WO1993015211A1 - Nouveaux polypeptides ayant une activite de stimulation des colonies de granulocytes, leur preparation et compositions pharmaceutiques les contenant - Google Patents

Nouveaux polypeptides ayant une activite de stimulation des colonies de granulocytes, leur preparation et compositions pharmaceutiques les contenant Download PDF

Info

Publication number
WO1993015211A1
WO1993015211A1 PCT/FR1993/000086 FR9300086W WO9315211A1 WO 1993015211 A1 WO1993015211 A1 WO 1993015211A1 FR 9300086 W FR9300086 W FR 9300086W WO 9315211 A1 WO9315211 A1 WO 9315211A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
csf
polypeptides
plasmid
sah
Prior art date
Application number
PCT/FR1993/000086
Other languages
English (en)
Inventor
Patrice Yeh
Original Assignee
Rhone-Poulenc Rorer S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone-Poulenc Rorer S.A. filed Critical Rhone-Poulenc Rorer S.A.
Priority to EP93904130A priority Critical patent/EP0624200A1/fr
Priority to JP5512987A priority patent/JPH07503844A/ja
Priority to US08/256,938 priority patent/US5665863A/en
Publication of WO1993015211A1 publication Critical patent/WO1993015211A1/fr
Priority to FI943564A priority patent/FI943564A/fi
Priority to NO942858A priority patent/NO942858L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • C07K14/765Serum albumin, e.g. HSA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to new polypeptides having activity of stimulating colonies of human granulocytes, their preparation and pharmaceutical compositions containing them.
  • the present invention relates in particular to chimeric polypeptides composed of a biologically active part consisting of all or part of G-CSF or of a variant of G-CSF, and of an essentially protein stabilizing structure conferring on it new biological properties.
  • Human G-CSF is a secreted polypeptide of 174 amino acids, having a molecular weight of approximately 18 kD. It was initially isolated from a cancer cell line (EP 169,566), and its gene was cloned, sequenced, and expressed in different cell hosts by genetic engineering techniques (EP 215,126, EP 220,520). An mRNA potentially coding for a form of G-CSF having 177 amino acids has also been demonstrated [Nagata S. et al., EMBO J. 5 (1986) 575-581]. G-CSF has the ability to stimulate the differentiation and proliferation of bone marrow progenitor cells into granulocytes.
  • G-CSF is degraded quickly by the body once administered. This is all the more sensitive since G-CSF is generally used at low doses. In addition, the use of larger doses could not improve the capacities therapeutic effects of this molecule and can induce undesirable side effects. These elimination and degradation phenomena in vivo therefore constitute for the moment an obstacle to the exploitation of the biological activity of G-CSF as a pharmaceutical agent.
  • the present invention overcomes these drawbacks.
  • the present invention provides indeed new molecules allowing an optimal exploitation on the therapeutic level of the biological properties of G-CSF. The Applicant has in fact demonstrated that the optimal activity of G-CSF manifests itself when G-CSF is present at low dose and for an extended time.
  • the applicant has now produced molecules capable of maintaining G-CSF activity in the body for a sufficiently long time.
  • the Applicant has shown that it is possible to express, in cellular hosts at high levels, genetic fusions generating chimeras exhibiting new pharmacokinetic properties and the desirable biological properties of G-CSF.
  • the hybrid polypeptides of the invention retain their affinity for the G-CSF receptors, and are sufficiently functional to lead to cell proliferation and differentiation.
  • the molecules of the invention also have a distribution and pharmacokinetic properties which are particularly advantageous in the organism and allow the therapeutic development of their biological activity.
  • An object of the present invention therefore relates to recombinant polypeptides comprising an active part consisting of all or part of G-CSF, or of a variant of G-CSF, and an essentially protein stabilizing structure.
  • variant of G-CSF designates any molecule obtained by modification of the sequence between the residues Thr586 and Pro759 of the sequence presented in FIG. 1, retaining G-CSF activity, that is to say ie the ability to stimulate the differentiation of target cells and the formation of granulocyte colonies.
  • This sequence corresponds to that of mature G-CSF described by Nagata et al. [EMBO J. £ (1986) 575-581].
  • Such variants can be generated for different purposes, such as in particular that of increasing the affinity of the molecule for the G-CSF receptor (s), that of improving its production levels, that of increasing its resistance to proteases, that of increasing its therapeutic efficacy or reducing its side effects, or that of giving it new pharmacokinetic and / or biological properties.
  • polypeptides include, for example, molecules in which certain glycosylation sites have been modified or deleted, as well as molecules in which one, more, or even all of the cysteine residues have been substituted. It also includes molecules obtained from (a) or (b) by deletion of regions having little or no activity, or occurring in an undesirable activity, and molecules comprising, with respect to (a) or ( b) additional residues, such as for example an N-terminal methionine or a secretion signal.
  • the chimeric polypeptides of the invention comprise an active part of type (a).
  • the active part of the molecules of the invention can be coupled to the protein stabilizing structure, either directly or through a junction peptide. In addition, it can constitute the N-terminal end as the C-terminal end of the molecule. Preferably, in the molecules of the invention, the active part constitutes the C-terminal part of the chimera.
  • the stabilizing structure of the polypeptides of the invention is essentially protein.
  • this structure is a polypeptide having a high plasma half-life.
  • it may be an albumin, an apolipoprotein, an immunoglobulin or even a transfemin. They may also be peptides derived from such proteins by structural modifications, or peptides synthesized artificially or semi-artificially, and having a high plasma half-life.
  • the stabilizing structure used is more preferably a weakly or non-immunogenic polypeptide for the organism in which the polypeptides of the invention are used.
  • the stabilizing structure is an albumin or a variant of albumin and for example human serum albumin (S AH).
  • the albumin variants designate any protein with a high plasma half-life obtained by modification (mutation, deletion and / or addition) by genetic engineering techniques of a gene coding for a given isomorph of serum- human albumin, as well as any macromolecule with a high plasma half-life obtained by in vitro modification of the protein encoded by such genes.
  • albumin is very polymorphic, many natural variants have already been identified, and more than 30 different genetic types have been identified [Weitkamp L.R. et al., Ann. Hmm. Broom. 21 (1973) 219]. More preferably, the stabilizing structure is a mature albumin.
  • polypeptides of the invention comprising, in the N-terminal -> C-terminal direction, (i) the sequence of mature SAH directly coupled to the sequence of mature G-CSF (cf. Figure 1), or (ii) the sequence of mature G-CSF coupled via a peptide binding to the sequence of mature HSA.
  • Another subject of the invention relates to a process for the preparation of the chimeric molecules described above. More precisely, this method consists in causing a eukaryotic oti prokaryotic cellular host to express a nucleotide sequence coding for the desired polypeptide, then in harvesting the produced polypeptide.
  • eukaryotic hosts which can be used in the context of the present invention, mention may be made of animal cells, yeasts, or fungi.
  • yeasts mention may be made of yeasts of the genus Saccharomyces. Kluyveromyces. Pichia. Sc warmiomyces. or Hansenula.
  • animal cells mention may be made of COS, CHO, C127 cells, etc.
  • fungi capable of being used in the present invention there may be mentioned more particularly Aspergillus ssp. or Trichoderma ssp.
  • prokaryotic hosts it is preferred to use bacteria such as Escherichia coli. or belonging to the genera Corynebacterium. Bacillus.
  • nucleotide sequences which can be used in the context of the present invention can be prepared in different ways. Generally, they are obtained by assembling in the reading phase the sequences coding for each of the functional parts of the polypeptide. These can be isolated by techniques skilled in the art, and for example directly from cellular messenger RNAs (mRNAs), or by recloning from a complementary DNA library (cDNA) isolated from from producer cells, or it can be completely synthetic nucleotide sequences. It is further understood that the nucleotide sequences can also be subsequently modified, for example by genetic engineering techniques, to obtain derivatives or variants of said sequences.
  • mRNAs messenger RNAs
  • cDNA complementary DNA library
  • the nucleotide sequence is part of an expression cassette comprising a region for initiating transcription (promoter region) allowing, in host cells, the expression of the nucleotide sequence placed under its control and coding for the polypeptides of the invention.
  • This region can come from promoter regions of genes strongly expressed in the host cell used, the expression being constitutive or regulable. In the case of yeasts, it may be the promoter of the phosphoglycerate kinase (PGK) gene.
  • PGK phosphoglycerate kinase
  • GPD glyceraldehyde-3-phosphate dehydrogenase
  • lactase lactase (LAC4). enolases (ENO). alcohol dehydrogenases (ADH). etc.
  • bacteria can be the promoter of the right or left genes of bacteriophage lambda (PL, PR), OR promoters of the genes of the operons tryptophan (Ptrp) or lactose (PJac) -
  • this control region can be modified, for example by in vitro mutagenesis, by introduction of additional control elements or synthetic sequences, or by deletions or substitutions of the original control elements.
  • the expression cassette can also comprise a transcription termination region functional in the envisaged host, positioned immediately downstream of the nucleotide sequence coding for a polypeptide of the invention.
  • the polypeptides of the invention result from the expression in a eukaryotic or prokaryotic host of a nucleotide sequence and from the secretion of the expression product of said sequence in the culture medium. It is in fact particularly advantageous to be able to obtain molecules by recombinant route directly in the culture medium.
  • the sequence The nucleotide coding for a polypeptide of the invention is preceded by a "leader" sequence (or signal sequence) directing the nascent polypeptide in the secretory pathways of the host used.
  • This "leader” sequence can be the natural signal sequence of G-CSF or of the stabilizing structure in the case where this is a naturally secreted protein, but it can also be any other functional "leader” sequence, or of an artificial leader sequence. The choice of one or the other of these sequences is in particular guided by the host used. Examples of functional signal sequences include those of genes for sex pheromones or yeast "killer” toxins.
  • one or more markers making it possible to select the recombinant host can be added, such as for example the URA3 gene from the yeast S. cerevisiae. or genes conferring resistance to antibiotics such as geneticin (G418) or to any other toxic compound such as certain metal ions.
  • the assembly constituted by the expression cassette and by the selection marker can be introduced directly into the host cells considered, or be inserted beforehand into a functional self-replicating vector.
  • sequences homologous to regions present in the genome of the host cells are preferably added to this set; said sequences then being positioned on each side of the expression cassette and of the selection gene so as to increase the frequency of integration of the assembly into the host genome by targeting the integration of the sequences by homologous recombination.
  • a preferred replication system for yeasts of the genus Kluyveromyces is derived from the plasmid pKD1 initially isolated from K.
  • drosophilarum a preferred replication system for yeasts of the genus Saccharomyces is derived from the plasmid 2 ⁇ of S. cerevisiae.
  • this expression plasmid may contain all or part of said replication systems, or may combine elements derived from the plasmid pKDl as well as from the plasmid 2 ⁇ .
  • the expression plasmids can be shuttle vectors between a bacterial host such as Escherichia coli and the chosen host cell. In this case, an origin of replication and a selection marker functioning in the bacterial host are required.
  • restriction sites can correspond to sequences such as 5'-GGCCNNNNNGGCC-3 '(î ⁇ fil) or 5'- GCGGCCGC-3' (Notl) since these sites are extremely rare and generally absent from an expression vector.
  • any method allowing the introduction of foreign DNA into a cell can be used. It may especially be transformation, electroporation, conjugation, or any other technique known to those skilled in the art.
  • yeast-type hosts the different Kluyveromyces strains used were transformed by treating whole cells in the presence of lithium acetate and polyethylene glycol, according to the technique described by Ito et al. [J. Bacteriol. 153 (1983) 163].
  • the transformation technique described by Durrens et al. [Curr. Broom. 2_ ⁇ (1990) 7] using ethylene glycol and dimethyl sulfoxide was also used. It is also possible to transform yeasts by electroporation, according to the method described by Karube et al. [FEBS Letters ⁇ _2 (1985) 901.
  • An alternative protocol is also described in detail in the examples which follow.
  • the cells expressing said polypeptides are inoculated and the recovery of said polypeptides can be made, either during cell growth for the "continuous” methods, or at the end of growth for the "batch” cultures ( “batch”).
  • the polypeptides which are the subject of the present invention are then purified from the culture supernatant for their molecular, pharmacokinetic and biological characterization.
  • a preferred expression system for the polypeptides of the invention consists in the use of yeasts of the genus Kluyveromyces as host cell, transformed by certain vectors derived from the extrachromosomal replicon pKD1 initially isolated from K. marxianus var. drosophilarum. These yeasts, and in particular K. lactis and
  • K. fragilis are generally capable of replicating said vectors stably and also have the advantage of being included in the list of GRAS organizations (".Qenerally Recognized As _ £ afe").
  • Preferred yeasts are preferably industrial strains of the genus Kluyveromyces capable of stable replication of said plasmids derived from the plasmid pKDl and into which has been inserted a selection marker as well as an expression cassette allowing the secretion at high levels of the polypeptides of the invention.
  • the present invention also relates to the nucleotide sequences coding for the chimeric polypeptides described above, as well as the recombinant, eukaryotic or prokaryotic cells, comprising such sequences.
  • the present invention also relates to the application as a medicament of the polypeptides according to the present invention.
  • the subject of the invention is any pharmaceutical composition comprising one or more polypeptides as described above. More particularly, these compositions can be used in all pathological situations in which the number and / or the activity of the granulocytes must be stimulated. In particular, they can be used for the prevention or treatment of leukopenia or certain leukemias, or in the case of grafts or anti-cancer treatment, to strengthen or restore the immune system.
