WO1994003393A1 - Heat and flame resisting cushion material and seat for vehicle - Google Patents

Heat and flame resisting cushion material and seat for vehicle Download PDF

Info

Publication number
WO1994003393A1
WO1994003393A1 PCT/JP1993/001093 JP9301093W WO9403393A1 WO 1994003393 A1 WO1994003393 A1 WO 1994003393A1 JP 9301093 W JP9301093 W JP 9301093W WO 9403393 A1 WO9403393 A1 WO 9403393A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
flame
resistant
fibers
heat
Prior art date
Application number
PCT/JP1993/001093
Other languages
French (fr)
Japanese (ja)
Inventor
Tatuo Yamaguchi
Makoto Yoshida
Nobuo Takahashi
Takeo Kimura
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to DE69319577T priority Critical patent/DE69319577T2/en
Priority to EP94906772A priority patent/EP0622332B1/en
Priority to JP50518394A priority patent/JP3527507B2/en
Publication of WO1994003393A1 publication Critical patent/WO1994003393A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/02Cotton wool; Wadding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends

Definitions

  • the present invention relates to a cushion material having heat resistance and flame retardancy, and a vehicle sheet formed by molding the cushion material.
  • the flame-retardant resin obtained by such means has a hard feel and a high density, and the cushion material itself becomes heavier in inverse proportion to the improvement in flame retardancy.
  • An object of the present invention is to provide a comfortable and lightweight cushioning material, which is mainly made of easily disposable textiles, has excellent flame retardancy and heat resistance, and a vehicle sheet using the cushioning material. To do that.
  • a flame-resistant crimped staple fiber having a weight retention rate of 35% or more by a flameless test method in a matrix comprising an inelastic crimped staple fiber assembly, and a thermoplastic resin.
  • Heat-resistant characterized in that the elastic fibers are mixed and dispersed, and at least a part of the entanglement point between the thermoplastic elastic fibers and other fibers is heat-sealed.
  • the present invention has a two-layer structure including an inner layer made of a fiber assembly and an outer layer surrounding the inner layer, and the outer layer is made of a matrix made of an inelastic crimped short fiber assembly.
  • a flame-resistant crimped short fiber having a residual weight ratio of 35% or more by a flameless test method and thermoplastic elastic fibers are mixed and dispersed, and the entanglement point between the thermoplastic elastic fibers and other fibers.
  • a heat-resistant and flame-retardant cushion material characterized in that at least a part thereof is heat-sealed.
  • the present invention provides, in still another aspect, a vehicle seat formed by molding the cushion material as described above.
  • the matrix of the cushion material of the present invention is composed of an aggregate of inelastic crimped short fibers.
  • Preferred materials for inelastic crimped short arrowheads include polyester arrowheads and aramid arrowheads.
  • Non-elastic polyester crimped short fibers include ordinary polyethylene terephthalate, polybutylene terephthalate, polytetramethylene terephthalate, and polyhexamethylene terephthalate.
  • polyester fibers composed of two or more of the above-mentioned polyester components.
  • inelastic crumb short fibers are meta- and para-aramid fibers, but among them are simply flame retardancy and heat resistance as well as mechanical properties such as strong modulus, or comprehensive properties such as crimp imparting property and crimp toughness. Excellent metalamide fibers are particularly preferred.
  • the cross-sectional shape of the inelastic crimped short fiber is not particularly limited, and may be any of a circular shape, a flat shape (an elongated cross-section), an irregular shape, and a hollow shape.
  • the fineness of the inelastic crimped short textile is preferably in the range of 4 to 300 denier, particularly preferably in the range of 6 to 100 denier. If the weave of this single fiber is too small, the density of the cushion material tends to increase, and the elasticity of the cushion material itself tends to decrease. Conversely, if the degree of single-weave arrowhead is too large, handling properties, especially web forming properties, will deteriorate. In addition, when the weave degree is large, the number of components becomes too small, so that the elasticity of the cushion material is hardly expressed, and at the same time, the durability tends to decrease. Also, the feeling becomes coarse and hard.
  • Crimp is an important factor for imparting bulkiness and cushioning to the cushion material, and is also an important factor for reducing the weight of the cushion. Is a crimp characteristics, initial bulk properties 4 0 ⁇ 1 2 0 cm 3 / gr Dearuko and is laid like, 5 0 ⁇ 1 2 0 cm 3 / gr Gayo Ri preferred lay, 7 0-1 2 0 cm 3 / gr is best.
  • Et al is, 1 0 gr / cm under 2 loading bulk resistance lay preferred is 1 5 ⁇ 5 0 cm 3 Zgr, 2 0 ⁇ 5 0 cm 3 / gr is rather more preferable, 3 0 ⁇ 5 0 cm 3 / gr is the best.
  • Initial bulk properties and 1 0 gr / cm under 2 Load bulk resistance in here is measured under a load of respectively 0. 5 gr / cm 2 and 1 0 gr / cm 2 in compliance with JIS 1015. Initial and 10 gr / cm 2 load If the bulk under the weight is larger than the above value, the cardability is poor, while if it is less than the above value, the cushioning property of the obtained cushion material is poor. .
  • the bulkiness of short fibers is 5 to 15 pieces / inch, especially 8 to 15 inches, and the crimp ratio is 15 to 35.
  • the number of crimps and the crimp ratio are measured in accordance with JIS 1015.
  • the desired bulkiness described above can be obtained by selecting the above-mentioned single fiber weave degree and crimp characteristics.
  • the density of cushion material is 0.01 to
  • 0.06 g / cm 3 is preferred, and 0.02 to 0.05 g / cm 3 is more preferred. If the density is less than 0.01 g / cm 3 , the structure is too loose and sufficient rebound cannot be obtained. On the other hand, if it exceeds 0.06 g Zcm 3 , the resilience is sufficient, but it is difficult to achieve the purpose of reducing the weight.
  • cushioning material Another important point for cushioning material is how to fix the above matrix fibers as a structure.
  • the cushioning material must be able to sufficiently withstand deformation under stress, and must be fixed so that it can quickly recover to its original shape when released from stress.
  • the matrix is fixed by a thermal fusion (thermobond) method of thermoplastic elastic fibers.
  • thermoplastic elastic fibers whose melting point is much lower than that of the inelastic crimped short fibers that make up the matrix, preferably by a melting point of at least 60 ° C. The details of the arrowhead will be described later.
  • the matrix of the heat-resistant flame-retardant cushion material of the present invention is fixed by using thermoplastic elastic fibers which are not themselves flame-retardant. Nevertheless, the cushioning material is excellent in heat resistance and flame retardancy. This was achieved only by mixing and dispersing a flame-resistant crimped short arrowhead fiber with a residual weight of 35% or more by a flameless test method in a matrix consisting of an inelastic crimped short arrowhead fiber aggregate. can do. In other words, the matrix fiber and such a flame-resistant arrowhead fiber are heat-fixed by the thermoplastic elastic arrowhead fiber, so that they have both high flame retardancy, bulkiness, heat resistance and durability. It becomes cushion material.
  • the residual rate by the flameless test method is measured as follows.
  • the ratio of flame-resistant arrowhead fibers with a residual weight ratio of 35% or more according to the flameless test method to the inelastic crimped staple fiber, which is a matrix, is 0.1 Z1 to 1/1 (weight ratio). I prefer that there be. If this ratio exceeds 1/1, the bulkiness and durability of the cushion material decrease, and if the ratio is less than 0.1 / 1, the flame retardant effect is poor. The weight remaining Although a certain degree of flame retardant effect can be achieved by blending a large amount of flame-resistant fibers having a survival rate of less than 35%, the bulkiness and durability of the cushion material are considerably reduced.
  • polyoxylonilittle fibers are pre-oxidized and pre-oxidized fibers (for example, trade names such as "Rastan” and “Pyromex”). (Commercially available), fully carbonized carbon fiber, bridged vinyl arrowhead fiber (for example, marketed under the trade name "Kynol”), and polybensimi dabul (PBI) fiber. Among them, pre-oxidized soy fiber is particularly preferred.
  • the denier is preferably 8 deniers or less, more preferably 5 deniers or less. However, if it is too small, the eb formation property deteriorates, so it is preferable to keep the denier at about 1 denier.
  • Preferred materials for the inelastic crimped staple fiber of the cushion material of the present invention include polyester fiber and aramid arrowhead fiber, and a combination of these fiber and the above flame-resistant fiber.
  • polyester fiber and aramid arrowhead fiber are described in DE3307449A1, GB21 83265 and GB21 52542.
  • these combinations are only embodied in continuous yarn, such as spun yarn, and ultimately teach that they are useful for imparting flame retardancy in two-dimensional fabrics.
  • nothing is taught about a flame-retardant cushioning material made of a three-dimensional fiber structure and having excellent bulkiness and durability.
  • the thermoplastic elastic fiber is mixed in the matrix in which the flame-resistant crimped short fiber is mixed and dispersed in the non-elastic crimped short fiber, and the thermoplastic elastic fiber is mixed. At least a part of the entanglement point between the fiber and the inelastic crimped staple fiber and the flame-resistant crimped staple fiber is heat-sealed.
  • the mixing ratio of the thermoplastic elastic fiber varies depending on the type of the thermoplastic elastic fiber used, but is preferably from 10 to 50% by weight of the total weight. If the mixing ratio is less than 10% by weight, the flame retardancy is good, but the number of fixing points for heat fusion is too small, and it is difficult to maintain the resilience of the cushioning material, resulting in poor durability.
  • the mixing ratio exceeds 50%, it is difficult to maintain the flame retardancy of the cushion material.
  • the ratio of the thermoplastic elastic fiber to the total weight is 10 to 50% by weight, the heat fusion between the inelastic crimped short fiber and the flame-resistant crimped short fiber in the matrix is sufficient and the cut is made. It does not cause laminar separation in the thickness direction of the cushioning material, and the cushion has good repulsion and durability.
  • thermoplastic elastic fiber used to form the heat fixation point is a composite fiber formed of a thermoplastic elastomer and an inelastic polyester, and a matrix is used. Those having a melting point lower than that of the inelastic crimped short fibers by 60 ° C or more are preferably used. If the difference in melting point is less than 60 ° C, the thermoplastic elastic fiber deteriorates during the heat treatment, and the matrix arrowhead is likely to be adversely affected.
  • thermoplastic elastomer occupies at least 1/2 of the surface of the composite textile, and in terms of weight ratio, the thermoplastic elastomer and the non-elastic polyester are 30/70 to 100%. It is appropriate to be in the range 70/30.
  • the form of the composite fiber may be either a side-by-side type or a sheath-core type, but the latter is preferred.
  • inelastic polyester is the core, but this core may be concentric or eccentric. In particular, eccentric ones are more preferable because they exhibit coiled elastic crimps.
  • thermoplastic elastomer examples include a polyurethane-based elastomer and a polyether polyester-based elastomer.
  • inelastic polyester examples include polyethylene terephthalate and polybutylene terephthalate, and polybutylene terephthalate having rubber elasticity is particularly preferable.
  • thermoplastic elastic fiber should be considered not only from the melting point but also from the viewpoint of cushioning performance, and especially at the intersection with the flame-resistant crimped short fiber with little crimp. It is preferred that sticking points are formed.
  • the fixing points formed by the thermosetting of the thermoplastic elastic fibers are composed of the elastomer component, they can be greatly deformed according to the applied stress, and the stress is released. After that, it can be returned to its original form promptly.
  • due to its excellent elongation and recovery properties there is no breakage or residual strain due to repeated loading, and it has the function of minimizing the drop in cushioning performance due to the small crimp of the flame-resistant textile. I do. Therefore, it is preferable that the single fiber fineness of the thermoplastic elastic fiber is larger than the single fiber fineness of the flame resistant arrowhead.
  • Preferred thermoplastic elastic fiber properties include elongation at break.
  • the cushioning material of the present invention is used to obtain a flame-resistant cushioning material capable of passing the FAA standard by mixing flame-resistant fibers into a matrix short textile. If the mixing amount of the matrix staple fiber is equal to or less than that of the matrix staple fiber, flame resistance is obtained due to the synergistic elastic repulsion effect of the crimp of the matrix staple fiber and the thermoplastic elastic fiber forming the fixing point. It has been completed based on the finding that the cushioning performance that does not hinder practical use can be maintained by compensating for the small crimp of the fiber.
  • the cushion material of the present invention has a substantially uniform structure composed entirely of the above-mentioned inelastic crimped short fiber aggregate, flame-resistant crimped short fiber and mature plastic fiber as described above.
  • a two-layer structure consisting of an inner layer made of a fiber assembly and an outer layer surrounding the inner layer, and the outer layer is made of the above-described inelastic crimped short fiber assembly, It may be composed of crimped short fibers and thermoplastic elastic fibers.
  • the inner layer of the latter two-layer structure may be made of the same material as the outer layer, but the outer layer is formed as described above. If the emphasis is placed on bulkiness and durability of the cushioning material as a whole, the inner layer is composed of only inelastic crimped short fibers and thermoplastic elastic fibers. This is preferred.
  • polyester fibers excellent in mechanical properties such as strength and modulus and crimping properties such as crimping property and crimp fastness are preferable.
  • thermoplastic elastic fiber used for the inner layer the same material as the above-mentioned outer layer is used.
  • the amount of the thermoplastic elastic fiber is preferably 10 to 50% of the total weight of the inner layer from the viewpoint of bulkiness and durability as the cushion material.
  • the cushioning material has a separation strength in the thickness direction of 1.0 kg or more, and is excellent in durability.
  • the separation strength was tested after bonding the cushioning material and the reinforcing cloth with an adhesive in accordance with ASTM D 3574, and after standing for 24 hours under a pressure of 10 g Z cm 2. It is measured at a half width of 25 discussions and a separation speed of 50 ⁇ Z minutes.
  • the thickness and density of the outer layer of the two-layer cushion material can be selected as appropriate, but from the viewpoint of flame retardancy and surface abrasion fastness, the thickness is 3 to 10 mm, and the basis weight is 2. 0 0 to 500 g
  • Zm 2 is preferred.
  • the heat-resistant and flame-retardant cushion material of the present invention uses inelastic crimped staple fibers as a matrix fabric, and mixes flame-resistant crimped staple fibers with a thermoplastic elastic fabric to obtain a thermoplastic fabric. At least the intertwining point between elastic fiber and inelastic crimped short fiber and Z or flame-resistant crimped short fiber It is manufactured by a method in which a part is heat-sealed and integrated. In order to produce a homogeneous and high-performance cushioning material in as short a process as possible, it is necessary to thoroughly knead the aggregate consisting of inelastic crimped short fibers, flame-resistant crimped short fibers and thermoplastic elastic fibers.
  • thermoplastic elastic fiber it is preferable to perform treatment and fusion at a temperature lower than the melting point or decomposition temperature of the inelastic crimped short fiber and higher than the melting point of the thermoplastic elastic fiber by 20 to 60 ° C. If the processing temperature is too low, the polymer does not flow in a favorable state at the entanglement point and the bonding is insufficient, the number of heat fixation at the entangled portion of the short arrowhead fiber decreases, and the resilience of the cushion material decreases. If the processing temperature is too high, the thermoplastic elastic fiber will deteriorate due to the heat, and the physical properties of the heat fixation point will decrease.
  • the heat-resistant and flame-retardant cushion material having a two-layer structure is obtained by separately kneading the materials constituting the outer layer and the inner layer in the same manner as described above, surrounding the inner layer assembly with the outer layer assembly, and then integrating the two. Is heat-treated in the same manner as described above and fused and integrated.
  • the cushion material is molded into vehicle seats and other cushion products.
  • the mixed unheated aggregate is packed in a prescribed molding mold and then molded at the above heat treatment temperature or mixed and preheat fused at a temperature lower than the above prescribed heat treatment temperature. Then, it is pressed into a shape close to the shape of the molding mold, packed in the prescribed molding mold, and heat-treated at a predetermined temperature, or mixed, and heat-fixed at the above-mentioned heat treatment temperature. It is possible to adopt a method of cutting and molding simultaneously with bonding using an adhesive in a predetermined molding mold.
  • a sliver method as disclosed in EP 0483386A1, disclosed in Japanese Patent Application Laid-Open No. 3-209091 It is also possible to adopt a blow molding method or the like.
  • vehicle sheet refers to a “vehicle” sheet in a broad sense, and includes not only the seat sheets of automobiles and other land transportation but also the seat sheets of aircraft.
  • Fineness (denier), number of crimps (CN), and crimp ratio (CD) were measured in accordance with JIS 1015.
  • a non-elastic crimped short fiber is a meta-aramid arrowhead fiber (Teijin Cornex® is used as a matrix, and a flame-resistant crimped short fiber has a weight retention rate of 4 based on the flameless test method.
  • Tertiphthalic acid and isophthalic acid are polymerized with butylene glycol by mixing an acid component with 80 Z 20 (mol), and 38% by weight of the obtained polybutylene terephthalate is further added to polybutylene glycol (molecular weight).
  • the block copolymerized polyether polyester elastomer was subjected to ripening reaction with 200% by weight of 200% to obtain a block copolymerized polyether polyester elastomer having an intrinsic viscosity of 1.0, a melting point of 155 and a melting point of 15.5%.
  • elongation at break 1 5 0 0% for I Lum, 3 0 0? extension stress is 0. 3 kg / mm 2, 3 0 0% elongation recovery rate was found to be 5% ⁇ .
  • thermoplastic elastomer was used as a sheath, and polybutylene terephthalate was used as a core.
  • the core Z sheath was spun by a conventional method so as to have a weight ratio of 50 to 50.
  • This composite fiber is an eccentric sheath-core type composite fiber. The fiber was stretched 2.0 times, cut into 64 mm, and heat-treated with warm water at 95 to reduce shrinkage and develop crimp, dried, and then applied with an oil agent.
  • the single-head arrowhead degree of the thermoplastic elastic fiber obtained here was 6 denier.
  • Example 1 Experiment Not 2, the experiment was performed in exactly the same manner as in Example 1 except that the ratio of Cornex II and Rastan® was changed out of 70% by weight of the matrix arrowhead fiber. Four and five cushion materials were obtained.
  • Example 1 Experiment No. 2 The cushion material of experiment NOL 6 was obtained in exactly the same manner as in Example 1, except that the ratio of the elastic fiber to the total weight was changed.
  • Example 1 Experiment No. ⁇ 2, except that the heat treatment temperature was changed, was performed in exactly the same manner as in Example 1, and a cushion material of Experiment No. ⁇ 7 was obtained.
  • Example 1 Experiment No.2, the flame-resistant crimped staple fibers having different weight retention ratios by the flameless test method (cross-linked phenolic arrowhead fiber “Rinol” ®, 3-denier X 70 mm, or cross-linked) Melamine-based textile "Bazofil” ®, 2.3 denier x 75 mm) Other than that, the operation was performed in exactly the same manner as in Example 1 to obtain cushion materials for Experiments ⁇ 8 and 9.
  • Example 1 a polyethylene terephthalate having the properties listed in Table 2 as a matrix fiber ( ⁇ ⁇
  • a meta-aramid fiber (Teijin Connex, 13 denier X 76 mm) having the properties described in Table 2 was used. Flame-resistant fibers and elastic arrowhead fibers were mixed with a matrix arrowhead fiber at the ratios shown in Table 2 Experiment No. ⁇ 13 to obtain a web (cardiac component).
  • a polyethylene phthalate fiber (14 denier X 64 mm, various characteristics described in Experiment No. ⁇ 10) was used as a matrix, and the thermoplastic elastic fiber of Example 1 was used as a matrix.
  • the cotton was mixed with a card at a weight ratio of 70: 30% to obtain a web (component (i)).
  • Example 7 and Experiments III and III the matrix fiber of the ⁇ component (inner layer) was mixed with poly (1,4) -dimethylcyclohexane terephthalate fiber (25 denier X76 bandages, various properties) was the same as that described in Experiment 12), except that a two-layer cushion material of Experiment ⁇ 6 was obtained.
  • the cushion material of the present invention does not require any harmful substances such as freon in the manufacturing process, and has sufficient air permeability even as a cushion material, so there is no fear of stuffiness. Absent.
  • the cushioning properties are not too high in the initial hardness due to compression, and the rebound is large, and the rebound is increased almost in proportion to the amount of compression.
  • it is extremely easy to dispose of it by incineration as there is no harmful gas generated by combustion like polyurethane.
  • flame-retardant polyester which has begun to be used for some aircraft airplanes, such advantages as the above-mentioned cushion characteristics and easy disposal can be maintained.
  • the present invention is, for the first time, a comfortable textile fabric cushioning material with sufficient flame retardancy.
  • the cushion material of the present invention is excellent in flame retardancy, cushioning property, durability, and form stability, has high air permeability, does not easily become stuffy, and does not easily generate unevenness in processing, and Diversity is easy. Therefore, it can be used not only for general furniture and bedding that require flame retardancy, but also for hospitals, nursing home furniture, bedding, vehicle seat cushions, especially subways, ships, and Shinkansen trains. Wide-ranging items such as vehicle seats, airplane sheets, racing car sheets, fillings requiring flame retardancy, and miscellaneous goods are conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Laminated Bodies (AREA)

