WO1993018400A1 - Method and apparatus for analyzing organic matters using transportable construction - Google Patents

Method and apparatus for analyzing organic matters using transportable construction Download PDF

Info

Publication number
WO1993018400A1
WO1993018400A1 PCT/JP1993/000305 JP9300305W WO9318400A1 WO 1993018400 A1 WO1993018400 A1 WO 1993018400A1 JP 9300305 W JP9300305 W JP 9300305W WO 9318400 A1 WO9318400 A1 WO 9318400A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
detector
furnace
line
pyrolysis furnace
Prior art date
Application number
PCT/JP1993/000305
Other languages
English (en)
French (fr)
Inventor
Shigeaki Ishida
Hidetoshi Fujimori
Hideki Matsubayashi
Tsutomu Machihara
Original Assignee
Japan National Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan National Oil Corporation filed Critical Japan National Oil Corporation
Priority to US08/146,109 priority Critical patent/US5389550A/en
Priority to DE69321677T priority patent/DE69321677T2/de
Priority to EP93905639A priority patent/EP0584377B1/en
Publication of WO1993018400A1 publication Critical patent/WO1993018400A1/ja
Priority to NO933994A priority patent/NO308116B1/no

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/241Earth materials for hydrocarbon content

Definitions

  • the present invention relates to a method and apparatus for analyzing organic matter, and more particularly to a small and portable analyzer for quickly evaluating the potential of petroleum source rock on site.
  • the fixed-indoor type is kerogen (insoluble polymer organic matter in sediment) in source rock samples.
  • the pyrolysis gas is branched portion before hand FID-, is introduced into C 0 2 trap captures C_ ⁇ 2 generated here 2 5 0 - 3 9 between 0 ° C, the heat Detected as S3 peak by gas chromatograph with conductivity detector. Since the occurrence of C_ ⁇ 2 by decomposition of inorganic carbonates occurs in 3 9 0 ° C or more, with respect to CO 2 in Kerojiyun analysis may be detected C_ ⁇ 2 amount generated from the organic carbon acid salt Is done. From such an analysis, S,
  • the kerogen type can be determined from the peak temperatures (Tmax) at which the 1, S2, S3 and S2 peaks were obtained.
  • the above-mentioned equipment is a laboratory equipment that requires complicated control operations, and requires a high pressure, He gas that requires a gas cylinder, etc., and also requires a gas cylinder. It is not suitable for on-site use, such as the use of H 2 gas, which has a risk of explosion. For this reason, at present, it is necessary to transfer the collected sample to the facility of this equipment (which may be abroad) without knowing whether it is worthy of analysis and to analyze all of it. From the point of view, it was an extremely wasteful and analytical method. Next, there is a portable measuring device known as "SOURCE ROCK ANALYZER" which was recently developed.
  • the collected chip-shaped rock samples are sorted by two large and small sieves (4.0 mesh, 5 mesh and 3.5 mm—6 mesh) and put into a small crucible-shaped pyrolysis furnace.
  • the hydrocarbons that occurs instantaneously heated rapidly to about 700 e C in an air atmosphere to detect Ri by the catalytic combustion type gas sensor, the amount of organic matter contained in the sample 2 out (LeanZRich decision) to Things.
  • This portable device has the characteristics of being suitable for on-site use, but has the following disadvantages in terms of performance. .
  • the pyrolysis furnace is crucible-shaped, and is barely wound around the inner surface of the furnace, and there is a difference in the temperature reached at each part between when the crucible specimen touches the heater and when it does not.
  • the amount of generated hydrocarbon will be different. Disclosure of the invention
  • the present invention relates to an air-based portable analyzer that does not use special gas cylinders.
  • the hydrocarbons HC peaks P 1 and P 2
  • C ⁇ 2 C ⁇ 2 peak P 3 not including those due to decomposition of inorganic carbonates
  • we'll provide organic analytical methods and apparatus capable of determining the amount of hydrocarbons ZC 0 2 ratio per potentiometer catcher Le evaluated and unit weight of 4-5 stages for each component It is assumed that.
  • the present invention provides a carbonization apparatus which is selectively connected to a vacuum suction line and an air supply line, and is also connected to an exhaust line for exhausting air in response to air supply.
  • a sample container filled with a crushed sample of rock is loaded into the pyrolysis furnace maintained at a temperature not lower than room temperature and not higher than 100 ° C., and the pyrolysis furnace is connected to the vacuum suction I Connect to the line and evacuate until a substantial vacuum is reached.
  • the pyrolysis furnace After cooling the pyrolysis furnace to a temperature at which hydrocarbons in the furnace do not react with air, the pyrolysis furnace is connected to the air supply line and the exhaust line, and the generated gas in the furnace is converted to a hydrocarbon detector and C 0. through the second detector calculates the area value of the HC peak P 1 and C 0 2 peak P 3 from their output signals,
  • the pyrolysis furnace is connected to the vacuum suction line again, exhausted, depressurized, and sealed to substantially thermally decompose the insoluble organic matter. After rapidly heating to the second temperature higher than the first temperature , Keep this temperature for a certain time,
  • the present invention is also selectively connected to a vacuum suction line led to a vacuum source, and an air supply line led to an air supply source, and corresponding to the air supply.
  • a hydrocarbon pyrolysis furnace so as to be connected to an exhaust line, and a temperature control circuit for energizing and controlling the heat of the pyrolysis furnace;
  • a detector system consisting of the inserted into the exhaust line hydrocarbon detector and C 0 2 detector,
  • the C_ ⁇ 2 Measurement has also become possible. That is, at 3 S 0 ° C and 550 ° C After each pyrolysis treatment, the pyrolysis furnace is cooled to a temperature at which hydrocarbons in the furnace do not react (combust) with air, and then sent to the measurement system by air.
  • the device of the present invention does not use any special inert gas (He, N 2 , etc.) as a gas for distribution or hydrogen gas for FID.