  • Figure 1 Nucleotide sequence of the HindIII restriction fragment of the plasmid pYG1259 (chimera prepro-SAH-G.CSF). The black arrows indicate the end of the "pre” and “pro” regions of HSA. MstlI restriction sites. Apal and SstI (Sacl) are underlined. The peptide sequence of G-CSF is in italics (Thr586-> Pro759, the numbering of the amino acids corresponds to the mature chimeric protein).
  • Figure 2 Schematization of chimeras of the SAH-G.CSF (A) type, of the G.CSF-SAH (B) or G.CSF-SAH-G.CSF (C) type.
  • M / LP methionine initiating translation, possibly followed by a signal secretion sequence
  • SAH mature human serum albumin or a variant thereof
  • G.CSF peptide derived from G-CSF and having identical or modified activity.
  • the black arrow indicates the N-terminus of the mature protein.
  • Figure 3 Restriction map of the plasmid pYG105 and strategy for the construction of the expression plasmids of the chimeric proteins of the present invention.
  • P transcriptional promoter
  • T transcriptional terminator
  • IR inverted repeat sequences of the plasmid pKD1
  • LPSAH »SAH prepro "region
  • Ap 1 " and Km r respectively designate the genes for resistance to ampicillin (E. coli) and to G418 (yeasts).
  • Figure 5 Nucleotide sequence of the HindIII restriction fragment of the plasmid pYG1301 (chimera G.CSF-Gly4-SAH).
  • the black arrows indicate the end of the "pre” and "pro” regions of HSA.
  • SstI (Sacl) and MstH are underlined.
  • the G.CSF (174 residues) and SAH (585 residues) domains are separated by the synthetic linker GGGG.
  • the amino acid numbering corresponds to the mature chimeric protein G.
  • the nucleotide sequence between the translation termination codon and the HindIII site comes from the complementary DNA (cDNA) of SAH as described in patent application EP 361 991.
  • Figure 7 Activity on in vitro cell proliferation of the murine line NFS60.
  • the radioactivity ( ⁇ H-thymidine) incorporated into the cell nuclei after 6 hours of incubation is represented on the ordinate (cpm); the quantity of product indicated on the abscissa is expressed in molarity (arbitrary units).
  • Figure 8 Activity on granulopoiesis in vivo in rats. The number of neutrophils (average of 7 animals) is indicated on the ordinate as a function of time.
  • the products tested are the SAH-G.CSF chimera (pYG1266, 4 or 40 mg / rat / day), the reference G-CSF (10 mg / rat / day), the recombinant SAH purified from a supernatant of Kluyveromyces lactis ( rHSA, 30 mg / rat / day, see EP 361 991), or physiological saline.
  • the plasmids of type ⁇ BR322, pUC and the phages of the Ml 3 series are of commercial origin (Bethesda Research Laboratories).
  • the DNA fragments are separated according to their size by electrophoresis in agarose or acrylamide gels, extracted with phenol or with a phenol / chloroform mixture, precipitated with ethanol and then incubated in the presence of DNA.
  • phage T4 ligase Biolabs
  • the filling of the protruding 5 ′ ends is carried out by the fragment of
  • Mutagenesis directed in vitro by synthetic oligodeoxynucleotides is carried out according to the method developed by Taylor et al. [Nucleic Acids Res. 2_1 (1985) 8749-8764] using the kit distributed by Amersham.
  • Verification of the nucleotide sequences is carried out by the method developed by Sanger et al. [Proc. Natl. Acad. Sci. USA, 74 (1977) 5463-5467] using the kit distributed by Amersham.
  • Transformations of K. lactis with the DNA of the protein expression plasmids of the present invention are carried out by any technique known to those skilled in the art, an example of which is given in the text.
  • the bacterial strains used are E. coli MC1060 (lIPOsYA, X74, gâiU, £ _1K, _rtrA r ), or E. coli TG1 ⁇ _____, p A, B, ⁇ ugE, M, hsdD5 / FîraD36, prgA + B + ,] açl _açZ, M15).
  • the yeast strains used belong to budding yeasts and more particularly to yeasts of the genus Kluyveromyces.
  • the strains K. lactis M 98-8C (a, uraA. Sg, _J_-, + , pKDl °) and K. lactis CBS 293.91 were particularly used; a sample of the strain MW98-8C was deposited on September 16, 1988 at the Centraalbureau voor Schimmelkulturen (CBS) in Baarn (Netherlands) where it was registered under the number CBS 579.88.
  • CBS Centraalbureau voor Schimmelkulturen
  • the yeast strains transformed by the expression plasmids coding for the proteins of the present invention are cultured in Erlenmeyer flasks or in pilot fermenters of 21 (SETRIC, France) at 28 ° C. in rich medium (YPD: 1% yeast extract, 2 % Bactopeptone, 2% glucose; or YPL: 1% yeast extract, 2% Bactopeptone, 2% lactose) with constant stirring.
  • YPD 1% yeast extract, 2 % Bactopeptone, 2% glucose
  • YPL 1% yeast extract, 2% Bactopeptone, 2% lactose
  • EXAMPLE 1 CONSTRUCTION OF AN MSTII / HINDIII RESTRICTION FRAGMENT INCLUDING THE MATURE PART OF THE HUMAN G-CSF
  • a restriction fragment MstlI-HindIII including the mature form of human G-CSF is generated, for example according to the following strategy: a restriction fragment Kpnl-HindlII is first obtained by the PCR enzymatic amplification technique using oligodeoxynucleotides Sq2291 (5'- CAAGGATCCAA2CJTICAGGGCTGCGCAAGGTGGCGTAG-3 ', the HindIII site is underlined) and Sq2292 (5'-CGGG ⁇ TA £ ⁇ TAGGCTTAACCCCCCTG- GGCCCTGCCAGC-3', the " Kpnl site is primed as the matrix as the plasmid as for the template) Plasmid BBG13 contains the gene coding for form B (174 amino acids) of mature human G-CSF, obtained from British Bio-technology Limited, Oxford, England.
  • the enzymatic amplification product of approximately 550 nucleotides is then digested with the restriction enzymes Kpnl and HindIII and cloned into the vector pUC19 cut with the same enzymes, which generates the recombinant plasmid pYG1255.
  • This plasmid is the source of a restriction fragment Ms tI-HindIII, the sequence of which is included in that of FIG. 1.
  • An MstlI-HindIII restriction fragment coding for the same polypeptide sequence can also be generated by the PCR amplification technique from the corresponding cDNAs, the sequence of which is known [Nagata S. et al., EMBO J. ⁇ (1986) 575-581].
  • cDNAs can be isolated by techniques skilled in the art, for example using the kit distributed by Amersham, from a human cell line expressing G-CSF, and for example the CHU-2 cell line. human carcinoma [Nagata et al., Nature 19 (1986) 415-418]. It may also be desirable to insert a peptide linker between the SAH part and G-CSF, for example to allow a better functional presentation of the transducer part.
  • a restriction fragment MstlI-HindIII is for example generated by substitution of the fragment MstlI-Apal of FIG.
  • the plasmid pYG1336 thus generated therefore comprises an MstlI-HindIII restriction fragment. whose sequence is identical to that of Figure 1 except for the MstlI-Apal fragment.
  • EXAMPLE 2 MERGERS IN THE TRANSLATION PHASE BETWEEN THE SAH AND THE HUMAN G-CSF
  • the plasmid pYG404 is described in patent application EP 361 991.
  • This plasmid comprises a HindIII restriction fragment coding for the prepro-SAH gene preceded by the 21 nucleotides naturally present immediately upstream of the translation initiator ATG of the PGK gene from S. cerevisiae. More particularly, this fragment comprises a HindIII-MstlI restriction fragment corresponding to the entire gene coding for prepro-SAH with the exception of the three most C-terminal amino acids (leucine-glycine-leucine residues).
  • HindIII restriction fragment except for the MstlI-Apal fragment can also be easily generated and which codes for a chimeric protein in which form B of mature G-CSF is positioned by genetic coupling in the C-terminal translational phase of the SAH molecule and of a particular peptide linker.
  • this linker consists of 4 glycine residues in the HindIII fragment of the plasmid pYG1336 (chimera SAH-GIy4-G.CSF, cf. FIG. 2, panel A).
  • hybrid genes coding for a chimeric protein (FIG. 2, panel B) resulting from the translational coupling between a signal peptide (and for example the prepro region of SAH), a sequence including a gene having G-CSF activity, and the mature form of SAH or one of its molecular variants.
  • These hybrid genes are preferably bordered 5 'to the translation initiating ATG and 3' to the translation end codon by HindIII restriction sites.
  • the residues underlined correspond in this particular chimera to a peptide linker composed of 4 glycine phase residues allows for mutagenic phase translation) mature form of human G-CSF from plasmid BBG13 immediately upstream of the mature form of HSA, which generates intermediate plasmid A.
  • the use of the oligodeoxynucleotide Sq2338 .5'-CAGGGAGCTGGCAGGGCCCAGGGGGGTTCGACGAAACACACCCCTG- GAATAAGCCGAGCT-GAATAAGCCGAGCT 1 (non-coding strand), the nucleotides complementary to the nucleotides coding for the first N-terminal residues of the mature form of human G-CSF are underlined] allows by directed mutagenesis to couple in the translational phase of reading the prepro region of SAH immediately upstream of the mature form of human G-CSF, which generates the intermediate plasmid re B.
  • Plasmid pYG1301 contains this particular HindIII restriction fragment coding for the chimera G.CSF-Gly4-SAH fused immediately downstream of the prepro region of SAH.
  • hybrid genes in which a sequence coding for G-CSF activity is coupled to the N- and C- terminal ends of HSA or one of its molecular variants ( Figure 2, panel C). These hybrid genes are preferably bordered 5 'to the translation initiating ATG and 3' to the translation end codon by HindIII restriction sites.
  • the chimeric proteins of the previous examples can be expressed in yeasts from functional, regulatable or constitutive promoters, such as, for example, those present in the plasmids pYG105 (LAC4 promoter from KluwerOmyces lactis). pYG106 (PGK promoter of Saccharomyces cerevisiae). pYG536 (PHO5 promoter of S. cerevisiae). or hybrid promoters such as those carried by the plasmids described in patent application EP 361 991.
  • functional, regulatable or constitutive promoters such as, for example, those present in the plasmids pYG105 (LAC4 promoter from KluwerOmyces lactis).
  • pYG106 PGK promoter of Saccharomyces cerevisiae
  • pYG536 PHO5 promoter of S. cerevisiae
  • hybrid promoters such as those carried by the plasmids described in patent application EP 361 991.
  • the HindIII restriction fragment of the plasmid pYG1259 is cloned in the productive orientation in the HindIII restriction site of the expression plasmid pYG105, which generates the expression plasmid pYG1266 ( Figure 3).
  • the plasmid pYG105 corresponds to the plasmid pKan707 described in patent application EP 361 991 in which the HindIII restriction site was destroyed by site-directed mutagenesis (oligodeoxynucleotide Sql053: 5'-GAAATGCATAAGCTC-TTGCCATTCTCACCG-3 ') and whose fragment Sall-Sacl encoding the URA3 gene has been replaced by a Sall-Sacl restriction fragment comprising the promoter LAC4 (in the form of a SalI-HindIII fragment) and the terminator of the PGK gene of S. cerevisiae (in the form of a fragment HindIII-SacI).
  • the plasmid pYG105 is mitotically very stable in the absence of geneticin (G418) and makes it possible to express the chimeric protein from the LAC4 promoter from K. lactis. especially when the carbon source is lactose.
  • the cloning in the productive orientation of the HindIII restriction fragment of the plasmid pYG1259 into the HindIII site of the plasmid pYG106 generates the expression plasmid pYG1267.
  • the plasmids pYG1266 and pYG1267 are isogenic with each other except for the restriction fragment SalI-HindIII coding for the promoter LAC4 from K. lactis (plasmid pYG1266) or the PGK promoter from S. cerevisiae (plasmid pYG1267).
  • the cloning in the productive orientation of the HindIII restriction fragment of the plasmid pYG1336 (chimera SAH-GIy4-G.CSF, cf. E.2J.)
  • Into the HindIII site of the plasmids pYG105 and pYG106 generates the plasmids d pYG1351 and pYG1352, respectively.
  • HindHI from plasmids pYG105 and pYG106 generates the expression plasmids pYG1302 and pYG1303, respectively.
  • the transformation of yeasts belonging to the genus Kluyveromyces. and in particular the MW98-8C and CBS 293.91 strains of K. lactis. is carried out for example by the technique of treating whole cells with lithium acetate (Ito H. et al., J. Bacteriol. 153 (1983) 163-168), adapted as follows. The cells are grown at 28 ° C.
  • the cell supernatants are then tested after electrophoresis in 8.5% acrylamide gel, either directly by staining the acrylamide gel with coomassia blue (FIG. 4, panel A), or after immunoblotting using primary antibodies as polyclonal antibodies. rabbits specifically directed against human G-CSF, or against HSA.
  • the nitrocellulose filter is first incubated in the presence of the specific antibody, washed several times, incubated in the presence of biotinylated anti-rabbit goat antibodies, then incubated in the presence of an avidin complex. -peroxidase using the "ABC kit" distributed by Vectastain (Biosys SA, Compiègne, France).
  • the immunological reaction is then revealed by the addition of diamino-3,3 'benzidine tetrachlorydrate (Prolabo) in the presence of hydrogen peroxide, according to the recommendations of the supplier.
  • the results of FIG. 4 demonstrate that the hybrid protein SAH-G.CSF is recognized both by antibodies directed against human albumin (panel C) and human G-CSF (panel B).
  • the results of FIG. 6 indicate that the SAH-Gly4-G.CSF chimera (lane 3) is particularly well secreted by the yeast Kluyveromyces. possibly because the presence of the peptide linker between the SAH part and the G-CSF part is more favorable for independent folding of these 2 parts during the transit of the chimera in the secretory pathway.
  • the N-terminal fusion (G.CSF-Gly4-SAH) is also secreted by the yeast KluyverOmyces
  • the culture supernatant is passed through a 0.22 mm filter (Millipore), then concentrated by ultrafiltration (Amicon) using a membrane with a discrimination threshold of 30 kDa.
  • the concentrate obtained is then adjusted to 50 mM Tris HC1 from a stock solution of Tris HC1 1M (pH 6), then deposited in 20 ml fractions on a column (5 ml) ion exchange (Q Fast Flow, Pharmacia) balanced in the same buffer.
  • the chimeric protein is then eluted from the column by a gradient (0 to 1 M) of NaCl.
  • fractions containing the chimeric protein are then combined and dialyzed against a 50 mM Tris HCl solution (pH 6) and redeposited on a Q Fast Flow column (1 ml) equilibrated in the same buffer. After elution from the column, the fractions containing the protein are combined, dialyzed against water and lyophilized before characterization: for example, sequencing (Applied Biosystem) of the protein SAH-G.CSF secreted by the yeast CBS 293.91 gives the expected N-terminal sequence of SAH (Asp-Ala-His ...), demonstrating a correct maturation of the chimera immediately in C-terminal of the doublet of Arg-Arg residues from the "pro" region of the SAH ( Figure 1).
  • the chimeras purified according to Example 6 are tested for their capacity to allow in vitro proliferation of the murine IL3-dependent line NFS60, by measuring the incorporation of tritiated thymidine essentially according to the protocol described by Tsuchiya et al. [Proc. Natl. Acad. Sci. (1986) £ 2. 7633]. For each chimera, the measurements are made between 3 and 6 times in a three-point test (three dilutions of the product) in an area where the relationship between the quantity of active product and incorporation of labeled thymidine (Amersham) is linear.
  • the stimulation activity of SAH / G-CSF chimeras on granulopoiesis in vivo is tested after subcutaneous injection in rats (Sprague-Dawley / CD, 250-300 g, 8-9 weeks) and compared with that of G -CSF reference expressed from mammalian cells.
  • Each product, tested on the basis of 7 animals, is injected subcutaneously in the dorsoscapular region at the rate of 100 ml for 7 consecutive days (D1-D7).
  • 500 ml of blood are collected on days 3-6, J2 (before 2nd injection), J5 (before the 5 th injection) and D8, and complete blood cell count is performed.

