするには著 しいコス ト上昇を招く ので、 これを下限値にする。 一方、 0.0080% 超になる と、 もはや A1で Nを固定する こ とが困難となり、 歪時効の 原因となる固溶 Nが残存したり、 A1Nの分率が増加したり して加工 性が劣化する。 したがって、 0.0080%を N量の上限値とする。
B : B は結晶粒界に偏折し、 二次加工脆化の防止に有効である と ともに熱延板の結晶粒径の細粒化に効果を有する。 これらの結果は、 0.0001〜0.0030%の添加で十分である。 0.0001 %未満では上記効果 は不十分であり、 0.0030 %超になる と添加コス トの上昇やスラブ割 れの原因となる。
Cr : C iMn, P , S iと同様に強度を上异させるのに有効な元素で ある。 Crの添加量が 3 %超となる と r値が低下し、 さ らに化成処理 性やめつき性を劣化するので、 その上限を 3 %とする。 また、 その 添加量が 0.1%未満では強度上昇の効果が不十分である。
なお、 本発明鐧のよう に Pを 0.01%以上添加する場合は Cr + 20 P ≥ 0.2%の範囲で と Pを添加する こ とが必要である。
通常は Cr : 0.2〜 1.0%、 P : 0.01〜 0.1%、 および B : 0.0002 〜0.0010%の範囲に添加する こ とが好ま しい。
Cr, P , Bなどの元素は Mn同様 r域での再結晶を抑制し、 かつ r → :変態温度を低下させる こ とにより変態の核生成頻度を増加させ たり、 変態 o粒の成長を抑制したり して、 細粒化を達成する ものと 推察される。
次に本発明鋼の製造条件について述べる。 先ず、 上述した元素を 有するスラブを 1000〜1350ての範囲で加熱し、 熱間圧延を行う。 そ の仕上り温度 (熱延終了温度) は製品板の加工性 ( r値) を確保す るため、 (Ar3— 100) 'C以上の温度とする。 また、 熱延終了後、 1秒 以内、 好ま し く は 0.5秒以内に 50て /sec 以上の冷却速度で巻取温 度まで冷却する。
得られた鋼帯を 600〜 750'Cの範囲で巻取る。 巻取温度が 750 'C 超となる と、 酸洗性が劣化したり コ イ ルの長手方向で材質が不均一 となるので、 これを上限値とする。 一方、 600'C未満となる と熱間 圧延板での A1Nの折出が不十分となるので、 製品板の加工性が劣化 する。 したがって、 これを下限値とする。
次いで上記鐧帯を冷間圧延するが、 製品板の r値を確保する目的 から圧下率を 60%以上とする。
引続き焼鈍温度が 600〜 900ての連続焼純を施す。 焼鈍温度力 600 て未満では再結晶は不十分であり、 製品板の加工性が問題となる。 焼鈍温度の上昇とともに加工性は向上するが、 900 'C超では高温す ぎて板破断や板の平坦度が悪化する。
冷延鋼帯に溶融亜鉛めつきを施す場合は、 該鋼带をたとえばゼン ジマ ー方式の連続溶融亜鉛めつき設備へ送入し、 軟化焼鈍、 溶融亜 鉛めつき、 および必要に応じて合金化熱処理を行う。 焼钝温度は 600 〜 900 °C とする。 焼钝温度が 600て未満では、 再結晶は不十分であ り、 製品板の加工性が問題となる。 焼鈍温度の上异とともに加工性 は向上するが、 900'C超では高温すぎて板破断や板の平坦度が悪化 する。
かく して、 本発明は新思想と新知見に基づいて構築されたもので あり、 本発明によれば Tiや Nbなどの高価な元素を添加せずとも、 常 温非時効で、 耐二次加工脆化特性、 塗装焼き付け硬化特性、 深絞り 特性が良好で、 かつめつき特性に優れた薄鐧板または溶融亜鉛めつ き鋼板が得られる。 実施例
実施例 1
第 2表に示す化学組成を有する鐧を実機規模で溶製、 铸造し、 続 いて熱間圧延 (加熱温度 : 1200て、 仕上温度 : 930'C、 巻取温度 : 710t ) 、 冷間圧延 (圧下率 : 80%) 、 連続焼钝(780'C — 40sec の 保定と 400て 一 2 mii の過時効処理から成る) 、 調質圧延(0.8%) に供した。
引張試験は JIS2241記載の方法に従った。 塗装焼付け硬化性 (BH 性) は 2 %引張予歪ののち 170'C — 20min の焼付け相当処理を行い、 再度引張試験をしたときの降伏点の上昇量である。
また、 二次加工性は、 焼鈍板を円盤に打ち抜き、 絞り比 1.6で力 ップに絞り、 種々 の温度に変化させた材料を円錐台状の工具の上に 伏せて、 高さ 1 mから 300kgの重りを落と して衝撃を加え、 破壊し た場合の延性一脆性遷移温度によ って評価し、 一 20 'C以下の値を良 好と した。 '
第 3表から明らかなよう に、 本発明に従えば、 Tiや Nbなど高価な 元素が添加されていない鋼を用いて、 強度レベルが 30kgf /mm2 か ら 45kgf/mm2 級までの常温非時効深絞り用冷延鐧板が得られ、 BH 性能も同時に O CD兼ね備える こ とが可能である。 また、 微量 Bの添加に より耐二次加工脆化特性が著し く 改善される こ とがわかる。 こ こで 鐧 3 — 1 , 3 — 2 は、 P と Mnの同時添加により高強度化したもので ある力く、 高 Mnであるにもかかわらず良好な r値, r 45値となる。 こ れは P と Mnの同時添加は、 熱間圧延板の細粒化にも有効であるため と考え られる。
第 2 表 OO CO r— 化 学 組 成 (wt%)
鐧 No.