  • FIG. 1 is a longitudinal sectional view of a small pyrolysis furnace according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing a sample container to be mounted on the pyrolysis furnace of FIG.
  • Fig. 3 is a diagram showing the flow path configuration and electric circuit connection incorporating the pyrolysis furnace of Fig. 1.
  • Figure 4 is a graph showing the analysis peak click by the apparatus of the present invention (HC and C 0 2 measurements).
  • the small pyrolysis furnace 1 has side plates 2 and 3, and a cylindrical furnace body 6 held in a frame structure including upper and lower plates 4 and 5 connected to upper and lower ends of the side plate 2. That is, the upper plate 4 and the lower plate 5 hold the upper end plate 9 and the lower end plate 10 via the upper spacer 7 and the lower spacer 8, respectively.
  • the upper and lower end surfaces of the furnace body 6 are respectively held to maintain an upright state.
  • An upper block 12 having an exhaust port 11 and a lower block 14 having an air inlet / outlet 13 are fixed to the outer side (upper part) of the upper plate 4, and a cap 15 is provided at an upper end of the upper block 12.
  • the lower end of the lower block 14 Screws ⁇ 17 each having a CA wire 16 as a temperature sensor are mounted on the.
  • An outer tube 18 and an inner tube 19 coaxially disposed at a slight distance inside the outer tube 18 are provided in the cylindrical chamber of the furnace body 6.
  • the upper and lower ends of the inner pipe 19 pass through the upper and lower ends of the furnace body 6, the end plates 9 and 10, the upper and lower spacers 7 and 8, the upper plate 4 and the lower plate 5, and the upper block 12 and It protrudes into the CTF block 14.
  • the central portion of the inner tube 19 is a node having pores 20 along the axis, and this node serves as the bottom surface so that the tubular sample container 21 can be fitted in the upper half. I have.
  • a receiving hole 22 is formed in the upper block 12 to allow the sample container 21 to be inserted.
  • the upper end of the sample container 21 protruding from the upper block 12 is covered with a cap 15. .
  • the sample container 21, the inner tube 19 and the outer tube 18 are all made of quartz tubes, and a heater wire made of, for example, a cantasol wire is wound around the outer tube 18, and both ends of this heater 23 a 2 3 b is bowed out of the furnace body 6 via the side plate 2.
  • a terminal plate 25 having terminals 24a and 24b for holding the connection of both ends of the heater protrudes and is supported.
  • a shaft hole 26 communicating with the air inlet / outlet 13 described above is repaired, and the tip of the temperature sensor 16 is inserted into the lower part of the inner tube 19 through this shaft hole. It is located directly below the intermediate shaft hole 20. Since the tip of the temperature sensor 16 is sufficiently thinner than the inner diameter of the shaft hole 26, the air inlet / outlet 13 passes through the space around the temperature sensor 16 inside the shaft hole 26, and leads to the lower part of the inner tube 19, Further, it communicates with the upper part of the sample container 21 from the intermediate shaft hole 20.
  • FIG. 2 shows the details of the sample container.
  • the length of the sample container 21 made of a quartz tube is 67 ⁇
  • the outer diameter is 5.5 thighs
  • the inner diameter is 3.5 thighs.
  • At the lower end there is a communicating mosquito with a diameter of 1.0. That is, the communication relationship with the lower portion of the inner pipe 19 can be obtained by the presence of the communication hole 21a.
  • FIG. 3 is a diagram showing pipe connections and electrical connections of the pyrolysis furnace 1 shown in FIG. Vacuum pump 2 8 power ⁇
  • the diaphragm pump 30 is connected via the valve 29.
  • Line 27 is a vacuum suction line
  • line 29 is an air supply line, which are connected to air inlet / outlet 13 via solenoid valves MV2-1 and MV3-1, respectively.
  • the air supply line 29 is further provided with a 21 dollar valve 31 for adjusting the flow rate on the upstream side of the diaphragm pump 30, and an air filter 32 as an air inlet is provided at the line end on the upstream side. It is.
  • a flowmeter 36 is inserted downstream of the exhaust line 35, and a solenoid valve MV32 is connected to the exhaust port 11 of the pyrolysis furnace 1 on the upstream side.
  • Each of the solenoid valve MV 3-2 and the solenoid valve MV 3-1 in the air supply line described above is a three-way solenoid valve, and the remaining ones ⁇ * ports are connected to each other by a bypass line 37, and a diaphragm pump 30.
  • the air introduced from the exhaust line 35 can be led directly to the exhaust line 35 through the bypass line 37.
  • 38 is a temperature control circuit for passing a control current between the heater terminals 23a and 23b of the pyrolysis furnace 1
  • 39 is an amplifier that receives an output signal of the detector 33
  • 40 is an amplifier.
  • 41 is an arithmetic and sequence control unit, which controls the switching of the solenoid valves MV2-1 and MV3-KMV3-2, the vacuum pump 28 and A function to selectively control the operation of the diaphragm pump 30 and to control the temperature control circuit 38 while monitoring the temperature signal from the temperature sensor 16.
  • the function of storing and calculating the output signals from 40 is a temperature control circuit for passing a control current between the heater terminals 23a and 23b of the pyrolysis furnace 1
  • 39 is an amplifier that receives an output signal of the detector 33
  • 40 is an amplifier.
  • 41 is an arithmetic and sequence control unit, which controls the switching of the solenoid valves MV2-1 and MV3-KMV3-2, the vacuum pump 28 and A function to selectively control the operation of the di
  • a printer 42 is connected to the operation and sequence control section 41, and can record an operation value of an output signal by each detector.
  • the power supply unit 43 supplies electric energy to the electric system described above, and is connected directly to AC 100 V or Alternatively, the necessary power supply voltage for each part is obtained through DC / AC conversion from the built-in battery.
  • the organic substance analysis method according to the present invention is carried out as follows using the above-described apparatus.