Abstract

La présente invention concerne de nouveaux polypeptides ayant une activité de stimulation des colonies de granulocytes humains, leur préparation et des compositions pharmaceutiques les contenant.

Description

NOUVEAUX POLYPEPTIDES AYANT UNE ACTIVITE DE STIMULATION
DES COLONIES DE GRANULOCYTES.
LEUR PREPARATION ET COMPOSITIONS PHARMACEUTIQUES
LES CONTENANT
La présente invention concerne de nouveaux polypeptides ayant une activité de stimulation des colonies de granulocytes humain, leur préparation et des compositions pharmaceutiques les contenant.
La présente invention concerne en particulier des polypeptides chimères composés d'une partie biologiquement active constituée par tout ou partie du G-CSF ou d'un variant du G-CSF, et d'une structure stabilisatrice essentiellement protéique lui conférant de nouvelles propriétés biologiques.
Le G-CSF humain est un polypeptide sécrété de 174 acides aminés, ayant un poids moléculaire de 18 kD environ. Il a été isolé initialement à partir d'une lignée cellulaire cancéreuse (EP 169 566), et son gène a été clone, séquence, et exprimé dans différents hôtes cellulaires par les techniques du génie génétique (EP 215 126, EP 220 520). Un ARNm codant potentiellement pour une forme du G-CSF ayant 177 acides aminés a par ailleurs été mis en évidence [Nagata S. et al., EMBO J. 5 (1986) 575-581]. Le G-CSF possède la capacité de stimuler la différentiation et la prolifération de cellules progénitrices de la moelle osseuse en granulocytes. A ce titre, il possède la capacité de stimuler les capacités protectrices de l'organisme contre l'infection en favorisant la croissance des polynucléaires neutrophiles et leur différentiation aboutissant à la maturité. Il est ainsi capable d'activer les fonctions prophylactiques de l'organisme, et peut être utilisé dans différentes situations pathologiques dans lesquelles le nombre de neutrophiles est anormalement faible, ou dans lesquelles le système immunitaire doit être renforcé. De telles situations surviennent par exemple à la suite des traitements de chimiothérapie anticancéreuse, lors de greffes, et en particulier de greffes de moelle osseuse, ou lors des leukopénies.
L'un des inconvénients du G-CSF actuellement disponible réside dans le fait qu'il est dégradé rapidement par l'organisme une fois administré. Ceci est d'autant plus sensible que le G-CSF est généralement utilisé à des doses faibles. De plus, l'utilisation de doses plus importantes n'a pu permettre d'améliorer les capacités thérapeutiques de cette molécule et peut induire des effets secondaires indésirables. Ces phénomènes d'élimination et de dégradation in vivo constituent donc pour l'instant un obstacle à l'exploitation de l'activité biologique du G-CSF en tant qu'agent pharmaceutique. La présente invention permet de remédier à ces inconvénients. La présente invention fournit en effet de nouvelles molécules permettant une exploitation optimale sur le plan thérapeutique des propriétés biologiques du G-CSF. La demanderesse a en effet mis en évidence que l'activité optimale du G-CSF se manifestait lorsque le G-CSF était présent à faible dose et pendant un temps prolongé. La demanderesse a maintenant réalisé des molécules capables de maintenir dans l'organisme une activité G-CSF pendant un temps suffisamment long. De plus,, la demanderesse a montré qu'il est possible d'exprimer dans des hôtes cellulaires à des niveaux élevés des fusions génétiques générant des chimères présentant de nouvelles propriétés pharmacocinétiques et les propriétés biologiques désirables du G-CSF. En particulier, les polypeptides hybrides de l'invention conservent leur affinité pour les récepteurs du G-CSF, et sont suffisamment fonctionnels pour conduire à la prolifération et à la différentiation cellulaire. Les molécules de l'invention possèdent par ailleurs une distribution et des propriétés pharmacocinétiques particulièrement avantageuses dans l'organisme et permettent le développement thérapeutique de leur activité biologique.
Un objet de la présente invention concerne donc des polypeptides recombinants comportant une partie active constituée par tout ou partie du G-CSF, ou d'un variant du G-CSF, et une structure stabilisatrice essentiellement protéique.
Au sens de la présente invention, le terme variant du G-CSF désigne toute molécule obtenue par modification de la séquence comprise entre les résidus Thr586 et Pro759 de la séquence présentée sur la Figure 1, conservant une activité G-CSF, c'est-à-dire la capacité de stimuler la différenciation des cellules cibles et la formation de colonies de granulocytes. Cette séquence corresponds à celle du G-CSF mature décrite par Nagata et al. [EMBO J. £ (1986) 575-581]. Par modification, on doit entendre toute mutation, substitution, délétion, addition ou modification consécutive à une action de nature génétique et/ou chimique. De tels variants peuvent être générés dans des buts différents, tels que notamment celui d'augmenter l'affinité de la molécule pour le(s) récepteur(s) du G-CSF, celui d'améliorer ses niveaux de production, celui d'augmenter sa résistance à des protéases, celui d'augmenter son efficacité thérapeutique ou de réduire ses effets secondaires, ou celui de lui conférer de nouvelles propriétés pharmacocinétiques et/ou biologiques.
Des polypeptides de l'invention particulièrement avantageux sont ceux dans lesquels la partie biologiquement active possède :
(a) la séquence peptidique comprise entre les résidus Thr586 et Pro759 de la séquence présentée sur la Figure 1, ou,
(b) une partie de la structure (a), ou,
(c) une structure dérivée des structures (a) ou (b) par modifications structurales (mutation, substitution addition et/ou délétion d'un ou plusieurs résidus) et ayant une activité biologique identique ou modifiée. Ce dernier type de polypeptides comprend par exemple les molécules dans lesquelles certains sites de glycosylation ont été modifiés ou supprimés, ainsi que des molécules dans lesquelles un, plusieurs, voire tous les résidus cystéine ont été substitués. Il comprend également des molécules obtenues à partir de (a) ou (b) par délétion de régions n'intervenant pas ou peu dans l'activité, ou intervenant dans une activité indésirable, et des molécules comportant par rapport à (a) ou (b) des résidus supplémentaires, tels que par exemple une méthionine N-terminale ou un signal de sécrétion.
Plus préférentiellement, les polypeptides chimères de l'invention comprennent une partie active de type (a).
La partie active des molécules de l'invention peut être couplée à la structure stabilisatrice protéique, soit directement, soit par l'intermédiaire d'un peptide de jonction. De plus, elle peut constituer l'extrémité N-terminale comme l'extrémité C- terminale de la molécule. Préférentiellement, dans les molécules de l'invention, la partie active constitue la partie C-terminale de la chimère.
Comme indiqué plus haut, la structure stabilisatrice des polypeptides de l'invention est essentiellement protéique.
Préférentiellement, cette structure est un polypeptide possédant une demie- vie plasmatique élevée. A titre d'exemple, il peut s'agir d'une albumine, une apolipoprotéine, une immunoglobuline ou encore une transfemne. Il peut également s'agir de peptides dérivés de telles protéines par modifications structurales, ou de peptides synthétisés artificiellement ou semi-artificiellement, et possédant une demie-vie plasmatique élevée. Par ailleurs, la structure stabilisatrice utilisée est plus préférentiellement un polypeptide faiblement ou non-immunogénique pour l'organisme dans lequel les polypeptides de l'invention sont utilisés.
Dans un mode de réalisation particulièrement avantageux de l'invention, la structure stabilisatrice est une albumine ou un variant de l'albumine et par exemple la sérum-albumine humaine (S AH). Il est entendu que les variants de l'albumine désignent toute protéine à haute demie-vie plasmatique obtenue par modification (mutation, délétion et/ou addition) par les techniques du génie génétique d'un gène codant pour un isomorphe donné de la sérum-albumine humaine, ainsi que toute macromolécule à haute demie-vie plasmatique obtenue par modification in vitro de la protéine codée par de tels gènes. L'albumine étant très polymorphe, de nombreux variants naturels ont déjà été identifiés, et plus de 30 types génétiques différents ont été répertoriés [Weitkamp L.R. et al., Ann. Hum. Genêt. 21 (1973) 219]. Plus préférentiellement, la structure stabilisatrice est une albumine mature.
A titre d'exemples on peut citer des polypeptides de l'invention comportant, dans le sens N-terminal — > C-terminal, (i) la séquence de la SAH mature couplée directement à la séquence du G-CSF mature (cf. Figure 1), ou (ii) la séquence du G- CSF mature couplée par l'intermédiaire d'un peptide de liaison à la séquence de la SAH mature.
Un autre objet de l'invention concerne un procédé de préparation des molécules chimères décrites ci-avant. Plus précisément, ce procédé consiste à faire exprimer par un hôte cellulaire eucaryote oti procaryote une séquence nucléotidique codant pour le polypeptide désiré, puis à récolter le polypeptide produit.
Parmi les hôtes eucaryotes utilisables dans le cadre de la présente invention, on peut citer les cellules animales, les levures, ou les champignons. En particulier, s'agissant de levures, on peut citer les levures du genre Saccharomyces. Kluyveromyces. Pichia. Sc wanniomyces . ou Hansenula. S'agissant de cellules animales, on peut citer les cellules COS, CHO, C127, etc. Parmi les champignons susceptibles d'être utilisés dans la présente invention, on peut citer plus particulièrement Aspergillus ssp. ou Trichoderma ssp. Comme hôtes procaryotes, on préfère utiliser les bactéries telles que Escherichia coli. ou appartenant aux genres Corynebacterium. Bacillus. ou Strepto yces. Les séquences nucléotidiques utilisables dans le cadre de la présente invention peuvent être préparées de différentes manières. Généralement, elles sont obtenues en assemblant en phase de lecture les séquences codant pour chacune des parties fonctionnelles du polypeptide. Celles-ci peuvent être isolées par les techniques de l'homme de l'art, et par exemple directement à partir des ARN messsagers (ARNm) cellulaires, ou par reclonage à partir d'une banque d'ADN complémentaire (ADNc) isolé à partir de cellules productrices, ou encore il peut s'agir de séquences nucléotidiques totalement synthétiques. Il est entendu de plus que les séquences nucléotidiques peuvent également être ultérieurement modifiées, par exemple par les techniques du génie génétique, pour obtenir des dérivés ou des variants desdites séquences.
