WO1993023926A1 - Circuit intermediaire entre un circuit logique a basse tension et un etage de sortie a haute tension realises dans une technologie cmos standard - Google Patents

Circuit intermediaire entre un circuit logique a basse tension et un etage de sortie a haute tension realises dans une technologie cmos standard Download PDF

Info

Publication number
WO1993023926A1
WO1993023926A1 PCT/CH1993/000124 CH9300124W WO9323926A1 WO 1993023926 A1 WO1993023926 A1 WO 1993023926A1 CH 9300124 W CH9300124 W CH 9300124W WO 9323926 A1 WO9323926 A1 WO 9323926A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
mpi
mnl
circuit
Prior art date
Application number
PCT/CH1993/000124
Other languages
English (en)
Inventor
Michel Declerq
Martin Schubert
Original Assignee
Ecole Polytechnique Federale De Lausanne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Polytechnique Federale De Lausanne filed Critical Ecole Polytechnique Federale De Lausanne
Priority to EP93911722A priority Critical patent/EP0594834B1/fr
Priority to DE69323683T priority patent/DE69323683D1/de
Priority to US08/182,143 priority patent/US5473268A/en
Publication of WO1993023926A1 publication Critical patent/WO1993023926A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS

Definitions

  • the present invention relates to an intermediate circuit between a low voltage logic integrated circuit and a high voltage output stage for controlling transducers, plasma screens and electromechanical actuators, in which said high voltage output stage comprises at least two N-channel and P-channel transistors respectively, produced using standard CMOS technology.
  • “high voltage” is any voltage higher than the “nominal” or “normal” voltage for using a technology, tolerances included.
  • This "nominal” or “normal” operating voltage corresponds to the supply voltage normally applied to standard MOS components and / or circuits produced in this technology, and which these can withstand without damage in continuous or transient conditions.
  • the sensors and actuators are intended to establish communication between the signal processing circuits and their environment.
  • the sensors supply these circuits with external data.
  • the actuators transform the low power and low voltage signals into external actions such as for example relay switching in a motor vehicle etc.
  • CMOS standard oxide-metal semiconductors with complementary symmetry
  • CMOS complementary metal-oxide field effect transistors
  • MOSFETs high voltage which are fully compatible with so-called standard low voltage technologies. This result was achieved by a new combination of existing technology layers in the standard CMOS process is not changed. The fact of supporting high voltages is due to the creation of weakly doped buffer zones between the channel and the drain and to the use of field electrodes and protective screens.
  • the resulting high voltage MOSFETs have the same threshold voltage VT as their low voltage type correspondents, but are capable of withstanding high drain-source voltages Vos which exceed 30 V. These components are however limited to a grid bone voltage -source weak due to the low standard thickness of the oxides of the grid, which creates a problem for the safe and efficient realization of an intermediate circuit of the type mentioned above intended to be interposed between a low voltage logic circuit and a high voltage output.
  • CMOS type high-voltage inverter outputs is similar to the conventional topology of CMOS inverters in which the source and ground of the N-channel transistor are connected to earth
  • the source and the ground of the P channel transistor are connected to the high positive supply voltage VDDH and the drains of the two transistors are connected together at the output.
  • High voltage N channel MOSFET called NMOS-HT transistor can be easily controlled by low voltage O / VDD logic levels, while the gate of high voltage P channel MOSFET transistor called PMOS-HT transistor, requires sliding level to be able to be activated between VDDH - VDD and VDDH in order to comply with the conditions relating to the voltage between the grid and the Vos source.
  • the circuit described by U S- A- ⁇ , 52, 825 does not use standard low voltage CMOS technology.
  • P channel type high voltage (HT) MOS transistors are provided with a thick gate oxide, which allows and requires high control voltages, and changes completely. the data of the problem.
  • the output of the translation circuit of FIG. 2A's role is to produce a signal whose amplitude is equal to the total dynamics of the high voltage supply. This illustrates the amplification function of this circuit.
  • the present invention proposes to overcome these various drawbacks by producing a circuit of the type mentioned above for controlling a high voltage CMOS inverter output stage by a low voltage logic circuit, in an original, reliable and inexpensive manner, because that it uses known and perfectly mastered technologies.
  • This circuit is also capable of automatically adapting to a very wide range of VDDH voltages.
  • the circuit according to the invention is characterized in that it comprises a voltage level translator or decalor coupled between said low voltage input logic circuit and said high voltage output stage, this voltage level translator also being produced according to - a standard CMOS technique, and consisting of at least two identical basic blocks forming voltage mirrors interconnected in a crossed fashion.
  • said voltage mirror comprises at least a first low-voltage P-channel transistor and a second transistor of the NMOS-HT type, the drain of the first transistor being connected to the drain of the second transistor and to the gate of the first and providing the output voltage, the low voltage level input voltage being connected to the gate of the second transistor and the high voltage power supply being connected to the source of the first transistor.
  • said voltage mirror comprises at least a first low-voltage P-channel transistor and a second transistor of the NMOS-HT type, the drain of the first transistor being connected to the drain of the second transistor and to the gate of the first and providing the output voltage, the low voltage level input voltage being connected to the gate of the second transistor and the high voltage power supply being connected to the source of the first transistor, as well as a third P-channel transistor connected in parallel with said first P-channel transistor, the input voltage, of high voltage level being connected to the gate of said third transistor and the source of the second transistor being connected to earth.
  • the voltage mirror comprises at least a first P-channel transistor and a second N-channel high-voltage MOSFET transistor, of the HV-NMOST type, the drain of said first transistor being connected to the drain of the second transistor and to the gate of the first transistor and delivering an output voltage, the gate of the second transistor being at the supply voltage, the substrate being grounded and the source being connected to the drain of a third transistor NMOS type, and an input voltage, of low voltage level, is applied to the gate of this third transistor whose source and substrate are connected to earth, the high supply voltage being applied to the source of the first transistor and a second P-channel transistor being connected in parallel to the first transistor, the high voltage level input voltage being applied to the gate d udit second transistor.
  • the voltage mirror comprises at least a first P-channel transistor and a second high-voltage N-channel MOSFET transistor, of the HV-NMOST type, the drain of said first transistor being connected to the drain of said second transistor and to the gate of the first transistor and delivering an output voltage, the gate of the second transistor being at the supply voltage, the substrate being grounded and the source being connected to the drain of an additional transistor whose source and substrate are connected to earth, the high supply voltage is applied to the source of the first transistor, a second P-channel transistor is connected in parallel to the first transistor, the gate of this second P-channel transistor being supplied by the high voltage level input voltage, and any circuit element is connected in parallel to the transistor additional to N channel, the resistance of this circuit element being sufficiently high so that the operation of the N channel transistors is not significantly disturbed.
  • the voltage mirror comprises at least a first P-channel MOSFET transistor and a second N-channel high-voltage MOSFET transistor, of the HV-NMOST type, the drain of said first transistor being connected to the drain of said second transistor and to the gate of the first transistor, and delivering an output voltage, an input voltage of low voltage level is applied to the gate of the second transistor, the high supply voltage being applied to the source of the first transistor, a third P channel transistor is connected in parallel to the first P channel transistor, the gate of this third transistor is supplied at the high voltage level input voltage, and between the source of the second transistor and earth is connected any circuit element whose resistance is low enough for the second transistor to operate not significantly disturbed.