  • a rock or sand sample is roughly crushed with a hammer or the like as a rock sample, and this is screened using two sieves of the first thigh and the 0.5 thigh to obtain a granular sample having a diameter of 0.5 to 1 m.
  • the bottom of the sample container 21 is filled to a certain height. The particle size may be further reduced by / J by fine grinding.
  • the sample container 21 filled with the sample is placed in the small pyrolysis furnace 1 as shown in FIG. 1, and sealed with the cap 15. It is assumed that the pyrolysis furnace 1 reaches the initial set temperature of 50-100 ° C and is maintained after the power supply 43 (see Fig. 3) is turned on.
  • the two-way solenoid valves MV2-1 and MV1-2 are opened, and the three-way solenoid valves MV3-1 and MV3-2 on the inlet side and the outlet side with respect to the pyrolysis furnace 1 are closed. Accordingly, only the vacuum pump 28 is connected, the inside of the furnace is evacuated, and the two-way solenoid valve MV 2-1 is closed when the internal pressure becomes lower than, for example, l torr.
  • the three-way solenoid valve MV 31 and the bypass line 3 are driven by driving the diaphragm pump 30 to suck the external air from the air filter 32 and controlling this air to a constant flow rate with the 21 dollar valve 3 1.
  • the electric output state of each detector is transmitted to the control unit 41 via the amplifiers 39 and 40, and forms a baseline signal by air.
  • the two detectors 33, 34 are inserted in series in the exhaust line 35, but they are connected in parallel when the downstream detector receives the upstream detector.
  • the pyrolysis furnace 1 is rapidly heated from the initial set temperature to 390 ° C., kept at this temperature for a certain period of time, and then cooled.
  • the sample undergoes pyrolysis in the pyrolysis furnace, producing hydrocarbons and CO 2 and diffusing into the encapsulation path.
  • this low-temperature pyrolysis no generation of C_ ⁇ 2 due to decomposition of inorganic carbonates, as described above.
  • the three-way solenoid valves MV 3-1 and MV 3-1 are switched to the pyrolysis furnace 1 side, and the Air is introduced from the lower end, and the gas generated in the furnace is introduced into each detector 33,34. Hydrocarbon peaks according to the timing at which the generated gas passes in each detector (P 1) binding 0 2 peaks (P 3) is obtained, the peak area value in the arithmetic and sequence control unit 4 1 is calculated.
  • the inside of the furnace was evacuated and then rapidly heated to 550 ° C, held at this temperature for a certain period of time, and cooled.
  • the pyrolysis of a vacuum state in the pyrolysis furnace 1 ⁇ further progresses in a state, newly generated hydrocarbon ⁇ beauty C_ ⁇ 2 diffuses into the enclosed path.
  • step (5) After the pyrolysis furnace is sufficiently cooled as in step (5), air is passed through, and a hydrocarbon peak (P 2) and a CO 2 peak (P 4) are obtained at each detector.
  • the peak area value is calculated only for P2.
  • Operation and the peak area value of the sequence control unit 4 1 (P l + P 2 for hydrocarbons, for C_ ⁇ 2 P 3 only), is set in advance by the standard Les, inspection by the content (mg / g) hydrocarbons and C_ ⁇ 2 content by 0 size purine evening 4 2 sought to unit sample weight per each component Ru, the ratio (H / ⁇ ) is Printout At the same time, the potential of the sample is given by a potentiometer evaluation lamp (e.g., provided to indicate 4 or 5 levels).
  • a potentiometer evaluation lamp e.g., provided to indicate 4 or 5 levels.
  • the hydrocarbon detector examples are catalytic combustion type sensor, although C 0 2 detectors been filed in a non-dispersive infrared detector can one of these, or even a child to change both the semiconductor type.
  • the sample container 2 1 After set Bok, although a series of operations in potential evaluation until it is automatically sequencing process, by changing this sequence, only hydrocarbon or C 0 2 only Can also be easily analyzed.
  • the present invention is configured as described above, the peak shape of the components is sharp, the tailing is small, and the reproducibility is good as compared with the conventional flow-type pyrolysis apparatus (inert gas carrier type pyrolysis-analysis apparatus).
  • the conventional flow-type pyrolysis apparatus even if there is a slight temperature change in the pyrolysis process, the amount of generated gas changes, which also affects the reproducibility by reflecting the peak shape.
  • the technique of the present invention even if there is a slight temperature change in the pyrolysis process, an averaged result of the entire pyrolysis appears as a peak size.
  • this since there is little dead space in the path to the detector, this is considered to contribute to "sharp peak shape with less layer tailing.
  • the thermal decomposition is performed in a vacuum-sealed state, so that it is not affected by combustion by oxygen in the air. Therefore, little error in the amount of hydrocarbon generated, became possible measurement of C 0 2.
  • the generated gas is discharged after cooling in a vacuum-sealed state, no special inert gas is required as the carrier gas, which is compatible with the previously conflicting requirements of analysis accuracy and portability. It is.
  • the source rock sample When the source rock sample is pyrolyzed, it will condense inside if it is below the pyrolysis temperature and generate high-boiling components that adhere to the route.However, by elongating the sample container vertically and erecting it, The condensed component adhered to the vicinity of the upper part of the sample container where the temperature did not easily rise, making it possible to perform continuous analysis only by replacing or washing the sample container without polluting other gas flow systems.
  • the sample with a fixed particle size is filled into a vertically long sample container to a certain height, so the weight range is relatively stable. It could be within ⁇ 5% at 0 O mg.
  • the device of the present invention has the advantage that a great improvement in accuracy can be obtained as compared with a portable analyzer used in recent years. Although it is slightly larger, it has a shape and weight that can be sufficiently loaded on vehicles such as light van vehicles for on-site exploration, and it is possible to supply power from an automobile battery, making it extremely useful. Highly, an on-site measuring device can be configured.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