Abstract

A heat and flame resisting cushion material in which fire resisting short crimped fibers and elastic thermoplastic fibers are mixed and dispersed in an aggregate of short non-elastic crimped fibers with the interlacing points between the elastic fibers and other fibers thermally fused. The cushion material may consist of an inner layer of a fiber aggregate and an outer layer surrounding the inner layer and composed of the same cushion material as described above. These cushion materials are useful for a seat for a vehicle, such as an airplane and a racing car.

Description

明 耐熱難燃性ク ッ ショ ン材および車輛シー ト 技 術 分 野  Light heat-resistant and flame-retardant cushioning material and vehicle seat technology
この発明は、 耐熱難燃性を有するク ッ シ ョ ン材およびこの ク ッ ショ ン材を成型してなる車輛シー トに関する。  The present invention relates to a cushion material having heat resistance and flame retardancy, and a vehicle sheet formed by molding the cushion material.
背 景 技 術  Background technology
近年、 生活様式の高度化と共に家具、 寝具、 特に老人ホー 厶および病院のべッ ド、 ならびに、 各種交通機関の座席用ク ッ ショ ンなどに耐熱性、 難燃性が著しく要求されるようにな つてきた。 特に航空機用シー ト ク ッ ショ ンについては、 火炎 などから尊い人命を守るこ とが第一義とされるため、 米国連 邦航空局 ( F A A ) 規格によって、 極めて厳しい難燃規格が 決められているこ とは周知の事実である。 現在これらの要求 に対して、 当業界では従来広く 用いられてきた究泡ウ レタ ン の改良という形で技術的に対応しているのが ¾情である。 す なわち、 発泡ウ レタ ンの製造工程において リ ン系防炎剤を始 めとする種々 の難燃化剤を添加して難燃化を図っている。  In recent years, with the sophistication of lifestyle, furniture and bedding, in particular, beds for elderly people and hospitals, and cushions for seats in various transportations have been required to have remarkable heat resistance and flame retardancy. It has come. Particularly for aircraft seat cushions, protecting the precious lives of people from flames and other matters is the primary priority. Therefore, extremely strict flame-retardant standards are determined by the United States Federal Aviation Administration (FAA) standards. That is a well-known fact. At present, the industry is technically responding to these demands in the form of an improvement on the urethane foam that has been widely used in the past. That is, in the production process of urethane foam, various flame retardants such as a phosphorus-based flame retardant are added to achieve flame retardancy.
しかしながら、 このような手段によって得られる難燃化ゥ レタ ンは、 難燃性の改良と逆比例して風合が硬く、 かつ密度 が高く なってク ッ ショ ン材そのものが重く なるという ク ッ シ ヨ ン材と して好ま しく ない欠点が指摘されている。 当然のこ とながら、 ク ッ ショ ン材と しては、 心地よぃク ッ ショ ン性と できるだけ軽量であるこ とが要求される。 特に、 自動車の軽 量化、 および航空機の座席シー トの軽量化は不変の命題であ つて近年益々 その要求は強く なつてきている。 その意味にお いて難燃化ウ レタンの特性は決して好ま しいものではない。 また、 ウ レタ ンはリサイ クルゃ産業廃棄の面でも問題であつ た。 従来、 この難燃化ウ レタ ンに代って、 満足すべき ク ッ シ ヨ ン性と難燃性を兼備する素材は見出されていない。 However, the flame-retardant resin obtained by such means has a hard feel and a high density, and the cushion material itself becomes heavier in inverse proportion to the improvement in flame retardancy. Some disadvantages have been pointed out that are not preferred as shot materials. Naturally, cushioning materials must be comfortable, cushioning and as light as possible. In particular, light vehicles Quantification and weight reduction of aircraft seats are immutable propositions, and their demands have been increasing in recent years. In that sense, the properties of flame-retardant urethanes are by no means favorable. Urethane was also a problem in terms of recycling and industrial disposal. Heretofore, there has not been found any material which has satisfactory cushioning properties and flame retardancy in place of the flame retardant urethane.
一方、 ク ッ ショ ン材と してウ レタ ン以外に主にポリエステ ル織維詰綿ゃポリエステル繊維を樹脂で接着した樹脂綿や低 融点バイ ンダーで接着した固綿などが用いられ始めてきてい るが、 残念ながら繊維の形態の安定や接着の固定が安定的に なされないため、 使用中に型崩れしたり、 繊維が移動したり 捲縮がへたったり して、 嵩性や反撥性が大き く 低下してしま つて、 長期に亘つて快適に使用できないという ク ッ ショ ン材 と して要求される基本的特性に欠ける ものであった。 また、 これらのポリエステル繊維を主材とする ク ッ シ ョ ン材におい ても本発明の目指す耐熱性難燃性は望むベく もなかった。  On the other hand, besides urethane, other types of cushioning materials, such as polyester woven stuffed cotton, resin cotton bonded with polyester fiber, and solid cotton bonded with a low melting point binder have begun to be used. However, unfortunately, the morphology of the fibers and the fixation of the adhesive are not stable, causing the fibers to lose their shape during use, the fibers to move and the crimps to loosen, resulting in bulkiness and rebound. Even if it was greatly reduced, it lacked the basic properties required of cushioning materials, which could not be used comfortably over a long period of time. In addition, even in a cushion material containing these polyester fibers as a main material, the heat resistance and flame retardancy aimed at by the present invention could not be expected.
発 明 の 開 示  Disclosure of the invention
本発明の目的は、 廃棄が容易な織維を主材と し、 難燃性お よび耐熱性に優れ、 且つ快適で軽量なク ッ ショ ン材ぉよびそ れを用いた車輛シー トを提供するこ とにある。  An object of the present invention is to provide a comfortable and lightweight cushioning material, which is mainly made of easily disposable textiles, has excellent flame retardancy and heat resistance, and a vehicle sheet using the cushioning material. To do that.
本発明は、 その一面において、 非弾性捲縮短繊維集合体か らなるマ ト リ ッ クス中に、 無炎試験法による重量残存率が 3 5 %以上である耐炎性捲縮短繊維と、 熱可塑性弾性織維と が混入分散され、 且つ熱可塑性弾性繊維と他の繊維との交絡 点の少く と も一部が熱融着しているこ とを特徴とする耐熱難 燃性ク ッ ショ ン材を提供する。 According to one aspect of the present invention, there is provided a flame-resistant crimped staple fiber having a weight retention rate of 35% or more by a flameless test method in a matrix comprising an inelastic crimped staple fiber assembly, and a thermoplastic resin. Heat-resistant, characterized in that the elastic fibers are mixed and dispersed, and at least a part of the entanglement point between the thermoplastic elastic fibers and other fibers is heat-sealed. Provides flammable cushioning material.
本発明は、 他の一面において、 繊維集合体からなる内層と これを囲繞する外層とからなる 2層構造を有し、 該外層は、 非弾性捲縮短繊維集合体からなるマ ト リ ッ クス中に、 無炎試 験法による重量残存率が 3 5 %以上である耐炎性捲縮短織維 と、 熱可塑性弾性繊維とが混入分散され、 且つ熱可塑性弾性 繊維と他の繊維との交絡点の少く とも一部が熱融着されてい るこ とを特徴とする耐熱難燃性ク ッ シ ヨ ン材を提供する。 本発明は、 さ らに他の面において、 上記のようなク ッ ショ ン材が成型されてなる車輛シー トを提供する。  In another aspect, the present invention has a two-layer structure including an inner layer made of a fiber assembly and an outer layer surrounding the inner layer, and the outer layer is made of a matrix made of an inelastic crimped short fiber assembly. In addition, a flame-resistant crimped short fiber having a residual weight ratio of 35% or more by a flameless test method and thermoplastic elastic fibers are mixed and dispersed, and the entanglement point between the thermoplastic elastic fibers and other fibers. To provide a heat-resistant and flame-retardant cushion material characterized in that at least a part thereof is heat-sealed. The present invention provides, in still another aspect, a vehicle seat formed by molding the cushion material as described above.
発明を実施するための最良の形態 本発明のク ッ ショ ン材のマ ト リ ッ クスは非弾性捲縮短繊維 の集合体から構成される。 非弾性捲縮短鏃維の好ま しい素材 と しては、 ポリエステル鏃維およびァラ ミ ド鏃維が挙げられ る。 非弾性ポリエステル系捲縮短織維と しては通常のポリエ チ レ ンテ レ フ 夕 レー ト、 ポ リ ブチ レ ンテ レ フ 夕 レー ト、 ポ リ テ トラ メチレンテレフタ レー ト、 ポリへキサメチレ ンテレフ 夕 レー ト、 ポリ一 1 , 4 —ジメチルシクロへキサンテレフ夕 レー ト、 ポリエチレ ンナフ夕 レー ト、 ポリ ピバロラ ク ト ンま たはこれらの共重合ボリエステルからなる短鏃維あるいはこ れらの織維の混綿体または上記のポリエステル成分のう ちの 2種以上からなる複合繊維が挙げられる。 これらのポリエス テル織維の難燃性および耐熱性を向上させるためにリ ン系ま たはハ口ゲン系の化合物を共重合またはブレ ン ドさせたもの は特に好ま しい。 また、 非弾性ァラ ミ ド系捲縮短繊維として はメ タおよびパラァラ ミ ド繊維が挙げられるが、 中でも、 単 に難燃性、 耐熱性のみならず強力モジュラスなどの力学的特 性または捲縮付与性および捲縮堅牢性などの綜合的特性に優 れたメタァラ ミ ド織維が特に好ま しい。 BEST MODE FOR CARRYING OUT THE INVENTION The matrix of the cushion material of the present invention is composed of an aggregate of inelastic crimped short fibers. Preferred materials for inelastic crimped short arrowheads include polyester arrowheads and aramid arrowheads. Non-elastic polyester crimped short fibers include ordinary polyethylene terephthalate, polybutylene terephthalate, polytetramethylene terephthalate, and polyhexamethylene terephthalate. Rate, Poly 1,4-Dimethylcyclohexaneterate, Polyethylene naphthate, Polypivalolactone, or a short arrowhead made of poly (copolyester) thereof, or a blend of these fibers And a composite fiber composed of two or more of the above-mentioned polyester components. In order to improve the flame retardancy and heat resistance of these polyester fibers, those obtained by copolymerizing or blending a phosphorus-based or haptic-based compound are particularly preferred. In addition, as inelastic crumb short fibers Are meta- and para-aramid fibers, but among them are simply flame retardancy and heat resistance as well as mechanical properties such as strong modulus, or comprehensive properties such as crimp imparting property and crimp toughness. Excellent metalamide fibers are particularly preferred.
非弾性捲縮短繊維の断面形状は格別限定されるこ とはな く、 円形、 偏平 (細長断面) 、 異形または中空のいずれであって もよい。 また、 非弾性捲縮短織維の繊度は 4 〜 3 0 0 デニー ル、 特に 6〜 1 0 0 デニールの範囲であるこ とが好ま しい。 この単繊維の織度が小さ過ぎるとク ッ シ ョ ン材の密度が高く なってク ッ ショ ン材自身の弾力性が低下しがちである。 逆に、 単織維鏃度が大き過ぎると取扱性、 特にゥェブ形成性が悪化 する。 また、 織度が大きいと構成本数が少な く なり過ぎてク ッ ショ ン材の弾力性が発現し難く なると同時に耐久性が低下 し易い。 また、 風合が粗硬になる。  The cross-sectional shape of the inelastic crimped short fiber is not particularly limited, and may be any of a circular shape, a flat shape (an elongated cross-section), an irregular shape, and a hollow shape. Further, the fineness of the inelastic crimped short textile is preferably in the range of 4 to 300 denier, particularly preferably in the range of 6 to 100 denier. If the weave of this single fiber is too small, the density of the cushion material tends to increase, and the elasticity of the cushion material itself tends to decrease. Conversely, if the degree of single-weave arrowhead is too large, handling properties, especially web forming properties, will deteriorate. In addition, when the weave degree is large, the number of components becomes too small, so that the elasticity of the cushion material is hardly expressed, and at the same time, the durability tends to decrease. Also, the feeling becomes coarse and hard.
