WO1992011560A1 - Ecran electrooptique matriciel a commande active a systeme de test integre - Google Patents

Ecran electrooptique matriciel a commande active a systeme de test integre Download PDF

Info

Publication number
WO1992011560A1
WO1992011560A1 PCT/FR1991/001049 FR9101049W WO9211560A1 WO 1992011560 A1 WO1992011560 A1 WO 1992011560A1 FR 9101049 W FR9101049 W FR 9101049W WO 9211560 A1 WO9211560 A1 WO 9211560A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
screen
columns
flip
test circuits
Prior art date
Application number
PCT/FR1991/001049
Other languages
English (en)
Inventor
Bernard Hepp
Bruno Mourey
Original Assignee
Thomson-Lcd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Lcd filed Critical Thomson-Lcd
Publication of WO1992011560A1 publication Critical patent/WO1992011560A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136254Checking; Testing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Definitions

  • the present invention relates to active control matrix electrooptical screens, more particularly screens in which each image point is defined at the intersection of two networks of orthogonal conductors called rows and columns, at least by a capacitor produced by an electrooptical element. It relates, preferably, to screens in which the optical element is a liquid crystal and more particularly those which comprise in series with the capacitor an active control element produced according to the thin-film technology.
  • the present invention can also be applied to other types of electrooptical screens having the same characteristics, in particular to screens which can be produced on a substrate allowing the manufacture of semiconductor components.
  • This type of matrix screen is, in general, made up of a very large number (greater than 100) of rows and columns produced by metallic deposition on the substrate enclosing the electrooptical elements or on a layer of insulating material.
  • these rows and columns must have no defects. Thus, they must be continuous and not give rise to short-circuits, in particular at the crossings.
  • external test machines which allow certain voltages to be applied to the rows and columns of the screen to be tested.
  • the object of the present invention is to remedy the drawbacks of external test machines and to propose a solution making it possible to simply test the continuity of the rows and columns.
  • the subject of the present invention is an active control matrix electrooptical screen, characterized in that the rows and columns of the matrix of addressing conductors are connected to test circuits produced on the same substrate as said matrix.
  • test circuits are integrated, that is to say made at the same time as the lines and the active element of the matrix, and there are no more connection problems, which allows to carry out very easily the tests concerning the continuity of the rows and columns and the absence of short-circuit by simply applying a voltage to the input of - • - these different circuits.
  • the test circuits consist of two shift registers with N stages connected to the N rows of the matrix and by two shift registers with N 1 stages connected to the N ′ columns of the matrix.
  • the shift register is produced using static or dynamic D flip-flops.
  • the test circuits are produced at the same time as the 0 control elements of the matrix.
  • the test circuits are made using thin-layer technology.
  • FIG. 1 is a schematic view of a matrix electrooptical screen comprising control transistors as active control elements according to the known art to which the present invention can be applied;
  • 0 - Figure 2 is a schematic view of an embodiment of a matrix screen with integrated test circuits according to the present invention;
  • FIG. 3A and 3B are respectively a block diagram and a timing diagram of a first embodiment of a shift register that can be used in this invention
  • FIG. 4A and 4B are respectively a block diagram and a timing diagram of a second embodiment of a shift register that can be used in the present invention
  • FIG. 5A and 5B are respectively a block diagram and a timing diagram of a third embodiment of a shift register that can be used in the present invention
  • - Figures 6A, 6B and GC are diagrams and curves explaining the operation of the present invention.
  • a screen allowing the implementation of the present invention is constituted by two orthogonal networks of lines L1, L2,. . . LN and columns Cl, C2, C3, C4,. . . , CN '.
  • the active switching element T is constituted by a transistor produced according to the thin layer technology or TFT for Thin Film Transistor (in English).
  • TFT Thin Film Transistor
  • the number N of rows and N 'of columns is very large, often greater than 100 and can even go up to 1000.
  • the rows and columns must not have any breaks or short circuit between them.
  • test circuits are therefore provided on the same substrate as the substrate used to make the thin-film transistors T which are connected directly to the different columns and to the different lines.
  • these test circuits are manufactured at the same time as the transistors T, as will be explained in more detail below.
  • test circuits are constituted by shift registers RI, R2, R3, R4 connected directly to the rows and to the columns.
  • the registers RI, R2, R3, R4 connected directly to the rows and to the columns.
  • RI and R3 which are connected to each column C1, C2, C3,. . . , CN 'are registers with N' stages, each stage of which is connected to a column.
  • the shift registers R2 and R4 which are connected to the lines L1 to LN are shift registers with N stages, each stage of which is connected to a line, as shown in FIG. 2.
  • to perform a test on apply a sequence of signals to one of the registers to operate the chosen register, the other registers being set to 0V and either examine the level of the voltages at the output of each stage, or measure the current consumption on the conductors power supply, as will be explained in more detail below.
  • each stage of the shift registers RI, R2, R3, R4 is constituted by a flip-flop D which can be a flip-flop D static or dynamic.
  • a flip-flop D which can be a flip-flop D static or dynamic.
  • FIGS. 3 to 5 various embodiments of registers using flip-flops D will be described below. These registers will be described using four flip-flops. However, it is obvious to those skilled in the art that these registers will be produced with N or N 'flip-flops depending on the number of columns or rows.
  • FIG. 3A a static shift register is shown, consisting of four flip-flops D 1, 2, 3, 4 synchronized on a clock state.
  • the flip-flops D 1, 2, 3, 4 synchronized on a clock state.
  • flip-flops 1 and 3 receive on their clock input the signal H while flip-flops 2 and 4 receive on their clock input the signal H.
  • the pulses D1, D2, D3, D4 represented on the timing diagram of FIG. 3B. These pulses are maintained during a clock period H or H.
  • FIG. 4A there is shown a static shift register consisting of four flip-flops D l ′, 2 ′, 3 ′, 4 ′ synchronized on a clock front.
  • the s-clock inputs of the four flip-flops D receive the same clock signal H '.
  • the flip-flops D connected in series are synchronized on the falling edge of the clock signal H 'and switch according to the clock signal H'.
  • the pulses D1, D2, D3, D4 shown on the timing diagram of FIG. 4B are obtained on the outputs D.
  • FIG. 5A a third embodiment of a shift register usable in the present invention is shown.
  • the flip-flops D 1 ", 2", 3 ", 4" are dynamic flip-flops with two phases.
  • the output Q of a flip-flop is connected to the input D of the next flip-flop and pulses 0 1, 0 2 phase shifted by ⁇ " are applied to the corresponding inputs of the flip-flops.
  • FIG. 6A a liquid crystal screen with four columns and four lines has been shown having a break at the third column and a short circuit between the fourth column and the third line.
  • the test circuits are constituted by shift registers RI, R2, R3, R4 formed by static flip-flops D synchronized on a clock front.
  • the registers R2, R3, R4 are grounded while the register RI receives a sequence of signals V -. J-., V gg , H, D Q allowing its operation.
  • D n is applied to the register, we obtain successively on the columns connected to the outputs Sl, l; S2, l; S3, 1; S4, 1 the pulses represented on the timing diagram of FIG. 6B as a function of the clock pulse H.
  • the screen can also be tested by operating one of four registers and detecting the signal with a tip test at the other end.
  • the registers RI, R2, R3, R4 formed by flip-flops D represented in FIGS. 3 to 5 can be produced using a thin-film technology, it that is to say a technology identical to that used to produce the control transistors T of the liquid crystal screen.
  • the shift registers used to form the test circuits for the rows and columns can be produced at the same time as the transistors T using this thin-film technology.
  • the technology for producing thin-film transistors is well known to those skilled in the art and will not be described again here. Indeed, to implement this technology, a person skilled in the art can refer in particular to the article in the technical review THOMSON-CSF, Vol. 18 # 4
  • test circuits namely the registers RI, R2, R3 and R4, can be located in a specific place on the substrate which makes it possible to cut them at the end of the final phase of the realization of the 'screen.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