明糸田書 可搬構造を用レ、た有機物分析方法及び装置 技術分野
本発明は、 有機物の分析方法及び装置、 特に現場において石油根源岩のポテン シャルを迅速に評価するための小型かつ可搬構造の分析計に関するものである。 背景技術
石油根源岩のポテンシャル評価用分析計の代表的なものとして、 まず固定 -室 内型のものは根源岩サンプル中のケロジェン (堆積物中の不溶性高分子有機物を
"ケロジェン" という。 ) の熱分解により発生する炭化水素及び C O 2 を分析す るために、 根源岩サンプル約 1 0 O mgを H e気流中において室温から 2 5 0 °Cま で急速に加熱し、 サンプルから蒸発する既存の炭化水素を水素炎ィォン化検出器 (F I D) により S 1 ピークとして検出した後、 2 5 °CZ分の昇温速度で約 5 5 0 °Cまで加熱し、 そのとき、 熱分解により発生する炭化水素を同じく F I Dによ り S 2ピークとして検出するようになっている。 一方、 熱分解ガスは F I D—の手 前で一部分岐されて、 C 02 トラップへも導入され、 ここで 2 5 0で〜 3 9 0 °C 間で発生する C〇2 を捕捉し、 熱伝導度検出器を接続したガスクロマトグラフに より S 3ピークとして検出する。 なお、 3 9 0 °C以上では無機質炭酸塩の分解に よる C〇2 の発生が生じるため、 ケロジユン分析での C O 2 に関しては有機質炭 酸塩より発生する C〇2 量を検出すればよいとされる。 このような分析による S,
1、 S 2、 S 3及び S 2ピークを得た頂点温度 (Tmax) からケロジェン類型の決 定が可能となる。
しかしながら、 上記の装置は複雑な制御操作を必要とする研究室用の装置であ り、 し力、も、 ガスボンベ等を必要とする H eガス、 及び同じくガスボンベを要し 、 かつ爆発の危険がある H2 ガスを使用するなど現場利用には不向きである。 そ のため、 現状では、 採取したサンプルを分析に値するかどうか不明のままこの装 置の設 所(国外となる場合もある) に移送して、 すべて分析する必要があり 、 分析の効率化という見地からはきわめて無駄の多レ、分析方法となってレ、た。 次に、 近年開発されたいわゆる "SOURCE ROCK ANALYZER " として知られた可搬型測定装置がある。 この可搬型装置は採取したチップ状の 岩石サンプルを大小 2個のふるい (4. 0画一 5mesh及び 3. 5 mm— 6 mesh目) により選別し、 これを小型るつぼ状の熱分解炉に入れ、 空気雰囲気中で急速に約 700eCまで瞬間的に加熱して発生する炭化水素を、 接触燃焼式ガスセンサによ り検出し、 サンプル中に含まれる有機物量を 2段階評価(LeanZRich判断) する ものである。
この可搬型装置は小型熱分解炉の特徴として、 ①急速加熱 Z急速冷却が可能で 、 分析時間が短くなる。 ②ヒータ容量が小さく、 したがってバッテリも小型とな るため、 結局装置全体が小型-柽量となる、 という現場使用に適した利点を有す るが、 性能面においては次のような欠点がある。
(1) 試料片を空気雰囲気中で急速加熱するため、 発生する炭化水素の一部 が燃焼し、 測定誤差を生じる。 同時に、 燃焼による C02 が熱分解により発生す る C02 に加わり、 その識別ができない。
(2) チップ伏サンプルはふるい分けを行ってもなお重量のバラツキが大き く、 それが炭化水素測定値に影響を及ぼす。
(3) 熱分解炉がるつぼ状であって、 ヒー夕内面に剥き出しで巻かれてれお り、 るつぼ內の試料片がヒータに触れる場合と触れない場合とで各部到達温度に 差が生じ、 発生した炭化水素量が異なることになる。 発明の開示
本発明は特殊ガスボンベ類を使用しない空気利用式の可搬型分析装置であつて 、 根源岩を採取現場において分析するに際し、 サンプル中の炭化水素 (H Cピ一 ク P 1及び P 2 ) 及び C〇2 (無機質炭酸塩の分解によるものを含まない C〇2 ピーク P 3 ) を比較的正確かつ迅速に分析し、 各成分とも 4〜5段階のポテンシ ャル評価及び単位重量当たりの炭化水素量 ZC 02 量比を求めることが可能な有 機物分析方法及び装置を提供しょうとするものである。
上記の目的を達するため、 本発明は、 真空吸引ライン及び空気供給ラインに対 し選択的に接続されるとともに、 空気供給に対応して排気するための排気ライン にも接続されるようにした炭化水素熱分解炉と、 前記排気ライン中に挿入された 炭化水素検出器及び C 02 検出器を含む可搬構造を用レ、た有機物分析方法であつ て、
a ) 岩石の粗砕サンプルを充塡した試料容器を常温以上で 1 0 0 °C以下の温 度に維持された前記熱分解炉に装塡するとともに、 この熱分解炉を前記真空吸弓 I ラインに接続して実質的に真空状態となるまで排気 ·減圧した後密閉し、
b ) 前記密閉された熱分解炉を、 前記温度から、 有機物の幾分かを蒸発及び 熱分解させるが、 無機質炭酸塩を分解させない限度に抑えられた第 1の温度まで 急速に加熱した後、 一定時間この温度に維持し、
c ) 前記熱分解炉を、 炉内の炭化水素が空気と反応しない温度まで冷却した 後、 前記空気供給ライン及び前記排気ラィンに接続して炉内の生成ガスを炭化水 素検出器及び C 02 検出器に通じ、 それらの出力信号から H Cピーク P 1及び C 02 ピーク P 3の面積値を算出し、
d) 前記熱分解炉を再び真空吸引ラインに接続して排気'減圧後密閉し、 不 溶性有機物を実質的に熱分解する、 前記第 1の温度より高い第 2の温度まで急速 に加熱した後、 一定時間この温度に維持し、
e ) 前記熱分解炉を、 炉内の炭化水素が空気と反応しない温度まで冷却した 後、 前記空気供給ライン及び前記排気ラインに接続して炉内の生成ガスを炭化水 素検出器及び C 02 検出器に通じ、 それらの出力信号から少くとも H Cピーク P 2を求めて記録し、
f ) 前記ピーク P 1、 P 2及び P 3の大きさから有機物の類型、 含有量等を 判定する、 ことを特徵とする可搬構造を用いた不溶性有機物の分析方法。
本癸明はまた、 上記の方法を実施するため、 真空源に導かれた真空吸引ライン 、 及び空気供給源に導かれた空気供給ラインに対し選択的に接続されるとともに 、 空気供給に対応して排気ラインに接続されるようにした炭化水素熱分解炉と、 前記熱分解炉のヒー夕を通電制御するための温度制御回路と、
前記排気ライン中に挿入された炭化水素検出器及び C 02検出器からなる検出 器系統と、
前記熱分解炉に関連する各ラインの開閉弁手段、 前記温度制御回路、 前記炭化 水素検出器及び C O 2検出器にそれぞれ電気接続され、 ①前記熱分解炉の 1 0 0 で以下における初期設定、 ②前記熱分解炉を真空密閉状態において前記初期設定 温度から無機質炭酸塩が分解しなレ、限度で第 1の温度まで急激に上昇させ、 かつ この温度に維持すること、 ③前記熱分解炉を前記第 1の温度より低い冷却温度か ら前記第 1の温度より高い温度まで真空密閉状態において急激に上昇させ、 かつ この温度に維持すること、 ④前記熱分解炉を、 Ιίίϊ己第 1又は第 2の温度から炭化 Κ素の空気不感応温度まで冷却後、 空気供給ライン及び排気ラインに接続するこ と、 ⑤前記④のライン接続中において前記排気ライン中の炭化水素検出器及び C 〇2検出器から発生する出力信号のピーク、 少くとも HCピーク P l、 Ρ 2及び C 02 ピーク P 3を記録し、 炭化水素量 P 1 + P 2及び C 02 量 P 3から有機物 の類型及び含有量を判定すること、 からなる各工程を実行するための演算及びシ —ケンス制御装置、 を備えたことを特徵とする可搬構造を用いた不溶性有機物の 分析装置を構成したものである。