  • the circuit can include an auxiliary protection circuit, this circuit being arranged to protect at least one of the two voltage mirrors against an excessive voltage drop, of high voltage level, this circuit comprising , either a chain of diodes connected in series, or a Zener diode and, in the case of the chain of diodes, the anode (of type P) of the first diode being supplied by the high supply voltage and the cathode ( type N) of the last diode being connected to the output of the corresponding voltage mirror and, when using a Zener diode, the cathode (type N) of the latter being supplied at the supply voltage and the anode (type P) being connected to the corresponding voltage mirror.
  • this circuit comprising , either a chain of diodes connected in series, or a Zener diode and, in the case of the chain of diodes, the anode (of type P) of the first diode being supplied by the high supply voltage and the cathode ( type N) of the last diode being connected
  • the voltage level translator may further include a logic unit arranged to avoid the simultaneous conduction of the transistors of the output stage.
  • FIGS. 1A, 2A, 3A and A illustrate sectional views of different high-voltage MOSFET and MOSFET type transistors produced using CMOS technology
  • FIGS. 1B, 2B, 3B and -B illustrate the symbols used to represent the transistors illustrated in section by the preceding figures
  • FIG. 5A represents a schematic view illustrating the principle of the invention
  • FIG. 5B represents a graph of the voltages as a function of time corresponding to the operation of the circuit represented by FIG. 5A
  • FIG. 6 represents a first embodiment of a tension mirror
  • FIG. 7 represents an improved variant of a tension mirror used in the context of the present invention
  • FIG. 8 illustrates a first embodiment of the voltage level translator which constitutes the heart of the intermediate circuit between the low voltage logic and the high voltage output step according to the invention
  • FIG. 9 represents an improved variant of the circuit illustrated in FIG. 8,
  • FIG. 10 represents a variant of the improved voltage mirror, comprising an additional NMOST transistor
  • FIGS. 11 and 12 show variants of the voltage mirrors described above, comprising complementary circuit elements (X) which do not substantially modify the behavior of the entire circuit, and
  • FIG. 13 illustrates a protection circuit produced by means of a chain of diodes connected in series, usable in combination with all the voltage mirrors described above, this circuit being intended to prevent an excessive drop in the output voltage.
  • the transistor 10 of the N-MOSFET type comprises a substrate 11 of the P type and two doped zones N * corresponding respectively to the source S and to the drain D.
  • the gate G is arranged above the channel connecting the two N * doped zones.
  • the P-MOSFET type transistor represented by FIGS. 2A and 2B differs from the previous one in that the substrate P is replaced by an N-cup and the N * doped zones are replaced by P * doped zones.
  • the transistor illustrated in FIGS. 3A and 3B is of the high voltage N-MOSFET type using an N cup as a buffer zone.
  • the transistor shown in FIGS. 4A and 4B differs from the previous one in that it is of the P type and includes a P type buffer zone.
  • FIGS. 5A and 5B illustrate a high voltage output stage 20 which is associated with a voltage level translator device 21 mounted between a low voltage input S ⁇ _, the value of which is usually between 0 and 5 V, and an output intended for control the PMOS-HT transistor and whose SH value reproduces that of the Sr_ input with an offset (VD DH - VD D).
  • the VD D H and VDD levels are usually, but not necessarily, around 24 V and 5 V, respectively.
  • S ⁇ _ varies from 0 to 5 V
  • the output SH varies in this example between 19 and 2-4 V.
  • the voltage mirror in its most basic form, comprises two transistors respectively of type P and N, namely the MOS transistors, respectively MPI and MNl.
  • the transistor MN1 is loaded by the transistor MPI whose gate is connected to the drain of this same transistor.
  • the basic circuit of this voltage mirror is mounted between a high voltage VDDH and the earth and controlled by an input voltage VIN. - It is intended to supply at the output a voltage Vx such that VD -J ⁇ - Vx is equal to VIN.
  • the transistors MN1 and MPI When they are made conductive, the transistors MN1 and MPI operate normally in saturated state. The transistor MN1 can however enter the unsaturated zone of its characteristics for voltages VDDH of low value.
  • I is the intensity ⁇ n is a coefficient depending on the size of the channel transistor N ⁇ p is a coefficient depending on the size of the channel transistor P
  • VGS. ⁇ . is the gate-source voltage for the N-channel transistor Vos.p is the gate-source voltage for the P-channel transistor V ⁇ .
  • P is the threshold voltage of the channel transistor P Vr.x. is the threshold voltage of the N-channel transistor or:
  • the PMOS transistor called MPI is a low voltage component while the NMOS transistor called MNl supports the largest part of the voltage drop and must be of the high voltage type.
  • FIG. 7 illustrates an improved embodiment of the voltage mirror, in which a second PMOS transistor, namely the transistor MP2, is connected in parallel with the first transistor MPI and can be used to bring Vx to the value VDDH when V ⁇ n is at VDD level and thus lead to the ideal realization of the tension mirror.
  • the control voltage for switching this additional component is the complement of Vx is Vx.
  • This device forms the basis of an ideal voltage translator device for the Vin signal and is preferably used in the intermediate voltage level translator circuit described below.
  • the voltage level translator represented by FIG. 8 comprises two cross-coupled voltage mirrors to constitute a high-voltage flip-flop controlled by the complementary low-voltage input signals Sr_ and Sr_.
  • the SH and SH output signals provide the required translation of Vm with a full offset of
  • VDDH - VDD VDDH for St.
  • V n V 0 and VDD.
  • This intermediate voltage level translation circuit has the robustness and flexibility required for its use in numerous applications, in particular as a control circuit for transducers, plasma screens, electromechanical relays, servo mechanisms or the like.
  • VDDH - VDD VDDH - VDD
  • VDDH was based on the assumption that the high voltage NMOS transistors MN1 and MN2 of the intermediate circuit work in their saturation zones when they are switched. Starting from the fact that the maximum voltage drop across the P channel transistors is VDD, it is verified that this saturation condition of the NMOS-HT is fulfilled for VDDH 5. (2VD D - V ⁇ ).
  • the maximum amplitude of the variations of the voltages Vx and Vx between their two limits is slightly less than the full voltage VDD, but largely sufficient to make the P-channel MOS transistors of the voltage level translator circuit conductive.
  • the voltage level translator of figure 8 will therefore work correctly for a very wide range of VDDH values extending from a low voltage VDD supply up to a maximum voltage authorized by the short-circuit characteristics of the MOS components. high voltage.
  • the behavior of the circuit is mainly determined by the parasitic capacities associated with the active devices.
  • FIG. 9 illustrates an improved embodiment of the voltage level translator circuit associated with logic which allows a significant reduction in the dissipation of the transient power during the switching phase.
  • the two high-voltage NMOS and PMOS transistors respectively of the output stage can be temporarily and simultaneously in a conductive state. This situation is the consequence of different delays in the transmission of the control signals Sr. and SH.
  • Sr. and SH When such a transient situation occurs, a conductive path is obtained between the supply at the voltage VDDH and the ground, which generates high intensity peaks in the output power stages.
  • FIG 10 shows a variant of the improved version of the tension mirror.
  • a second PMOS transistor (MP2) connected in parallel is associated with the PMOS transistor (MPI).
  • the supply voltage for switching the transistor MP2 is the complement V ⁇ of the voltage Vx.
  • the drains of MPI and MP2 are connected to the drain of MNl and deliver the output voltage V.
  • the gate of MNl is at the supply voltage. VDD and the substrate is connected to earth Vss.
  • the gate of a second NMOS transistor (MN2) is controlled by the input voltage Vin.
  • the source and the substrate of MN2 are connected to the earth Vss and its drain is connected to the source of MN1.
  • the circuit also operates when any circuit element X is controlled parallel to MN2, provided that the resistance of this circuit element is sufficient not to significantly disturb the operation of the transistors MN1 and MN2.
  • FIG. 13 illustrates a diode protection circuit capable of being associated with each of the voltage mirrors described above.
  • a series of diodes connected in series is connected between VDDH and the output voltage Vx.
  • the anode (type P) of the first diode is supplied with voltage VDDH and the cathode (type 'N) of the last diode is supplied with voltage Vx.
  • the number of diodes is such that the sum of their threshold voltage is equal to or greater than VDD. E normal operation a negligible current flows through the diodes.
  • Vx appreciably exceeds the value VDDH VDD then a current of diodes is created and prevents a complementary fall of Vx, which ensures protection of the output of voltage mirror.
  • Such protection mechanisms may have their interest or even be necessary in various control circuits.
  • the diodes can be replaced by a Zener diod, the cathode of which is supplied at the voltage VDDH and the anode at the voltage Vx.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