Plus préférentiellement, dans le procédé de l'invention, la séquence nucléotidique fait partie d'une cassette d'expression comprenant une région d'initiation de la transcription (région promoteur) permettant, dans les cellules hôtes, l'expression de la séquence nucléotidique placée sous son contrôle et codant pour les polypeptides de l'invention. Cette région peut provenir de régions promoteurs de gènes fortement exprimés dans la cellule hôte utilisée, l'expression étant constitutive ou régulable. S'agissant de levures, il peut s'agir du promoteur du gène de la phosphoglycérate kinase (PGK). de la glycéraldéhyde-3-phosphate déshydrogénase (GPD). de la lactase (LAC4). des énolases (ENO). des alcools deshydrogénases (ADH). etc.. S'agissant de bactéries, il peut s'agir du promoteur des gènes droit ou gauche du bactériophage lambda (PL, PR), OU encore des promoteurs des gènes des opérons tryptophane (Ptrp) ou lactose (PJac)- En outre, cette région de contrôle peut être modifiée, par exemple par mutagénèse in vitro, par introduction d'éléments additionnels de contrôle ou de séquences synthétiques, ou par des délétions ou des substitutions des éléments originels de contrôle. La cassette d'expression peut également comprendre une région de terminaison de la transcription fonctionnelle dans l'hôte envisagé, positionnée immédiatement en aval de la séquence nucléotidique codant pour un polypeptide de l'invention. Dans un mode préféré, les polypeptides de l'invention résultent de l'expression dans un hôte eucaryote ou procaryote d'une séquence nucléotidique et de la sécrétion du produit d'expression de ladite séquence dans le milieu de culture. Il est en effet particulièrement avantageux de pouvoir obtenir par voie recombinante des molécules directement dans le milieu de culture. Dans ce cas, la séquence nucléotidique codant pour un polypeptide de l'invention est précédée d'une séquence "leader" (ou séquence signal) dirigeant le polypeptide naissant dans les voies de sécrétion de l'hôte utilisé. Cette séquence "leader" peut être la séquence signal naturelle du G-CSF ou de la structure stabilisatrice dans le cas où celle-ci est une protéine naturellement sécrétée, mais il peut également s'agir de toute autre séquence "leader" fonctionnelle, ou d'une séquence "leader" artificielle. Le choix de l'une ou l'autre de ces séquences est notamment guidé par l'hôte utilisé. Des exemples de séquences signal fonctionnelles incluent celles des gènes des phéromones sexuelles ou des toxines "killer" de levures.
En plus de la cassette d'expression, un ou plusieurs marqueurs permettant de sélectionner l'hôte recombiné peuvent être additionnés, tels que par exemple le gène URA3 de la levure S. cerevisiae. ou des gènes conférant la résistance à des antibiotiques comme la généticine (G418) ou à tout autre composé toxique comme certains ions métalliques.
L'ensemble constitué par la cassette d'expression et par le marqueur de sélection peut être introduit directement dans les cellules hôtes considérées, soit inséré préalablement dans un vecteur autoréplicatif fonctionnel. Dans le premier cas, des séquences homologues à des régions présentes dans le génome des cellules hôtes sont préférentiellement additionnées à cet ensemble; lesdites séquences étant alors positionnées de chaque côté de la cassette d'expression et du gène de sélection de façon à augmenter la fréquence d'intégration de l'ensemble dans le génome de l'hôte en ciblant l'intégration des séquences par recombinaison homologue. Dans le cas où la cassette d'expression est insérée dans un système réplicatif, un système de réplication préféré pour les levures du genre Kluyveromyces est dérivé du plasmide pKDl initialement isolé de K. drosophilarum: un système préféré de réplication pour les levures du genre Saccharomyces est dérivé du plasmide 2μ de S. cerevisiae. De plus, ce plasmide d'expression peut contenir tout ou partie desdits systèmes de réplication, ou peut combiner des éléments dérivés du plasmide pKDl aussi bien que du plasmide 2μ. En outre, les plasmides d'expression peuvent être des vecteurs navettes entre un hôte bactérien tel que Escherichia coli et la cellule hôte choisie. Dans ce cas, une origine de réplication et un marqueur de sélection fonctionnant dans l'hôte bactérien sont requises. Il est également possible de positionner des sites de restriction entourant les séquences bactériennes et uniques sur le vecteur d'expression: Ceci permet de supprimer ces séquences par coupure et religature in vitro du vecteur tronqué avant transformation des cellules hôtes, ce qui peut résulter en une augmentation du nombre de copies et en une stabilité accrue des plasmides d'expression dans lesdits hôtes. Par exemple, de tels sites de restriction peuvent correspondre aux séquences telles que 5'-GGCCNNNNNGGCC-3' (î≥fil) ou 5'- GCGGCCGC-3' (Notl) dans la mesure où ces sites sont extrêmement rares et généralement absents d'un vecteur d'expression.
Après construction de tels vecteurs ou cassette d'expression, ceux-ci sont introduits dans les cellules hôtes retenues selon les techniques classiques décrites dans la littérature. A cet égard, toute méthode permettant d'introduire un ADN étranger dans une cellule peut être utilisée. Il peut s'agir notamment de transformation, électroporation, conjugaison, ou toute autre technique connue de l'homme de l'art. A titre d'exemple pour les hôtes de type levure, les différentes souches de Kluyveromyces utilisées ont été transformées en traitant les cellules entières en présence d'acétate de lithium et de polyéthylène glycol, selon la technique décrite par Ito et al. [J. Bacteriol. 153 (1983) 163]. La technique de transformation décrite par Durrens et al. [Curr. Genêt. 2_ϋ (1990) 7] utilisant l'éthylène glycol et le diméthylsulfoxyde a également été utilisée. Il est aussi possible de transformer les levures par électroporation, selon la méthode décrite par Karube et al. [FEBS Letters ϋ_2 (1985) 901. Un protocole alternatif est également décrit en détail dans les exemples qui suivent.
Après sélection des cellules transformées, les cellules exprimant lesdits polypeptides sont inoculées et la récupération desdits polypeptides peut être faite, soit au cours de la croissance cellulaire pour les procédés "en continu", soit en fin de croissance pour les cultures "en lots" ("batch"). Les polypeptides qui font l'objet de la présente invention sont ensuite purifiés à partir du surnageant de culture en vue de leur caractérisation moléculaire, pharmacocinétique et biologique.
Un système d'expression préféré des polypeptides de l'invention consiste en l'utilisation des levures du genre Kluyveromyces comme cellule hôte, transformées par certains vecteurs dérivés du réplicon extrachromosomique pKDl initialement isolé chez K. marxianus var. drosophilarum. Ces levures, et en particulier K. lactis et
K. fragilis sont généralement capables de répliquer lesdits vecteurs de façon stable et possèdent en outre l'avantage d'être incluses dans la liste des organismes G.R.A.S. (".Qenerally Recognized As _£afe"). Des levures privilégiées sont préférentiellement des souches industrielles du genre Kluyveromyces capables de répliquer de façon stable lesdits plasmides dérivés du plasmide pKDl et dans lesquels a été inséré un marqueur de sélection ainsi qu'une cassette d'expression permettant la sécrétion à des niveaux élevés des polypeptides de l'invention.
La présente invention concerne également les séquences nucléotidiques codant pour les polypeptides chimères décrits ci-avant, ainsi que les cellules recombinantes, eucaryotes ou procaryotes, comprenant dételles séquences.
La présente invention concerne aussi l'application à titre de médicament des polypeptides selon la présente invention. Plus particulièrement, l'invention a pour objet toute composition pharmaceutique comprenant un ou plusieurs polypeptides tel que décrit ci-avant. Plus particulièrement, ces compositions peuvent être utilisées dans toutes les situations pathologiques dans lesquelles le nombre et/ou l'activité des granulocytes doivent être stimulées. Notamment, elles peuvent être utilisées pour la prévention ou le traitement des leukopénies ou de certaines leucémies, ou dans le cas de greffes ou de traitement anticancéreux, pour renforcer ou restaurer le système immunitaire.
La présente invention sera plus complètement décrite à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.
LISTE DES FIGURES
Les représentations des plasmides indiquées dans les Figures suivantes ne sont pas tracées à l'échelle et seuls les sites de restriction importants pour la compréhension des clonages réalisés ont été indiqués.
Figure 1 : Séquence nucléotidique du fragment de restriction HindlII du plasmide pYG1259 (chimère prépro-SAH-G.CSF). Les flèches noires indiquent la fin des régions "pré" et "pro" de la SAH. Les sites de restriction MstlI. Apal et SstI (Sacl) sont soulignés. La séquence peptidique du G-CSF est en italique (Thr586->Pro759, la numérotation des acides aminés correspond à la protéine chimère mature). Figure 2 : Schématisation des chimères du type SAH-G.CSF (A), du type G.CSF-SAH (B) ou G.CSF-SAH-G.CSF (C). Abréviations utilisées : M/LP, méthionine initiatrice de la traduction, éventuellement suivie d'une séquence signal de sécrétion; SAH, sérum-albumine humaine mature ou un de ses variants; G.CSF, peptide dérivé du G-CSF et ayant une activité identique ou modifiée. La flèche noire indique l'extrémité N-terminale de la protéine mature.
Figure 3 : Carte de restriction du plasmide pYG105 et stratégie de construction des plasmides d'expression des protéines chimères de la présente invention. Abréviations utilisées: P, promoteur transcriptionnel; T, terminateur transcriptionnel; IR, séquences répétées inversées du plasmide pKDl; LPSAH» région "prépro" de la SAH; Ap1" et Kmr désignent respectivement les gènes de résistance à l'ampicilline (E. coli) et au G418 (levures).
Figure 4 : Caractérisation du matériel sécrété après 4 jours de culture
(erlenmeyers) de la souche CBS 293.91 transformée par les plasmides pYG1266 (plasmide d'expression d'une chimère du type SAH-G.CSF) et pKan707 (plasmide contrôle). Dans cette expérience les résultats des panneaux A, B, et C ont été migres sur le même gel (SDS-PAGE 8,5 %) puis traités séparemment.
A, coloration au bleu de coomassie; standard de poids moléculaire (piste 2) ; surnageant équivalent à 100 μl de la culture transformée par les plasmides pKan707 en milieu YPL (piste 1), ou pYG1266 en milieu YPD (piste 3) ou YPL (piste 4).
B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre le G-CSF humain: même légende qu'en A.
C, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre l'albumine humaine: même légende qu'en A.