上記の方法及び装置によれば、 真空密閉状態で熱分解を行うため、 空気中の酸 素による燃焼等の影響を受けることなく、 炭化水素の測定誤差を少なくするとと もに、 C〇2 の測定も可能となった。 すなわち、 3 S 0 °C及び 5 5 0 °Cにおける 各熱分解処理後において、 熱分解炉は炉内の炭化水素が空気と反応 (燃焼) しな い程度の温度まで冷却された後、 空気により測定系に送られる。 すなわち、 本発 明の装置においては、 流通用ガスとしての特別な不活性ガス (H e、 N2 、 その 他) も、 F I D用としての水素ガスも用いないため、 安全かつ軽便な装置構成と な 。
また、 粗砕サンプルは充分狭い粒子径の範囲にふるい分けることが可能である ため、 試料容器への充塡レベルを一定にすれば、 サンプル重量を基準とした比較 的正確な定量が可能となるものである。 図面の簡単な説明
図 1は、 本発明の実施例における小型熱分解炉の縱断面図である。
図 2は、 図 1の熱分解炉に装塡するための試料容器を示す縱断面図である。 図 3は、 図 1の熱分解炉を組み込んだ流路構成及び電気回路接続を示す線図で める
図 4は、 本発明の装置による分析ピ ク (H C及び C 02 測定) を示すグラフ である。 発明を実施するための最良の形態
以下、 図 1〜図 3を参照して実施例の装置を説明する。 図 1に示す通り、 小型 熱分解炉 1は側板 2及び 3と、 側板 2の上下両端に連なる上板 4及び下板 5から なるフレーム構造内に保持された円筒型の炉体 6を有する。 すなわち、 上板 4及 び下板 5はそれぞれ上部スぺーサ 7及び下部スぺーサ 8を介して上端板 9及び下 端板 1 0を保持し、 これらの上端板 9及び下端板 1 0が炉体 6の上下両端面をそ れぞれ保持して直立状態に維持するものである。 上板 4の外側 (上部) には排気 口 1 1を有する上ブロック 1 2及び空気入出口 1 3を有する下ブロック 1 4が固 着され、 上プロック 1 2の上端にはキヤップ 1 5が、 また下ブロック 1 4の下端 には温度センサとしての C A線 1 6を有するねじ拴 1 7がそれぞれ装着されてい る。 炉体 6の円筒室内には外管 1 8及びその内側にわずかな間隔を置いて同軸的 に配置された内管 1 9が設けられている。 内管 1 9の上下両端は炉体 6の上下部 と、 両端板 9及び 1 0と上下スぺーサ 7及び 8、 さらには上板 4及び下板 5を貫 通し、 かつ上ブロック 1 2及 CTFブロック 1 4の内部にまで突出している。 内管 1 9の中央部は軸心に沿った細孔 2 0を有する節部となっており、 この節部を底 面として上半部に細管状試料容器 2 1を嵌受するようになっている。 上ブロック 1 2には試料容器 2 1の挿入を許容する受入孔 2 2が形成され、 この上プロック 1 2から突出した試料容器 2 1の上端はキャップ 1 5により被覆されるようにな つている。 試料容器 2 1、 内管 1 9及び外管 1 8はいずれも石英管からなり、 外 管 1 8の外周にはたとえばカンタゾレ線からなるヒータワイヤが巻着され、 このヒ 一ターの両端 2 3 a . 2 3 bは炉体 6から側板 2を介して外部に弓 Iき出される。 側板 2にはこのようなヒータの両端接続を保持するための端子 2 4 a、 2 4 bを 装着した端子板 2 5が突出して支持される。 下部ブロック 1 4の下端面からは前 述した空気入出口 1 3に連通した軸孔 2 6が修成され、 温度センサ 1 6の先端は この軸孔を通って内管 1 9の下部に挿入され、 中間軸孔 2 0の直下に位置するよ うになつている。 温度センサ 1 6の先端は軸穴 2 6の内径より充分細いため、 空 気入出口 1 3は軸孔 2 6内において温度センサ 1 6の周囲空間を通って内管 1 9 の下部に通じ、 さらに、 中間軸孔 2 0から上方の試料容器 2 1内に連通するよう になっている。
図 2は試料容器の詳細を示すものであり、 好ましい実施例において石英管から なる試料容器 2 1の長さは 6 7讓、 外径は 5 . 5腿、 そして内径は 3 . 5腿であ り、 下端に 1 . 0醒径の連通孑し 2 1 aを有している。 すなわち、 この連通孔 2 1 aの存在により、 前述した内管 1 9下部との連通関係を得ることができる。 図 3は図 1に示した熱分解炉 1の配管接続及び電気接続を示す線図である。 熱 分解伊 1の空気入出口 1 3にはライン 2 7を介して真空ポンプ 2 8力 \ またライ ン 2 9を介してダイヤフラムポンプ 3 0が接続される。 ライン 2 7は真空吸引ラ イン、 そしてライン 2 9は空気供給ラインであり、 それぞれ電磁弁 MV 2— 1、 MV 3 - 1を介して空気入出口 1 3に接続される。 空気供給ライン 2 9にはさら にダイヤフラムポンプ 3 0の上流側において流量調整用の二一ドル弁 3 1が挿入 され、 さらに上流側のライン端には空気取入口としてエアフィルタ 3 2が装備さ れる。
熱分解炉 1の排気口 1 1には、 この場合、 赤外線非分散型の C 02 検出器 3 3 、 及び接触燃焼式センサからなる炭化水素 (H C ) 検出器 3 4を挿入した排気ラ イン 3 5が接続される。 排気ライン 3 5の下流側には流量計 3 6が挿入され、 上 流側には電磁弁 MV 3一 2が熱分解炉 1の排気口 1 1に直結するように接続され ている。 この電磁弁 MV 3 - 2と前述した空気供給ラインにおける電磁弁 MV 3 一 1はいずれも三方電磁弁であり、 各残りの一 δί *口どうしをバイパスライン 3 7により接続し、 ダイヤフラムポンプ 3 0から導入した空気をこのバイパスライ ン 3 7を介して排気ライン 3 5に直接導くことができるようなつている。
以上が実施例の流路構成であり、 これは次のような電気回路接続によつて制御 操作される。 すなわち、 3 8は熱分解炉 1のヒータ端子 2 3 a、 2 3 b間に制御 電流を通ずるための温度制御回路、 3 9はじ 02検出器 3 3の出力信号を受け入 れる増幅器、 4 0は H C検出器 3 4の出力を受け入れる増幅器、 そして、 4 1は 演算及びシーケンス制御部であり、 前述した電磁弁 MV 2— 1、 MV 3 - K M V 3— 2の切換制御、 真空ポンプ 2 8及びダイヤフラムポンプ 3 0の選択的な駆 動制御を行うとともに、 温度センサ 1 6による温度信号を監視しながら温度制御 回路 3 8を制御する機能、 並びに熱分解炉からの排気及び測定時において増幅器 3 9及び 4 0からの出力信号を記憶及び演算する機能を実行するものである。 演 算及びシーケンス制御部 4 1にはプリンタ 4 2が接続され、 各検出器による出力 信号の処理'演算値を記録することができる。 電源供給部 4 3は前述した電気系 統への電気工ネルギ供給を行うものであり、 A C 1 0 0 Vに直接接続されるか、 又は内蔵バッテリからの D C /A C変換等を経て、 必要な各部電源電圧を取出す ようになっている。