本発明のク ッ ショ ン材のマ ト リ ッ クスを構成する非弾性短 繊維の重要な特性は捲縮である。 捲縮はク ッ シ ョ ン材に嵩性 とク ッ ショ ン性とを付与する重要な因子であるとともに、 ク ッ シ ヨ ンの軽量化に係わる重要な因子である。 捲縮特性と し ては、 初期嵩性が 4 0〜 1 2 0 cm3/grであるこ とが好ま しく、 5 0〜 1 2 0 cm3/grがよ り好ま しく、 7 0〜 1 2 0 cm3/grが 最良である。 さ らに、 1 0 gr/cm2荷重下嵩性は 1 5〜 5 0 cm3 Zgrが好ま しく、 2 0〜 5 0 cm3/grがより好ま し く、 3 0〜 5 0 cm3/grが最良である。 こ こで初期嵩性および 1 0 gr/cm2 荷重下嵩性は JIS 1015に準拠してそれぞれ 0. 5 gr/cm2および 1 0 gr/cm2の荷重下に測定される。 初期および 1 0 gr/cm2荷 重下の嵩性が上記の値より大きい場合にはカー ド通過性が悪 く、 一方、 上記の値未満の場合には得られたク ッ ショ ン材の ク ッ ショ ン性が不良となる。 An important property of the inelastic short fibers constituting the matrix of the cushion material of the present invention is crimping. Crimp is an important factor for imparting bulkiness and cushioning to the cushion material, and is also an important factor for reducing the weight of the cushion. Is a crimp characteristics, initial bulk properties 4 0~ 1 2 0 cm 3 / gr Dearuko and is laid like, 5 0~ 1 2 0 cm 3 / gr Gayo Ri preferred lay, 7 0-1 2 0 cm 3 / gr is best. Et al is, 1 0 gr / cm under 2 loading bulk resistance lay preferred is 1 5~ 5 0 cm 3 Zgr, 2 0~ 5 0 cm 3 / gr is rather more preferable, 3 0~ 5 0 cm 3 / gr is the best. Initial bulk properties and 1 0 gr / cm under 2 Load bulk resistance in here is measured under a load of respectively 0. 5 gr / cm 2 and 1 0 gr / cm 2 in compliance with JIS 1015. Initial and 10 gr / cm 2 load If the bulk under the weight is larger than the above value, the cardability is poor, while if it is less than the above value, the cushioning property of the obtained cushion material is poor. .
これらの嵩性は、 一般に、 短織維のク リ ンブ数が 5〜 1 5 ケ/イ ンチ、 特に 8〜 1 5 ケ イ ンチ、 捲縮率が 1 5〜 3 5 In general, the bulkiness of short fibers is 5 to 15 pieces / inch, especially 8 to 15 inches, and the crimp ratio is 15 to 35.
%、 特に 2 0〜 3 5 %のときに得られる。 こ こで、 ク リ ンプ 数および捲縮率は JIS 1015に準拠して測定される。 %, Especially at 20-35%. Here, the number of crimps and the crimp ratio are measured in accordance with JIS 1015.
上記の単繊維織度および捲縮特性を選ぶこ とによって上記 の望ま しい嵩性が得られる。 一般に、 嵩性の逆数とみるこ と ができる密度に着目すると、 ク ッ ショ ン材の密度は 0. 0 1 〜 The desired bulkiness described above can be obtained by selecting the above-mentioned single fiber weave degree and crimp characteristics. In general, focusing on the density that can be regarded as the reciprocal of bulk, the density of cushion material is 0.01 to
0. 0 6 g /cm3 が好ま しく、 0. 0 2〜 0. 0 5 g / cm3 がより 好ま しい。 密度が 0. 0 1 g/cm3 未満では構造がルーズ過ぎ て十分な反撥性が得られない。 また、 0. 0 6 g Zcm3 を超え ると反撥性は十分であるが、 軽量化の目的を達成し難い。 0.06 g / cm 3 is preferred, and 0.02 to 0.05 g / cm 3 is more preferred. If the density is less than 0.01 g / cm 3 , the structure is too loose and sufficient rebound cannot be obtained. On the other hand, if it exceeds 0.06 g Zcm 3 , the resilience is sufficient, but it is difficult to achieve the purpose of reducing the weight.
ク ッ ショ ン材と して他の重要な点は、 上記のマ ト リ ッ クス 繊維を構造体と して如何に固定するかにある。 すなわち、 ク ッ シヨ ン材として応力を受けたときの変形に十分に耐えるこ とができる と同時に、 応力から解放されたときに速やかに原 形に回復するよう に固定されなければならない。  Another important point for cushioning material is how to fix the above matrix fibers as a structure. In other words, the cushioning material must be able to sufficiently withstand deformation under stress, and must be fixed so that it can quickly recover to its original shape when released from stress.
本発明のク ッ ショ ン材において、 そのマ ト リ ッ クスの固定 は熱可塑性弾性繊維の熱融着 (サ—マルボン ド) 方式によつ て行われる。 この熱融着によれば上記のような望ま しい固定 が達成されるほか、 液状樹脂バイ ンダ一などを用いる湿式方 式と比較して、 作業環境が良く 、 安全である という利点があ る。 . 熱融着は、 マ ト リ ッ クスを構成する非弾性捲縮短繊維より 融点がかなり低い、 好ま しく は融点が 6 0 °C以上低い熱可塑 性弾性繊維を用いて達成される (熱可塑性弾性鏃維の詳細は 後に説明する。 ) 。 In the cushion material of the present invention, the matrix is fixed by a thermal fusion (thermobond) method of thermoplastic elastic fibers. According to this heat fusion, the desired fixing as described above is achieved, and in addition to the wet method using a liquid resin binder, there is an advantage that the working environment is better and the safety is higher. . Thermal fusion is achieved by using thermoplastic elastic fibers whose melting point is much lower than that of the inelastic crimped short fibers that make up the matrix, preferably by a melting point of at least 60 ° C. The details of the arrowhead will be described later.)
本発明の耐熱難燃ク ッ ショ ン材のマ ト リ ッ クスの固定につ いて注目すべきこ とは、 それ自体は難燃性とは言えない熱可 塑性弾性繊維を用いて固定されているにもかかわらずク ッ シ ヨ ン材が耐熱難燃性に優れている点にある。 これは、 非弾性 捲縮短鏃維集合体からなるマ ト リ ッ クス中に、 無炎試験法に よる重量残存率が 3 5 %以上である耐炎性捲縮短鏃維を混入 分散して始めて達成するこ とができる。 すなわち、 マ ト リ ツ クス織維とそのような耐炎性鏃維とが熱可塑性弾性鏃維によ つて熱固着されるこ とによって高い難燃性と嵩高性、 耐熱性 および耐久性を兼備するク ッ ショ ン材となる。  It should be noted that the matrix of the heat-resistant flame-retardant cushion material of the present invention is fixed by using thermoplastic elastic fibers which are not themselves flame-retardant. Nevertheless, the cushioning material is excellent in heat resistance and flame retardancy. This was achieved only by mixing and dispersing a flame-resistant crimped short arrowhead fiber with a residual weight of 35% or more by a flameless test method in a matrix consisting of an inelastic crimped short arrowhead fiber aggregate. can do. In other words, the matrix fiber and such a flame-resistant arrowhead fiber are heat-fixed by the thermoplastic elastic arrowhead fiber, so that they have both high flame retardancy, bulkiness, heat resistance and durability. It becomes cushion material.
こ こで、 無炎試験法による残存率は次のように測定される。 Here, the residual rate by the flameless test method is measured as follows.
—辺 5 0 cmの立方体ボッ クス中に電熱ヒーターを設置し、 そ の中心にサンプル 1 gを溶融物が ドリ ップしないようにカゴ に入れて置き、 7 5 0 °Cで 4 分間熱分解処理を行う。 その際、 温度はサンプルステージに設置した熱電対により測定する。 残存率は熱分解後のサンプルの重量変化より算出する。 —Place an electric heater in a 50 cm cubic box, place 1 g of the sample in a basket at the center of the box so that the melt does not drip, and pyrolyze at 75 ° C for 4 minutes Perform processing. At that time, the temperature is measured with a thermocouple installed on the sample stage. The residual ratio is calculated from the weight change of the sample after pyrolysis.
無炎試験法による重量残存率が 3 5 %以上の耐炎鏃維とマ ト リ ッ クスである非弾性捲縮短繊維との比率は 0. 1 Z 1 〜 1 / 1 (重量比) の割合であるこ とが好ま しい。 この比率が 1 / 1 を超えるとク ッ ショ ン材の嵩高性、 耐久性が低下し、 ま た比率が 0. 1 / 1 未満では難燃効果が乏しい。 なお、 重量残 存率が 3 5 %未満の耐炎繊維を多量に配合しても有る程度の 難燃効果は達成できるが、 ク ッ ショ ン材の嵩高性および耐久 性がかなり低下する。 The ratio of flame-resistant arrowhead fibers with a residual weight ratio of 35% or more according to the flameless test method to the inelastic crimped staple fiber, which is a matrix, is 0.1 Z1 to 1/1 (weight ratio). I prefer that there be. If this ratio exceeds 1/1, the bulkiness and durability of the cushion material decrease, and if the ratio is less than 0.1 / 1, the flame retardant effect is poor. The weight remaining Although a certain degree of flame retardant effect can be achieved by blending a large amount of flame-resistant fibers having a survival rate of less than 35%, the bulkiness and durability of the cushion material are considerably reduced.
重量残存率が 3 5 %以上の耐炎織維としては、 ポリアク リ ロニリ トル繊維をプレオキシダイズ ドしたプレオキシダイズ ド繊維 (例えば、 "ラスタ ン " および "パイロ メ ッ クス" な る商品名で市販されている) 、 完全に炭化した炭素織維、 架 橋化フ ヱノ一ル系鏃維 (例えば "カイ ノール" なる商品名で 市販されている) およびポリべンズイ ミ ダブール ( P B I ) 繊維が挙げられるが、 中でも特にプレオキシダイズ ド織維が 好ま しい。  As flame-resistant textiles having a weight retention rate of 35% or more, polyoxylonilittle fibers are pre-oxidized and pre-oxidized fibers (for example, trade names such as "Rastan" and "Pyromex"). (Commercially available), fully carbonized carbon fiber, bridged vinyl arrowhead fiber (for example, marketed under the trade name "Kynol"), and polybensimi dabul (PBI) fiber. Among them, pre-oxidized soy fiber is particularly preferred.
上記耐炎性捲縮短織維の単織維繊度は、 大き過ぎると構成 本数が減少し、 耐炎効果が低下するので 8 デニール以下が好 ま しく 、 5 デニール以下がより好ま しい。 ただし、 あま り小 さ過ぎる とゥエブ形成性が悪化するので約 1 デニール程度に 留めるこ とが好ま しい。  If the monofilament fiber size of the flame-resistant crimped short textile is too large, the number of constituent fibers is reduced and the flame resistance effect is reduced. Therefore, the denier is preferably 8 deniers or less, more preferably 5 deniers or less. However, if it is too small, the eb formation property deteriorates, so it is preferable to keep the denier at about 1 denier.
本発明のク ッ ショ ン材の非弾性捲縮短繊維の好ま しい素材 と してポリエステル織維およびァラ ミ ド鏃維を举げたが、 こ れらの織維と上記耐炎織維との組合せは DE3307449A 1 、 GB21 83265 および GB21 52542 に記載されている。 しかしなが ら、 これらの組合せは紡績糸のような連続したヤーンにおい て具現され、 結局、 2次元的布帛において難燃性を付与する のに有用であるこ とを教えるに過ぎず、 本発明のように 3次 元の繊維構造体による嵩高性、 耐久性に優れた難燃性ク ッ シ ヨ ン材については何も教示していない。 本発明のク ッ ショ ン材では、 上記非弾性捲縮短繊維に上記 耐炎捲縮短繊維が混入分散されたマ ト リ ッ クス中に、 熱可塑 性弾性繊維が混入されていて、 該熱可塑性弾性繊維と非弾性 捲縮短繊維および耐炎性捲縮短繊維との交絡点の少く とも一 部が熱融着されている。 熱可塑性弾性繊維の混率は、 使用す る熱可塑性弾性繊維の種類に依存して異なるが、 全重量の 1 0〜 5 0重量%であるこ とが好ま しい。 混率が 1 0重量% 未満では、 難燃性は良好であるが熱融着固定点が少な過ぎて ク ッ シ ョ ン材の反撥性維持が難かしく、 耐久性が劣る。 また、 混率が 5 0 %を超える とク ッ ショ ン材の難燃性の維持が難か しい。 要するに、 熱可塑性弾性繊維の全重量に対する割合が 1 0〜 5 0重量%のときにマ ト リ ッ クス中の非弾性捲縮短繊 維と耐炎捲縮短繊維との熱融着が十分でク ッ シ ヨ ン材の厚さ 方向に層状剝離を起さず、 且つク ッ ショ ンの反撥性および耐 久性も良好である。 Preferred materials for the inelastic crimped staple fiber of the cushion material of the present invention include polyester fiber and aramid arrowhead fiber, and a combination of these fiber and the above flame-resistant fiber. Are described in DE3307449A1, GB21 83265 and GB21 52542. However, these combinations are only embodied in continuous yarn, such as spun yarn, and ultimately teach that they are useful for imparting flame retardancy in two-dimensional fabrics. As described above, nothing is taught about a flame-retardant cushioning material made of a three-dimensional fiber structure and having excellent bulkiness and durability. In the cushion material of the present invention, the thermoplastic elastic fiber is mixed in the matrix in which the flame-resistant crimped short fiber is mixed and dispersed in the non-elastic crimped short fiber, and the thermoplastic elastic fiber is mixed. At least a part of the entanglement point between the fiber and the inelastic crimped staple fiber and the flame-resistant crimped staple fiber is heat-sealed. The mixing ratio of the thermoplastic elastic fiber varies depending on the type of the thermoplastic elastic fiber used, but is preferably from 10 to 50% by weight of the total weight. If the mixing ratio is less than 10% by weight, the flame retardancy is good, but the number of fixing points for heat fusion is too small, and it is difficult to maintain the resilience of the cushioning material, resulting in poor durability. If the mixing ratio exceeds 50%, it is difficult to maintain the flame retardancy of the cushion material. In short, when the ratio of the thermoplastic elastic fiber to the total weight is 10 to 50% by weight, the heat fusion between the inelastic crimped short fiber and the flame-resistant crimped short fiber in the matrix is sufficient and the cut is made. It does not cause laminar separation in the thickness direction of the cushioning material, and the cushion has good repulsion and durability.