Figure 5 : Séquence nucléotidique du fragment de restriction HindIII du plasmide pYG1301 (chimère G.CSF-Gly4-SAH). Les flèches noires indiquent la fin des régions "pré" et "pro" de la SAH. Les sites de restriction Apal. SstI (Sacl) et MstH sont soulignés. Les domaines G.CSF (174 résidus) et SAH (585 résidus) sont séparés par le linker synthétique GGGG. La numérotation des acides aminés corresponds à la protéine chimère G.CSF-Gly4-SAH mature (763 résidus). La séquence nucléotidique comprise entre le codon de terminaison de la traduction et le site HindlII provient de l'ADN complémentaire (cDNA) de la SAH tel que décrit dans la demande de brevet EP 361 991.
Figure 6 : Caractérisation du matériel sécrété après 4 jours de culture
(erlenmeyers en milieu YPD) de la souche CBS 293.91 transformée par les plasmides pYG1267 (chimère SAH-G.CSF) , pYG1303 (chimère G.CSF-Gly4-SAH) et pYG1352 (chimère SAH-Gly4-G.CSF) après migration sur gel SDS-PAGE
8,5 .
A, coloration au bleu de coomassie; surnageant équivalent à 100 μl de la culture transformée par les plasmides pYG1303 (piste 1), pYG1267 (piste 2) ou pYG1352 (piste 3); standard de poids moléculaire (piste 4).
B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre le G-CSF humain : même légende qu'en A.
Figure 7 : Activité sur la prolifération cellulaire in vitro de la lignée murine NFS60. La radioactivité (^H-thymidine) incorporée dans les noyaux cellulaires après 6 heures d'incubation est représentée en ordonnée (cpm) ; la quantité de produit indiquée en abscisse est exprimée en molarité (unités arbitraires).
Figure 8 : Activité sur la granulopoièse in vivo chez le rat. Le nombre de neutrophiles (moyenne de 7 animaux) est indiquée en ordonnée en fonction du temps. Les produits testés sont la chimère SAH-G.CSF (pYG1266, 4 ou 40 mg/rat/jour), le G-CSF référence (10 mg/rat/jour), la SAH recombinante purifiée à partir de surnageant de Kluyveromyces lactis (rHSA, 30 mg/rat/jour, cf. EP 361 991), ou du sérum physiologique.
EXEMPLES
TECHNIQUES GENERALES DE CLONAGE
Les méthodes classiquement utilisées en biologie moléculaire telles que les extractions préparatives d'ADN plasmidique, la centrifugation d'ADN plasmidique en gradient de chlorure de césium, l'électrophorèse sur gels d'agarose ou d'acrylamide, la purification de fragments d'ADN par électroélution, les extraction de protéines au phénol ou au phénol-chloroforme, la précipitation d'ADN en milieu salin par de l'éthanol ou de l'isopropanol, la transformation dans Escherichia coli etc.. sont bien connues de l'homme de métier et sont abondament décrites dans la littérature [Maniatis T. et al., "Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982 ; Ausubel F.M. et al. (eds), "Current Protocols in Molecular Biology", John Wiley & Sons, New York, 1987].
Les enzymes de restriction ont été fournies par New England Biolabs (Biolabs), Bethesda Research Laboratories (BRL) ou Amersham et sont utilisées selon les recommandations des fournisseurs.
Les plasmides de type ρBR322, pUC et les phages de la série Ml 3 sont d'origine commerciale (Bethesda Research Laboratories).
Pour les ligatures, les fragments d'ADN sont séparés selon leur taille par électrophorèse en gels d'agarose ou d'acrylamide, extraits au phénol ou par un mélange phénol/chloroforme, précipités à l'éthanol puis incubés en présence de l'ADN ligase du phage T4 (Biolabs) selon les recommandations du fournisseur. Le remplissage des extrémités 5' proéminentes est effectué par le fragment de
Klenow de l'ADN Polymérase I dΕ.coli (Biolabs) selon les spécifications du fournisseur. La destruction des extrémités 3' proéminentes est effectuée en présence de l'ADN Polymérase du phage T4 (Biolabs) utilisée selon les recommandations du fabricant. La destruction des extrémités 5' proéminentes est effectuée par un traitement ménagé par la nucléase SI.
La mutagénèse dirigée in vitro par oligodéoxynucléotides synthétiques est effectuée selon la méthode développée par Taylor et al. [Nucleic Acids Res. 2_1 (1985) 8749-8764] en utilisant le kit distribué par Amersham.
L'amplification enzymatique de fragments d'ADN par la technique dite de PCR [Polymérase-catalyzed £hain Réaction, Saiki R.K. et al, Science __2fi (1985)
1350-1354; Mullis K.B. et Faloona F.A., Meth. Enzym. I≤≥ (1987) 335-350] est effectuée en utilisant un "DNA thermal cycler" (Perkin Elmer Cetus) selon les spécifications du fabricant.
La vérification des séquences nucléotidiques est effectuée par la méthode développée par Sanger et al. [Proc. Natl. Acad. Sci. USA, 74 (1977) 5463-5467] en utilisant le kit distribué par Amersham.
Les transformations de K. lactis avec l'ADN des plasmides d'expression des protéines de la présente invention sont effectuées par toute technique connue de l'homme de l'art, et dont un exemple est donné dans le texte. Sauf indication contraire, les souches bactériennes utilisées sont E. coli MC1060 (lâsIPOZYA, X74, gâiU, £_1K, _rtrAr), ou E. coli TG1 <_____, p A,B, ≤ugE, M, hsdD5 / FîraD36, prgA+B+, ]açl _açZ, M15).
Les souches de levures utilisées appartiennent aux levures bourgeonnantes et plus particulièrement aux levures du genre Kluyveromyces. Les souche K. lactis M 98-8C (a, uraA. s g, _J_-, +, pKDl°) et K. lactis CBS 293.91 ont été particulièrement utilisées ; un échantillon de la souche MW98-8C a été déposé le 16 Septembre 1988 au Centraalbureau voor Schimmelkulturen (CBS) à Baarn (Pays-Bas) où il a été enregistré sous le numéro CBS 579.88. Les souches de levures transformées par les plasmides d'expression codant pour les protéines de la présente invention sont cultivées en erlenmeyers ou en fermenteurs pilotes de 21 (SETRIC, France) à 28°C en milieu riche (YPD : 1 % yeast extract, 2 % Bactopeptone, 2 % glucose ; ou YPL : 1 % yeast extract, 2 % Bactopeptone, 2 % lactose) sous agitation constante.
EXEMPLE 1 : CONSTRUCTION D'UN FRAGMENT DE RESTRICTION MSTII/HINDIII INCLUANT LA PARTIE MATURE DU G-CSF HUMAIN
Un fragment de restriction MstlI-HindIII incluant la forme mature du G-CSF humain est généré, par exemple selon la stratégie suivante : un fragment de restriction Kpnl-HindlII est d'abord obtenu par la technique d'amplification enzymatique PCR en utilisant les oligodéoxynucléotides Sq2291 (5'- CAAGGATCCAA2CJTICAGGGCTGCGCAAGGTGGCGTAG-3', le site HindIII est souligné) et Sq2292 (5'-CGGG^TA£ςτTAGGCTTAACCCCCCTG- GGCCCTGCCAGC-3', le "site Kpnl est so ligné) comme amorce sur le plasmide BBG13 servant comme matrice. Le plasmide BBG13 comporte le gène codant pour la forme B (174 acides aminés) du G-CSF mature humain, obtenu auprès de British Bio-technology Limited, Oxford, England. Le produit d'amplification enzymatique d'environ 550 nucléotides est ensuite digéré par les enzymes de restriction Kpnl et HindIII et clone dans le vecteur pUC19 coupé par les mêmes enzymes, ce qui génère le plasmide recombinant pYG1255. Ce plasmide est la source d'un fragment de restriction MstlI-HindIII. dont la séquence est incluse dans celle de la Figure 1. Un fragment de restriction MstlI-HindIII codant pour la même séquence polypeptidique peut également être généré par la technique d'amplification PCR à partir des cDNA correspondants, dont la séquence est connue [Nagata S. et al., EMBO J. ϋ (1986) 575-581]. Ces cDNA peuvent être isolés par les techniques de l'homme de l'art, par exemple en utilisant le kit distribué par Amersham, à partir d'une lignée cellulaire humaine exprimant le G-CSF, et par exemple la lignée cellulaire CHU-2 de carcinome humain [Nagata et al., Nature 19 (1986) 415-418]. II peut être également souhaitable d'insérer un linker peptidique entre la partie SAH et G-CSF, par exemple pour permettre une meilleure présentation fonctionnelle de la partie transductrice. Un fragment de restriction MstlI-HindIII est par exemple généré par substitution du fragment MstlI-Apal de la Figure 1 par les oligodéoxynucléotides Sq2742 (5'-TTAGGCTTAGGTGGTGGCGGTACCCCCC- TGGGCC-3', les codons codant pour les résidus glycine de ce linker particulier sont soulignés) et Sq2741 (5'-CAGGGGGGTACCGCCACCACCTAAGCC-3') qui forment en s'appariant un fragment MstlI-Apal. Le plasmide pYG1336 ainsi généré comporte donc un fragment de restriction MstlI-HindIII. dont la séquence est identique à celle de la Figure 1 à l'exception du fragment MstlI-Apal.
EXEMPLE 2 : FUSIONS EN PHASE TRADUCTIONNELLE ENTRE LA SAH ET LE G-CSF HUMAIN
E.2.L Fusion traductionnelle du type SAH-G.CSF.
Le plasmide pYG404 est décrit dans la demande de brevet EP 361 991. Ce plasmide comporte un fragment de restriction HindIII codant pour le gène de la prépro-SAH précédé des 21 nucléotides naturellement présents immédiatement en amont de l'ATG initiateur de traduction du gène PGK de S. cerevisiae. Plus particulièrement, ce fragment comporte un fragment de restriction HindIII-MstlI correspondant à la totalité du gène codant pour la prépro-SAH à l'exception des trois acides aminés les plus C-terminaux (résidus leucine-glycine-leucine). La ligature de ce fragment avec le fragment MstlI-HindIII du plasmide pYG1255 permet de générer le fragment HindIII du plasmide pYG1259 qui code pour une protéine chimère dans laquelle la forme B du G-CSF mature est positionnée par couplage génétique en phase traductionnelle en C-terminal de la molécule de SAH. La séquence nucléotidique de ce fragment de restriction est donnée à la Figure 1, ainsi que la séquence polypeptidique de la chimère correspondante (SAH-G.CSF, cf. Figure 2, panneau A).
Un fragment de restriction HindIII identique à l'exception du fragment MstlI- Apal peut également être facilement généré et qui code pour une protéine chimère dans laquelle la forme B du G-CSF mature est positionnée par couplage génétique en phase traductionnelle en C-terminal de la molécule de SAH et d'un linker peptidique particulier. Par exemple ce linker est constitué de 4 résidus glycine dans le fragment HindIII du plasmide pYG1336 (chimère SAH-GIy4-G.CSF, cf. Figure 2, panneau A).
E.2.2. Fusion traductionnelle du type G.CSF-SAH.
Dans un mode réalisation particulier, les techniques combinées de mutagénèse dirigée et d'amplification PCR permettent de construire des gènes hybrides codant pour une protéine chimère (Figure 2, panneau B) résultant du couplage traductionnel entre un peptide signal (et par exemple la région prépro de la SAH), une séquence incluant un gène ayant une activité G-CSF, et la forme mature de la SAH ou un de ses variants moléculaires. Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction HindIII. Par exemple l'oligodéoxy- nucléotide Sq2369 (5'-GTTCTACGCCACCTTGCGCAGCCCGGTGGAGGCGGT- GATGCACACAAGAGTGAGGTTGCTCATCGG-3', les résidus soulignés (optionnels) correspondent dans cette chimère particulière à un linker peptidique composé de 4 résidus glycine) permet par mutagénèse dirigée de mettre en phase traductionelle la forme mature du G-CSF humain du plasmide BBG13 immédiatement en amont de la forme mature de la SAH, ce qui génère le plasmide intermédiaire A. De façon similaire, l'utilisation de l'oligodéoxynucléotide Sq2338 .5'-CAGGGAGCTGGCAGGGCCCAGGGGGGTTCGACGAAACACACCCCTG- GAATAAGCCGAGCT-31 (brin non codant), les nucléotides complémentaires aux nucléotides codant pour les premiers résidus N-terminaux de la forme mature du G- CSF humain sont soulignés] permet par mutagénèse dirigée de coupler en phase traductionnelle de lecture la région prépro de la SAH immédiatement en amont de la forme mature du G-CSF humain, ce qui génère le plasmide intermédiaire B. On génère ensuite le fragment HindIII de la Figure 5 en associant le fragment HindlII- Sstl du plasmide B (jonction région prépro de la SAH + fragment N-terminal du GCSF mature) avec le fragment Sstl-HindlII du plasmide A [jonction G-CSF mature- (glycine) X4-S AH mature]. Le plasmide pYG1301 contient ce fragment de restriction HindIII particulier codant pour la chimère G.CSF-Gly4-SAH fusionnée immédiatement en aval de la région prépro de la SAH. E.2.3. Fusion traductionnelle du type G.CSF-SAH-G.CSF.