本発明による有機物分析方法は、 上記の装置を用いて次のように実施される。
( 1 )試料容器 2 1へのサンプル充塡
岩石サンプルとして砂状又はチップ状のものをハンマ等で粗粉砕し、 これを 1 腿目と 0 . 5腿目の 2種類のふるいにより選別して 0 . 5〜1讓径の粒状サンプ ルとし、 試料容器 2 1の底部に一定高さまで充填する。 なお、 微粉砕により、 粒 子径をさらに/ J、さくしてもよい。
( 2 )小型熱分解炉への装塡
サンプルを充塡した試料容器 2 1を図 1のように小型熱分解炉 1に装塡し、 キ ヤップ 1 5により密封する。 なお、 熱分解炉 1は電源 4 3 (図 3参照) 投入後、 5 0 - 1 0 0 °Cの初期設定温度に到達し、 維持されているものとする。
( 3 ) 炉内真空化及びベースライン設定
図 3の流路構成において、 二方電磁弁 MV 2一 1を開にし、 かつ熱分解炉 1に 対して入口側及び出口側の三方電磁弁 MV 3— 1、 MV 3 - 2を閉とすることに より、 真空ポンプ 2 8のみを接続して、 炉内を真空排気し、 内圧が例えば l torr 以下になれば二方電磁弁 MV 2— 1を閉にし、 これによつて真空密閉状態とする
—方、 ダイヤフラムポンプ 3 0を駆動してエアフィルタ 3 2より外部の空気を 吸引し、 この空気を二一ドル弁 3 1で一定流量に制御しつつ三方電磁弁 MV 3一 1、 バイパスライン 3 7及び三方電磁弁 MV 3 - 2を経て C 02検出器 3 3及び 炭化水素検出器 3 4に導入する。 各検出器の電気出力状態はアンプ 3 9及び 4 0 を介して制御部 4 1に伝達され、 空気によるベースライン信号を形成する。 この 場合、 両検出器 3 3、 3 4は排気ライン 3 5中に直列的に挿入されているが、 下 流側の検出器が上流側の検出器に を受ける場合には並列接続される。
( 4 ) 低温熱分解 次に、 熱分解炉 1を初期設定温度から 390 °Cまで急速加熱し、 この温度に一 定時間保持した後、 冷却する。 この真空下における 390てにおいて熱分解炉内 ではサンプルに熱分解が起こり、 炭化水素及び CO 2 が発生し、 封入経路内に拡 散する。 この低温熱分解においては、 前述したように無機質炭酸塩の分解による C〇2 の発生はない。
( 5 ) 冷却及び測定
発生した炭化水素が空気と触れても、 燃焼しない温度まで熱分解炉 1を冷却し た後、 三方電磁弁 MV 3一 1及び MV 3一 2を熱分解炉 1側に切換え、 熱分解炉 の下端から空気を導入し、 炉内の発生ガスを各検出器 33、 34に導入する。 各 検出器では発生ガスが通過するタイミングに応じて炭化水素ピーク (P 1) とじ 02 ピーク (P 3) が得られ、 演算及びシーケンス制御部 4 1において各ピーク 面積値が算出される。
( 6 ) 高温熱分解
再び (3) 項の前段で述べたように、 炉内を真空排気した後、 今度は 550 °C まで急速に加熱し、 この温度を一定時間保持した後、 冷却させる。 この状態で熱 分解炉 1內では真空状態での熱分解がさらに進行し、 新たに発生した炭化水素及 び C〇2 が封入経路内に拡散する。
( 7 ) 冷却及び測定
工程 (5) と同様に熱分解炉が充分冷却された後、 空気を流通させると、 各検 出器において炭化水素ピーク (P 2) と C02 ピーク (P 4) が得られ、 ここで は P 2のみピーク面積値が算出される。
以上のステップにおける熱分解炉の温度と、 各ピークの検出状態は図 4に示す 通りである。
(8) ポテンシャル評価
演算及びシーケンス制御部 4 1において各ピークの面積値 (炭化水素について は P l +P 2、 C〇2 については P 3のみ) と、 予め標準物質により設定されて レ、る検 により各成分の単位試料重量当たりの含有量 (mg/g) が求められる 0 小型プリン夕 4 2により炭化水素及び C〇2 含有量と、 その比(H/〇) が印 字され、 同時にポテンシャノレ評価用ランプ(例えば、 4〜 5段階を示すために設 けられる) によりそのサンプルのポテンシャル か'与えられる。
なお、 実施例の炭化水素検出器は接触燃焼式センサであり、 C 02検出器は非 分散型赤外線検出器であつたが、 これらの一方、 又は両方を半導体式に換えるこ ともできる。
実施例の装置においては、 試料容器 2 1をセッ卜した後、 ポテンシャル評価ま での一連の動作は自動的にシーケンス処理されるが、 このシーケンスを変更すれ ば、 炭化水素のみ又は C 02 のみの分析も容易に行うことができる。
本発明は以上の通り構成されたので、 従来の流通型熱分解装置(不活性ガスキ ャリャ型熱分解 -分析装置) に比して成分のピーク形状が尖鋭でテーリングが少 なく再現性も良好であった。すなわち、 従来の流通型熱分解装置の場合には熱分 解過程におけるわずかな温度変化があっても、 発生ガス量が変化し、 それがまた 、 ピーク形状に反映して再現性に影響を及ぼしていたが、 本発明の技術において は、 熱分解過程でわずかな温度変化があっても、 熱分解全体の平均化された結果 がピークの大きさとして現れる。 また、 検出器に至るまでの経路にデッドスぺー スが少ないため、 これが "層テーリングの少ない尖鋭なピーク形状に寄与するも のと考えられる。 産 の利用可能性
すでに述べた通り、 本発明においては、 真空密閉状態で熱分解を行うため、 空 気中の酸素による燃焼等の影響を受けない。 したがって、 発生する炭化水素量の 誤差が少なく、 C 02 の測定も可能となった。 また、 真空密閉状態で冷却させた 後、 発生ガスを 出するので、 キヤリャガスとして特別な不活性ガスを要しない ため、 これは分析の正確さと可搬性という従来相反していた要件を両立させるも のである。
根源岩サンプルを熱分解させると、 中には熱分解温度以下であれば凝縮し、 経 路内に付着するような高沸点成分も発生するが、 試料容器を縦長にして直立させ ることにより、 凝縮成分は試料容器上部の温度上昇しにくい付近に付着し、 その 他のガス流通系を汚すことなく、 試料容器の交換又は洗浄のみで連続して分析を 行うことが可能となった。
種々の現場において、 電子天秤などによるサンプル重量の測定ができない場合 も一定の粒子径に揃えたサンプルを縦長の試料容器に一定の高さまで充填するた め、 重量範囲は比較的安定し、 例えば 1 0 O mgにおいて ± 5 %以内とすることが できた。
なお、 本発明の装置は、 近年用いられている可搬型分析装置に比較すれば、 大 幅な精度向上が得られるという利点と引きかえに、 ヒータ容量の増加及び真空ポ ンプの必要性等、 若干の大型化をもたらすが、 現場踏査のためのライトバンゃヮ ゴン車などの車輛に十分積載可能な形状及び重量であり、 自動車用バッテリから の電源供給も可能であるため、 きわめて利用価値の高 、現場測定装置を構成する ことができる。