こ こで、 熱固着点を形成するために用いられる熱可塑性弾 性織維としては、 熱可塑性エラス トマ一と非弾性ポリエステ ルとで形成される複合繊維であって、 マ ト リ ッ クスを構成す る非弾性捲縮短繊維より融点が 6 0 °C以上低いものが好ま し く 使用される。 融点の差が 6 0 °C未満の場合には、 熱処理に 際して熱可塑性弾性織維が劣化し、 マ ト リ ツ クス鏃維に悪影 響を及ぼし易い。  Here, the thermoplastic elastic fiber used to form the heat fixation point is a composite fiber formed of a thermoplastic elastomer and an inelastic polyester, and a matrix is used. Those having a melting point lower than that of the inelastic crimped short fibers by 60 ° C or more are preferably used. If the difference in melting point is less than 60 ° C, the thermoplastic elastic fiber deteriorates during the heat treatment, and the matrix arrowhead is likely to be adversely affected.
また、 熱可塑性エラス トマ一が複合織維表面の少なく と も 1 / 2を占める ものが好ま しく、 また、 重量比率でいえば、 熱可塑性エラス トマ一と非弾性ポリエステルが 3 0 / 7 0〜 7 0 / 3 0 の範囲にあるのが適当である。 Further, it is preferable that the thermoplastic elastomer occupies at least 1/2 of the surface of the composite textile, and in terms of weight ratio, the thermoplastic elastomer and the non-elastic polyester are 30/70 to 100%. It is appropriate to be in the range 70/30.
複合繊維の形態は、 サイ ド · バイ · サイ ド型、 シース · コ ァ型のいずれであってもよいが、 好ま しいのは後者である。 シース · コア型においては、 非弾性ポリエステルがコアとな るが、 このコアは同心円状あるいは偏心状であっても良い。 特に、 偏心状のものはコィル状の弾性捲縮が発現するので、 より好ま しい。  The form of the composite fiber may be either a side-by-side type or a sheath-core type, but the latter is preferred. In the sheath-core type, inelastic polyester is the core, but this core may be concentric or eccentric. In particular, eccentric ones are more preferable because they exhibit coiled elastic crimps.
熱可塑性エラス トマ一と しては、 ポリ ウ レタ ン系エラス ト マーやポリエーテルポリエステル系エラス トマ一などが例示 できる。 また、 非弾性ポリエステルとしては、 ポリ エチレン テレプ夕 レー トゃボリ ブチレンテレフ夕 レー トなどが例示で き、 ゴム弾性を有するポリ ブチレ ンテレフ夕 レー 卜が特に好 ま しい。  Examples of the thermoplastic elastomer include a polyurethane-based elastomer and a polyether polyester-based elastomer. Examples of the inelastic polyester include polyethylene terephthalate and polybutylene terephthalate, and polybutylene terephthalate having rubber elasticity is particularly preferable.
なお、 熱可塑性弾性織維は、 単に融点のみならず、 ク ッ シ ヨ ン性能の観点からも考慮されるべきであり、 特に捲縮の少 ない耐炎性捲縮短織維との交点には大きな固着点が形成され るこ とが好ま しい。 つま り、 熱可塑性弾性繊維の熱固着によ つて形成される固着点はエラス トマ一の成分からなるので、 加えられた応力に応じて大き く変形が可能であり、 しかも応 力が開放された後は速やかに原形に復帰するこ とができる。 また、 その優れた伸長回復性によって繰り返し荷重による破 壊や歪みの残留もな く、 耐炎性織維の捲縮の小ささに起因す るク ッ ショ ン性能の低下を最小限に留める働きをする。 従つ て、 熱可塑性弾性繊維の単繊維繊度は、 耐炎性鏃維の単繊維 繊度より も大きいこ とが好ま しい。 好ま しい熱可塑性弾性繊維の特性としては、 破断伸度がIt should be noted that the thermoplastic elastic fiber should be considered not only from the melting point but also from the viewpoint of cushioning performance, and especially at the intersection with the flame-resistant crimped short fiber with little crimp. It is preferred that sticking points are formed. In other words, since the fixing points formed by the thermosetting of the thermoplastic elastic fibers are composed of the elastomer component, they can be greatly deformed according to the applied stress, and the stress is released. After that, it can be returned to its original form promptly. In addition, due to its excellent elongation and recovery properties, there is no breakage or residual strain due to repeated loading, and it has the function of minimizing the drop in cushioning performance due to the small crimp of the flame-resistant textile. I do. Therefore, it is preferable that the single fiber fineness of the thermoplastic elastic fiber is larger than the single fiber fineness of the flame resistant arrowhead. Preferred thermoplastic elastic fiber properties include elongation at break.
5 0 0 %以上、 3 0 0 %伸長応力が 0. 6 kg 關 2 以下、 かつ 3 0 0 %伸長回復率が 6 0 %以上である。 破断伸度が 5 0 0 %未満では大きな変形に耐えるこ とができず、 また 3 0 0 % 伸長応力が 0. 6 kgZ mm 2 を越える と応力が高すぎてスムーズ な変形を示すこ とができない。 換言すれば、 快適なク ッ ショ ン性を与えるこ とができない。 3 0 0 %伸長回復率が 6 0 % 未満では応力解放後に良好な変形の回復を期待するこ とはで きない。 5 0 0% or more, 3 0 0% elongation stress 0. 6 kg Jour 2 or less, and 3 is 0 0% elongation recovery ratio 6 0% or more. Can not and this to withstand large deformation is less than the breaking elongation is 5 0 0% and 3 0 the 0% elongation stress exceeds 0. 6 kgZ mm 2 and this showing a smooth deformation stress is too high, Can not. In other words, comfortable cushioning cannot be provided. If the 300% elongation recovery rate is less than 60%, good deformation recovery cannot be expected after stress release.
すなわち、 本発明のク ッ ショ ン材は、 マ ト リ ツ クス短織維 に耐炎性繊維を混入して F A A規格に合格可能な耐炎ク ッ シ ョ ン材を得るに際し、 該耐炎性織維の混入量がマ ト リ ッ クス 短繊維と同等以下の場合には、 マ ト リ ッ クス短繊維の捲縮と 固着点を形成する熱可塑性弾性繊維との相乗的弾性反撥効果 により、 耐炎性繊維の捲縮の少なさを補って実用上支障のな ぃク ッ ショ ン性能が維持できる という知見に基づき完成され たものである。  That is, the cushioning material of the present invention is used to obtain a flame-resistant cushioning material capable of passing the FAA standard by mixing flame-resistant fibers into a matrix short textile. If the mixing amount of the matrix staple fiber is equal to or less than that of the matrix staple fiber, flame resistance is obtained due to the synergistic elastic repulsion effect of the crimp of the matrix staple fiber and the thermoplastic elastic fiber forming the fixing point. It has been completed based on the finding that the cushioning performance that does not hinder practical use can be maintained by compensating for the small crimp of the fiber.
本発明のク ッ ショ ン材は、 その全体を上述のような非弾性 捲縮短繊維集合体、 耐炎性捲縮短織維および熟可塑性織維か らなる実質的に一様な構造をもつものであってもよ く、 また は、 繊維集合体からなる内層とこれを囲繞する外層とからな る 2層構造を有し、 この外層が上述のような非弾性捲縮短繊 維集合体、 耐炎性捲縮短繊維および熱可塑性弾性繊維から構 成される ものであってもよい。 後者の 2層構造体の内層は上 記外層と同様な素材で構成されてもよいが、 外層が上述のよ うに優れた難燃性を有しているので、 ク ッショ ン材全体とし ての嵩高性、 耐久性を重視するならば、 内層は非弾性捲縮短 繊維と熱可塑性弾性織維のみから構成されるこ とが好ま しい。 The cushion material of the present invention has a substantially uniform structure composed entirely of the above-mentioned inelastic crimped short fiber aggregate, flame-resistant crimped short fiber and mature plastic fiber as described above. Or a two-layer structure consisting of an inner layer made of a fiber assembly and an outer layer surrounding the inner layer, and the outer layer is made of the above-described inelastic crimped short fiber assembly, It may be composed of crimped short fibers and thermoplastic elastic fibers. The inner layer of the latter two-layer structure may be made of the same material as the outer layer, but the outer layer is formed as described above. If the emphasis is placed on bulkiness and durability of the cushioning material as a whole, the inner layer is composed of only inelastic crimped short fibers and thermoplastic elastic fibers. This is preferred.
ここで内層を構成する非弾性捲縮短織維の素材としては、 強力、 モジュラスなどの力学的特性ならびに捲縮付与性およ び捲縮堅牢性などの捲縮特性に優れたポリエステル繊維が好 ま しい。 また、 内層に用いる熱可塑性弾性繊維としては上述 の外層と同様な素材が用いられる。 この熱可塑性弾性繊維の 量は、 ク ッショ ン材としての嵩高性、 耐久性の点から内層全 重量の 1 0 〜 5 0 %であることが好ましい。  Here, as the material of the inelastic crimped short fiber constituting the inner layer, polyester fibers excellent in mechanical properties such as strength and modulus and crimping properties such as crimping property and crimp fastness are preferable. New Further, as the thermoplastic elastic fiber used for the inner layer, the same material as the above-mentioned outer layer is used. The amount of the thermoplastic elastic fiber is preferably 10 to 50% of the total weight of the inner layer from the viewpoint of bulkiness and durability as the cushion material.
熱可塑性弾性繊維が内層と外層のそれぞれに混入分散され るため、 内層と外層との接合面でも強固に固着され、 両層の 接合面は明確ではない。 従って、 ク ッショ ン材の厚さ方向の 剝離強力は 1. 0 kg以上であって、 耐久性に優れている。 ここ で、 剝離強力は、 A STM D 3574 に準拠して、 ク ッ ショ ン材と 補強布を接着剤で貼合せた後、 1 0 g Z cm2 の圧力下に 2 4 時間放置した後に試験片幅 2 5 議、 剝離速度 5 0 圆 Z分にて 測定される。 また、 2層構造ク ッショ ン材の外層の厚さおよ び密度は適宜選択するこ とができるが、 難燃性および表面摩 擦堅牢性の見地から厚さ 3 〜 1 0 翻、 目付 2 0 0 〜 5 0 0 gSince the thermoplastic elastic fiber is mixed and dispersed in each of the inner layer and the outer layer, it is also firmly fixed at the joint surface between the inner layer and the outer layer, and the joint surface between the two layers is not clear. Therefore, the cushioning material has a separation strength in the thickness direction of 1.0 kg or more, and is excellent in durability. Here, the separation strength was tested after bonding the cushioning material and the reinforcing cloth with an adhesive in accordance with ASTM D 3574, and after standing for 24 hours under a pressure of 10 g Z cm 2. It is measured at a half width of 25 discussions and a separation speed of 50 圆 Z minutes. The thickness and density of the outer layer of the two-layer cushion material can be selected as appropriate, but from the viewpoint of flame retardancy and surface abrasion fastness, the thickness is 3 to 10 mm, and the basis weight is 2. 0 0 to 500 g
Zm2が好ましい。 Zm 2 is preferred.