C Si Mn P S Al N B
1一 1 0.03 0.15 0.03 0.060 O CO O 0.0003
O
1 -2 0.03 0.15 0.03 0.060
2— 1 0.02 0.12 0.08 0.040 0.0007O L 2-2 0.02 0.12 0.08 0.040
3- 1 0.0009 0.10 0.7 0.06 0.010 0.054
3-2 0.0009 0.10 1.8 0.06 0.010 0.054
Figure imgf000015_0001
第 3 表
Figure imgf000016_0001
実施例 2
第 2表の鐧 1 一 1 , 2 — 1 を用いて、 熱間圧延終了後の冷却条件 について実機設備を用いて検討を加えた。 第 4表に熱間圧延条件と、 製品板の r値および r 45値との関係を示す。 こ こで、 熱間圧延条件 と して、 仕上げ後の冷却条件、 特に急冷開始までの時間および冷却 速度を検討した。 また、 冷間圧延は圧下率が 80%であり、 扳厚は 0.8 mmである。 780'C — 40sec の連続焼鈍、 および 0.8%の圧下率の調 質圧延に供した。 第 4表から明らかなよう に、 通常の条件でも深絞 り用鐧扳と しての r値および r 45値を満たすが、 好ま し く は熱間圧 延終了後でき るだけ速やかに急冷する と、 r値特に r 45値が著し く 改善される。 これは、 熱間圧延板の結晶粒径が熱間圧延直後急冷に より細粒化するためと考えられる。
第 4 表
Figure imgf000017_0001
(注) SRT:スラブ方 1 ; FT: {±±¾; t :仕上げ後冷 ¾?开 台時間
CR:冷却 ¾g; CT: .
( ) 直は Ar3を示す。
実施例 3
第 5表に示す組成を有する鐧を実験室的に真空溶製した。 鐧 Aで は、 C量を 0.0004%から 0.0030%まで変化させた。 一方、 鐧 Bでは- Mn量を 0.10%から 1.20%、 P量を 0.005 %から 0.06 %の範囲で変化 させた。 得られた鐧片を、 次の条件で熱間圧延した。 すなわち、 ス ラブ加熱温度 1150' (:、 仕上げ温度 910て、 仕上げ後 0.2秒以内に 80 てノ s の冷却速度で冷却し、 710てで巻き取った。 板厚は、 4.0mm である。 酸洗後 80%の圧下率の冷間圧延を施し 0.8mmの冷延板と し. 次いで加熱速度 15'C / s 、 均熱 800'C X50 s 、 冷却速度 20'C / s の 連続焼鈍をした。 さ らに、 0.8%の圧下率の調質圧延をし、 引張試 験に供した。 引張試験方法は、 JIS2241記載の方法に従った。 さ ら に、 二次加工性は、 調質圧延した鐧板から直径 110mmのブラ ンクを 打ち抜き、 ついで直径 50mmのポ ンチでカ ップ成形し、 これに種々 の 温度で頂角 53度の円錐ポンチで最大 20mm押し込み、 破壊した場合の 延性一脆性遷移温度によ って評価し、 一 50て以下の値を良好と した 実験結果を第 6表に示す。
第 6表から明らかなよう に、 T iや Nbなどを添加せずとも全 C量が 0.0015%以下になる と 100て — 1 hrの熱処理後の降伏点伸び (YP - E1 ) が、 0.2%以下となり常温で非時効の目標を達成する。 また、 C量が約 0.0007%の超極低炭素鋼に、 Mn≥ 0.2%, P≥0.0010%, Mn十 20P≥0.3 を規定し、 熱間圧延後に冷却制御を施すこ とによ り r値、 特に r 値が著し く 改善され、 深絞り用鋼板と して十分な レ ベルとなる。 したがって、 本発明によれば、 T iや Nbなどの高価な元 素を添加せずとも、 常温非時効性で深絞り性に優れた冷延鐧板が得 られる。 また、 本発明鐧は良好な耐二次加工性を示す。
第 5 表 鋼 化 学 組 成 (wt%) 備
No. C Si Mn P S A1 N B 考
20 P
A1 0.0004 0.01 0.20 0.035 0.008 0.045 0.0012 0.0002 0.9 本
A2 0.0008 0.01 0.20 0.035 0.008 0.045 0.0012 0.0005 0.9 明 鐧
A3 0.0017 0.01 0.20 0.035 0.008 0.045 0.0012 0.0002 0.9
A4 0.0030 0.01 0.20 0.035 0.008 0.045 0.0012 0.0005 0.9 比 早父
B 1 0.0006 0.01 0.10 0.005 0.008 0.045 0.0012 0.0002
B2 0.0007 0.01 0.25 0.015 0.008 0.045 0.0012 0.0002 0.55
B 3 0.0006 0.04 0.65 0.010 0.008 0.045 0.0012 0.0002 0.85
B4 0.0007 0.01 0.25 0.060 0.008 0.045 0.0012 0.0005 1.45 鐧
B5 0.0008 0.06 1.20 0.040 0.008 0.045 0.0012 0.0004 2.00 第 6 表
Figure imgf000019_0001
実施例 4
実施例 3 の知見をベースに、 第 7表に示す化学組成を有する鐧を 実機規模で溶製、 ί寿造し、 続いて熱間圧延 (加熱温度 : 1200 、 {: 上げ温度 : 930て、 仕上げ後の冷却 : 熱間圧延仕上げ後 0.3秒後に 100'Cノ s で 740 'Cまで冷却、 巻き取り温度 : 680て ) 、 冷間圧延 (圧下率 : 80%) 、 連続溶融亜鉛めつき (最高加熱温度 : 820て、 溶融亜鉛めつき : 460て (浴中 A1濃度 0.11%) 、 合金化処理 : 520