Claims

請求の範囲 . 真空吸引ラィン及び空気供給ラィンに対し選択的に接続されるとともに、 空気供給に対応して排気するための排気ラインにも接続されるようにした炭 化水素熱分解炉と、 前記排気ライン中に挿入された炭化水素検出器及び C O
2 検出器を含む可搬構造を用いた有機物分析方法であって、
a) 岩石の粗降サンプルを充填した試 容器を常温以上で 1 0 0 °C以下 の温度に維持された前記熱分解炉に装填するとともに、 この熱分解炉を前記 真空吸引ラインに接続して実質的に真空状態となるまで排気 ·減圧した後密 閉し、
b) 前記密閉された熱分解炉を、 前記温度から、 有機物の幾分かを蒸発 及び熱分解させるが、 無機質炭酸塩を分解させない限度に抑えられた第 1の 温度まで急速に加熱した後、 一定時間この温度に維持し、
c) 編己熱分解炉を、 炉内の炭化水素が空気と反応しない温度まで冷却 した後、前記空気供給ライン及び前記排気ラインに接続して炉内の生成ガス を炭化水素検出器及び C 02 検出器に通じ、 それらの出力信号から HCピー ク P 1及び C 02 ピーク P 3を求めて記録し、
d ) 爾己熱分解炉を再び真空吸弓 ίラインに接続して排気 ·減圧後密閉し 、 不溶性有機物を実質的に熱分解する、 前記第 1の温度より高い第 2の温度 まで急速に加熱した後、 一定時間この温度に維持し、
e) 前記熱分解炉を、 炉內の炭化水素が空気と反応しない温度まで冷却 した後、 前記空気供給ライン及び前記排気ラインに接続して炉内の生成ガス を炭化水素検出器及び C 02 検出器に通じ、 それらの出力信号から少くとも H Cピーク P 2を求めて記録し、
f ) 前記ピーク P 1、 P 2及び P 3の大きさから有機物の類型、 含有量 等を判定する、 ことを特徵とする可搬構造を用いた不溶性有機物の分析方法 o
. 前記粗砕サンプルの粒子径を 0 . 5〜1 . 0議程度に揃え、 このサンプル を前記試料容器の所定レベルまで充填することを特徴とする請求項 1記載の 方法。
. 前記第 1の温度を 3 9 0 °C, 第 2の温度を 5 5 0でとすることを特徴とす る請求項 1記載の方法。
. 真空源に導かれた真空吸引ライン、 及び空気供給源に導かれた空気供給ラ ィンに対し選択的に接続されるとともに、 空気供給に対応して排気ラインに 接続されるようにした炭化水素熱分解炉と、
前記熱分解炉のヒー夕を通電制御するための温度制御回路と、
前記排気ライン中に挿入された炭化水素検出器及び C 02 検出器からなる 検出器系統と、
前記熱分解炉に関連する各ラインの開閉弁手段、 前記温度制御回路、 前記 炭化水素検出器及び C 02 検出器にそれぞれ電気接続され、 ①前記熱分解炉 の 1 0 0 C以下における初期設定、 ②前記熱分解炉を真空密閉状態において 前記初期設定温度から無機質炭酸塩が分解しない限度で第 1の温度まで急激 に上昇させ、 かっこの温度に維持すること、 ③前記熱分解炉を前記第 1の温 度より低い冷却温度から前記第 1の温度より高い温度まで真空密閉状態にお いて急激に上昇させ、 かっこの温度に維持すること、 ④前記熱分解炉を、 前 記第 1又は第 2の温度から炭化水素の空気不感応温度まで冷却後、 空気供給 ライン及び排気ラインに接続すること、 ⑤前記④のライン接続中において前 記排気ライン中の炭化水素検出器及び C 02 検出器から発生する出力信号の ピーク、 少くとも H Cピーク P 1、 P 2及び C 02 ピーク P 3を記録し、 炭 化水素量 P 1 + P 2及び C 02量 P 3から有機物の類型及び含有量を判定す ること、 からなる各工程を実行するための演算及びシーケンス制御装置、 を 備えたことを特徴とする可搬構造を用レ、た不溶性有機物の分析装置。
5. 前記熱分解炉に装塡する試料容器が、 サンプル収納レベルを目視できる管 体であって、 前記装塡時において、 前記真空ライン、 空気供給ライン及び排 気ラインに連通可能な流通構造を有することを特徵とする請求項 4記載の装 置。
6. 編己炭化水素検出器が接触燃焼式炭化水素検出器からなり、 前記 C 02 検 出器が非分散赤外線式検出器からなることを特徵とする請求項 4記載の装置
7. 前記熱分解炉の空気供耠ライン接続口、 及び排気ライン接镜口の間に空気 バイパスラインを設けるとともに、 熱分解炉 -バイパスライン切換弁手段を 挿入したことにより、 バイパスラインを開通して前記排気ライン中の炭化水 素検出器及び C 02 検出器に空気を通じ、 ベースラインを確立するようにし たことを特徵とする請求項 4記載の装置。
PCT/JP1993/000305 1992-03-13 1993-03-12 Method and apparatus for analyzing organic matters using transportable construction WO1993018400A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/146,109 US5389550A (en) 1992-03-13 1993-03-12 Organic substance analyzing method and apparatus using portable construction
DE69321677T DE69321677T2 (de) 1992-03-13 1993-03-12 Tragbares Gerät zur Analyse von organischen Stoffen und Verfahren unter Verwendung desselben
EP93905639A EP0584377B1 (en) 1992-03-13 1993-03-12 Portable apparatus for analyzing organic matters and method using said apparatus
NO933994A NO308116B1 (no) 1992-03-13 1993-11-05 FramgangsmÕte og apparat for analysering av organiske substanser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/89778 1992-03-13
JP4089778A JPH0750022B2 (ja) 1992-03-13 1992-03-13 可搬構造を用いた有機物分析方法及び装置

Publications (1)

Publication Number Publication Date
WO1993018400A1 true WO1993018400A1 (en) 1993-09-16

Family

ID=13980138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000305 WO1993018400A1 (en) 1992-03-13 1993-03-12 Method and apparatus for analyzing organic matters using transportable construction

Country Status (6)