本発明の耐熱難燃性ク ッショ ン材は、 マ ト リ ッ クス織維と して非弾性捲縮短繊維を用い、 これに耐炎性捲縮短繊維と熱 可塑性弾性織維を混綿し、 熱可塑性弾性繊維と非弾性捲縮短 繊維および Zまたは耐炎性捲縮短繊維との交絡点の少く とも 一部を熱融着して一体化する方法によって製造される。 可及 的に短かい工程で均質で性能のよいク ッシヨ ン材を製造する には、 非弾性捲縮短織維、 耐炎性捲縮短織維と熱可塑性弾性 繊維とからなる集合体をよく混練後、 非弾性捲縮短織維の融 点または分解温度より も低く、 かつ熱可塑性弾性織維の融点 より も 2 0〜 6 0 °C高い温度で処理し融着一体化することが 好ま しい。 この加工温度が低過ぎると交絡点でポリマーが好 ましい状態に流動せず結合が不十分となり、 短鏃維の交絡部 における熱固着数が減り、 ク ッショ ン材の反撥性が低下する。 加工温度が高過ぎると熱可塑性弾性織維の熱による変質が生 じ熱固着点の物性の低下を伴う。 The heat-resistant and flame-retardant cushion material of the present invention uses inelastic crimped staple fibers as a matrix fabric, and mixes flame-resistant crimped staple fibers with a thermoplastic elastic fabric to obtain a thermoplastic fabric. At least the intertwining point between elastic fiber and inelastic crimped short fiber and Z or flame-resistant crimped short fiber It is manufactured by a method in which a part is heat-sealed and integrated. In order to produce a homogeneous and high-performance cushioning material in as short a process as possible, it is necessary to thoroughly knead the aggregate consisting of inelastic crimped short fibers, flame-resistant crimped short fibers and thermoplastic elastic fibers. However, it is preferable to perform treatment and fusion at a temperature lower than the melting point or decomposition temperature of the inelastic crimped short fiber and higher than the melting point of the thermoplastic elastic fiber by 20 to 60 ° C. If the processing temperature is too low, the polymer does not flow in a favorable state at the entanglement point and the bonding is insufficient, the number of heat fixation at the entangled portion of the short arrowhead fiber decreases, and the resilience of the cushion material decreases. If the processing temperature is too high, the thermoplastic elastic fiber will deteriorate due to the heat, and the physical properties of the heat fixation point will decrease.
2層構造を有する耐熱難燃ク ッ ショ ン材は、 外層部と内層 部を構成する素材を別々に上述と同様に混練し、 内層の集合 体を外層の集合体で囲繞し、 その後両者一体の集合体を上述 と同様に熱処理し、 融着一体化する。  The heat-resistant and flame-retardant cushion material having a two-layer structure is obtained by separately kneading the materials constituting the outer layer and the inner layer in the same manner as described above, surrounding the inner layer assembly with the outer layer assembly, and then integrating the two. Is heat-treated in the same manner as described above and fused and integrated.
上記ク ッショ ン材は車輛シー トその他のク ッ ショ ン製品に 成型される。 車輛シー トに成型するには、 混綿した未熱処理 集合体を所定成型モールドに詰込んだ後、 上記熱処理温度で 成型するか、 混綿し、 上記所定熱処理温度より も低い温度で 仮熱融着させ、 成型モール ド形状に近い形状に力 ッ ト して所 定成型モール ドに詰込み、 所定温度で熱処理するか、 または、 混綿し、 上記所定熱処理温度で熱固着させ、 いくつかのパー ッに切断し、 所定成型モールド内にて接着剤を用いて接合と 同時に成型する方法を採ることができる。その他、 EP 0483386A 1 に開示されるようなスライバー方式、 特開平 3- 1 21 09 1に開示 されるような吹込み成型方法などを採ることもできる。 The cushion material is molded into vehicle seats and other cushion products. To mold into a vehicle sheet, the mixed unheated aggregate is packed in a prescribed molding mold and then molded at the above heat treatment temperature or mixed and preheat fused at a temperature lower than the above prescribed heat treatment temperature. Then, it is pressed into a shape close to the shape of the molding mold, packed in the prescribed molding mold, and heat-treated at a predetermined temperature, or mixed, and heat-fixed at the above-mentioned heat treatment temperature. It is possible to adopt a method of cutting and molding simultaneously with bonding using an adhesive in a predetermined molding mold. In addition, a sliver method as disclosed in EP 0483386A1, disclosed in Japanese Patent Application Laid-Open No. 3-209091 It is also possible to adopt a blow molding method or the like.
こ こで車輛シー トとは、 広義の 「車輛」 のシー トを指し、 自動車その他陸上交通機関の座席シー トのみならず航空機の 座席シ一 トをも包含する。  Here, the term “vehicle sheet” refers to a “vehicle” sheet in a broad sense, and includes not only the seat sheets of automobiles and other land transportation but also the seat sheets of aircraft.
以下、 本発明のク ッショ ン材を実施例について具体的に説 明する。 なお、 実施例において繊維およびク ッショ ン材の各 種特性は以下の測定方法によった。  Hereinafter, the cushioning material of the present invention will be specifically described with reference to examples. In the examples, various characteristics of the fiber and the cushion material were measured by the following measuring methods.
(1) 繊維の特性  (1) Fiber properties
(ィ) 繊度 (デニール) 、 ク リ ンプ数(CN)および捲縮率(CD) JIS 1015に準拠して測定した。  (A) Fineness (denier), number of crimps (CN), and crimp ratio (CD) were measured in accordance with JIS 1015.
(π) 初期嵩性および荷重下嵩性  (π) Initial bulkiness and bulkiness under load
JIS 1097に準拠してそれぞれ 0. 5 grZcm2 および 1 0 gr/cm2 の荷重下における嵩性(cm3/gr) を測定した。Bulkiness (cm 3 / gr) under a load of 0.5 grZcm 2 and 10 gr / cm 2 was measured in accordance with JIS 1097, respectively.
(2) ク ッ シ ョ ン材の特性 (2) Characteristics of cushioning material
(ィ) 密 度 JIS K 6401に準拠して測定した。  (B) Density Measured according to JIS K6401.
(0) 反撥弾性率 JIS K 6401に準拠して測定した。  (0) Rebound resilience Measured in accordance with JIS K 6401.
(ハ) 圧縮残留歪 ( 5 0 %および 8万回繰返し)  (C) Compression residual strain (50% and repeated 80,000 times)
JIS K 6401に準拠して測定した。  It was measured in accordance with JIS K 6401.
(-) 通 気 性 JIS L 1079に準拠して測定した。  (-) Air permeability Measured in accordance with JIS L 1079.
(ホ) FAA 難燃試験 FAA(Federal Aviation Administration 米国連邦航空局) で採用されている燃焼テス ト法 FAR(Federal Aviation Regulation), part 25 (25.853) (Airworthiness Standards, Transport Category Air Planes publ i sed June 1974, y U.S. Department of Transportation) に準拠して 測定した。 因みに、 F A A難燃テス トの規格合格値は重量減 少率 1 0 %以下、 燃焼長ボ トム 4 6 cm以下、 燃焼長バッ ク 4 3 cm以下である。 (E) FAA flame retardancy test Combustion test method adopted by FAA (Federal Aviation Administration Federal Aviation Administration) FAR (Federal Aviation Regulation), part 25 (25.853) (Airworthiness Standards, Transport Category Air Planes published June 1974, y US Department of Transportation). By the way, the FAA flame retardant test passed the standard, but the weight was reduced. The fraction is 10% or less, the combustion length bottom is 46 cm or less, and the combustion length back is 43 cm or less.
実施例 1  Example 1
非弾性捲縮短織維と してメ タ系ァラ ミ ド鏃維 (帝人コーネ ッ クス ®をマ ト リ ッ クスとし、 耐炎性捲縮短繊維と して無炎 試験法による重量残存率が 4 8 %のポリアク リ ロニ ト リ ル織 維をプレオキシダイズドしたプレオキシダイズド鏃維 ( "ラ スタ ン " 、 2デニール X 7 4 mm) を選択し、 熱可塑性弾性織 維と して下記の繊維を用いた。  A non-elastic crimped short fiber is a meta-aramid arrowhead fiber (Teijin Cornex® is used as a matrix, and a flame-resistant crimped short fiber has a weight retention rate of 4 based on the flameless test method. Select a pre-oxidized arrowhead fiber (“Raster”, 2 denier x 74 mm) made by preoxidizing 8% polyacrylonitrile fiber, and use it as a thermoplastic elastic fiber as shown below. Was used.
テレフタル酸とイ ソフタル酸とを 8 0 Z 2 0 (モル で 混合した酸成分とブチレ ングリ コールとを重合し、 得られた ポリブチレ ン系テレフ夕 レー ト 3 8重量%を更にポリブチレ ングリ コール (分子量 2 0 0 0 ) 6 2重量%と加熟反応させ、 ブロ ッ ク共重合ポリエーテルポリエステルエラス トマ一を得 た。 この熱可塑性エラス トマ一の固有粘度は 1. 0、 融点 1 55 て、 フ ィ ルムでの破断伸度は 1 5 0 0 %、 3 0 0 ? 伸長応力 は 0. 3 kg/ mm 2 、 3 0 0 %伸長回復率は Ί 5 %であつた。 Tertiphthalic acid and isophthalic acid are polymerized with butylene glycol by mixing an acid component with 80 Z 20 (mol), and 38% by weight of the obtained polybutylene terephthalate is further added to polybutylene glycol (molecular weight). The block copolymerized polyether polyester elastomer was subjected to ripening reaction with 200% by weight of 200% to obtain a block copolymerized polyether polyester elastomer having an intrinsic viscosity of 1.0, a melting point of 155 and a melting point of 15.5%. elongation at break 1 5 0 0% for I Lum, 3 0 0? extension stress is 0. 3 kg / mm 2, 3 0 0% elongation recovery rate was found to be 5% Ί.
この熱可塑性エラス トマーをシースに、 ポリプチレンテレ フタ レー トをコアに、 コア Zシースの重量比で 5 0〜 5 0 に なるように常法により紡糸した。 なお、 この複合織維は、 偏 心シース · コア型複合織維である。 この繊維を 2. 0倍に延伸 し 6 4 mmに切断した後 9 5での温水で熱処理し、 低収縮化と 捲縮発現をさせ乾燥後、 油剤を付与した。 なお、 こ こで得ら れた熱可塑性弾性織維の単糸鏃度は 6 デニールであった。 マ ト リ ッ クス鏃維 7 0重量% ( "コーネ ッ クス" : "ラス タン" = 1 : 0. 2 ) 及び上記熱可塑性エラス トマ一短織維 3 0重量%とをカー ドにより混綿し、 ウエッブを得た。 この ゥエツブを重ね、 厚み 1 0 cm、 密度 0. 0 5 g / cm 3 になるよ うに平板型の金型に入れ、 2 0 0でで 1 0分間熱処理して平 板型のク ッショ ン材を得た。 この際、 コーネッ クスの捲縮特 性を 1 3デニール X 7 6闕で変化させた場合 (実験 Να 1 〜 3 ) の性能を表 1 に示した。 This thermoplastic elastomer was used as a sheath, and polybutylene terephthalate was used as a core. The core Z sheath was spun by a conventional method so as to have a weight ratio of 50 to 50. This composite fiber is an eccentric sheath-core type composite fiber. The fiber was stretched 2.0 times, cut into 64 mm, and heat-treated with warm water at 95 to reduce shrinkage and develop crimp, dried, and then applied with an oil agent. The single-head arrowhead degree of the thermoplastic elastic fiber obtained here was 6 denier. 70% by weight of matrix arrowhead fiber ("Cornex": Tongue = 1: 0.2) and 30% by weight of the above-mentioned thermoplastic elastomer-short-weave fiber were mixed with a card to obtain a web. The web was overlaid, the thickness was 10 cm, the density was 0.0. 5 g / cm 3 was placed in a flat mold and heat-treated at 200 for 10 minutes to obtain a flat cushion material. Table 1 shows the performance when the value was changed at 13 denier X76 palace (Experiment Να1-3).
実施例 2  Example 2
実施例 1 、 実験 Not 2において、 マ ト リ ッ クス鏃維 7 0重量 %の内、 コ一ネッ クス⑧とラスタン ®との比率を変えた他は 実施例 1 と全く同様に行い、 実験 Να 4, 5 のク ッ シ ョ ン材を 得た。  In Example 1, Experiment Not 2, the experiment was performed in exactly the same manner as in Example 1 except that the ratio of Cornex II and Rastan® was changed out of 70% by weight of the matrix arrowhead fiber. Four and five cushion materials were obtained.
実施例 3  Example 3
実施例 1 、 実験 Να 2において、 全重量に対する弾性織維の 割合を変えた他は実施例 1 と全く同様に行い実験 NOL 6のク ッ シヨ ン材を得た。  Example 1, Experiment No. 2 The cushion material of experiment NOL 6 was obtained in exactly the same manner as in Example 1, except that the ratio of the elastic fiber to the total weight was changed.
実施例 4  Example 4
実施例 1、 実験 Να 2において、 熱処理温度を変化させた他 は実施例 1 と全く同様に行い、 実験 Να 7のク ッショ ン材を得 た。  Example 1, Experiment No. α2, except that the heat treatment temperature was changed, was performed in exactly the same manner as in Example 1, and a cushion material of Experiment No. α7 was obtained.
実施例 5  Example 5
実施例 1 、 実験 Να 2において、 無炎試験法による重量残存 率の異なる耐炎性捲縮短繊維 (架橋化フ ノ ール系鏃維 "力 ィノール" ®、 3デニール X 7 0 mm、 または架橋化メラ ミ ン 系織維 "バゾフ ィ ル" ®、 2. 3デニール X 7 5 mm) を使用し た他は実施例 1 と全く 同様に行い、 実験 Να 8, 9 のク ッ ショ ン材を得た。 In Example 1, Experiment No.2, the flame-resistant crimped staple fibers having different weight retention ratios by the flameless test method (cross-linked phenolic arrowhead fiber "Rinol" ®, 3-denier X 70 mm, or cross-linked) Melamine-based textile "Bazofil" ®, 2.3 denier x 75 mm) Other than that, the operation was performed in exactly the same manner as in Example 1 to obtain cushion materials for Experiments Να8 and 9.