La présente invention concerne un circuit intermédiaire entre un circuit logique a basse tension et un étage de sortie à haute tension réalisés dans une technologie CMOS standard. L'étage de sortie (20) comporte deux transistors respectivement à canal N et à canal P, réalisés selon une technologie CMOS standard. Le circuit intermédiaire comporte un translateur de niveau de tension (21) couplé entre un circuit logique d'entrée SL et ledit étage de sortie (20). Ce translateur de niveau de tension (21) est réalisé selon une technologie CMOS standard et est constitué d'au moins deux blocs de base identiques formant des miroirs de tension interconnectés de façon croisée. Ce circuit est utilisé pour commander des transducteurs, des écrans plasma et des actionneurs électromécaniques.

Description

CIRCUIT INTERMEDIAIRE ENTRE UN CIRCUIT LOGIQUE A BASSE TENSION ET UN ETAGE DE SORTIE A HAUTE TENSION REALISES DANS UNE TECHNOLOGIE CMOS STANDARD
La présente invention concerne un circuit intermédiaire entre un circuit intégré logique à basse tension et un étage de sortie à haute tension pour la commande de transducteurs , d'écrans plasma et d'actionneurs électromécaniques , dans lequel ledit étage de sortie haute tension comporte au moins deux transistors respectivement à canal N et à canal P , réalisés selon une technologie CMOS standard .
Dans le contexte de la présente invention, on appelle "haute tension" toute tension plus élevée que la tension "nominale" ou "normale" d'utilisation d'une technologie, tolérances comprises . Cette tension "nominale" ou "normale" d'utilisation correspond à la tension d'alimentation normalement appliquée aux composants et/ou circuits MOS standards réalisés dans cette technologie, et que ceux-ci peuvent supporter sans dommage en régime continu ou transitoire.
De façon générale, les capteurs et les actionneurs sont destinés à établir la communication entre les circuits de traitement du signal et leur environnement . Les capteurs fournissent à ces circuits des données extérieures. Les actionneurs transforment les signaux de faible puissance et de faible tension en actions extérieures telles que par exemple la commutation de relais dans un véhicule automobile etc.
Au cours de ces dernières années, les circuits de puissance avec fonction intelligente dits : "Smart power electronics" se sont révélés particulièrement intéressants pour de multiples applications .
Afin de coupler des circuits logiques à basse tension basés sur une technologie standard de fabrication de semi-conducteurs oxyde-métal à symétrie complémentaire dite : "CMOS standard" avec des étages de sortie "CMOS" haute tension sur un même circuit intégré, et ceci à des coûts de production faibles , on a tenté de produire des transistors métal-oxyde à effet de champ , appelés par la suite
MOSFETs , à haute tension qui soient tout à fait compatibles avec des technologies dites basse tension standard. Ce résultat a pu être atteint par une combinaison nouvelle des ' couches technologiques existantes dans le procédé CMOS standard qui n'est pas modifié. Le fait de supporter des tensions élevées est dû à la création de zones tampon faiblement dopées entre le canal et le drain et à l'utilisation d'électrodes de champ et d'écrans de protection.
Les MOSFETs à haute tension qui en résultent ont la même tension de seuil VT que leurs correspondants de type basse tension, mais sont capables de supporter des tensions drain-source élevées Vos qui dépassent 30 V. Ces composants sont cependant limités à une tension os grille-source faible en raison de la faible épaisseur standard des oxydes de la grille, ce qui crée un problème pour la réalisation sûre et efficace d'un circuit intermédiaire du type mentionné ci-dessus destiné à être interposé entre un circuit logique basse tension et une sortie haute tension.
La topologie des sorties-inverseurs à haute tension du type CMOS est similaire à la topologie classique des inverseurs CMOS dans lesquels la source et la masse du transistor à canal N sont connectées à la terre
Vss, la source et la masse du transistor à canal P sont connectées à la haute tension positive d'alimentation VDDH et les drains des deux transistors sont connectés ensemble à là sortie. Une différence essentielle apparaît toutefois pour commander les grilles avec un signal issu du circuit logique à basse tension. La grille du transistor
MOSFET à canal N à haute tension appelé transistor NMOS-HT peut être facilement contrôlée par les niveaux de la logique basse tension O/VDD , tandis que la grille du transistor MOSFET à canal P à haute tension appelé transistor PMOS-HT , nécessite un glissement de niveau pour pouvoir être actionné entre VDDH - VDD et VDDH afin de respecter les conditions relatives à la tension entre la grille et la source Vos.
Une des solutions pour réaliser ce glissement de niveau pourrait être basée sur l'utilisation d'un condensateur monté entre la grille du transistor NMOS et celle du transistor PMOS à haute tension. Une telle solution n'a cependant pas été retenue en raison des problèmes de fiabilité qu'elle induit. En effet , il est difficile de garantir le maintien des tensions grille-source Vos dans des tolérances acceptables pendant les phases transitoires liées à l'enclenchement de la tension VDDH ou pendant de longues périodes de repos .
Diverses publications antérieures décrivent des circuits décaleurs de tension, mais aucune ne remplit le but fixé par la présente invention et n'exploite les moyens de cette invention pour atteindre le but fixé.
Le circuit décrit par le brevet U S- A-^, 52, 825 n'utilise pas une technologie CMOS basse tension standard. En particulier, les transistors MOS haute tension (HT) de type canal P sont dotés d' un oxyde de grille épais , ce qui autorise et exige des tensions de contrôle élevées , et change totalement . les données du problème. Par ailleurs, la sortie du circuit de translation de la fig . 2A a pour rôle de produire un signal dont l'amplitude est égale à la dynamique totale de l'alimentation haute tension. Ceci illustre bien la fonction d'amplification de ce circuit.
La présente invention se propose de pallier ces différents inconvénients en réalisant un circuit du type mentionné précédemment pour commander un étage de sortie inverseur CMOS à haute tension par un circuit logique à faible tension, d'une manière originale, fiable et peu coûteuse, du fait qu'elle utilise des technologies connues et parfaitement maîtrisées. Ce circuit est en outre capable de s'adapter automatiquement à une très large gamme de tensions VDDH .
Dans ce but, le circuit selon l'invention est caractérisé en ce qu'il comporte un translateur ou decaleur de niveau de tension couplé entre ledit circuit logique d'entrée basse tension et ledit étage de sortie haute tension, ce translateur de niveau de tension étant également réalisé selon - une technique CMOS standard, et constitué d'au moins deux blocs de base identiques formant des miroirs de tension interconnectés de façon croisée. Selon un premier mode de réalisation, ledit miroir de tension comporte au moins un premier transistor basse-tension à canal P et un deuxième transistor de type NMOS-HT , le drain du premier transistor étant connecté au drain du deuxième transistor et à la grille du premier et fournissant la tension de sortie, la tension d'entrée de niveau basse tension étant connectée à la grille du deuxième transistor et l'alimentation haute tension étant connectée à la source du premier transistor.
Selon une version améliorée, ledit miroir de tension comporte au moins un premier transistor basse-tension à canal P et un deuxième transistor de type NMOS-HT , le drain du premier transistor étant connecté au drain du deuxième transistor et à la grille du premier et fournissant la tension de sortie, la tension d'entrée de niveau basse tension étant connectée à la grille du deuxième transistor et l'alimentation haute tension étant connectée à la source du premier transistor, ainsi qu'un troisième transistor à canal P connecté en parallèle avec ledit premier transistor à canal P, la tension d'entrée, de niveau haute tension étant connectée à la grille dudit troisième transistor et la source du deuxième transistor étant reliée à la terre.