•C X 20 s ) 、 調質圧延(0.8%) に供した。 引張試験方法は、 実施例 1 と同様である。 また、 めっき特性と して、 めっき密着性の評価お よびめつき皮膜中の Fe濃度を測定した。
こ こで、 めっき密着性は 180° 密着曲げを行い、 亜鉛皮膜の剝離 状況を曲げ加工部にセ αテープを接着したのち、 これをはがしてテ ープに付着した剝離めっき量から判定した。 評価は、 下記の 5段階 と した。 1 一 一剥離大、 2 - 一剝離中、 3 — 一剥離小、 4 一—剥離微、
5 一 一剥離皆無
また、 めっき層中の Fe濃度は、 X線回折によって求めた。
また、 二次加工性の評価方法も、 実施例 3 と全く 同様である。 第 8表から明らかなように、 本発明鋼は、 溶融亜鉛めつき性に優 れた常温非時効性深絞り用合金化溶融亜鉛めつき鋼板が得られ、 ま た耐二次加工脆化特性も良好である。
Figure imgf000020_0001
第 8 表
Figure imgf000021_0001
実施例 5
実施例 4 において、 合金化処理のない連続溶融亜鉛めつきを実施 した。 試料は、 実施例 4 の鐧 3であり、 連続溶融亜鉛めつき条件は 最高加熱温度が 780て、 溶融亜鉛めつき温度は 460 'Cである。 調質 圧延(0 . 8 % ) ののち、 実施例 2 と全く同様の評価を行った。 特性値 は、 第 5表に示すとおりであり、 本発明によれば、 常温非時効性の 深絞り用溶融亜鉛めつき鋼板が製造できる。
第 9 表
Figure imgf000021_0002
実施例 6
第 7表の鐧 2 , 3を用いて、 熱間圧延終了後の冷却条件について 実機設備を用いて検討を加えた。 第 10表に熱間圧延条件と、 製品板 の r値および r 4 5値との関係を示す。 こ こで、 熱間圧延条件として 仕上げ後の冷却条件、 特に急冷開始までの時間および冷却速度を検 討した。 また、 冷間圧延は圧下率が 80%であり、 扳厚は 0.8mmであ る。 780て — 40 s の連続焼鈍、 および 0.8の圧下率の調質圧延に供 した。 第 10表から明らかなよう に、 本発明の鋼成分において熱間圧 延終了後 0.5秒以内に 50てノ s以上の冷却速度で 750Ϊ以下の温度 まで冷却する こ とが、 熱間仕上圧延温度にかかわらず、 r値特に r 45値の改善に重要である。
第 10 表
Figure imgf000022_0001
(注) SRT:スラブ謹 ; FT:仕上け ¾Jg; t :仕上げ後冷 始時間
CR:冷却速度; CT:巻き取り温度
実施例 7
第 11表に示す組成を有する鋼を実験室的に真空溶製した。 鐧 Aで は、 C量を 0.0004%から 0.0030%まで変化させた。 一方、 鐧 Bでは、 Cr量を 0.01%から 1.50%、 P量を 0.005%から 0.120%の範囲で変 化させた。 得られた鐧片を、 次の条件で熱間圧延した。 すなわち、 スラブ加熱温度 1150て、 仕上温度 910'Cで仕上圧延後、 0.2秒以内 に 80'C /sec の冷却速度で冷却し、 710'Cで巻取った。 板厚は、 4.0 である。 酸洗後、 80%の圧下率の冷間圧延を施し、 0.8mmの冷延 板と し、 次いで加熱速度 15°C /sec 、 均熱 800'C X 50秒、 冷却速度 20 t / sec の連続焼鈍を した。 さ らに、 0.8%の圧下率の調質圧延 を し、 引張試験に供した。 引張試験方法は、 JIS2241記載の方法に 従った。 歪時効特性は、 100'C — 1 時間の人工時効後の降伏点伸び (YP - E1 ) で評価し、 0.2%以下であれば非時効と した。 また、 塗 装焼付硬化特性 (BH性) は、 2 %の引張予歪の後、 17CTC - 20分の 塗装焼付相当の処理を行い、 再度引張試験をした時の降伏点の上昇 量である。 二次加工性は、 調質圧延した鐧板から直径 llOmniのブラ ンクを打抜き、 次いで直径 50mmのポンチでカ ップ成形し、 これに種 々の温度で頂角 53度の円錐ポンチで最大 20mm押し込み、 破壊した場 合の延性一脆性遷移温度によって評価し、 一 50て以下の値を良好と した。
第 12表から明らかなよう に、 Πや Nbなどを添加せずとも、 全 C量 が 0.0015%以下になる と 100'C — 1 hrの熱処理後の降伏点伸び (YP - E1 ) が 0.2%以下となり、 常温で非時効の目標を達成する。 また- 同表から明らかなよう に、 C量が 0.0006〜0.0013%の超極低炭素鐧 に、 Cr≥ 0.1 % , P ≥ 0.01% , Cr + 20 P ≥ 0.2%を規定し、 熱間圧 延後に冷却制御を施すことにより、 r値、 特に r 45値が著し く 改善 され、 深絞り用鐧板と して十分なレベルとなる。 したがって、 本発 明によれば、 Πや Nbなどの高価な元素を添加せずとも、 常温非時効 性で深絞り性に優れた冷延鐧板が得られる。 また、 第 12表から明ら かなよう に本発明鐧は塗装焼付硬化特性、 および良好な耐二次加工 性を示す。 第 11 表 化 組 成 (wt% )
綱 No. 備考
C Si Mn P Cr S A l N B Cr + 20 P
A 1 0.0004 0.01 0.20 0.035 0.50 0.008 0.045 0. 0012 0. 0002 1.2 本発明鋼
A 2 0.0008 0.01 0.20 0.035 0.50 0.008 0.045 0. 0012 0. 0005 1.2 本発明鋼
A 3 0.0014 0.01 0.20 0.035 0.50 0.008 0.045 0. 0012 0. 0002 1.2 本発明綱
A 4 0.0030 0.01 0.20 0.035 0.50 0.008 0.045 0. 0012 0. 0005 1.2 比較鋼 t