実施例 6  Example 6
実施例 1 において、 マ ト リ ッ クス織維として表 2 に記載さ れている諸特性を有するポリエチレンテレフタ レー ト ( Ρ Ε In Example 1, a polyethylene terephthalate having the properties listed in Table 2 as a matrix fiber (維 Ρ
Τ) 織維 ( 1 4 デニール X 6 4 mm) 、 リ ン化合物を 0. 7重量 %共重合したポリエチレンテレ フ夕 レー ト ( P E T) 織維 ( 1 3 デニール X 5 1 mm) 及びポリ 一 1, 4一ジメチルシク 口へキサンテレフタ レー ト ( P C T) 織維 ( 2 5 デニール X 7 6匪) を使用し、 耐炎織維のマ ト リ ッ クス繊維に対する割 合を表 2、 実験 Noi l 0〜 1 2 に示すように変更した他は、 実 施例 1 、 実験 Να 2 と全く 同様に行いク ッ ショ ン材を得た。 Τ) Textile (14 denier x 64 mm), polyethylene terephthalate (PET) obtained by copolymerizing 0.7% by weight of a phosphorus compound Textile fiber (13 denier x 51 mm) and polyester Table 2 shows the ratio of flame-resistant textiles to matrix fibers, using a hexaneterephthalate (PCT) textile (25 denier x 76 marshal). The cushion material was obtained in exactly the same manner as in Example 1, Experiment II α2, except for the changes shown in Fig. 2.
実施例 7  Example 7
マ ト リ ツ クス繊維と して表 2実験 Να 1 3記載の諸特性を有 するメ タ系ァラ ミ ド繊維 (帝人コ一ネッ クス 、 1 3 デニー ル X 7 6 mm) を使用し、 耐炎繊維および弾性鏃維を表 2実験 Να 1 3 に示す割合で、 マ ト リ ツ クス鏃維とともに、 カー ドに より混綿してウェブを得た (Α成分) 。 一方、 ボリエチレ ン テ レ フタ レー ト繊維 ( 1 4 デニール X 6 4 mm、 諸特性は実験 Να 1 0 に記載のもの) をマ ト リ ッ クスとし、 実施例 1 の熱可 塑性弾性繊維とを重量比で 7 0 : 3 0 %で、 カー ドにて混綿 し、 ウェブを得た ( Β成分) 。 次いで、 Β成分のウェブを、 Α成分のウェブで完全に囲繞しながら、 厚み 1 O cmになるよ うに平板型の金型に入れ、 2 0 0でで 1 5分間熟処理して平 板型の 2層構造ク ッ ショ ン材 ( A成分 : 外層、 R成分 : 内層) を得た。 この際、 A成分 (外層) の厚さ、 目付を変え、 実験 Να 1 3 〜 1 5のク ッショ ン材を得た。 As a matrix fiber, a meta-aramid fiber (Teijin Connex, 13 denier X 76 mm) having the properties described in Table 2 was used. Flame-resistant fibers and elastic arrowhead fibers were mixed with a matrix arrowhead fiber at the ratios shown in Table 2 Experiment No. α13 to obtain a web (cardiac component). On the other hand, a polyethylene phthalate fiber (14 denier X 64 mm, various characteristics described in Experiment No. α10) was used as a matrix, and the thermoplastic elastic fiber of Example 1 was used as a matrix. The cotton was mixed with a card at a weight ratio of 70: 30% to obtain a web (component (i)). Then, while completely surrounding the web of the で component, the web of the 、 component is placed in a flat mold so as to have a thickness of 1 Ocm, and matured at 200 for 15 minutes to form a flat plate. 2-layer cushion material (A component: outer layer, R component: inner layer) I got At this time, the thickness and the basis weight of the A component (outer layer) were changed, and cushion materials of Experiment No. α13 to 15 were obtained.
実施例 8  Example 8
実施例 7、 実験 ΝΟ· 1 3において、 Β成分 (内層) のマ ト リ ッ クス繊維をポリ 一 1 , 4 —ジメチルシクロへキサンテレフ タレ一 ト織維 ( 2 5デニール X 7 6 匪、 諸特性は実験 1 2 に記載のもの) に変えた他は、 全く同様にして実験 Να ΐ 6の 2層構造ク ッショ ン材を得た。 In Example 7 and Experiments III and III, the matrix fiber of the Β component (inner layer) was mixed with poly (1,4) -dimethylcyclohexane terephthalate fiber (25 denier X76 bandages, various properties) Was the same as that described in Experiment 12), except that a two-layer cushion material of Experiment ΝαΝ6 was obtained.
表 1 table 1
(比) は比較例  (Ratio) is a comparative example
' "-" ""- --- _ Run Να 1 2 3 4 5 6 7 8 9  '"-" ""---- _ Run Να 1 2 3 4 5 6 7 8 9
(比) マトリ ックス織維 "了ラミド メタ了ラミ F ;1タ了ラミ F タ了ラミ F メタ了ラミド メタ了ラミド メタ了ラミド メ夕了ラミド メタ了ラミド (Ratio) Matrix Weaving “Ryamide Ryame F; 1 Ryami Rami F Ryami Rami F Meta Ryramide Meta Ryramide
デニール 13 13 13 13 13 13 13 13 13  Denier 13 13 13 13 13 13 13 13 13 13
CN ケ /インチ 6 8 14 8 8 8 8 8 8  CN pcs / inch 6 8 14 8 8 8 8 8 8
16 20 30 20 20 20 20 20 20  16 20 30 20 20 20 20 20 20
構 初期嵩性 cmVgr 45 60 85 60 60 60 60 60 60 Structure Initial bulkiness cmVgr 45 60 85 60 60 60 60 60 60
荷重下嵩性 cmVgr 17 25 40 25 25 25 25 25  Bulk under load cmVgr 17 25 40 25 25 25 25 25
耐炎性繊維 ラス夕ン ラスタン ラスクン ラスタン ラスタン ラスタン ラスタン カイノ-ル バゾフィル  Flame-resistant fiber Rasin Rastin Raskun Rastin Rastin Rastin Rastin Kainol Bazofil
無炎試験法  Flameless test method
成 直 ί¾ι¥ % 48 48 48 48 48 48 48 39 28 X Reconstruction ί¾ι ¥% 48 48 48 48 48 48 48 39 28 X
7トリ 7クスとの比率 1 :0.2 1 :0.2 1 :0.2 1:0.3 1:0.7 1:0.2 1:0.2 1:0.2 1:0.2 7 to 7 ratio 1: 0.2 1: 0.2 1: 0.2 1: 0.3 1: 0.7 1: 0.2 1: 0.2 1: 0.2 1: 0.2
弾性繊維 s/cii合 S/C複合 S/C複合 S/C複合 S/C複合 S/C複合 S/C複合 S/C複合 S/C複合  Elastic fiber s / cii compound S / C compound S / C compound S / C compound S / C compound S / C compound S / C compound S / C compound S / C compound
融 占 °C 155 155 155 155 155 155 155 155 155 oo 全体に対する割合 % 30 30 30 30 30 15 30 30 30 熱処理温度 C 200 200 200 200 200 200 210 200 200 密 度 g/cm3 0.050 0.052 0.052 0.052 0.052 0.051 0.053 0.052 0.051 Occupied ° C 155 155 155 155 155 155 155 155 155 oo% of total% 30 30 30 30 30 15 30 30 30 Heat treatment temperature C 200 200 200 200 200 200 210 200 200 Density g / cm 3 0.050 0.052 0.052 0.052 0.052 0.052 0.051 0.053 0.052 0.051
反撥弾性率 on  Rebound resilience on
% 55 ο Di U υο DO ΌΌ OO  % 55 ο Di U υο DO ΌΌ OO
ク 50%圧縮残留歪 % 16.2 15.5 14.3 15.8 16.4 18.0 16.2 14.9 14.6 50% compression set% 16.2 15.5 14.3 15.8 16.4 18.0 16.2 14.9 14.6
ッ 8万回繰返し圧縮 Compression 80,000 times
シ 残留歪 % 8.9 7.6 6.1 8.0 9.2 9.1 8.3 7.3 7.5 Residual strain% 8.9 7.6 6.1 8.0 9.2 9.1 8.3 7.3 7.5
通気性 cc/cm2 120 122 120 105 98 110 125 122 118 Breathability cc / cm 2 120 122 120 105 98 110 125 122 118
ン •sec • sec
材 F A Αテスト Material F A ΑTest
重量減少率 % 6.5 6.3 6.2 5.8 5.1 5.8 6.4 8.5 15.6  Weight loss% 6.5 6.3 6.2 5.8 5.1 5.8 6.4 8.5 15.6
燃焼長ボトム cm 22 22 21 20 16 22 22 36 46  Combustion length bottom cm 22 22 21 20 16 22 22 36 46
くック cm 39 40 38 38 35 38 40 42 48 Cook cm 39 40 38 38 35 38 40 42 48
表 2 Table 2
Figure imgf000021_0001
Figure imgf000021_0001
産 業 上 の 利 用 可 能 性 Industrial availability
本発明のク ッ ショ ン材は、 製造工程においてフロ ン等の有 害物質を全く必要とせず、 またク ッ ショ ン材と しても十分な る通気性を有しているので蒸れる心配はない。 かつク ッ ショ ン特性も圧縮による初期の堅さは高過ぎず、 反撥性が大き く 、 かつ圧縮量にほぼ比例して反撥性は大き く なるので、 所謂底 突き感が極めて少ない。 また、 昨今注目されている廃棄の問 題についてもポリ ウ レタ ンのように燃焼による有害ガスの発 生もな く焼却による廃却も極めて容易である。 また、 一部航 空機のシ一 ト ク ッ ショ ンなどに用いられ始めた難燃性ポリ ゥ レタ ンと比較した場合、 前述のク ッ ショ ン特性あるいは廃棄 容易等の利点を維持するこ とはもちろん、 難燃性ポリ ウ レ夕 ンの最大の欠点である高密度化 ( 0. 0 6 0 g / cm 3 以上) の 必要はな く、 近年益々ニーズの高ま りを見せている軽量化の 要求に合致する。 特に各種車輛シー ト用ク ッ シ ョ ン体と して 最適な特性を有する。 The cushion material of the present invention does not require any harmful substances such as freon in the manufacturing process, and has sufficient air permeability even as a cushion material, so there is no fear of stuffiness. Absent. In addition, the cushioning properties are not too high in the initial hardness due to compression, and the rebound is large, and the rebound is increased almost in proportion to the amount of compression. Also, regarding the disposal issue that has been attracting attention these days, it is extremely easy to dispose of it by incineration, as there is no harmful gas generated by combustion like polyurethane. In addition, when compared with flame-retardant polyester, which has begun to be used for some aircraft airplanes, such advantages as the above-mentioned cushion characteristics and easy disposal can be maintained. Needless to say, there is no need for high density (more than 0.060 g / cm 3 ), which is the biggest drawback of flame-retardant polyurethane, and needs have been increasing in recent years. Meets weight reduction requirements. In particular, it has optimal characteristics as a cushion body for various vehicle seats.
最近になってポリエステル系繊維をマ ト リ ッ クスと して、 熱可塑性エラス トマ一等に用いたバイ ンダー繊維を溶融し、 交絡点の少なく とも一部を融着固定せしめる繊維構造体ク ッ シヨ ンが提案されており、 確かに一般ク ッ ショ ン材と してこ れらの繊維構造体のク ッ ショ ン材は有用であるが、 最近特に 要望されている難燃性という点では不完全であり、 その意味 において本発明は初めて難燃性を十分に備えた快適な織維構 造ク ッ ショ ン材である。  Recently, a polyester fiber has been used as a matrix, and the binder fiber used for the thermoplastic elastomer has been melted, and at least a part of the entangled points has been fused and fixed. Cations have been proposed, and although these cushioning materials of fiber structure are useful as general cushioning materials, they are not suitable in terms of flame retardancy, which has been particularly demanded recently. Completely, in this sense, the present invention is, for the first time, a comfortable textile fabric cushioning material with sufficient flame retardancy.
また製造面においても難燃性という高付加価値を持つ構造 体でありながら、 短繊維からなるウエ ッブを熱処理するだけ の簡単で短い工程で均一なク ッ シ ョ ン材が得られるこ とも大 きな利点である。 In addition, the structure with high added value of flame retardance in manufacturing. It is also a great advantage that a uniform cushioning material can be obtained in a simple and short process simply by heat-treating a web made of short fibers while being a body.
従って、 本発明のク ッ ショ ン材は、 難燃性、 ク ッ ショ ン性、 耐久性、 形態安定性に優れ、 通気性が高く 蒸れ難く、 加工の 際のムラ も発生し難く、 かつ加工多様性も図り易い。 従って、 その利用範囲は特に難燃性を要求する一般家具、 寝具と して はもちろん、 特に病院、 老人ホーム用の家具、 寝具、 車輛用 のシー ト ク ッ ショ ン、 特に地下鉄、 船、 新幹線用シー ト、 航 空機シー ト、 レーシングカーシー トあるいは難燃性を要求さ れる詰物、 雑貨等巾広いものが考えられる。  Therefore, the cushion material of the present invention is excellent in flame retardancy, cushioning property, durability, and form stability, has high air permeability, does not easily become stuffy, and does not easily generate unevenness in processing, and Diversity is easy. Therefore, it can be used not only for general furniture and bedding that require flame retardancy, but also for hospitals, nursing home furniture, bedding, vehicle seat cushions, especially subways, ships, and Shinkansen trains. Wide-ranging items such as vehicle seats, airplane sheets, racing car sheets, fillings requiring flame retardancy, and miscellaneous goods are conceivable.
特に、 ク ッ ショ ン性を維持し、 より硬度な難燃性、 例えば 航空機シ一 トに対する F A Aの難燃テス トのように 1 0 3 8 °Cバーナーを 1 0 2 隨の距離から 2分間火炎接触させるとい う ような難燃性要求に対しては、 非常に有効である。  In particular, it maintains cushioning and is harder in flame retardancy, for example, by using a 108 ° C burner for 102 minutes at a distance of 102 ° C, as in the FAA flame retardant test for aircraft sheets. It is very effective for flame retardant requirements such as flame contact.