Ces mêmes techniques de mutagénèse dirigée et d'amplification de l'ADN in vitro permettent de construire des gènes hybrides dans lesquelles une séquence codant pour une activité G-CSF est couplée aux extrémités N- et C- terminales de la SAH ou un de ses variants moléculaires (Figure 2, panneau C). Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction HindIII.
EXEMPLE 3 : CONSTRUCTION DES PLASMIDES D'EXPRESSION
Les protéines chimères des exemples précédents peuvent être exprimées dans les levures à partir de promoteurs fonctionnels, régulables ou constitutifs, tels que, par exemple, ceux présents dans les plasmides pYG105 (promoteur LAC4 de KluwerOmyces lactis). pYG106 (promoteur PGK de Saccharomyces cerevisiae). pYG536 (promoteur PHO5 de S. cerevisiae). ou des promoteur hybrides tels que ceux portés par les plasmides décrits dans la demande de brevet EP 361 991. Par exemple, le fragment de restriction HindIII du plasmide pYG1259 est clone dans l'orientation productive dans le site de restriction HindIII du plasmide d'expression pYG105, ce qui génère le plasmide d'expression pYG1266 (Figure 3). Le plasmide pYG105 corresponds au plasmide pKan707 décrit dans la demande de brevet EP 361 991 dans lequel le site de restriction HindIII a été détruit par mutagénèse dirigée (oligodeoxynucleotide Sql053: 5'-GAAATGCATAAGCTC- TTGCCATTCTCACCG-3') et dont le fragment Sall-Sacl codant pour le gène URA3 a été remplacé par un fragment de restriction Sall-Sacl comportant le promoteur LAC4 (sous la forme d'un fragment SalI-HindIII) et le terminateur du gène PGK de S. cerevisiae (sous la forme d'un fragment HindIII-SacI). Le plasmide pYG105 est mitotiquement très stable en l'absence de généticine (G418) et permet d'exprimer la protéine chimère à partir du promoteur LAC4 de K. lactis. notamment quand la source carbonnée est du lactose. Dans une autre exemplification, le clonage dans l'orientation productive du fragment de restriction HindIII du plasmide pYG1259 dans le site HindIII du plasmide pYG106 génère le plasmide d'expression pYG1267. Les plasmides pYG1266 et pYG1267 sont isogéniques entre eux à l'exception du fragment de restriction SalI-HindIII codant pour le promoteur LAC4 de K. lactis (plasmide pYG1266) ou le promoteur PGK de S. cerevisiae (plasmide pYG1267).
Dans une autre exemplification, le clonage dans l'orientation productive du fragment de restriction HindIII du plasmide pYG1336 (chimère SAH-GIy4-G.CSF, cf. E.2J.) dans le site HindIII des plasmides pYG105 et pYG106 génère les plasmides d'expression pYG1351 etpYG1352, respectivement.
De même, le clonage dans l'orientation productive du fragment de restriction Hindiπ du plasmide pYG1301 (chimère G.CSF-Gly4-SAH, cf. E.2.2.) dans le site
HindHI des plasmides pYG105 et pYG106 génère les plasmides d'expression pYG1302 et pYG1303, respectivement.
EXEMPLE 4 : TRANSFORMATION DES LEVURES
La transformation des levures appartenant au genre Kluyveromyces. et en particulier les souches MW98-8C et CBS 293.91 de K. lactis. s'effectue par exemple par la technique de traitement des cellules entières par de l'acétate de lithium (Ito H. et al., J. Bacteriol. 153 (1983) 163-168), adaptée comme suit. La croissance des cellules se fait à 28°C dans 50 ml de milieu YPD, avec agitation et jusqu'à une densité optique à 600 nm (DO 0O) comprise entre 0,6 et 0,8 ; les cellules sont récoltées par centrifugation à faible vitesse, lavées dans une solution stérile de TE (10 mM Tris HC1 pH 7,4 ; 1 mM EDTA), resuspendues dans 3-4 ml d'acétate lithium (0J M dans du TE) pour obtenir une densité cellulaire d'environ 2 x 10° cellules/ml, puis incubées à 30°C pendant 1 heure sous agitation modérée. Des aliquotes de 0J ml de la suspension résultante de cellules compétentes sont incubés à 30°C pendant 1 heure en présence d'ADN et à une concentration finale de 35 % de polyéthylène glycol (PEG4000- Sigma)." Après un choc thermique de 5 minutes à 42°C, les cellules sont lavées 2 fois, resuspendues dans 0,2 ml d'eau stérile et incubées 16 heures à 28°C dans 2 ml de milieu YPD pour permettre l'expression phénotypique de la fusion ORF1-APH exprimée sous contrôle du promoteur P*^ ;
200 μl de la suspension cellulaire sont ensuite étalés sur boites YPD sélectives (G418, 200 μg ml). Les boites sont mises à incuber à 28°C et les transformants apparaissent après 2 à 3 jours de croissance cellulaire. EXEMPLE 5 : SECRETION DES CHIMERES
Après sélection sur milieu riche supplémenté en G418 les clones recombinants sont testés pour leur capacité à sécréter la forme mature des protéines chimères entre SAH et G-CSF. Quelques clones correspondant à la souche K. lactis CBS 293.91 transformée par les plasmides pYG1266 ou ρYG1267 (SAH-G.CSF), pYG1302 ou pYG1303 (G.CSF-Gly4-SAH) ou encore pYG1351 ou pYG1352 (SAH-Gly4-G.CSF) sont mis à incuber en milieu liquide complet sélectif à 28°C.
Les surnageants cellulaires sont alors testés après électrophorèse en gel d'acrylamide à 8.5 %, soit directement par coloration du gel d'acrylamide par du bleu de coomassie (Figure 4, panneau A), soit après immunoblot en utilisant comme anticorps primaires des anticorps polyclonaux de lapin spécifiquement dirigés contre le G-CSF humain, ou contre la SAH. Lors des expériences de détection immunologique, le filtre de nitrocellulose est d'abord incubé en présence de l'anticorps spécifique, lavé plusieurs fois, incubé en présence d'anticorps de chèvre anti-lapin biotinylés, puis incubé en présence d'un complexe avidine-péroxydase en utilisant le "kit ABC" distribué par Vectastain (Biosys S.A., Compiègne, France). La réaction immunologique est ensuite révélée par addition de diamino-3,3' benzidine tetrachlorydrate (Prolabo) en présence d'eau oxygénée, selon les recommandations du fournisseur. Les résultats de la Figure 4 démontrent que la protéine hybride SAH- G.CSF est reconnue à la fois par des anticorps dirigés contre l'albumine humaine (panneau C) et le G-CSF humain (panneau B). Les résultats de la Figure 6 indiquent que la chimère SAH-Gly4-G.CSF (piste 3) est particulièrement bien sécrétée par la levure Kluyveromyces. possiblement du fait que la présence du linker peptidique entre partie SAH et partie G-CSF est plus favorable à un repliement indépendant de ces 2 parties lors du transit de la chimère dans la voie sécrétoire. De plus la fusion N- terminale (G.CSF-Gly4-SAH) est également sécrétée par la levure KluyverOmyces
(Figure 6, piste 1).
EXEMPLE 6 : PURIFICATION ET CARACTERISATION MOLECULAIRE DES PRODUITS SECRETES
Après centrifugation d'une culture de la souche CBS 293.91 transformée par les plasmides d'expression selon l'exemple 3, le surnageant de culture est passé à travers un filtre de 0,22 mm (Millipore), puis concentré par ultrafiltration (Amicon) en utilisant une membrane dont le seuil de discrimination se situe à 30 kDa. Le concentrât obtenu est alors ajusté à 50 mM Tris HC1 à partir d'une solution stock de Tris HC1 1M (pH 6), puis déposé par fractions de 20 ml sur une colonne (5 ml) échangeuse d'ions (Q Fast Flow, Pharmacia) équilibrée dans le même tampon. La protéine chimère est alors éluée de la colonne par un gradient (0 à 1 M) de NaCl. Les fractions contenant la protéine chimère sont alors réunies et dialysées contre une solution de Tris HC1 50 mM (pH 6) et redéposées sur colonne Q Fast Flow (1 ml) équilibrée dans le même tampon. Après élution de la colonne, les fractions contenant la protéine sont réunies, dialysées contre de l'eau et lyophilisées avant caracté- risation: par exemple, le séquençage (Applied Biosystem) de la protéine SAH-G.CSF sécrétée par la levure CBS 293.91 donne la séquence N-terminale attendue de la SAH (Asp-Ala-His...), démontrant une maturation correcte de la chimère immédia¬ tement en C-terminal du doublet de résidus Arg-Arg de la région "pro" de la SAH (Figure 1).
EXEMPLE 7 : ACTIVITE BIOLOGIQUE DES CHIMERES ENTRE SAH ET G-CSF
E.7.L Activité biologique in vitro.
Les chimères purifiées selon l'exemple 6 sont testées pour leur capacité à permettre la prolifération in vitro de la lignée murine IL3-dépendante NFS60, par mesure de l'incorporation de thymidine tritiée essentiellement selon le protocole décrit par Tsuchiya et al. [Proc. Natl. Acad. Sci. (1986) £2. 7633]. Pour chaque chimère, les mesures sont réalisées entre 3 et 6 fois dans un test trois points (trois dilutions du produit) dans une zone ou la relation entre quantité de produit actif et incorporation de thymidine marquée (Amersham) est linéaire. Dans chaque plaque de microtitration, l'activité d'un produit référence constitué de G-CSF humain recombinant exprimé dans des cellules mammifères est également systématiquement incorporé. Les résultats de la Figure 7 démontrent que la chimère SAH-G.CSF (pYG1266) sécrétée par la levure Kluyveromyces est capable in vitro de transduire un signal de prolifération cellulaire pour la lignée NFS60. Dans ce cas particulier, l'activité spécifique (cpm/molarité) de la chimère est environ 7 fois plus faible que celle du G-CSF référence (non couplé). E.7.2. Activité in vivo
L'activité de stimulation des chimères SAH/G-CSF sur la granulopoièse in vivo est testée après injection sous-cutanée chez le rat (Sprague-Dawley/CD, 250- 300 g, 8-9 semaines) et comparée à celle du G-CSF référence exprimé à partir de cellules de mammifère. Chaque produit, testé à raison de 7 animaux, est injecté par voie sous-cutanée en région dorso-scapulaire à raison de 100 ml pendant 7 jours consécutifs (J1-J7). 500 ml de sang sont recueillis aux jours 3-6, J2 (avant la 2eme injection), J5 (avant la 5eme injection) et J8, et une numération sanguine est effectuée. Dans ce test, l'activité spécifique (unités de neutropoièse/mole injectée) de la chimère SAH-G.CSF (pYG1266) est identique à celle du G-CSF référence (Figure 8). Puisque cette chimère particulière possède in vitro une activité spécifique 7 fois plus faible que celle du G-CSF référence (Figure 7), il est donc démontré que le couplage génétique du G-CSF sur la SAH en modifie favorablement les propriétés pharmacocinétiques.