t B 1 0.0006 0.01 0. 10 0.005 0.012 0.045 0. 0012 0. 0002 0. 10 比較綱
B 2 0.0013 0.01 0. 15 0.015 0. 15 0.010 0.045 0. 0012 0. 0002 0.45 木発明鐧
B 3 0.0006 0.04 0.65 0.035 0.45 0.008 0.045 0. 0012 0. 0002 1. 15 本発明鋼
B 4 0.0011 0.01 0.25 0.060 1.05 0.008 0.045 0. 0012 0. 0005 2.25 本発明鋼
B 5 0.0008 0.06 1.50 0. 120 1.50 0.008 0.045 0. 0012 0. 0004 4.55 本発明鋼
第 12 表
Figure imgf000025_0001
実施例 8
実施例 7 の知見をベースに、 第 13表に示す化学組成を有する鐧を 実機規模で溶製、 铸造し、 続いて熱間圧延 .(加熱温度 : 1200て、 仕 上温度 : 930て、 仕上後の冷却 : 熱間圧延仕上後 0.3秒後に 100て /sec で 740'Cまで冷却、 巻取温度 : 710'C ) 、 冷間圧延 (圧下率 84% ) 、 連続溶融亜鉛めつき (最高加熱温度 : 820て、 溶融亜鉛め つき : 460て (浴中 A1濃度 0.11% ) 、 合金化処理 : 52CTC X20秒) . 調質圧延(0.8%) に供した。 引張試験方法は実施例 7 と同様である , また、 めっき特性として、 めっき密着性の評価およびめつき皮膜中 の Fe濃度を測定した。 こ こで、 めっき密着性は、 実施例 4 と同様の 方法によつて判定した。
また、 めっき層中の Feの濃度は、 X線回折によって求めた。
また、 二次加工性の評価方法も、 実施例 7 と全く 同様である。 第 14表から明らかなように、 本発明鋼は、 溶融亜鉛めつき性に優 れた常温非時効性深絞り用合金化溶融亜鉛めつき鋼板であり、 また 塗装焼付硬化特性および耐良好な耐二次加工脆化性も示す。
実施例 9
実施例 8 において、 合金化処理のない連続溶融亜鉛めつきを実施 した。 試料は、 実施例 8 の鐧 3であり、 連続溶融亜鉛めつき条件は 最高加熱温度が 780て、 溶融亜鉛めつき温度は 460 Ϊである。 調質 圧延(0. 8 % ) の後、 実施例 2 と全く 同様の評価を行った。 特性値は 第 15表に示すとおりであり、 本発明によれば、 常温非時効性の深絞 り用溶融亜鉛めつき鋼板が製造できる。
Figure imgf000027_0002
Figure imgf000027_0001
Figure imgf000028_0001
第 15 表
Figure imgf000029_0001
実施例 10
第 13表の鐧 2 , 3 を用いて、 熱間圧延終了後の冷却条件について 実機設備を用いて検討を加えた。 第 16表に熱間圧延条件と、 製品板 の r値および r 45値との閬係を示す。 ここで、 熱間圧延条件として 仕上げ後の冷却条件、 特に急冷開始までの時間および冷却速度を検 討した。 また、 冷間圧延は圧下率が 84%であり、 板厚は 0.8 であ る。 780'C — 40秒の連続焼鈍、 および 0.8%の圧下率の調質圧延に 供した。 第 16表から明らかなように、 本発明の鋼成分において熱間 圧延終了後、 0.5秒以内に 50'C /sec 以上の冷却速度で 750て以下 の温度まで冷却することが、 r値特に r 45値の改善に重要である。
第 16 表
Figure imgf000029_0002
(注) SRT :スラブカ 1 ; FT:仕±¾; t :仕上後冷 ¾ΠΓ开 ^寺間
CR:冷却 ; CT:巻 実施例 11
第 17表に示す組成を有する鋼を実験室的に真空溶製した。 すなわ ち、 鐧 A ( A— 1 〜A— 5 ) は、 C量が 0.0003%から 0.0030%まで 5水準変化した鐧であり、 P量は 0.050%である。 一方、 鐧 B ( B 1 ~ B 6 ) は、 P量が 0.0002%から 0.04%まで 6水準変化した鋼で あり、 C量は 0.0009%である。 このよう な化学組成を持つイ ンゴッ トを、 スラブ加熱温度 1150て、 仕上温度 910て、 巻取温度 710'Cで 熱間圧延し、 4.0mm厚の鋼板と した。 酸洗後 80%の圧下率の冷間圧 延を施し O.Smniの冷延板と し、 次いで加熱速度 15'C /sec で最高加 熱温度 820てまで加熱してから、 約 10'C Zsec で冷却し、 460てで 慣用の溶融亜鉛めつき (浴中 A1濃度 : 0.1% ) を行い、 さ らに加熱 して 520 'C X20sec の合金化処理後、 約 10'C Zsec で室温まで冷却 した。 さ らに、 0.8%の圧下率の調質圧延をし、 引張試験に供した, 引張試験方法は、 JIS2241記載の方法に従った。 また、 塗装焼き付 け硬化性 (BH性) は、 2 %引張歪ののち 170'C _20miii の焼き付け 相当処理を行い、 再度引張試験をした時の降伏点の上昇量である。
Tiや Nbなどを添加せずとも全 C量が 0.0018%以下になる と 100て 一 1 hrの熱処理後の降伏点伸び (YP— ) が 0.2%以下となり 、 常 温非時効の目標を達成する。 また、 全 C量が 0.0001 %以上になる と. Πや Nbを添加した極低炭素鋼ではなかなか困難な BH性を付与する こ とが可能となる。 一方、 P添加量を 0.01%以上とする と、 Πや Nbを 添加しない極低炭素鋼の欠点である低い r値、 特に r 45値が著し く 改善され、 深絞り用鋼板と して十分なレベルとなる。 化 学 組 成 (wt%)
鐧 No.