Selon une première forme de réalisation particulièrement avantageuse du circuit, le miroir de tension comporte au moins un premier transistor à canal P et un deuxième transistor MOSFET, à haute tension à canal N , du type HV-NMOST , le drain dudit premier transistor étant connecté au drain du deuxième transistor et à la grille du premier transistor et délivrant une tension de sortie, la grille du deuxième transistor étant à la tension d'alimentation, le substrat étant à la terre et la source étant connectée au drain d'un troisième transistor de type NMOS, et une tension d'entrée, de niveau basse tension, est appliquée à la grille de ce troisième transistor dont la source et le substrat sont connectés à la terre, la haute tension d'alimentation étant appliquée à la source du premier transistor et un second transistor à- canal P étant connecté en parallèle au premier transistor, la tension d'entrée de niveau haute tension étant appliquée à la grille dudit second transistor. Selon une deuxième forme de réalisation particulièrement avantageuse du circuit, le miroir de tension comporte au moins un premier transistor à canal P et un deuxième transistor MOSFET , à haute tension à canal N , du type HV-NMOST , le drain dudit premier transistor étant connecté au drain dudit deuxième transistor et à la grille du premier transistor et délivrant une tension de sortie, la grille du deuxième transistor étant à la tension d'alimentation , le substrat étant à la terre et la source étant connectée au drain d'un transistor supplémentaire dont la source et le substrat sont connectés à la terre, la haute tension d'alimentation est appliquée à la source du premier transistor , un deuxième transistor à canal P est monté en parallèle au premier transistor, la grille de ce deuxième transistor à canal P étant alimentée par la tension d'entrée de niveau haute tension, et un quelconque élément de circuit est connecté en parallèle au transistor supplémentaire à canal N, la résistance de cet élément de circuit étant suffisamment élevée pour que le fonctionnement des transistors à canal N se soit pas sensiblement perturbé.
Selon une troisième forme de réalisation particulièrement avantageuse du circuit, le miroir de tension comporte au moins un premier transistor MOSFET à canal P et un deuxième transistor MOSFET à haute tension à canal N , du type HV-NMOST , le drain dudit premier transistor étant connecté au drain dudit deuxième transistor et à la grille du premier transistor, et délivrant une tension de sortie , une tension d'entrée de niveau basse tension est appliquée à la grille du deuxième transistor, la haute tension d'alimentation étant appliquée à la source du premier transistor, un troisième transistor à canal P est connecté en parallèle au premier transistor à canal P , la grille de ce troisième transistor est alimentée à la tension d'entrée de niveau haute tension, et entre la source du deuxième transistor et la terre est connecté un élément de circuit quelconque dont la résistance est suffisamment faible pour que le fonctionnement du deuxième transistor se soit pas sensiblement perturbé . Dans toutes les formes de réalisation précédemment décrites , le circuit peut comporter un circuit de protection auxiliaire, ce circuit étant agencé pour protéger l'un au moins des deux miroirs de tension contre une chute excessive de tension, de niveau haute tension, ce circuit comportant, soit une chaîne de diodes connectées en série, soit une diode Zener et, dans le cas de la chaîne de diodes , l'anode (de type P) de la première diode étant alimentée par la haute tension d'alimentation et la cathode (de type N) de la dernière diode étant connectée à la sortie du miroir de tension correspondant et, lors de l'utilisation d'une diode Zener, la cathode (de type N) de cette dernière étant alimentée à la tension d'alimentation et l'anode (de type P) étant connectée au miroir de tension correspondant.
Le translateur de niveau de tension peut en outre comporter une unité logique agencée pour éviter la conduction simultanée des transistors de l'étage de sortie.
La présente invention sera mieux comprise en référence à la description d'exemples de réalisation et du dessin annexé dans lequel :
les figures 1A, 2A, 3A et A illustrent des vues en coupe de différents transistors du type MOSFET et MOSFET à haute tension réalisés selon une technologie CMOS ,
les figures 1B , 2B , 3B et -B illustrent les symboles utilisés pour représenter les transistors illustrés en coupe par les figures précédentes ,
la figure 5A représente une vue schématique illustrant le principe de l'invention,
la figure 5B représente un graphique des tensions en fonction du temps correspondant au fonctionnement du circuit représenté par la figure 5A, la figure 6 représente une première forme de réalisation d'un miroir de tension,
la figure 7 représente une variante perfectionnée d'un miroir de tension utilisé dans le cadre de la présente invention,
la figure 8 illustre une première forme de réalisation du translateur de niveau de tension qui constitue le coeur du circuit intermédiaire entre la logique à basse tension et l'étape de sortie haute tension selon l'invention,
la figure 9 représente une variante perfectionnée du circuit illustré par la figure 8,
la figure 10 représent une variante du miroir de tension perfectionné, comportant un transistor NMOST supplémentaire,
les figures 11 et 12 représentent des variantes des miroirs de tension décrits précédemment, comportant des éléments de circuits (X) complémentaires qui ne modifient pas sensiblement le comportement de l'ensemble du circuit, et
la figure 13 illustre un circuit de protection réalisé au moyen d'une chaîne de diodes connectées en série, utilisables en combinaison avec tous les miroirs de tension décrits ci-dessus , ce circuit étant destiné à empêcher une chute excessive de la tension de sortie.
En référence aux figures 1A et 1B , le transistor 10 du type N- MOSFET comporte un substrat 11 du type P et deux zones dopées N* correspondant respectivement .à la source S et au drain D . La grille G est ménagée au-dessus du canal reliant les deux zones dopées N*.
Le transistor de type P-MOSFET représenté par les figures 2A et 2B diffère du précédent en ce que le substrat P est remplacé par une cuvette N et les zones dopées N* sont remplacées par des zones dopées P* . Le transistor illustré par les figures 3A et 3B est du type N-MOSFET à haute tension utilisant une cuvette N comme zone tampon.
Le transistor représenté par les figures 4A et 4B diffère du précédent en ce qu'il est du type P et comporte une zone tampon de type P .
Les figures 5A et 5B illustrent un étage de sortie haute tension 20 qui est associé à un dispositif translateur de niveau de tension 21 monté entre une entrée basse tension Sι_, dont la valeur se situe habituellement entre 0 et 5 V, et une sortie destinée à commander le transistor PMOS-HT et dont la valeur SH reproduit celle de l'entrée Sr_ avec un décalage (VD DH - VD D ) . Les niveaux VD D H et VDD se situent habituellement, mais non obligatoirement aux environs de 24 V et de 5 V, respectivement. Dans le cas où Sι_ varie de 0 à 5 V, la sortie SH varie dans cet exemple entre 19 et 2-4 V.
En référence à la figure 6, le miroir de tension, sous sa forme la plus élémentaire, comporte deux transistors respectivement du type P et N , à savoir les transistors MOS , respectivement MPI et MNl. Le transistor MNl est chargé par le transistor MPI dont la grille est connectée au drain de ce même transistor. Le circuit de base de ce miroir de tension est monté entre une haute tension VDDH et la terre et contrôlé par une tension d'entrée VIN . - Il est destiné à fournir à la sortie une tension Vx telle que VD -JΛ - Vx soit égale à VIN .
Lorsqu'ils sont rendus conducteurs, les transistors MNl et MPI fonctionnent normalement en régime saturé. Le transistor MNl peut toutefois entrer dans la zone non saturée de ses caractéristiques pour des tensions VDDH de faible valeur.
En conséquence, lorsque les deux transistors fonctionnent en régime saturé, on peut écrire l'égalité suivante :
ι. (vβs,„ - vτ.„)2≈ ι]vSs,!-!Vτ,Λ2
dans laquelle : I est l'intensité βn est un coefficient dépendant de la taille du transistor canal N βp est un coefficient dépendant de la taille du transistor canal P