Country Link
US (1) US5389550A (ja)
EP (1) EP0584377B1 (ja)
JP (1) JPH0750022B2 (ja)
DE (1) DE69321677T2 (ja)
NO (1) NO308116B1 (ja)
WO (1) WO1993018400A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721590A (zh) * 2012-06-28 2012-10-10 中国石油天然气股份有限公司 连续无损耗全岩天然气生成模拟方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739694B1 (fr) * 1995-10-05 1997-11-14 Inst Francais Du Petrole Methode et dispositif pour determiner des caracteristiques petrolieres de sediments geologiques
US20050250209A1 (en) * 2004-04-21 2005-11-10 Petroleum Habitats, Llc Determining metal content of source rock during well logging
US7153688B2 (en) * 2004-12-07 2006-12-26 Petroleum Habitats, L.L.C Rock assay for predicting oil or gas in target reservoirs
WO2007082179A2 (en) * 2006-01-06 2007-07-19 Mango Frank D In situ conversion of heavy hydrocarbons to catalytic gas
US20080115935A1 (en) * 2006-01-06 2008-05-22 Mango Frank D In situ conversion of heavy hydrocarbons to catalytic gas
CN101689102B (zh) * 2007-02-16 2014-01-29 沙特阿拉伯石油公司 测定储集岩中有机物质体积的方法
US8256267B2 (en) * 2008-08-14 2012-09-04 Breen Energy Solutions Method and apparatus for detection, measurement and control of sulfur-trioxide and other condensables in flue gas
DE102010010358B4 (de) * 2009-12-07 2011-11-10 AJIDC Geräteentwicklungsgesellschaft mbH Verfahren und Vorrichtung zum Nachweis von Gasen
WO2011140287A1 (en) 2010-05-04 2011-11-10 Petroleum Habitats, L.L.C. Detecting and remedying hydrogen starvation of catalytic hydrocarbon generation reactions in earthen formations
CN103048261B (zh) * 2013-01-21 2014-12-31 中国科学院武汉岩土力学研究所 一种研究酸性流体作用下岩石物性参数变化的装置及方法
CN103323305B (zh) * 2013-05-24 2015-05-06 中国石油天然气股份有限公司 用于制备岩石中稀有气体的制样装置及方法
EP2878947A1 (en) * 2013-12-02 2015-06-03 Geoservices Equipements Isothermal analysis system and method
CN103994917B (zh) * 2014-05-06 2016-04-06 中国科学院广州地球化学研究所 一种用于岩石热解仪上的加热装置
CN105203502B (zh) * 2015-08-14 2017-11-07 北京大学 一种气溶胶碳质组分原位在线采集分析仪及其方法
CN107561199B (zh) * 2017-10-30 2023-09-19 中国科学院西北生态环境资源研究院 高温高压模拟仪在线气体自动进样检测系统及检测方法
CN113092374B (zh) * 2021-04-12 2022-11-15 青岛科技大学 小型真空光电测试系统
CN114112970A (zh) * 2021-11-22 2022-03-01 中国地质大学(武汉) 一种页岩气储层碳同位素测量方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720280B1 (ja) * 1968-09-30 1972-06-08
JPS5232598B2 (ja) * 1972-04-10 1977-08-23
JPS54140593A (en) * 1978-04-24 1979-10-31 Kokusai Electronics Carbon analyzer
JPS564052A (en) * 1979-06-23 1981-01-16 Yanagimoto Seisakusho:Kk Concentration measuring device for nonmethane organic compound
JPS57204001U (ja) * 1981-06-19 1982-12-25
JPS57212510A (en) * 1981-06-25 1982-12-27 Mitsubishi Heavy Ind Ltd Sample temperature controlling method in heating furnace
JPS5920837A (ja) * 1982-07-23 1984-02-02 Shimadzu Corp 炭素分析装置
JPS6113182B2 (ja) * 1976-04-14 1986-04-11 Labofina Sa
JPS61161453A (ja) * 1984-12-28 1986-07-22 カルロ・エルバ・ストルーメンタヂオーネ・エセ・ピ・ア 石油生成物の模擬蒸留法及び装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2435038A2 (fr) * 1978-08-28 1980-03-28 Inst Francais Du Petrole Methode et dispositif pour determiner des caracteristiques petrolieres de sediments geologiques sur la base de faibles prelevements
US4248599A (en) * 1979-09-19 1981-02-03 Shell Oil Company Process for determining the API gravity of oil by FID
US4251674A (en) * 1979-10-22 1981-02-17 Phillips Petroleum Company Method and apparatus for improving the selectivity of a process for hydrogenating acetylene to ethylene
US4360359A (en) * 1981-03-13 1982-11-23 Conoco Inc. Method for relating shallow electrical anomalies to the presence of deeper hydrocarbon reservoirs
US4578356A (en) * 1983-05-16 1986-03-25 Union Oil Company Of California Field source rock evaluation method
US4629702A (en) * 1984-10-04 1986-12-16 Mobil Oil Corporation Method for classifying the sedimentary kerogen for oil source
GB8518821D0 (en) * 1985-07-25 1985-08-29 British Petroleum Co Plc Rock analyser
US5009772A (en) * 1989-02-27 1991-04-23 Kerr-Mcgee Corporation Solvent extraction process
CA2020480C (en) * 1989-08-24 1997-11-18 Michael P. Smith Determining collective fluid inclusion volatiles compositions for inclusion composition mapping of earth's subsurface

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720280B1 (ja) * 1968-09-30 1972-06-08
JPS5232598B2 (ja) * 1972-04-10 1977-08-23
JPS6113182B2 (ja) * 1976-04-14 1986-04-11 Labofina Sa
JPS54140593A (en) * 1978-04-24 1979-10-31 Kokusai Electronics Carbon analyzer
JPS564052A (en) * 1979-06-23 1981-01-16 Yanagimoto Seisakusho:Kk Concentration measuring device for nonmethane organic compound
JPS57204001U (ja) * 1981-06-19 1982-12-25
JPS57212510A (en) * 1981-06-25 1982-12-27 Mitsubishi Heavy Ind Ltd Sample temperature controlling method in heating furnace
JPS5920837A (ja) * 1982-07-23 1984-02-02 Shimadzu Corp 炭素分析装置
JPS61161453A (ja) * 1984-12-28 1986-07-22 カルロ・エルバ・ストルーメンタヂオーネ・エセ・ピ・ア 石油生成物の模擬蒸留法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0584377A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721590A (zh) * 2012-06-28 2012-10-10 中国石油天然气股份有限公司 连续无损耗全岩天然气生成模拟方法

Also Published As

Publication number Publication date
US5389550A (en) 1995-02-14
JPH05256748A (ja) 1993-10-05
NO308116B1 (no) 2000-07-24
NO933994L (no) 1993-11-05
NO933994D0 (no) 1993-11-05
DE69321677T2 (de) 1999-06-10
EP0584377B1 (en) 1998-10-21
EP0584377A1 (en) 1994-03-02
EP0584377A4 (en) 1994-09-21
JPH0750022B2 (ja) 1995-05-31
DE69321677D1 (de) 1998-11-26

Similar Documents

Publication Publication Date Title
WO1993018400A1 (en) Method and apparatus for analyzing organic matters using transportable construction
US20100043528A1 (en) Device and method for continuous measurement of concentrations of tars in a gas flow
CN1687765A (zh) 便携式气体检测仪
CN110308216A (zh) 一种气体中微量永久性杂质气体和水的一体化分析系统及其使用方法
RU2146811C1 (ru) Способ экологического мониторинга органических соединений и устройство для его осуществления
CN201273896Y (zh) 煤自燃倾向性的测定装置
CN1776405A (zh) 一种在线大气汞分析仪
CN106092840A (zh) 一种大型污染源废气排放测试方法
CN109752344B (zh) 一种便携式非甲烷总烃浓度检测仪及检测方法
US7070738B2 (en) Analyzer with variable volume ballast chamber and method of analysis
CN201438183U (zh) 便携式变压器油色谱分析仪
WO1999042814A1 (en) Apparatus and method for the measurement of global carbon emissions from natural and anthropogenic sources
CN109799302A (zh) 中等挥发性有机化合物近在线检测方法
WO2023159789A1 (zh) Gc-aed关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法
CN211627469U (zh) 一种基于色谱分离的碳氢氮元素分析系统
JP3742975B2 (ja) ガス検出方法およびガス検出に用いる装置
WO1993011421A1 (en) Method and apparatus for monitoring a supply of gas
CN219496275U (zh) 固定污染源废气中有机物的环保在线监测与采样设备
CN112986062B (zh) 用于测量碳质气溶胶的加热腔室和包括该腔室的装置
SU1365910A1 (ru) Способ локального определени содержани водорода в твердых металлах и устройство дл его осуществлени
Bergantin Jr et al. Gold thin film chemiresistor sensor for gaseous elemental mercury
CN100541196C (zh) 带有可变体积镇流室的分析仪及分析方法
Tuominen et al. Application of GLC-selected ion monitoring (SIM)-technique in analysing polycyclic organic compounds in vehicle emissions
RU2151434C1 (ru) Анализатор водорода в топливных таблетках из двуокиси урана
CN115096960A (zh) 一种高选择高灵敏碘蒸气电化学阻抗传感器及构建方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993905639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08146109

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993905639

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993905639

Country of ref document: EP