C Si Mn P S Al N B
Al
0.01 0.15 0.050 0.008 0.045 0.0012 0.0002
A5
O O C
B 1 0.0002
0.0009 0.01 0.15 0.008 0.045 0.0012 0.0002 B 6 0.04 実施例 12
実施例 11の知見をベースに第、 第 18表に示す化学組成を有する綱を 実機規模で溶製、 寿造し、 続いて熱間圧延 (加熱温度 : 1200て、 仕 表
上温度 : 930'C、 巻取温度 : 710'C ) 、 冷間圧延 (圧下率 : 80% ) 、 連続溶融亜鉛めつき (最高加熱温度 : 820て、 溶融亜鉛めつき : 460 'C (浴中 A1濃度 0.11% ) 、 合金化処理 : 520'C X20sec)、 調質圧延 (0.8%) に供した。 引張試験は実施例 1 と同様である。 また、 めつ き特性と して、 めっき密着性の評価およびめつき皮膜中の Fe濃度を 測定した。 こ こで、 めっき密着性は実施例 4 と同様の方法で行った。
また、 めっき層中の Fe濃度は X線回折によって求めた。
二次加工性は、 焼鈍板を円盤に打き抜き、 絞り比 1.6でカ ップに 絞り、 種々 の温度に変化させた材料を円錐台状の工具の上に伏せて、 高さ 1 mから 300kgの重りを落と して衝撃を加え、 破壊した場合の 延性一脆性遷移温度によって評価し、 — 20 'C以下の値を良好と した。 結果を第 19表に示す。
第 19表から明らかなよう に、 本発明に従えば、 Tiや Nbなど高価な 元素が添加されていない鐧を用いて、 強度レベルが SOkgfZmm2 か ら 45kgfZmm 2 級までの溶融亜鉛めつき性に優れた常温非時効深絞 り用溶融亜鉛めつき鋼板が得られ、 BH性能も同時に兼ね備える こ と が可能である。 また、 微量 Bの添加により耐二次加工脆化特性が著 し く 改善される こ とがわかる。 こ こで、 鐧 3 — 1 , 3 — 2 は、 P と Mnの同時添加により高強度化したものである力 高 Mnであるにもか かわらず良好な r値, r 45値となる。 これは P と Mnの同時添加は、 熱間圧延板の細粒化にも有効であるためと考えられる。
第 18 表
Figure imgf000032_0001
第 19 表 綱 No. YP TS T-E1 r値 r 45値 YP-E1 BII 遷 移 めっき めっき 備考
) )又 層の Fe
(kgf/mmz) (%) (%) (kgf/mm2) ( ) 密着性 濃度
1 一 1 18 33 47 1.6 1.4 0 2.1 90 5 12% 本発明鋼
1 一 2 17 32 48 1.7 1.4 0 1.5 -18 5 17% 比較鐧
2 一 1 22 39 43 1.8 1.5 0.1 5.0 -70 5 8% 本発明綱
2 - 2 21 38 44 1.8 1.6 0.1 3.6 一 10 5 13% 比較鋼
3 一 1 22 41 39 1.6 1.4 0 3.9 一 70 5 9% 本発明鋼
3 - 2 25 44 37 1.5 1.4 0.1 4.6 -60 5 11% 本発明鋼
産業上の利用可能性
以上詳述したよう に、 本発明によれば T iや M bなどの高価な元素を 添加せずとも、 常温非時効で深絞り性に優れた冷延鐧板が得られ、 耐二次加工脆化特性と塗装焼き付け硬化性も付与できる。 また、 本 発明は、 電気めつきおよび溶融めつきなどを施す表面処理鐧板、 お よびその製造にも適用が可能である。 このように、 本発明は従来技 術と比較して安価にかつ安定的に優れた性能を有する鐧板の製造を 可能とするばかりでな く 、 高価な元素の地球資源を確保したり、 あ るいは本発明による高強度鐧板の利用により地球環境保全にも寄与 する ものと考え られ、 その効果は著しい。

Claims

請 求 の 範 囲
1 . 耐二次加工脆化特性と塗装焼付け硬化特性に優れた常温非時 効性深絞り用フユ ラ イ ト単相冷延鐧板であって、 重量%で、 c :
0.0001〜0.0015%、 Si : 1.2%以下、 Mn : 0.03〜 3.0%、 P : 0.01 〜0.15%、 S : 0.0010〜 0.020%、 A1 : 0.005〜 0.1%、 N : 0.0001 〜0.0080%、 B : 0.000】〜0.0030%を舍み、 残部 Feおよび不可避的 不純物からなる、 フ ライ ト単相冷延鐧板。
2. 上記成分範囲において、 Mn : 0.2〜 3.0%の範囲では、 Mnと Pの関係を下記式
Mn十 20 P≥0.3(重量%)
で規制する請求の範囲 1項記載のフユ ラ イ ト単相冷延鋼板。
3. 上記成分範囲において、 さ らに : 0.1〜 3重量%を舍むと ともに Crと Pの閔係を下記式
Cr十 20 P≥0.2(重量%)
で規制する請求の範囲 1項記載のフユ ライ ト単相冷延鋼板。
4. 耐二次加工脆化特性と塗装焼付け硬化性に優れた常温非時効 性深絞り用フユ ライ ト単相溶融亜鉛めつき鋼板であって、 重量%で、 C : 0.0001〜0.0018%、 Si : 0.7%以下、 Mn : 0.03〜 3.0%、 P : 0.01〜0.15%、 S : 0·0005〜 0.020%、 A1 : 0.005〜 0.1%、 Ν : 0.0002〜0.0080%、 Β : 0.0001〜0.0030%を舍み、 残部 Feおよび不 可避的不純物からなる、 フユ ラ イ ト単相溶融亜鉛めつき鐧扳。
5. 上記成分範囲において、 Mn : 0.2〜 3.0%の範囲では、 Mnと Pの関係を下記式
Mn + 20 P≥0.3(重量%)
で規制する請求の範囲 4項記載のフ ユ ラ イ ト単相溶融亜鉛めつき鐧 板。
6. 上記成分範囲において、 さ らに : 0.1〜 3重量%を舍むと ともに と Pの関係を下記式
Cr + 20 P≥0.2(重量%)
で規制する請求の範囲 4項記載のフ ユ ラ イ ト単相溶融亜鉛めつき鋼 板。
7. フユ ラ イ ト単相冷延鐧扳を製造する方法であって、 次の工程 力、らなる :
重量%で、 C : 0.0001〜0.0015%、 Si : 1.2%以下、 Mn : 0.03〜 3.0%、 P : 0.01〜0.15%、 S : 0.0010〜 0.020%、 A1 : 0.005〜 0.1%、 N : 0.0001〜0.0080%、 B : 0.0001〜0.0030%、 残部 Fe及 び不可避的不純物からなるスラブを 1000〜 1350 'Cの温度範囲で加熱 したあと、 仕上げ温度が(Ar 3— 100)て以上の温度で熱間圧延を行う こ と ;
上記熱間圧延で得られた熱延コ イ ルを上記仕上げ温度から 1秒以内 に 50。C /sec 以上の冷却速度で 600〜 750 'Cの温度範囲まで冷却し. 該温度範囲において巻取る こと ;
該熱延コ イ ルを 60%以上の圧延率で冷間圧延を行う こ と ;