VGS.Γ. est la tension grille-source pour le transistor à canal N Vos.p est la tension grille-source pour le transistor à canal P Vτ.P est la tension de seuil du transistor à canal P V-r.x. est la tension de seuil du transistor à canal N ou :
I ≈" (V|n Vτ,n)2 = - :(VDDH VχHVτ,pfl2
et de ce fait
Figure imgf000011_0001
ou
VDDH - Vx = V,„ pour βn = βp et Vτ.n = VT,
Vin étant limité à une alimentation basse tension VDD, le transistor PMOS appelé MPI est un composant à basse tension tandis que le transistor NMOS appelé MNl supporte la part la plus importante de la chute de tension et doit être du type à haute tension.
Lorsque Vr. est égal à VDD, la tension de sortie Vx est effectivement égale à VDDH - VDD. D'autre part, lorsque Vin = 0, les deux transistors sont bloqués et la tension de sortie augmente et atteint la valeur (VDDH - |V-r.P|) toutefois sans atteindre la tension VDDI .
La figure 7 illustre une réalisation améliorée du miroir de tension, dans laquelle un second transistor PMOS, à savoir le transistor MP2, est connecté en parallèle avec le premier transistor MPI et peut être utilisé pour amener Vx à la valeur VDDH lorsque Vιn est au niveau VDD et aboutir ainsi à la réalisation idéale du miroir de tension. La tension de commande pour commuter ce composant supplémentaire est le complément de Vx soit Vx. Ce dispositif constitue la base d'un dispositif translateur de tension idéal pour le signal Vin et est de préférence utilisé dans le circuit intermédiaire translateur de niveau de tension décrit ci-dessous .
Le translateur de niveau de tension représenté par la figure 8 comporte deux miroirs de tension à couplage croisé pour constituer une bascule à haute tension commandée par les signaux d'entrée basse tension complémentaires Sr_ et Sr_. Les signaux de sortie SH et SH fournissent la translation requise de Vm avec un décalage complet de
(VDDH - VDD ) à VDDH pour St. = V n entre 0 et VDD .
Ce circuit intermédiaire de translation de niveau de tension présente la robustesse et la flexibilité requises pour son utilisation dans de nombreuses applications notamment comme circuit de commande de transducteurs, d'écrans plasma, de relais électromécaniques , de mécanismes d'asservissement ou similaires .
La conception de ce circuit translateur testé qui garantit pour le signal Vx une dynamique complète d'amplitude VDD entre les valeurs
(VDDH - VDD ) et VDDH a été basée sur l'hypothèse que les transistors NMOS à haute tension MNl et MN2 du circuit intermédiaire travaillent dans leurs zones de saturation lorsqu'ils sont commutés . En partant du fait que la chute de tension maximum aux bornes des transistors à canal P est VDD , il est vérifié que cette condition de saturation des NMOS-HT est remplie pour VDDH 5. ( 2VD D - Vτ) .
Pour des valeurs de VDDH inférieures à cette limite, MNl et MN2 seraient commutés hors de leur zone de saturation.
Lorsqu'on considère le circuit miroir de tension illustré par la figure 6, les relations définissant l'intensité continue sont alors les suivantes:
I = β f(VGS.n - Vτ,n) vDS.n . ) = flVGS.P! .|V-,|)2 ou l = βn ((Viπ - Vτ,n)V, .^) = &[(VDDH - Vx}. |Vτ,p| ]2
2 / dans le but d'une simplification, on part des hypothèses suivantes
β = β. et Vτ . n = | Vτ . p | = V T
lorsque VDDH atteint la limite inférieure égale à VDD pour V r VDD , la relation ci-dessus donne
Figure imgf000013_0001
De ce fait, l'amplitude maximum des variations des tensions Vx et Vx entre leurs deux limites est légèrement inférieure à la pleine tension VDD , mais largement suffisante pour rendre conducteurs les transistors MOS à canal P du circuit translateur de niveau de' tension.
Le translateur de niveau de tension de la figure 8 fonctionnera de ce fait correctement pour une gamme très large de valeurs VDDH s'étendant d'une alimentation basse tension VDD jusqu'à une tension maximale autorisée par les caractéristiques de court-circuit des composants MOS à haute tension.
Au moment de l'enclenchement de la source d'alimentation en puissance, le comportement du circuit est principalement déterminé par les capacités parasites associées aux dispositifs actifs .
Des simulations ont montré que la capacité grille-source Cas est dominante et maintient la tension Vx et V* près de VDDH , ainsi que la tension Vos de tous les composants MOS à l'intérieur de leurs domaines de sécurité.
Afin de réduire la puissance statique du circuit translateur de niveau de tension, il est ' préférable d'utiliser des composants de faible dimension. La vitesse de commutation qui est habituellement non critique dans la plupart des applications de l'automatisme doit se situer dans la gamme des micro secondes.
La figure 9 illustre une forme de réalisation perfectionnée du circuit translateur de niveau de tension associé à une logique qui permet une réduction significative de la dissipation de la puissance transitoire pendant la phase de commutation. Pendant les transitoires de commutation, les deux transistors respectivement NMOS et PMOS à haute tension de l'étage de sortie peuvent se trouver momentanément et simultanément dans un état conducteur. Cette situation est la conséquence de différents délais dans la transmission des signaux de commande Sr. et SH. Lorsqu'il se produit une telle situation transitoire, on obtient un chemin conducteur entre l'alimentation à la tension VDDH et la terre, ce qui engendre des pics d'intensité élevés dans les étages de puissance de sortie. Ces situations transitoires peuvent facilement être évitées par l'adjonction d'un circuit logique interdisant la superposition, c'est-à-dire empêchant que les transistors de l'étage de sortie soient simultanément conducteurs.
Un exemple d'un tel circuit logique est illustré à la figure 9.
Toutefois, il existe différentes variantes de réalisation d'un tel circuit qui est couramment utilisé dans des amplificateurs de classe D . Ce circuit supplémentaire est principalement utilisé pour des transistors de puissance, dans des applications nécessitant une puissance élevée.
La figure 10 représente une variante de la version améliorée du miroir de tension. Dans ce circuit on associe au transistor PMOS (MPI) un second transistor PMOS (MP2) monté en parallèle. La tension d'alimentation pour commuter le transistor MP2 est le complément V^ de la tension Vx. Les drains de MPI et MP2 sont connectés au drain de MNl et délivrent la tension de sortie V . La grille de MNl est à la tension d'alimentation. VDD et le substrat est raccordé à la terre Vss . La grille d'un second transistor NMOS (MN2) est contrôlée par la tension d'entrée Vin. La source et le substrat de MN2 sont connectés à la terre Vss et son drain est raccordé à la source de MNl. Le circuit fonctionne également lorsqu'un élément de circuit quelconque X est commandé parallèlement à MN2 , à condition que la résistance de cet élément de circuit soit suffisante pour ne pas perturber de manière significative le fonctionnement des transistors MNl et MN2.
De manière similaire, on peut insérer, comme le montre les figures 11 et 12, un élément de circuit X dans le miroir de tension selon l figure 7, en particulier entre la source de MNl et la terre Vss , à condition que la résistance soit suffisamment faible pour ne pas perturber de manière significative le fonctionnement des transistors
MNl et MN2.
La figure 13 illustre un circuit de protection à diodes susceptibl d'être associé à chacun des miroirs de tension décrits ci-dessus . Un chaîne de diodes connectées en série est connectée entre VDDH et l tension de sortie Vx . L'anode (de type P) de la première diode es alimentée à la tensio VDDH et la cathode (de typ' N) de la dernièr diode est alimentée à la tension Vx. Le nombre de diodes est tel qu la somme de leur tension de seuil est égale ou supérieure à VDD . E fonctionnement normal un courant négligeable circule à travers le diodes . En revanche, si Vx dépasse sensiblement la valeur VDDH VDD , alors un courant de diodes se crée et empêche une chut complémentaire de Vx, ce qui assure une protection de la sortie d miroir de tension. De tels mécanismes de protection peuvent avoir leu intérêt ou même être nécessaires dans divers circuits de commande.
Dans certains cas , les diodes peuvent être remplacées par une diod Zener dont la cathode est alimentée à la tension VDDH et l'anode à l tension Vx .