Claims

請 求 の 範 囲 The scope of the claims
1 . 非弾性捲縮短織維集合体からなるマ ト リ ッ クス中に、 無炎試験法による重量残存率が 3 5 %以上である耐炎性捲縮 短織維と、 熱可塑性弾性織維とが混入分散され、 且つ熱可塑 性弾性繊維と他の織維との交絡点の少く とも一部が熱融着し ているこ とを特徴とする耐熱難燃性ク ッ シヨ ン材。  1. In a matrix consisting of an inelastic crimped short fiber aggregate, a flame-resistant crimped short fiber having a residual weight of 35% or more by a flameless test method and a thermoplastic elastic fiber A heat-resistant and flame-retardant cushioning material characterized in that at least a part of the entanglement point between the thermoplastic elastic fiber and another textile is heat-sealed.
2 . 耐炎性捲縮短織維がァク リ ロニ ト リ ルポリマー繊維を プレオキシダイズした織維、 炭素織維、 架橋化フエノ ール系 繊維およびポリべンズィ ミ ダゾール織維の中から選ばれる請 求項 1 記載の耐熱難燃性ク ッ シヨ ン材。  2. Flame-resistant crimped short fibers selected from fibers pre-oxidized from acrylonitrile polymer fibers, carbon fibers, cross-linked phenolic fibers, and polybenzimidazole fibers. The heat-resistant and flame-retardant cushion material according to claim 1.
3 . 耐炎性捲縮短繊維の単織維繊度が 8 デニール以下であ る請求項 1 または 2記載の耐熱難燃性ク ッ ショ ン材。  3. The heat-resistant and flame-retardant cushion material according to claim 1, wherein the single-woven fiber size of the flame-resistant crimped short fibers is 8 denier or less.
4 . 耐炎性捲縮短織維の単織維繊度が熱可塑性弾性繊維の 単繊維繊度より も小さい請求項 1 〜 3のいずれかに記載の耐 熱難燃性ク ッ ショ ン材。  4. The heat-resistant and flame-retardant cushion material according to any one of claims 1 to 3, wherein the single-filament fineness of the flame-resistant crimped short textile is smaller than the single-filament fineness of the thermoplastic elastic fiber.
5 . 耐炎性捲縮短織維と非弾性捲縮短織維との比率が 0. 1 5. The ratio of flame resistant crimped short fibers to inelastic crimped short fibers is 0.1
: 1 〜 1 : 1 (重量比) である請求項 1 〜 4 のいずれかに記 載の耐熱難燃性ク ッ ショ ン材。 The heat-resistant and flame-retardant cushion material according to any one of claims 1 to 4, which has a weight ratio of 1: 1 to 1: 1.
6 . 熱可塑性弾性織維が全重量の 1 0〜 5 0 %である請求 項 1 〜 5のいずれかに記載の耐熱難燃性ク ッ ショ ン材。  6. The heat-resistant and flame-retardant cushion material according to any one of claims 1 to 5, wherein the thermoplastic elastic fiber accounts for 10 to 50% of the total weight.
7 . 非弾性捲縮短繊維がポリエステル織維またはァラ ミ ド 繊維の中から選ばれる請求項 1 〜 6 のいずれかに記載の耐熱 難燃性ク ッ ショ ン材。  7. The heat-resistant and flame-retardant cushion material according to any one of claims 1 to 6, wherein the inelastic crimped staple fiber is selected from a polyester fiber or an aramid fiber.
8 . 非弾性捲縮短繊維の単繊維織度が 4〜 3 0 0 デニール、 初期嵩性が 4 0〜 1 2 0 cm V g . 1 0 g r/cm 2荷重下嵩性が 1 5 〜 5 0 cm Vg である請求項 1 〜 7のいずれかに記載の耐熱難 燃性ク ッ ショ ン材。 8. Inelastic crimped filaments odometer is 4-3 0 0 denier staple fiber, initial bulk properties 4 0~ 1 2 0 cm V g . 1 0 gr / cm under 2 load bulk properties 1 5 The heat-resistant and flame-retardant cushion material according to any one of claims 1 to 7, which has a pressure of from 50 to 50 cmVg.
9 . 厚さ方向の剝離強力が 1. 0 k g以上である請求項 1 〜 8 のいずれかに記載の耐熱難燃性ク ッ ショ ン材。  9. The heat-resistant and flame-retardant cushion material according to any one of claims 1 to 8, wherein the separation strength in the thickness direction is 1.0 kg or more.
5 1 0 . 非弾性捲縮短織維集合体からなるマ ト リ ッ クス中に、 無炎試験法による重量残存率が 3 5 %以上である耐炎性捲縮 短織維と、 熱可塑性弾性繊維とが混入分散され、 且つ熱可塑 性弾性繊維と他の繊維との交絡点の少く とも一部が熱融着し ている耐熱難燃性ク ッ シ ョ ン材が成型されてなる車輛シ一 ト。0 1 1 . 耐炎性捲縮短織維がアク リ ロニ ト リ ルポリマー織維 をプレオキシダイズした鏃維、 炭素繊維、 架橋化フ ノ ール 系織維およびポリべンズィ ミ ダゾール鏃維の中から選ばれる 請求項 1 0記載の車輛シー ト。 5 10. In a matrix consisting of an inelastic crimped short fiber aggregate, a flame-resistant crimped short fiber having a weight retention rate of 35% or more by a flameless test method, and a thermoplastic elastic fiber Is formed by molding a heat-resistant and flame-retardant cushion material in which at least a part of the entanglement point between the thermoplastic elastic fiber and another fiber is heat-sealed. G. 0 1 1. From flame-resistant crimped short fibers made from acrylonitrile polymer fibers, pre-oxidized arrowheads, carbon fibers, cross-linked phenolic fibers and polybenzimidazole arrowheads. The vehicle sheet according to claim 10, which is selected.
1 2 . 耐炎性捲縮短織維の単鏃維織度が 8 デニール以下で5 ある請求項 1 0 または 1 1 記載の車輛シー ト。  12. The vehicle sheet according to claim 10 or 11, wherein the single arrowhead weave degree of the flame-resistant crimped short weave is 5 at 8 deniers or less.
1 3 . 耐炎性捲縮短鏃維の単織維繊度が熟可 ¾ 性繊維の単 繊維鏃度より も小さい請求項 1 0〜 1 2のいずれかに記載の 車輛シー ト。  13. The vehicle sheet according to any one of claims 10 to 12, wherein a single-woven fiber size of the flame-resistant crimped short arrowhead fiber is smaller than a single-fiber arrowheadness of the mature fiber.
1 4 . 耐炎性捲縮短繊維と非弾性捲縮短繊維との比率が0 0. 1 : 1 〜 1 : 1 (重量比) である請求項 1 2〜 1 3 のいず れかに記載の車輛シー ト。  14. The vehicle according to any one of claims 12 to 13, wherein the ratio of the flame-resistant crimped staple fiber to the inelastic crimped staple fiber is 0.1: 1 to 1: 1 (weight ratio). Sheet.
1 5 . 熱可塑性弾性繊維が全重量の 1 0〜 5 0 ° である請 求項 1 0〜 1 4 のいずれかに記載の車輛シー ト。  15. The vehicle sheet according to any one of claims 10 to 14, wherein the thermoplastic elastic fiber has a total weight of 10 to 50 °.
1 6 . 非弾性捲縮短鏃維がポリエステル繊維またはァラ ミ,5 ド織維の中から選ばれる請求項 1 0〜 1 5 のいずれかに記載 の車輛シー ト。 16. The inelastic crimped short arrowhead fiber according to any one of claims 10 to 15, wherein the short arrowhead fiber is selected from polyester fibers or arami fibers. Vehicle seat.
1 7. 非弾性捲縮短繊維の単鏃維織度が 4〜 3 0 0デニー ル、 初期嵩性が 4 0〜 1 2 0 cm3/g 1 0 gr/cm2荷重下嵩性 力 1 5〜 5 0 cm3/gである請求項 1 0〜 1 6 のいずれかに記 載の車輛シー ト。 1 7. Inelastic crimped staple fibers have a single arrow weave degree of 4 to 300 denier and an initial bulk of 40 to 120 cm 3 / g 10 gr / cm 2 bulk under load force 1 5 ~ 5 0 cm 3 / g and a claim 1 0-1 6 vehicle sheet for placing serial to either.
1 8 . 航空機のシー トである請求項 1 0〜 1 7のいずれか に記載の車輛シー ト。  18. The vehicle sheet according to any one of claims 10 to 17, which is an aircraft sheet.
1 9 . レーシングカーのシー トである請求項 1 0〜 1 7の いずれかに記載の車輛シ一 ト。  19. The vehicle seat according to any one of claims 10 to 17, which is a racing car seat.
2 0 . 鏃維集合体からなる内層とこれを囲繞する外層とか らなる 2層構造を有し、 該外層は、 非弾性捲縮短鏃維集合体 からなるマ ト リ ッ クス中に、 無炎試験法による重量残存率が 3 5 %以上である耐炎性捲縮短繊維と、 熱可塑性弾性織維と が混入分散され、 且つ熱可塑性弾性鏃維と他の繊維との交絡 点の少く と も一部が熱融着されているこ とを特徴とする耐熱 難燃性ク ッ シ ヨ ン材。  20. It has a two-layer structure consisting of an inner layer composed of an arrowhead fiber assembly and an outer layer surrounding the inner layer. The outer layer is free from flames in a matrix composed of an inelastic crimped short arrowhead fiber assembly. Flame-resistant crimped staple fibers having a weight retention rate of 35% or more according to the test method are mixed and dispersed with a thermoplastic elastic fiber, and at least one entanglement point between the thermoplastic elastic arrowhead fiber and other fibers. A heat-resistant and flame-retardant cushioning material characterized in that its parts are heat-sealed.
2 1 . 外層の耐炎性捲縮短繊維がアク リ ロニ ト リ ルポリマ 一繊維をプレオキシダイズした繊維、 炭素織維、 架橋化フ エ ノ ール系鏃維およびポリべンズィ ミ ダゾ一ル鏃維の中から選 ばれた請求項 2 0記載の耐熱難燃性ク ッ ショ ン材。  2 1. Outer layer of flame-resistant crimped staple fiber is pre-oxydized acrylonitrile polymer fiber, carbon fiber, cross-linked phenolic arrowhead and polyvenzimidazo arrowhead. The heat-resistant and flame-retardant cushion material according to claim 20, which is selected from the group consisting of:
2 2. 外層の耐炎性捲縮短繊維の単繊維繊度が 8 デニール 以下である請求項 2 0 または 2 1 記載の耐熱難燃性ク ッ ショ ン材。  22. The heat-resistant and flame-retardant cushion material according to claim 20, wherein the fineness of the single fiber of the flame-resistant crimped staple fiber in the outer layer is 8 denier or less.
2 3 . 外層における耐炎性捲縮短繊維と非弾性捲縮短織維 との比率が 0. 1 : 1 〜 1 : 1 (重量比) である請求項 2 0〜 2 2のいずれかに記載の耐熱難燃性ク ッショ ン材。 23. The ratio of the flame-resistant crimped staple fibers to the inelastic crimped short fibers in the outer layer is 0.1: 1 to 1: 1 (weight ratio). 22. The heat-resistant and flame-retardant cushion material according to any of 2.
2 4 . 外層の熱可塑性弾性繊維が外層全重量の 1 0 〜 5 0 %である請求項 2 0 〜 2 3のいずれかに記載の耐熱難燃性ク ッ ショ ン材。  24. The heat-resistant and flame-retardant cushion material according to any one of claims 20 to 23, wherein the thermoplastic elastic fiber of the outer layer accounts for 10 to 50% of the total weight of the outer layer.
2 5 . 外層の非弾性捲縮短繊維がポリエステル織維また はァラ ミ ド繊維の中から選ばれる請求項 2 0 〜 2 4 のいずれ かに記載の耐熱難燃性ク ッシヨ ン材。  25. The heat-resistant and flame-retardant cushion material according to any one of claims 20 to 24, wherein the inelastic crimped staple fiber of the outer layer is selected from a polyester fiber or an aramid fiber.
2 6 . 外層の厚さが 3 〜 1 . 0 mmであり、 その目付が 2 0 0 〜 5 0 0 gノ m 2である請求項 2 0 〜 2 5のいずれかに記載の 耐熱難燃性ク ッショ ン材。 26. The heat-resistant flame retardant according to any one of claims 20 to 25, wherein the outer layer has a thickness of 3 to 1.0 mm and a basis weight of 200 to 500 g nom2. Cushioning material.
2 7 . 内層がポリエステル捲縮短織維またはそれを主成分 とする繊維混合物からなる請求項 2 0 〜 2 6のいずれかに記 載の耐熱難燃性ク ッショ ン材。  27. The heat-resistant and flame-retardant cushion material according to any one of claims 20 to 26, wherein the inner layer is made of a polyester crimped short fiber or a fiber mixture containing the same as a main component.
2 8 . 外層のみならず内層にも熱可塑性弾性鏃維が混入分 散され、 且つ両層間が相互に接着されている請求項 2 0 〜 2 7のいずれかに記載の耐熱難燃性ク ッシヨ ン 。  28. The heat-resistant and flame-retardant cushion according to any one of claims 20 to 27, wherein thermoplastic elastic arrowhead fibers are mixed and dispersed not only in the outer layer but also in the inner layer, and both layers are adhered to each other. N
2 9 . 織維集合体からなる内層とこれを囲镜する外層とか らなる 2層構造を有し、 該外層は、 非弾性捲縮短鏃維集合体 からなるマ ト リ ッ クス中に、 無炎試験法による重量残存率が 3 5 %以上である耐炎性捲縮短織維と、 熱可塑性弾性織維と が混入分散され、 且つ熱可塑性弾性織維と他の織維との交絡 点の少く とも一部が熱溶融固着している耐熱 · 難燃性ク ッシ ョ ン材が成型されてなる車輛シ一 ト。  29. It has a two-layer structure consisting of an inner layer composed of a fiber assembly and an outer layer surrounding the inner layer, and the outer layer is free from the matrix composed of the inelastic crimped short arrow fiber assembly. A flame-resistant crimped short fiber with a residual weight ratio of 35% or more according to the flame test method and a thermoplastic elastic fiber are mixed and dispersed, and the number of entanglement points between the thermoplastic elastic fiber and other fibers is small. A vehicle sheet made of heat-resistant and flame-retardant cushion material, both of which are partially fixed by heat melting.
3 0 . 耐炎性捲縮短織維がァク リ ロニ ト リ ルポリマー繊維 をプレオキシダイズした繊維、 炭素繊維、 架橋化フヱノール 系繊維およびポリべンズィ ミ ダブール繊維の中から選ばれる 請求項 2 9記載の車輛シ一 ト。 30. Flame-resistant crimped short fibers made of pre-oxidized acrylonitrile polymer fiber, carbon fiber, cross-linked phenol The vehicle seat according to claim 29, wherein the vehicle seat is selected from a system fiber and a polybenzimidabour fiber.
3 1 . 外層の耐炎性捲縮短織維の単織維織度が 8デニール 以下である請求項 2 9および 3 0記載の車輛シー ト。  31. The vehicle sheet according to claim 29, wherein the outer layer has a single-weave degree of weave of the flame-resistant crimped short weave of 8 denier or less.
3 2 . 外層における耐炎性捲縮短織維と非弾性捲縮短繊維 との比率が 0. 1 : 1 〜 1 : 1 (重量比) である請求項 2 9〜 3 1 のいずれかに記載の車輛シー ト。  32. The vehicle according to any one of claims 29 to 31, wherein the ratio of the flame-resistant crimped short fibers to the inelastic crimped short fibers in the outer layer is 0.1: 1 to 1: 1 (weight ratio). Sheet.
3 3 . 外層の熱可塑性弾性織維が外層重量の 1 0〜 5 0 % である請求項 2 9〜 3 2のいずれかに記載の車輛シー ト。  33. The vehicle sheet according to any one of claims 29 to 32, wherein the thermoplastic elastic fiber in the outer layer accounts for 10 to 50% of the weight of the outer layer.
3 4 . 外層の非弾性捲縮短織維がポリエステル織維または ァラ ミ ド鏃維の中から選ばれる請求項 2 9〜 3 3のいずれか に記載の車輛シー ト。  34. The vehicle seat according to any one of claims 29 to 33, wherein the non-elastic crimped short fiber of the outer layer is selected from polyester fiber or aramid arrowhead fiber.
3 5 . 外層の厚さが 3〜 1 0 mmであり、 その目付が 2 0 0 〜 5 0 0 g Zm2である請求項 2 9〜 3 4のいずれかに記載の 車輛シー ト。 3 5. A thickness. 3 to 1 0 mm in outer layer, vehicle sheet according to any one the basis weight of 2 0 0 ~ 5 0 0 g Zm 2 a is claim 2 9-3 4.
3 6 . 内層がポリエステル捲縮短織維またはそれを主成分 とする鏃維混合物からなる請求項 2 9〜 3 5のいずれかに記 載の車輛シー ト。  36. The vehicle sheet according to any one of claims 29 to 35, wherein the inner layer is made of a polyester crimped short fiber or a mixture of arrowhead fibers mainly containing the same.
3 7 . 外層のみならず内層にも熱可塑性弾性鏃維が混入分 散され、 且つ両層間が相互に接着されている請求項 2 9〜 3 6のいずれかに記載の車輛シー ト。  37. The vehicle sheet according to any one of claims 29 to 36, wherein thermoplastic elastic arrowhead fibers are mixed and dispersed not only in the outer layer but also in the inner layer, and both layers are adhered to each other.
3 8 . 航空機シー トである請求項 2 9〜 3 7のいずれかに 記載の車輛シー ト。  38. The vehicle sheet according to any one of claims 29 to 37, which is an aircraft sheet.
3 9 . レーシングカーシー トである請求項 2 9〜 3 7のい ずれかに記載の車輛シー ト。  39. The vehicle seat according to any one of claims 29 to 37, which is a racing car seat.
PCT/JP1993/001093 1992-08-04 1993-08-04 Heat and flame resisting cushion material and seat for vehicle WO1994003393A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69319577T DE69319577T2 (en) 1992-08-04 1993-08-04 FIRE-RESISTANT AND HEAT-RESISTANT UPHOLSTERY MATERIAL AND SEATS FOR TRANSPORT
EP94906772A EP0622332B1 (en) 1992-08-04 1993-08-04 Heat and flame resisting cushion material and seat for vehicle
JP50518394A JP3527507B2 (en) 1992-08-04 1993-08-04 Heat-resistant flame-retardant cushion material and vehicle seat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20799092 1992-08-04
JP4/207990 1992-08-04