冷間圧延によって得られた冷延コ イ ルを 600〜 900 'Cの温度で連続 焼钝を行う こ と ;
以上からなる二次加工脆化特性と塗装焼付け硬化特性に優れた常 温非時効性深絞り用フ ユ ライ ト単相冷延鐧板の製造方法。
8. 熱間圧延後、 0.5秒以内に 50'C /sec 以上の冷却速度で 600 〜 750て の巻取温度まで冷却する請求の範囲 7項記載のフ ユ ラ イ ト 単相冷延鋼板の製造方法。
9. 上記ス ラ ブの成分範囲において、 Mn : 0.2〜 3.0%の範囲で は、 Mnと Pの関係を下記式
Mn + 20P 0.3(重量%) で規制する請求の範囲 7項記載のフ ユ ラ イ ト単相冷延鐧板の製造方 法。 _
10. 上記ス ラ ブの成分範囲において、 さ らに Cr : 0.1〜 3重量% を舍むとともに Crと Pの関係を下記式
Cr + 20 P 0.2(重量%)
で規制する請求の範囲 7項記載のフ ラ イ ト単相冷延鋼板の製造方 法。
11. フ ラ イ ト単相溶融亜鉛めつき鋼板を製造する方法であって、 次の工程からなる ;
重量%で C : 0.0001〜 0.0018%、 Si : 0.7%以下、 : 0.03〜3.0 %、 P : 0.01〜0.15%、 S : 0.0005〜 0.020%、 A1 : 0.005〜 0.1 %s N : 0.0002〜0.0080%、 B : 0.0001〜0.0030%を舍み、 残部 Fe および不可避的不純物からなるス ラブを 1000〜1350ての温度範囲で 加熱したあと、 仕上げ温度が(Ar3— 100) 'C以上の温度で熱間圧延を 行う こ と ;
熱間圧延で得られた熱延コ ィ ルを上記仕上げ温度から 1 秒以内に 50 'C /sec 以上の冷却速度で 500〜 750'Cまで冷却し、 該温度範囲に おいて卷取るこ と ;
該熱延コ イ ルを 60%以上の圧延率で冷間圧延を行う こ と ;
冷間圧延によって得られた冷延コ イ ルを連続溶融亜鉛めつき設備に 送入し、 該設備で 600〜 900'Cの温度範囲で焼鈍を施し、 次いで溶 融亜鉛槽に浸漬して溶融亜鉛めつきを行う こ と ;
以上からなる二次加工脆化特性と塗装焼付け硬化特性に優れた常 温非時効性深絞り用フ ユ ライ ト単相溶融亜鉛めつき鋼板の製造方法。
12. 冷延鐧带に溶融亜鉛めつきを施した後、 合金化熱処理を行う 請求の範囲 11項記載のフ ライ ト単相溶融亜鉛めつき鋼板の製造方 法。
13. 上記ス ラ ブの成分範囲において、 Mn : 0.2〜 3.0%の範囲で は、 Mriと Pの閔係を下記式 '
Mn十 20 P ≥0.3(重量%)
で規制する請求の範囲 11項記載のフ ラ イ ト単相亜鉛めつき鋼板の 製造方法。
14. 上記スラブの成分範囲において、 さ らに : 0.1~ 3重量% を含むとともに Crと Pの関係を下記式
Cr + 20 P ≥0.2(重量%)
で規制する請求の範囲 11項記載のフェ ラ イ ト単相亜鉛めつき鋼板の 製造方法。
PCT/JP1993/001314 1992-09-14 1993-09-14 Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same WO1994006948A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/240,782 US5486241A (en) 1992-09-14 1993-09-14 Non-aging at room temperature ferritic single-phase cold-rolled steel sheet and hot-dip galvanized steel sheet for deep drawing having excellent fabrication embrittlement resistance and paint-bake hardenability and process for producing the same
DE69325791T DE69325791D1 (de) 1992-09-14 1993-09-14 Ferristisch einphasiges kaltgewalztes Stahlblech oder zinkplattiniertes Stahlblech zum Tiefziehen ohne Kaltalterungserscheinungen und Verfahren zu dessen Herstellung
KR1019940701624A KR0128986B1 (ko) 1992-09-14 1993-09-14 상온에서 비시효성인 페라이트성 단일상 냉간 강판 및 가고우치성 저항과 벗겨짐에 대한 내성이 우수한 인발성형용 열간침지 아연도금 합금 및 그것의 제조방법
EP93919662A EP0612857B1 (en) 1992-09-14 1993-09-14 Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP4245307A JPH0693377A (ja) 1992-09-14 1992-09-14 めっき特性に優れたフェライト単相溶融亜鉛めっき鋼板およびその製造方法
JP24530692A JP3175063B2 (ja) 1992-09-14 1992-09-14 常温非時効深絞り用フェライト単相冷延鋼板およびその製造方法
JP4/245306 1992-09-14
JP4/245307 1992-09-14
JP5007817A JPH06212354A (ja) 1993-01-20 1993-01-20 非時効性深絞り用薄鋼板およびその製造方法
JP5/7817 1993-01-20
JP5/60782 1993-03-19
JP5060782A JP2984884B2 (ja) 1993-03-19 1993-03-19 非時効性深絞り用薄鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO1994006948A1 true WO1994006948A1 (en) 1994-03-31

Family

ID=27454804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001314 WO1994006948A1 (en) 1992-09-14 1993-09-14 Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same

Country Status (5)

Country Link
US (1) US5486241A (ja)
EP (1) EP0612857B1 (ja)
KR (1) KR0128986B1 (ja)
DE (1) DE69325791D1 (ja)