Claims

REVENDICATIONS
1. Circuit intermédiaire entre un circuit intégré logique à basse tension et un étage de sortie à haute tension pour la commande de transducteurs, d'écrans plasma et d' actionneurs électromécaniques , dans lequel ledit étage de sortie haute tension comporte deux transistors, respectivement à canal N et à canal P, réalisés selon une technologie CMOS standard, caractérisé en ce qu'il comporte un translateur ou decaleur de niveau de tension couplé entre ledit circuit logique d'entrée basse tension et ledit étage de sortie haute tension, ce translateur de niveau de tension étant également réalisé selon une technique CMOS standard, et constitué d'au moins deux blocs de base identiques formant des miroirs de tension interconnectés de façon croisée .
2. Circuit selon la revendication 1 , caractérisé en ce que ledit miroir de tension comporte au moins un premier transistor basse tension à canal P (MPI) et un deuxième transistor de type NMOS-HT (MNl) , le drain du premier transistor (MPI) étant connecté au drain du deuxième transistor (MNl) et à la grille du premier (MPI) et fournissant la tension de sortie (Vx) , la tension d'entrée (VIN) de niveau basse tension étant connectée à la grille du deuxième transistor (MNl) , et l'alimentation haute tension (VDDH) étant connectée à la source du premier transistor (MPI) .
3. Circuit selon la revendication 1, caractérisé en ce que ledit miroir de tension comporte au moins un premier transistor basse tension à canal P (MPI) et un deuxième transistor de type NMOS-HT (MNl) , le drain du premier transistor (MPI) étant connecté au drain du deuxième transistor (MNl) et à la grille du premier (MPI) et fournissant la tension de sortie (Vx) , la tension d'entrée (VIN ) dé niveau basse tension étant connectée à la grille du deuxième transistor (MNl) , et l'alimentation haute tension (VDDH) étant connectée à la source du premier transistor (MPI) , ainsi qu'un troisième transistor à canal P (MP2) connecté en parallèle avec ledit premier transistor à canal P (MPI) , la tension d'entrée, de niveau haute tension étant connectée à la grille dudit troisième transistor (MP2) et la source du deuxième transistor (MNl ) étant reliée à la terre Vss .
4- Circuit selon la revendication 1 , caractérisé en ce que le miroir de tension comporte au moins un premier transistor à canal P (MPI ) et un deuxième transistor MOSFET , à haute tension à canal N , du type HV- NMOST, (MNl) , le drain dudit premier transistor (MPI) étant connecté au drain du deuxième transistor (MNl) et à la grille du premier transistor (MPI) et délivrant une tension de sortie (Vx) , la grille du deuxième transistor (MNl ) étant à la tension d'alimentation (VDD ) , le substrat étant à la terre (Vss) et la source étant connectée au drain d'un troisième transistor (MN2) de type NMOS , et en ce que la tension d'entrée (Vin) , de niveau basse tension, est appliquée à la grille de ce troisième transistor (MN2) dont la source et le substrat sont connectés à la terre (Vss) , la haute tension d'alimentation ( VDDH ) étant appliquée à la source du premier transistor (MPI) et un second transistor à canal P (MP2) étant connecté en parallèle au premier transistor (MPI) , la tension d'entrée de niveau haute tension étant appliquée à la grille dudit second transistor (MP2) .
5- Circuit selon la revendication 1 , caractérisé en ce que le miroir de tension comporte au moins un premier transistor à canal P (MPI) et un deuxième transistor MOSFET, à haute tension à canal N , du type HV- NMOST, (MNl) , le drain dudit premier transistor (MPI) étant connecté au drain dudit deuxième transistor (MNl) et à la grille du premier transistor (MPI ) et délivrant une tension de sortie (Vx) , la grille du deuxième transistor (MNl) étant à la tension d'alimentation (VDD ) , le substrat étant à la terre (Vss) et la source étant connectée au drain d'un transistor supplémentaire (MN2) dont la source et le substrat sont connectés à la terre (Vss) , en ce que la haute tension d'alimentation (VDDH) est appliquée à la source du premier transistor (MPI) , en ce qu'un deuxième transistor à canal P (MP2) est monté en parallèle au premier transistor (MPI) , la grille du transistor (MP2) étant alimentée par la tension d'entrée de niveau haute tension, et en ce qu'un quelconque élément de circuit (X) est connecté en parallèle au transistor supplémentaire (MN2) , la résistance de cet élément de circuit étant suffisamment élevée pour que le fonctionnement des transistors (MNl , MN2) se soit pas sensiblement perturbé.
6. Circuit selon la revendication 1 , caractérisé en ce que le miroir de tension comporte au moins un premier transistor MOSFET à canal P
(MPI) et un deuxième transistor MOSFET, à haute tension à canal N , du type HV-NMOST , (MNl ) , le drain dudit premier transistor (MPI) étant connecté au drain dudit deuxième transistor (MNl) et à la grille du premier transistor (MPI) , et délivrant une tension de sortie (Vx) , en ce que la tension d'entrée (Vin) de niveau basse tension est appliquée à la grille du transistor (MNl) , la haute tension d'alimentation (VDD ) étant appliquée à la source du transistor (MPI) , en ce qu'un troisième transistor à canal P (MP2) est connecté en parallèle au premier transistor (MPI) , en ce que la grille de ce transistor (MP2) est alimentée à la tension d'entrée de niveau haute tension, et en ce qu'entre la source du deuxième transistor (MNl) et la terre (Vss) est connecté un élément de circuit quelconque (X) dont la résistance est suffisamment faible pour que le fonctionnement dudit deuxième transistor (MNl) se soit pas sensiblement perturbé.
7- Circuit selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comporte un circuit de protection auxiliaire, ce circuit étant agencé pour protéger l'un au moins des deux miroirs de tension contre une chute excessive de tension, de niveau haute tension, en ce que ce circuit comporte soit une chaîne de diodes connectées en série soit une diode Zener, en ce que, dans le cas de la chaîne de diodes , l'anode (de type P) de la première diode est alimentée par la haute tension d'alimentation (VDDH) et la cathode (de type N) de la dernière diode est connectée à la sortie du miroir de tension correspondant, et en ce que, lors de l'utilisation d'une diode Zener, la cathode (de type N) de cette dernière est alimentée à la tension (VDDH) et l'anode (de type P) est connectée au miroir de tension correspondant .
8. Circuit selon l'une quelconque des revendications précédentes , caractérisé en ce que le translateur de niveau de tension comporte en outre une unité logique (30) agencée pour éviter la conduction simultanée des transistors (MPO, MNO) de l'étage de sortie (20) .
PCT/CH1993/000124 1992-05-18 1993-05-18 Circuit intermediaire entre un circuit logique a basse tension et un etage de sortie a haute tension realises dans une technologie cmos standard WO1993023926A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP93911722A EP0594834B1 (fr) 1992-05-18 1993-05-18 Circuit intermediaire entre un circuit logique a basse tension et un etage de sortie a haute tension realises dans une technologie cmos standard
DE69323683T DE69323683D1 (de) 1992-05-18 1993-05-18 In Standard-CMOS-Technologie realisierte, zwischen einer Logikschaltung mit niedriger Versorgungsspannung und einer Ausgangsstufe mit hoher Versorgungsspannung, liegende Schaltung
US08/182,143 US5473268A (en) 1992-05-18 1993-05-18 Intermediary circuit between a low voltage logic circuit and a high voltage output stage in standard CMOS technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR92/06030 1992-05-18
FR9206030A FR2691307A1 (fr) 1992-05-18 1992-05-18 Circuit intermédiaire entre un circuit logique à basse tension et un étage de sortie à haute tension réalisés dans une technologie CMOS standard.