Publications (1)

Publication Number Publication Date
WO1994003393A1 true WO1994003393A1 (en) 1994-02-17

Family

ID=16548857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001093 WO1994003393A1 (en) 1992-08-04 1993-08-04 Heat and flame resisting cushion material and seat for vehicle

Country Status (4)

Country Link
EP (1) EP0622332B1 (en)
JP (1) JP3527507B2 (en)
DE (1) DE69319577T2 (en)
WO (1) WO1994003393A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111628A (en) * 1995-10-20 1997-04-28 Teijin Ltd Molding of cushion material
JPH09294649A (en) * 1996-05-08 1997-11-18 Osaka Gas Co Ltd Refractory chair
JPH10283A (en) * 1996-06-14 1998-01-06 Teijin Ltd Cushion with improved incombustibility and cushiony feel and its manufacture
JP2001131852A (en) * 1999-10-29 2001-05-15 Kureha Ltd Flameproof sheet
JP2001149719A (en) * 1999-11-30 2001-06-05 Nippon Felt Co Ltd Heat resistant filter material
JP2007530806A (en) * 2004-03-23 2007-11-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Reinforced nonwoven fireproof fabric, method for producing such fabric, and article fireproofed therewith
WO2008018193A1 (en) * 2006-08-11 2008-02-14 Fuji Corporation Heat-insulating sound-absorbing material with high heat resistance
JP2017169998A (en) * 2016-03-25 2017-09-28 帝人株式会社 Cushion body
WO2019167750A1 (en) * 2018-03-01 2019-09-06 東レ株式会社 Non-woven fabric
WO2019188275A1 (en) * 2018-03-30 2019-10-03 東レ株式会社 Nonwoven fabric
CN114592280A (en) * 2020-12-31 2022-06-07 苏州爱美纤维科技有限公司 Non-woven material and application thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790795B2 (en) 2001-03-21 2004-09-14 Tex Tech Industries, Inc. Fire blocking fabric
BR0212500A (en) * 2001-09-12 2004-08-24 Carpenter Co Flame barrier at large nonwoven widths
US7153794B2 (en) 2004-05-07 2006-12-26 Milliken & Company Heat and flame shield
CN100528546C (en) 2004-05-07 2009-08-19 美利肯公司 Heat and flame shield
US8163664B2 (en) 2004-07-30 2012-04-24 Owens Corning Intellectual Capital, Llc Fiberglass products for reducing the flammability of mattresses
US7247585B2 (en) * 2004-11-23 2007-07-24 E.I. Du Pont De Nemours And Company Reinforced nonwoven fire blocking fabric having ridges and grooves and articles fire blocked therewith
US7226877B2 (en) * 2004-12-27 2007-06-05 E. I. Du Pont De Nemours And Company Liquid water impermeable reinforced nonwoven fire blocking fabric, method for making such fabric, and articles fire blocked therewith
US7589037B2 (en) 2005-01-13 2009-09-15 Basofil Fibers, Llc Slickened or siliconized flame resistant fiber blends
US7696112B2 (en) 2005-05-17 2010-04-13 Milliken & Company Non-woven material with barrier skin
US7709405B2 (en) 2005-05-17 2010-05-04 Milliken & Company Non-woven composite
US7341963B2 (en) 2005-05-17 2008-03-11 Milliken & Company Non-woven material with barrier skin
US7605097B2 (en) 2006-05-26 2009-10-20 Milliken & Company Fiber-containing composite and method for making the same
US7651964B2 (en) 2005-08-17 2010-01-26 Milliken & Company Fiber-containing composite and method for making the same
US20080153373A1 (en) * 2006-12-22 2008-06-26 Walter Randall Hall Abrasion resistant fire blocking fabric
US7825050B2 (en) 2006-12-22 2010-11-02 Milliken & Company VOC-absorbing nonwoven composites
US7871947B2 (en) 2007-11-05 2011-01-18 Milliken & Company Non-woven composite office panel
DE102014213373B4 (en) * 2014-04-16 2021-06-24 Johnson Controls Gmbh & Co. Kg Upholstery element
CN112746390B (en) * 2021-01-28 2022-04-12 广东春夏新材料科技股份有限公司 Hot-air cloth for sanitary towel and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530875B2 (en) * 1976-03-29 1980-08-14
JPS61125377A (en) * 1984-11-21 1986-06-13 日本エステル株式会社 Production of paddings
JPH04272224A (en) * 1991-02-22 1992-09-29 Toyobo Co Ltd Hot-melt fiber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2185044B (en) * 1985-04-09 1989-01-25 Messerschmitt Boelkow Blohm A process for manufacturing a cushion core, particularly for an aircraft seat
JPH01168950A (en) * 1987-12-24 1989-07-04 Asahi Chem Ind Co Ltd Flame-retardant antistatic acrylic fiber nonwoven fabric
US5077874A (en) * 1990-01-10 1992-01-07 Gates Formed-Fibre Products, Inc. Method of producing a nonwoven dibrous textured panel and panel produced thereby
US5298321A (en) * 1991-07-05 1994-03-29 Toyo Boseki Kabushiki Kaisha Recyclable vehicular cushioning material and seat
US5462793A (en) * 1992-12-22 1995-10-31 Toyo Boseki Kabushiki Kaisha Structured fiber material comprised of composite fibers coiled around crimped short fibers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530875B2 (en) * 1976-03-29 1980-08-14
JPS61125377A (en) * 1984-11-21 1986-06-13 日本エステル株式会社 Production of paddings
JPH04272224A (en) * 1991-02-22 1992-09-29 Toyobo Co Ltd Hot-melt fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0622332A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111628A (en) * 1995-10-20 1997-04-28 Teijin Ltd Molding of cushion material
JPH09294649A (en) * 1996-05-08 1997-11-18 Osaka Gas Co Ltd Refractory chair
JPH10283A (en) * 1996-06-14 1998-01-06 Teijin Ltd Cushion with improved incombustibility and cushiony feel and its manufacture
JP2001131852A (en) * 1999-10-29 2001-05-15 Kureha Ltd Flameproof sheet
JP2001149719A (en) * 1999-11-30 2001-06-05 Nippon Felt Co Ltd Heat resistant filter material
JP2007530806A (en) * 2004-03-23 2007-11-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Reinforced nonwoven fireproof fabric, method for producing such fabric, and article fireproofed therewith
WO2008018193A1 (en) * 2006-08-11 2008-02-14 Fuji Corporation Heat-insulating sound-absorbing material with high heat resistance
JP4951507B2 (en) * 2006-08-11 2012-06-13 株式会社フジコー High heat insulation sound-absorbing material
JP2017169998A (en) * 2016-03-25 2017-09-28 帝人株式会社 Cushion body
WO2019167750A1 (en) * 2018-03-01 2019-09-06 東レ株式会社 Non-woven fabric
WO2019188275A1 (en) * 2018-03-30 2019-10-03 東レ株式会社 Nonwoven fabric
CN111918994A (en) * 2018-03-30 2020-11-10 东丽株式会社 Non-woven fabric
JPWO2019188275A1 (en) * 2018-03-30 2021-02-12 東レ株式会社 Non-woven
JP7172998B2 (en) 2018-03-30 2022-11-16 東レ株式会社 non-woven fabric
CN114592280A (en) * 2020-12-31 2022-06-07 苏州爱美纤维科技有限公司 Non-woven material and application thereof

Also Published As

Publication number Publication date
EP0622332B1 (en) 1998-07-08
DE69319577T2 (en) 1998-11-05
DE69319577D1 (en) 1998-08-13
EP0622332A1 (en) 1994-11-02
JP3527507B2 (en) 2004-05-17
EP0622332A4 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
WO1994003393A1 (en) Heat and flame resisting cushion material and seat for vehicle
EP0285338B1 (en) Fire retardant structural textile panel
US6790795B2 (en) Fire blocking fabric
US8506865B2 (en) Composite fabric product and production process therefor
CN100528546C (en) Heat and flame shield
WO2018199091A1 (en) Laminate composite and method for producing same
JP2008029854A (en) Method of manufacturing vehicle seat having high-grade air circulation and seat
US11993027B2 (en) Self-rising board molding
JPH08318066A (en) Cushion structural body
KR101282296B1 (en) Elastic cushion and method of fabricating the same
JP5272953B2 (en) Laminated cushion structure
KR101498577B1 (en) Cushioning article for automobile interior
JP2003053065A (en) Cushion material improved in fire retardance and softness and method of manufacturing the same
JP4314507B2 (en) Laminated structure suitable as a cushioning material
JP3596623B2 (en) Seat and manufacturing method
JPH10283A (en) Cushion with improved incombustibility and cushiony feel and its manufacture
JP2014217995A (en) Cushion material
JP3541969B2 (en) Bed mat
JP3610405B2 (en) Cushion chair
JP3620604B2 (en) Flame retardant seating and manufacturing method
JPH09201481A (en) Laminated body for interior
RU2729093C2 (en) Vandal-resistant fire-blocking material
JP3663495B2 (en) Side complex, method for producing the same, and cushion structure
JP4500506B2 (en) Fiber elastic body and stool
JPH11350297A (en) Woven fabric for automobile seat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994906772

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 211319

Date of ref document: 19940705

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1994906772

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994906772

Country of ref document: EP