WO (1) WO1994006948A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694625B9 (en) * 1994-02-15 2001-12-05 Kawasaki Steel Corporation High tension alloyed molten zinc-plated steel plate having excellent plating characteristics and method off manufacturing the same
KR100221349B1 (ko) * 1994-02-17 1999-09-15 에모또 간지 가공성이 우수한 비시효성 캔용 강판의 제조방법
EP0769565A4 (en) * 1995-03-27 1999-01-20 Nippon Steel Corp COLD ROLLED SHEET WITH EXTREMELY LOW CARBON CONTENT AND GALVANIZED SHEET, BOTH WITH EXCELLENT FASTENING PROPERTIES AND METHOD FOR THE PRODUCTION THEREOF
NL1003762C2 (nl) * 1996-08-08 1998-03-04 Hoogovens Staal Bv Staalsoort, staalband en werkwijze ter vervaardiging daarvan.
US6143100A (en) * 1998-09-29 2000-11-07 National Steel Corporation Bake-hardenable cold rolled steel sheet and method of producing same
DE60044180D1 (de) * 1999-09-16 2010-05-27 Jfe Steel Corp Verfahren zur herstellung einer dünnen stahlplatte mit hoher festigkeit
EP1193322B1 (en) * 2000-02-29 2006-07-05 JFE Steel Corporation High tensile cold-rolled steel sheet having excellent strain aging hardening properties
US20030015263A1 (en) 2000-05-26 2003-01-23 Chikara Kami Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
WO2001090431A1 (fr) * 2000-05-26 2001-11-29 Kawasaki Steel Corporation Tole d'acier laminee a froid et tole d'acier galvanisee possedant des proprietes de durcissement par ecrouissage et par precipitation et procede de production associe
US6695932B2 (en) * 2000-05-31 2004-02-24 Jfe Steel Corporation Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
DE60106557T2 (de) * 2000-06-23 2006-03-09 Nippon Steel Corp. Stahlblech zur porzelanemailleierung mit ausgezeichneter formbarkeit, alterungsbeständigkeit und emailleierungseigenschaften und herstellungsverfahren dafür
ATE388249T1 (de) 2002-06-25 2008-03-15 Jfe Steel Corp Hochfestes katlgewalztes stahlblech und herstellunsgverfahren dafür
CN1898403B (zh) * 2003-12-23 2010-05-05 Posco公司 具有优异可成形性的烘烤可硬化冷轧钢板及其制造方法
US20070137739A1 (en) * 2003-12-23 2007-06-21 Jeong-Bong Yoon Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same
KR101105098B1 (ko) * 2003-12-29 2012-01-16 주식회사 포스코 가공성이 우수한 소부경화형 고강도 냉연강판과 그 제조방법
KR101105132B1 (ko) * 2003-12-23 2012-01-16 주식회사 포스코 소부경화형 고강도 냉연강판과 그 제조방법
KR101105025B1 (ko) * 2003-12-29 2012-01-16 주식회사 포스코 면내이방성이 작은 소부경화형 고강도 냉연강판과 그제조방법
KR101104981B1 (ko) * 2003-12-23 2012-01-16 주식회사 포스코 내2차가공취성이 우수한 소부경화형 고강도 냉연강판과 그제조방법
KR101105007B1 (ko) * 2003-12-23 2012-01-16 주식회사 포스코 소부경화형 냉연강판과 그 제조방법
WO2005061748A1 (en) * 2003-12-23 2005-07-07 Posco Bake-hardenable cold rolled steel sheet having excellent formability, and method of manufacturing the same
BR112013012808B1 (pt) * 2010-11-29 2018-07-17 Nippon Steel & Sumitomo Metal Corp chapa de aço laminada a frio de alta resistência, passível de endurecimento no cozimento, e método de produção da mesma

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260046A (ja) * 1986-05-06 1987-11-12 Kawasaki Steel Corp 深絞り性の優れた高強度合金化溶融亜鉛めつき鋼板およびその製造方法