Claims

REVENDICATIONS
1. Polypeptide recombinant comportant une partie active constituée par tout ou partie du G-CSF ou d'un variant du G-CSF couplé à une structure stabilisatrice essentiellement protéique.
2. Polypeptide selon la revendication 1 caractérisé en ce que la partie active présente une structure choisie parmi :
(a) la séquence peptidique comprise entre les résidus Thr586-Pro759 de la séquence donnée sur la Figure 1,
(b) une partie de la structure peptidique (a) ayant conservé l'activité biologique du G-CSF, et,
(c) une structure dérivée des structures (a) ou (b) par modifications structurales (mutation, substitution, addition et/ou délétion d'un ou plusieurs résidus), et ayant conservé l'activité biologique du G-CSF, ou une activité modifiée.
3. Polypeptide selon la revendication 1 ou 2 caractérisé en ce que la partie active est couplée à l'extrémité N-terminale de la structure stabilisatrice.
4. Polypeptide selon la revendication 1, 2 ou 3 caractérisé en ce que la partie active est couplée à l'extrémité C-terminale de la structure stabilisatrice.
5. Polypeptide selon l'une des revendications 1 à 4 caractérisé en ce que la structure stabilisatrice est un polypeptide possédant une demie-vie plasmatique élevée.
6. Polypeptide selon la revendication 5 caractérisé en ce que le polypeptide possédant une demie- vie plasmatique élevée est une protéine telle qu'une albumine, une apolipoprotéine, une immunoglobuline ou encore une transferine.
7. Polypeptide selon la revendication 5 caractérisé en ce que le polypeptide possédant une demie-vie plasmatique élevée est dérivé par modification(s) structurale(s) (mutation, substitution, addition et/ou délétion d'un ou plusieurs résidus, modification chimique) d'une protéine selon la revendication 6.
8. Polypeptide selon l'une des revendications 5 à 7 caractérisé en ce que la structure stabilisatrice est un polypeptide faiblement ou non-immunogénique pour l'organisme dans lequel il est utilisé.
9. Polypeptide selon la revendication 5 caractérisé en ce que la structure stabilisatrice est une albumine ou un variant de l'albumine.
10. Séquence nucléotidique codant pour un polypeptide selon l'une quelconque des revendications 1 à 9.
11. Séquence nucléotidique selon la revendication 10 caractérisée en ce qu'elle comprend une séquence "leader" permettant la sécrétion du polypeptide exprimé.
12. Cassette d'expression comprenant une séquence nucléotidique selon l'une des revendications 10 ou 11 sous le contrôle d'une région d'initiation de la transcription et éventuellement d'une région de terminaison de la transcription.
13. Plasmide autoréplicatif comportant une cassette d'expression selon la revendication 12.
14. Cellule recombinante eucaryote ou procaryote dans laquelle a été inséré une séquence nucléotidique selon l'une des revendications 10 ou 11 ou une cassette d'expression selon la revendication 12 ou un plasmide selon la revendication 13.
15. Cellule recombinante selon la revendication 14 caractérisée en ce qu'il s'agit d'une levure, d'une cellule animale, d'un champignon ou d'une bactérie.
16. Cellule recombinante selon la revendication 15 caractérisée en ce qu'il s'agit d'une levure.
17. Cellule recombinante selon la revendication 16 caractérisée en ce qu'il s'agit d'une levure du genre Saccharomyces ou Kluyveromyces.
18. Procédé de préparation d'un polypeptide tel que défini dans l'une des revendications 1 à 9 caractérisé en ce que l'on cultive une cellule recombinante selon l'une des revendications 14 à 17 dans des conditions d'expression, et on récupère le polypeptide produit.
19. Composition pharmaceutique comprenant un ou plusieurs polypeptides selon l'une quelconque des revendications 1 à 9.
20. Composition pharmaceutique selon la revendication 19 destinée à être utilisée dans toutes les situations pathologiques dans lesquelles le nombre et/ou l'activité des granulocytes doivent être stimulées.
21. Composition pharmaceutique selon la revendication 20 destinée à la prévention ou au traitement des leukopénies ou de certaines leucémies.
22. Composition pharmaceutique selon la revendication 20 utilisable dans le cas de greffes ou de traitement anticancéreux, pour restaurer le système immunitaire.
PCT/FR1993/000086 1992-01-31 1993-01-28 Nouveaux polypeptides ayant une activite de stimulation des colonies de granulocytes, leur preparation et compositions pharmaceutiques les contenant WO1993015211A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP93904130A EP0624200A1 (fr) 1992-01-31 1993-01-28 Nouveaux polypeptides ayant une activite de stimulation des colonies de granulocytes, leur preparation et compositions pharmaceutiques les contenant
JP5512987A JPH07503844A (ja) 1992-01-31 1993-01-28 顆粒球コロニー刺激活性を有する新規なポリペプチド,それらの調製およびそれらを含有する医薬組成
US08/256,938 US5665863A (en) 1992-01-31 1993-01-29 Polypeptides having granulocyte colony stimulating activity, their preparation and pharmaceutical compositions containing them
FI943564A FI943564A (fi) 1992-01-31 1994-07-29 Uusia polypeptidejä, joilla on jyvässolupesäkkeitä stimuloivaa aktiivisuutta, niiden valmistus ja niitä sisältäviä farmaseuttisia koostumuksia
NO942858A NO942858L (no) 1992-01-31 1994-08-01 Nye polypeptider med granulocyt-koloni-stimulerende aktivitet, deres fremstilling samt farmasöytiske prepatater inneholdende polypeptidene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9201065A FR2686900B1 (fr) 1992-01-31 1992-01-31 Nouveaux polypeptides ayant une activite de stimulation des colonies de granulocytes, leur preparation et compositions pharmaceutiques les contenant.
FR92/01065 1992-01-31

Publications (1)

Publication Number Publication Date
WO1993015211A1 true WO1993015211A1 (fr) 1993-08-05

Family

ID=9426191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000086 WO1993015211A1 (fr) 1992-01-31 1993-01-28 Nouveaux polypeptides ayant une activite de stimulation des colonies de granulocytes, leur preparation et compositions pharmaceutiques les contenant

Country Status (8)

Country Link
US (1) US5665863A (fr)
EP (1) EP0624200A1 (fr)
JP (1) JPH07503844A (fr)
CA (1) CA2125979A1 (fr)
FI (1) FI943564A (fr)
FR (1) FR2686900B1 (fr)
NO (1) NO942858L (fr)
WO (1) WO1993015211A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2719593A1 (fr) * 1994-05-06 1995-11-10 Rhone Poulenc Rorer Sa Nouveaux polypeptides biologiquement actifs, leur préparation et composition pharmaceutique les contenant.
US5536495A (en) * 1994-04-15 1996-07-16 Foster; Preston F. Use of G-CSF to reduce acute rejection
US5718893A (en) * 1984-04-15 1998-02-17 Foster; Preston F. Use of G-CSF to reduce acute rejection
WO2001079258A1 (fr) * 2000-04-12 2001-10-25 Human Genome Sciences, Inc. Proteines fusionnees a l'albumine
EP1449921A2 (fr) * 1992-01-31 2004-08-25 Aventis Pharma S.A. Nouveaux polypeptides biologiquement actifs, leur préparation et composition pharmaceutique les contenant
WO2006048862A2 (fr) * 2004-10-31 2006-05-11 Yeda Research And Development Co.Ltd. Utilisation d'une protease ou d'un inhibiteur de protease pour la preparation de medicaments
US7220407B2 (en) 2003-10-27 2007-05-22 Amgen Inc. G-CSF therapy as an adjunct to reperfusion therapy in the treatment of acute myocardial infarction
WO2010092571A2 (fr) 2009-02-11 2010-08-19 Yeda Research And Development Co. Ltd. Peptides courts dérivés de bêta-défensine
JP2011015690A (ja) * 2001-12-21 2011-01-27 Human Genome Sciences Inc アルブミン融合タンパク質
US8410059B2 (en) 2002-08-27 2013-04-02 Biokine Therapeutics Ltd. CXCR4 antagonist and use thereof
US8435939B2 (en) 2000-09-05 2013-05-07 Biokine Therapeutics Ltd. Polypeptide anti-HIV agent containing the same
US8455450B2 (en) 2006-12-21 2013-06-04 Biokine Therapeutics Ltd. Methods for obtaining a therapeutically effective amount of hematopoietic precursor cells and long term engraftment thereof
US8524655B2 (en) 2004-11-05 2013-09-03 Northwestern University Use of SCF and G-CSF in the treatment of cerebral ischemia and neurological disorders
US9427456B2 (en) 2009-06-14 2016-08-30 Biokine Therapeutics Ltd. Peptide therapy for increasing platelet levels
US9439942B2 (en) 2012-04-24 2016-09-13 Biokine Therapeutics Ltd. Peptides and use thereof in the treatment of large cell lung cancer
US9642917B2 (en) 2011-07-25 2017-05-09 Generon (Shanghai) Corporation, Ltd. Use of G-CSF dimer in preparation of medicament for treatment of neurodegenerative diseases
US10654912B2 (en) 2015-09-08 2020-05-19 Jcr Pharmaceuticals Co., Ltd. Human serum albumin mutant
US10682390B2 (en) 2015-07-16 2020-06-16 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US10993985B2 (en) 2016-02-23 2021-05-04 BioLmeRx Ltd. Methods of treating acute myeloid leukemia