Publications (1)

Publication Number Publication Date
WO1993023926A1 true WO1993023926A1 (fr) 1993-11-25

Family

ID=9429906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1993/000124 WO1993023926A1 (fr) 1992-05-18 1993-05-18 Circuit intermediaire entre un circuit logique a basse tension et un etage de sortie a haute tension realises dans une technologie cmos standard

Country Status (6)

Country Link
US (1) US5473268A (fr)
EP (1) EP0594834B1 (fr)
AT (1) ATE177272T1 (fr)
DE (2) DE4231415C1 (fr)
FR (1) FR2691307A1 (fr)
WO (1) WO1993023926A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2291549A (en) * 1994-07-20 1996-01-24 Micron Technology Inc A low transient current voltage translating cmos driver for row select lines
US5883538A (en) * 1996-11-13 1999-03-16 Micron Technology, Inc. Low-to-high voltage CMOS driver circuit for driving capacitive loads

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896043A (en) * 1989-02-10 1999-04-20 Fuji Electric Co., Ltd. Level shift circuit
DE69531032T2 (de) * 1994-09-21 2003-11-27 Nec Electronics Corp Spannungspegel-Verschiebungsschaltung
US5659716A (en) * 1994-11-23 1997-08-19 Virtual Machine Works, Inc. Pipe-lined static router and scheduler for configurable logic system performing simultaneous communications and computation
KR0172380B1 (ko) * 1995-06-17 1999-03-30 김광호 반도체 메모리장치의 데이터 출력버퍼
US5894227A (en) * 1996-03-15 1999-04-13 Translogic Technology, Inc. Level restoration circuit for pass logic devices
US5952847A (en) * 1996-06-25 1999-09-14 Actel Corporation Multiple logic family compatible output driver
US5929656A (en) * 1997-05-16 1999-07-27 Motorola, Inc. Method and apparatus for driving a capacitive display device
JP4036923B2 (ja) * 1997-07-17 2008-01-23 株式会社半導体エネルギー研究所 表示装置およびその駆動回路
JP3731322B2 (ja) * 1997-11-04 2006-01-05 ソニー株式会社 レベルシフト回路
US6111425A (en) * 1998-10-15 2000-08-29 International Business Machines Corporation Very low power logic circuit family with enhanced noise immunity
US6731151B1 (en) 1999-09-30 2004-05-04 Interuniversitar Micro-Elektronica Centrum (Imec Vzw) Method and apparatus for level shifting
US6331797B1 (en) 1999-11-23 2001-12-18 Philips Electronics North America Corporation Voltage translator circuit
US6362652B1 (en) 1999-12-20 2002-03-26 Fujitsu Microelectronics, Inc. High voltage buffer for submicron CMOS
US20030001628A1 (en) * 2001-06-29 2003-01-02 Intel Corporation Voltage-level converter
US6774667B1 (en) 2002-05-09 2004-08-10 Actel Corporation Method and apparatus for a flexible chargepump scheme for field-programmable gate arrays
US7378867B1 (en) * 2002-06-04 2008-05-27 Actel Corporation Field-programmable gate array low voltage differential signaling driver utilizing two complimentary output buffers
US6891394B1 (en) 2002-06-04 2005-05-10 Actel Corporation Field-programmable gate array low voltage differential signaling driver utilizing two complimentary output buffers
US6765427B1 (en) 2002-08-08 2004-07-20 Actel Corporation Method and apparatus for bootstrapping a programmable antifuse circuit
US7434080B1 (en) 2002-09-03 2008-10-07 Actel Corporation Apparatus for interfacing and testing a phase locked loop in a field programmable gate array
US6750674B1 (en) 2002-10-02 2004-06-15 Actel Corporation Carry chain for use between logic modules in a field programmable gate array
US7269814B1 (en) 2002-10-08 2007-09-11 Actel Corporation Parallel programmable antifuse field programmable gate array device (FPGA) and a method for programming and testing an antifuse FPGA
US6885218B1 (en) 2002-10-08 2005-04-26 Actel Corporation Parallel programmable antifuse field programmable gate array device (FPGA) and a method for programming and testing an antifuse FPGA
US6727726B1 (en) 2002-11-12 2004-04-27 Actel Corporation Field programmable gate array architecture including a buffer module and a method of distributing buffer modules in a field programmable gate array
US6946871B1 (en) 2002-12-18 2005-09-20 Actel Corporation Multi-level routing architecture in a field programmable gate array having transmitters and receivers
US6891396B1 (en) 2002-12-27 2005-05-10 Actel Corporation Repeatable block producing a non-uniform routing architecture in a field programmable gate array having segmented tracks
US7385420B1 (en) 2002-12-27 2008-06-10 Actel Corporation Repeatable block producing a non-uniform routing architecture in a field programmable gate array having segmented tracks
US6825690B1 (en) 2003-05-28 2004-11-30 Actel Corporation Clock tree network in a field programmable gate array
US6838902B1 (en) 2003-05-28 2005-01-04 Actel Corporation Synchronous first-in/first-out block memory for a field programmable gate array
US7375553B1 (en) 2003-05-28 2008-05-20 Actel Corporation Clock tree network in a field programmable gate array
US7385419B1 (en) 2003-05-30 2008-06-10 Actel Corporation Dedicated input/output first in/first out module for a field programmable gate array
US6867615B1 (en) 2003-05-30 2005-03-15 Actel Corporation Dedicated input/output first in/first out module for a field programmable gate array
US20070063758A1 (en) * 2005-09-22 2007-03-22 Honeywell International Inc. Voltage divider and method for minimizing higher than rated voltages
KR100925034B1 (ko) * 2006-12-05 2009-11-03 한국전자통신연구원 비동기 디지털 신호레벨 변환회로
US20100102851A1 (en) * 2008-10-27 2010-04-29 Microchip Technology Incorporated P-Type Source Bias Virtual Ground Restoration Apparatus
TWI748239B (zh) * 2019-08-30 2021-12-01 新唐科技股份有限公司 高電壓積體電路及其半導體結構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164842A (en) * 1976-08-20 1979-08-21 Citizen Watch Co., Ltd. Buffer amplifier circuit
GB2060300A (en) * 1979-09-13 1981-04-29 Tokyo Shibaura Electric Co Cmos sense amplifier
WO1986003632A1 (fr) * 1984-12-10 1986-06-19 American Telephone & Telegraph Company Circuit logique complementaire a haute fiabilite
DE3733046A1 (de) * 1987-09-30 1989-04-13 Siemens Ag Schaltungsanordnung mit einer pegelumsetzschaltung
US4952825A (en) * 1988-03-14 1990-08-28 Nec Corporation Semiconductor integrated circuit having signal level conversion circuit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365172A (en) * 1980-01-11 1982-12-21 Texas Instruments Incorporated High current static MOS driver circuit with low DC power dissipation
JPS5711536A (en) * 1980-06-24 1982-01-21 Nec Corp High-voltage mos inverter and its driving method
US4617477A (en) * 1985-05-21 1986-10-14 At&T Bell Laboratories Symmetrical output complementary buffer
JPS62245715A (ja) * 1986-04-17 1987-10-27 Nec Corp レベルシフト回路
US4763022A (en) * 1987-01-05 1988-08-09 Gte Communication Systems Corporation TTL-to-CMOS buffer
US5043605A (en) * 1989-06-26 1991-08-27 At&T Bell Laboratories CMOS to ECL output buffer
US4999529A (en) * 1989-06-30 1991-03-12 At&T Bell Laboratories Programmable logic level input buffer
JPH0376419A (ja) * 1989-08-10 1991-04-02 Siemens Ag 集積可能なトランジスタスイツチング段
DE3927192A1 (de) * 1989-08-17 1991-02-21 Telefunken Electronic Gmbh Pegelumsetzer
US5359243A (en) * 1993-04-16 1994-10-25 Altera Corporation Fast TTL to CMOS level converting buffer with low standby power