JPH03277741A (ja) * 1990-03-28 1991-12-09 Kawasaki Steel Corp 加工性、常温非時効性及び焼付け硬化性に優れる複合組織冷延鋼板とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827924A (en) * 1971-05-21 1974-08-06 Nippon Steel Corp High-strength rolled steel sheets
SU434128A1 (ru) * 1973-02-07 1974-06-30 Оренбургский политехнический институт , Орско Халиловский ордена Трудового Красного Знамени металлургический комбинат ФОСФОРИСТАЯ СТАЛЬ:•:• :i:- •-•'••..v:^ -. l'^:-.- ::..=' ; ^i ;.i I
JPS6383230A (ja) * 1986-09-27 1988-04-13 Nkk Corp 焼付硬化性およびプレス成形性の優れた高強度冷延鋼板の製造方法
WO1992016668A1 (fr) * 1991-03-15 1992-10-01 Nippon Steel Corporation Tole d'acier laminee a froid, a haute resistance et presentant une excellente aptitude au formage, tole d'acier laminee a froid, a haute resistance et zinguee a chaud, et procede de fabrication desdites toles
JPH0578783A (ja) * 1991-09-12 1993-03-30 Nippon Steel Corp 成形性の良好な高強度冷延鋼板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260046A (ja) * 1986-05-06 1987-11-12 Kawasaki Steel Corp 深絞り性の優れた高強度合金化溶融亜鉛めつき鋼板およびその製造方法
JPH03277741A (ja) * 1990-03-28 1991-12-09 Kawasaki Steel Corp 加工性、常温非時効性及び焼付け硬化性に優れる複合組織冷延鋼板とその製造方法

Also Published As

Publication number Publication date
EP0612857A1 (en) 1994-08-31
DE69325791D1 (de) 1999-09-02
EP0612857A4 (en) 1995-01-25
KR0128986B1 (ko) 1998-04-16
US5486241A (en) 1996-01-23
EP0612857B1 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
WO1994006948A1 (en) Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same
KR101638719B1 (ko) 용융 아연 도금 강판 및 그 제조 방법
WO2001098552A1 (en) Thin steel sheet and method for production thereof
CN100453675C (zh) 高强度冷轧钢板及其制造方法
WO1994000615A1 (en) Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
KR0121737B1 (ko) 소부 경화성, 상온 비시효성 및 가공성이 우수한 냉연강판 및 용융아연 도금 냉연강판 및 그의 제조방법
CN110629000A (zh) 屈服强度280MPa级冷轧热镀锌钢板及其制造方法
CN113832386A (zh) 一种高强度热轧基板、热镀锌钢及其制造方法
JP2007254766A (ja) 低温焼付硬化性と常温非時効性に優れた深絞り用鋼板及びその製造方法
JP2012082523A (ja) 焼付硬化性に優れた高強度冷間圧延鋼板、溶融メッキ鋼板及び冷間圧延鋼板の製造方法
KR20050095537A (ko) 고강도 소부경화형 냉간압연강판, 용용도금강판 및 그제조방법
JP2800541B2 (ja) 深絞り用高強度溶融亜鉛メッキ鋼板の製造方法
JP3745496B2 (ja) 塗装焼付硬化性能に優れた冷延鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP2001131695A (ja) 耐二次加工脆性に優れた高強度薄鋼板およびその製造方法
JPH06122940A (ja) 優れた焼付硬化性と常温非時効性を兼備した冷延鋼板と溶融亜鉛メッキ冷延鋼板およびその製造方法
JP3404798B2 (ja) 焼付硬化性を有する高強度鋼板の製造方法
JPH06122939A (ja) 焼付硬化性と成形性とに優れた冷延鋼板あるいは溶融亜鉛メッキ冷延鋼板およびそれらの製造方法
JP2984884B2 (ja) 非時効性深絞り用薄鋼板およびその製造方法
JPH06212354A (ja) 非時効性深絞り用薄鋼板およびその製造方法
JP3175063B2 (ja) 常温非時効深絞り用フェライト単相冷延鋼板およびその製造方法
EP4245879A1 (en) Bake-hardened hot-dip galvanized steel sheet with excellent powdering resistance, and manufacturing method therefor
JP2000144261A (ja) 延性の優れた熱延下地溶融亜鉛めっきおよび合金化溶融亜鉛めっき高張力鋼板の製造方法
JPH0693377A (ja) めっき特性に優れたフェライト単相溶融亜鉛めっき鋼板およびその製造方法
JPH0657336A (ja) 高加工用高強度合金化溶融亜鉛めっき鋼板の製造方法
JP3257715B2 (ja) めっき密着性の優れた高加工用高強度合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993919662

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08240782

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993919662

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993919662

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993919662

Country of ref document: EP