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9526733D0 (en) 1995-12-30 1996-02-28 Delta Biotechnology Ltd Fusion proteins
TWI242563B (en) * 1998-04-30 2005-11-01 Tanox Inc Monoclonal agonist antibodies which specifically bind to or interact with human G-CSF receptor
ES2253887T3 (es) * 1998-04-30 2006-06-01 Tanox, Inc. Anticuerpos agonistas del receptor de g-csf y metodo de cribado de los mismos.
EP1121425B1 (fr) * 1998-10-13 2005-06-29 The University Of Georgia Research Foundation, Inc. Peptides bioactifs stabilises, procedes d'identification, synthese et utilisation
US20030190740A1 (en) * 1998-10-13 2003-10-09 The University Of Georgia Research Foundation, Inc Stabilized bioactive peptides and methods of identification, synthesis, and use
CA2337661A1 (fr) 2000-02-29 2001-08-29 Pfizer Products Inc. Facteur stabilise de stimulation des colonies de granulocytes
US6946134B1 (en) 2000-04-12 2005-09-20 Human Genome Sciences, Inc. Albumin fusion proteins
SI1724284T1 (sl) * 2000-12-07 2009-12-31 Lilly Co Eli Glp-1 fuzijski proteini
US20050244931A1 (en) * 2001-04-12 2005-11-03 Human Genome Sciences, Inc. Albumin fusion proteins
US20050054051A1 (en) * 2001-04-12 2005-03-10 Human Genome Sciences, Inc. Albumin fusion proteins
US20060084794A1 (en) * 2001-04-12 2006-04-20 Human Genome Sciences, Inc. Albumin fusion proteins
US7507413B2 (en) 2001-04-12 2009-03-24 Human Genome Sciences, Inc. Albumin fusion proteins
WO2003030821A2 (fr) * 2001-10-05 2003-04-17 Human Genome Sciences, Inc. Proteines de fusion d'albumine
EP1463752A4 (fr) 2001-12-21 2005-07-13 Human Genome Sciences Inc Proteines de fusion d'albumine
AU2003210806A1 (en) * 2002-03-05 2003-09-22 Eli Lilly And Company Heterologous g-csf fusion proteins
CA2513213C (fr) 2003-01-22 2013-07-30 Human Genome Sciences, Inc. Proteines hybrides d'albumine
EP1670428A4 (fr) * 2003-10-10 2008-03-12 Univ Southern California Proteines hybrides g-csf-transferrine
BRPI0507026A (pt) * 2004-02-09 2007-04-17 Human Genome Sciences Inc proteìnas de fusão de albumina
WO2005121174A2 (fr) * 2004-06-04 2005-12-22 Five Prime Therapeutics, Inc. Nouveaux polypeptides g-csf, polynucleotides, modulateurs associes et leurs methodes d'utilisation
EP1816201A1 (fr) * 2006-02-06 2007-08-08 CSL Behring GmbH Facteur de coagulation VIIa modifié ayant une stabilité 'half-life' améliorée
US10138283B2 (en) 2008-07-23 2018-11-27 Ambrx, Inc. Modified bovine G-CSF polypeptides and their uses
EP2387420A2 (fr) * 2009-01-16 2011-11-23 Teva Pharmaceutical Industries Limited Nouvelles formulations stables de protéine de fusion d'albumine humaine recombinante et facteur humain de stimulation de colonie de granulocytes
AR083006A1 (es) 2010-09-23 2013-01-23 Lilly Co Eli Formulaciones para el factor estimulante de colonias de granulocitos (g-csf) bovino y variantes de las mismas
US20140271538A1 (en) 2013-03-15 2014-09-18 Teva Pharmaceutical Industries Ltd. Recombinant Human Albumin-Human Granulocyte Colony Stimulating Factor for the Prevention of Neutropenia in Pediatric Patients
GB201316592D0 (en) * 2013-09-18 2013-10-30 Levicept Ltd Fusion protein
GB201412748D0 (en) * 2014-07-17 2014-09-03 Levicept Ltd Therapeutic use of P75NTR neurotrophin binding protein
JP2017165713A (ja) 2016-03-14 2017-09-21 Jcrファーマ株式会社 血清アルブミン−20k成長ホルモン融合タンパク質
US10866963B2 (en) 2017-12-28 2020-12-15 Dropbox, Inc. File system authentication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3723781A1 (de) * 1986-07-18 1988-01-21 Chugai Pharmaceutical Co Ltd Arzneimittel enthaltend stabilisierten g-csf (granulocyten-koloniestimulierender -faktor) und verfahren zu seiner herstellung
EP0361991A2 (fr) * 1988-08-05 1990-04-04 Rhone-Poulenc Sante Méthode de préparation microbiologique du sérum d'albumine humaine et d'autres protéines hétérologues à partir d'une levure
EP0364980A2 (fr) * 1988-10-20 1990-04-25 Denki Kagaku Kogyo Kabushiki Kaisha Conjugués de gélatine et du facteur de stimulation de colonies
EP0395918A2 (fr) * 1989-04-13 1990-11-07 Vascular Laboratory, Inc. Complexe d'activateur de plasminogène de pro-urokinase pure liée de manière covalente par un pont disulfure à de la sérum albumine humaine
WO1990013653A1 (fr) * 1989-04-29 1990-11-15 Delta Biotechnology Limited Proteines de fusion contenant des fragments n-terminaux de l'albumine serale humaine (hsa)
EP0401384A1 (fr) * 1988-12-22 1990-12-12 Kirin-Amgen, Inc. Facteur de stimulation de colonies de granulocytes modifies chimiquement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2055445T3 (es) * 1989-08-22 1994-08-16 Immunex Corp Proteinas de fusion que comprenden gm-csf e il-3.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3723781A1 (de) * 1986-07-18 1988-01-21 Chugai Pharmaceutical Co Ltd Arzneimittel enthaltend stabilisierten g-csf (granulocyten-koloniestimulierender -faktor) und verfahren zu seiner herstellung
EP0361991A2 (fr) * 1988-08-05 1990-04-04 Rhone-Poulenc Sante Méthode de préparation microbiologique du sérum d'albumine humaine et d'autres protéines hétérologues à partir d'une levure
EP0364980A2 (fr) * 1988-10-20 1990-04-25 Denki Kagaku Kogyo Kabushiki Kaisha Conjugués de gélatine et du facteur de stimulation de colonies
EP0401384A1 (fr) * 1988-12-22 1990-12-12 Kirin-Amgen, Inc. Facteur de stimulation de colonies de granulocytes modifies chimiquement
EP0395918A2 (fr) * 1989-04-13 1990-11-07 Vascular Laboratory, Inc. Complexe d'activateur de plasminogène de pro-urokinase pure liée de manière covalente par un pont disulfure à de la sérum albumine humaine
WO1990013653A1 (fr) * 1989-04-29 1990-11-15 Delta Biotechnology Limited Proteines de fusion contenant des fragments n-terminaux de l'albumine serale humaine (hsa)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718893A (en) * 1984-04-15 1998-02-17 Foster; Preston F. Use of G-CSF to reduce acute rejection
EP1449921A2 (fr) * 1992-01-31 2004-08-25 Aventis Pharma S.A. Nouveaux polypeptides biologiquement actifs, leur préparation et composition pharmaceutique les contenant
EP1449921A3 (fr) * 1992-01-31 2006-01-11 Delta Biotechnology Limited Nouveaux polypeptides biologiquement actifs, leur préparation et composition pharmaceutique les contenant
US5536495A (en) * 1994-04-15 1996-07-16 Foster; Preston F. Use of G-CSF to reduce acute rejection
FR2719593A1 (fr) * 1994-05-06 1995-11-10 Rhone Poulenc Rorer Sa Nouveaux polypeptides biologiquement actifs, leur préparation et composition pharmaceutique les contenant.
WO1995030759A1 (fr) * 1994-05-06 1995-11-16 Rhone-Poulenc Rorer S.A. Polypeptides biologiquement actifs inseres dans une albumine
WO2001079258A1 (fr) * 2000-04-12 2001-10-25 Human Genome Sciences, Inc. Proteines fusionnees a l'albumine
WO2001079443A2 (fr) * 2000-04-12 2001-10-25 Human Genome Sciences, Inc. Proteines fusionnees a l'albumine
WO2001079443A3 (fr) * 2000-04-12 2002-02-21 Human Genome Sciences Inc Proteines fusionnees a l'albumine
EP1278544A2 (fr) * 2000-04-12 2003-01-29 Human Genome Sciences, Inc. Proteines hybrides d'albumine
EP1278544A4 (fr) * 2000-04-12 2004-08-18 Human Genome Sciences Inc Proteines hybrides d'albumine
US8435939B2 (en) 2000-09-05 2013-05-07 Biokine Therapeutics Ltd. Polypeptide anti-HIV agent containing the same
US9296809B2 (en) 2001-12-21 2016-03-29 Human Genome Sciences, Inc. Albumin fusion proteins
US8993517B2 (en) 2001-12-21 2015-03-31 Human Genome Sciences, Inc. Albumin fusion proteins
US9221896B2 (en) 2001-12-21 2015-12-29 Human Genome Sciences, Inc. Albumin fusion proteins
JP2011015690A (ja) * 2001-12-21 2011-01-27 Human Genome Sciences Inc アルブミン融合タンパク質
US8012464B2 (en) 2001-12-21 2011-09-06 Human Genome Sciences, Inc. G-CSF-albumin fusion proteins
US8410059B2 (en) 2002-08-27 2013-04-02 Biokine Therapeutics Ltd. CXCR4 antagonist and use thereof
US7220407B2 (en) 2003-10-27 2007-05-22 Amgen Inc. G-CSF therapy as an adjunct to reperfusion therapy in the treatment of acute myocardial infarction
WO2006048862A3 (fr) * 2004-10-31 2006-08-31 Yeda Res & Dev Utilisation d'une protease ou d'un inhibiteur de protease pour la preparation de medicaments
WO2006048862A2 (fr) * 2004-10-31 2006-05-11 Yeda Research And Development Co.Ltd. Utilisation d'une protease ou d'un inhibiteur de protease pour la preparation de medicaments
US8524655B2 (en) 2004-11-05 2013-09-03 Northwestern University Use of SCF and G-CSF in the treatment of cerebral ischemia and neurological disorders
US8765683B2 (en) 2006-12-21 2014-07-01 Biokine Therapeutics Ltd. T-140 peptide analogs having CXCR4 super-agonist activity for cancer therapy
US8663651B2 (en) 2006-12-21 2014-03-04 Biokine Therapeutics Ltd. T-140 peptide analogs having CXCR4 super-agonist activity for immunomodulation
US8455450B2 (en) 2006-12-21 2013-06-04 Biokine Therapeutics Ltd. Methods for obtaining a therapeutically effective amount of hematopoietic precursor cells and long term engraftment thereof
EP3011961A1 (fr) 2006-12-21 2016-04-27 Biokine Therapeutics LTD. 4F-benzoyl-TN14003 pour la mobilisation des cellules hématopoiétiques progénitrices en vue d'une transplantation
US9155780B2 (en) 2009-02-11 2015-10-13 Yeda Research And Development Co. Ltd. Short beta-defensin-derived peptides
WO2010092571A2 (fr) 2009-02-11 2010-08-19 Yeda Research And Development Co. Ltd. Peptides courts dérivés de bêta-défensine
US9567371B2 (en) 2009-02-11 2017-02-14 Yeda Research And Development Co. Ltd. Short beta-defensin-derived peptides
US9427456B2 (en) 2009-06-14 2016-08-30 Biokine Therapeutics Ltd. Peptide therapy for increasing platelet levels
US9642917B2 (en) 2011-07-25 2017-05-09 Generon (Shanghai) Corporation, Ltd. Use of G-CSF dimer in preparation of medicament for treatment of neurodegenerative diseases
US9439942B2 (en) 2012-04-24 2016-09-13 Biokine Therapeutics Ltd. Peptides and use thereof in the treatment of large cell lung cancer
US11607444B2 (en) 2015-07-16 2023-03-21 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11596666B2 (en) 2015-07-16 2023-03-07 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US10786547B2 (en) 2015-07-16 2020-09-29 Biokine Therapeutics Ltd. Compositions, articles of manufacture and methods for treating cancer
US11648293B2 (en) 2015-07-16 2023-05-16 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11642393B2 (en) 2015-07-16 2023-05-09 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11534478B2 (en) 2015-07-16 2022-12-27 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11554159B2 (en) 2015-07-16 2023-01-17 Blokine Therapeutics Ltd. Compositions and methods for treating cancer
US11559562B2 (en) 2015-07-16 2023-01-24 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11590200B2 (en) 2015-07-16 2023-02-28 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US10682390B2 (en) 2015-07-16 2020-06-16 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11638743B2 (en) 2015-07-16 2023-05-02 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11612638B2 (en) 2015-07-16 2023-03-28 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11638742B2 (en) 2015-07-16 2023-05-02 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11634474B2 (en) 2015-09-08 2023-04-25 Jcr Pharmaceuticals Co., Ltd. Human serum albumin mutant
US10654912B2 (en) 2015-09-08 2020-05-19 Jcr Pharmaceuticals Co., Ltd. Human serum albumin mutant
US11046751B2 (en) 2015-09-08 2021-06-29 Jcr Pharmaceuticals Co., Ltd. Human serum albumin mutant
US10993985B2 (en) 2016-02-23 2021-05-04 BioLmeRx Ltd. Methods of treating acute myeloid leukemia

Also Published As

Publication number Publication date
FI943564A0 (fi) 1994-07-29
FR2686900A1 (fr) 1993-08-06
FI943564A (fi) 1994-07-29
FR2686900B1 (fr) 1995-07-21
US5665863A (en) 1997-09-09
NO942858L (no) 1994-08-01
JPH07503844A (ja) 1995-04-27
EP0624200A1 (fr) 1994-11-17
CA2125979A1 (fr) 1993-08-05
NO942858D0 (fr) 1994-08-01

Similar Documents

Publication Publication Date Title
WO1993015211A1 (fr) Nouveaux polypeptides ayant une activite de stimulation des colonies de granulocytes, leur preparation et compositions pharmaceutiques les contenant
EP0624195B1 (fr) Nouveaux polypeptides biologiquement actifs, leur preparation et composition pharmaceutique les contenant
FR2686901A1 (fr) Nouveaux polypeptides antithrombotiques, leur preparation et compositions pharmaceutiques les contenant.
CA2126356C (fr) Serum-albumine humaine, preparation et utilisation
JP4063878B2 (ja) 成長ホルモンおよび血清アルブミンに対する組換え融合タンパク質
KR100380532B1 (ko) 효모균주
FR2650598A1 (fr) Derives de l&#39;albumine a fonction therapeutique
WO1995030759A1 (fr) Polypeptides biologiquement actifs inseres dans une albumine
US20070149767A1 (en) Agent
FR2680518A1 (fr) Promoteur de levure et son utilisation.
FR2635115A1 (fr) Procede de preparation de la serum albumine humaine a partir d&#39;une levure
WO1994003618A1 (fr) Promoteur du gene de la transaldolase de k. lactis et son utilisation
WO1994001569A1 (fr) Promoteur du gene de la pyruvate decarboxylase de k. lactis et son utilisation
WO1994029463A1 (fr) Promoteur de levure et son utilisation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA FI JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2125979

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993904130

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08256938

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 943564

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1993904130

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993904130

Country of ref document: EP