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164842A (en) * 1976-08-20 1979-08-21 Citizen Watch Co., Ltd. Buffer amplifier circuit
GB2060300A (en) * 1979-09-13 1981-04-29 Tokyo Shibaura Electric Co Cmos sense amplifier
WO1986003632A1 (fr) * 1984-12-10 1986-06-19 American Telephone & Telegraph Company Circuit logique complementaire a haute fiabilite
DE3733046A1 (de) * 1987-09-30 1989-04-13 Siemens Ag Schaltungsanordnung mit einer pegelumsetzschaltung
US4952825A (en) * 1988-03-14 1990-08-28 Nec Corporation Semiconductor integrated circuit having signal level conversion circuit

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NEC RESEARCH & DEVELOPMENT, no. 94, Juillet 1989, TOKYO, JP pages 29 - 35 M. NAKANO ET AL. 'Full - Complementary High - Voltage Driver ICs for Flat Display Panels' *
PATENT ABSTRACTS OF JAPAN vol. 006, no. 072 (E-105)7 Mai 1982 & JP,A,57 011 536 ( NEC CORP ) 21 January 1982 *
PATENT ABSTRACTS OF JAPAN vol. 12, no. 115 (E-599)(2962)12 Avril 1988 & JP,A,62 245 715 ( NEC CORP ) 27 October 1987 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2291549A (en) * 1994-07-20 1996-01-24 Micron Technology Inc A low transient current voltage translating cmos driver for row select lines
US5670905A (en) * 1994-07-20 1997-09-23 Micron Technology, Inc. Low-to-high voltage CMOS driver circuit for driving capacitive loads
GB2291549B (en) * 1994-07-20 1999-03-10 Micron Technology Inc Low-to-high voltage cmos driver circuit for driving capacitive loads
US5999033A (en) * 1994-07-20 1999-12-07 Micron Technology, Inc. Low-to-high voltage CMOS driver circuit for driving capacitive loads
US5883538A (en) * 1996-11-13 1999-03-16 Micron Technology, Inc. Low-to-high voltage CMOS driver circuit for driving capacitive loads

Also Published As

Publication number Publication date
US5473268A (en) 1995-12-05
DE4231415C1 (de) 1993-12-23
FR2691307B1 (fr) 1997-02-14
FR2691307A1 (fr) 1993-11-19
EP0594834B1 (fr) 1999-03-03
ATE177272T1 (de) 1999-03-15
DE69323683D1 (de) 1999-04-08
EP0594834A1 (fr) 1994-05-04

Similar Documents

Publication Publication Date Title
WO1993023926A1 (fr) Circuit intermediaire entre un circuit logique a basse tension et un etage de sortie a haute tension realises dans une technologie cmos standard
EP0080394B1 (fr) Bascule bistable à stockage non volatil et à repositionnement statique
EP0474534B1 (fr) Circuit à constante de temps réglable et application à un circuit à retard réglable
EP0700141B1 (fr) Détecteur de température sur circuit intégré
EP0583203A1 (fr) Circuit de tirage vers un état déterminé d'une entrée de circuit intégré
EP1755222B1 (fr) Cellule logique à deux sorties redondantes isolées, et circuit intégré correspondant
EP1672795B1 (fr) Dispositif de réinitialisation d'un circuit intégré à partir d'une détection d'une chute d'une tension d'alimentation, et circuit électronique correspondant
EP0080395B1 (fr) Bascule bistable à stockage non volatil et à repositionnement dynamique
FR2822309A1 (fr) Circuit de translation de signaux de commutation
EP0750244B1 (fr) Circuit générateur de tension négative du type pompe de charge
EP1073202B1 (fr) Dispositif de commande d'un commutateur haute tension de type translateur
JP3481495B2 (ja) Cmos入力バッファ保護回路を含む集積回路
FR3053857A1 (fr) Circuit de selection d'une tension d'alimentation a transition controlee
FR2797086A1 (fr) Cellule logique a programmation unique
EP0447729B1 (fr) Comparateur à seuil immunisé contre le bruit
EP0538121B1 (fr) Dispositif pour générer une tension de programmation d'une mémoire permanente programmable, notamment de type EPROM, procédé et mémoire s'y rapportant
FR2795557A1 (fr) Dispositif d'ajustement des circuits apres mise en boitier et procede de fabrication correspondant
EP0404634A1 (fr) Circuit d'interface entre deux circuits numériques de natures différentes
EP1109026B1 (fr) Dispositif de détection d'une haute tension
JP3170580B2 (ja) Cmos集積回路用保護回路
FR2766984A1 (fr) Dispositif de protection d'une charge electrique et circuit d'alimentation comportant un tel dispositif
EP0920133B1 (fr) Amplificateur de sortie pour circuit intégré
FR2811131A1 (fr) Dispositif de controle d'alimentation dans un circuit integre comprenant des elements de memoire non volatile electriquement programmable
EP0899921A1 (fr) Circuit d'attaque de ligne symétrique
EP1271440B1 (fr) Régulateur haute-tension comprenant un dispositif externe de regulation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08182143

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1993911722

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993911722

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993911722

Country of ref document: EP