La présente invention concerne un écran électrooptique matriciel à commande active, caractérisé en ce que les lignes (L1 à LN) et les colonnes (C1 à CN') de la matrice de conducteurs d'adressage sont connectées à des circuits de test (R1, R2, R3, R4) réalisés sur le même substrat que ladite matrice. Application en particulier aux écrans à cristaux liquides.

Description

ECRAN ELECTROOPTIQUE MATRICIEL A COMMANDE ACTIVE A SYSTEME DE TEST INTEGRE
La présente invention concerne les écrans électrooptiques matriciels à commande active, plus particulièrement les écrans dans lesquels chaque point image est défini à l'intersection de deux réseaux de conducteurs orthogonaux appelés lignes et colonnes, au moins par un condensateur réalisé par un élément électrooptique . Elle concerne, de préférence, les écrans dans lequel l'élément optique est un cristal liquide et plus particulièrement ceux qui comportent en série avec le condensateur un élément actif de commande réalisé selon la technologie couche-mince . Toutefois la présente invention peut aussi s'appliquer à d'autres types d'écrans électrooptiques présentant les mêmes caractéristiques, notamment à des écrans pouvant être réalisés sur un substrat permettant la fabrication de composants semi- conducteurs . Ce type d'écran matriciel est, en général, constitué d'un très grand nombre (supérieur à 100) de lignes et de colonnes réalisées par dépôt métallique sur le substrat enfermant les éléments électrooptiques ou sur une couche de matériau isolant. Pour que l'écran fonctionne correctement, ces lignes et ces colonnes ne doivent présenter aucun défaut. Ainsi, elles doivent être continues et ne pas donner lieu à des courts -circuits, notamment au niveau des croisements . Pour vérifier ces deux conditions, on utilise actuellement des machines de test extérieures qui permettent d'appliquer certaines tensions sur les lignes et les colonnes de l'écran à tester. Ces types de machines sont peu pratiques à mettre en oeuvre et demandent un nombre de connexions très important.
La présente invention a pour but de remédier aux inconvénients des machines de test extérieures et de proposer une solution permettant de tester simplement la continuité des lignes et des colonnes .
En conséquence, la présente invention a pour objet un écran électrooptique matriciel à commande active, caractérisé en ce que les lignes et les colonnes de la matrice de conducteurs d'adressage sont connectées à des circuits de test réalisés sur le même substrat que ladite matrice .
Dans ce cas, les circuits de test sont intégrés, 5 c'est-à-dire réalisés en même temps que les lignes et l'élément actif de la matrice, et il n'y a plus de problèmes de connexion, ce qui permet de réaliser très facilement les tests concernant la continuité des lignes et des colonnes et l'absence de court-circuit en appliquant simplement une tension à l'entrée de - - ces différents circuits .
Selon un mode de réalisation préférentiel, les circuits de test sont constitués par deux registres à décalage à N étages connectés aux N lignes de la matrice et par deux registres à décalage à N1 étages connectés aux N' colonnes de la matrice. De préférence, le registre à décalage est réalisé à l'aide de bascules D statiques ou dynamiques.
Selon une autre caractéristique de la présente invention, dans le cas des circuits matriciels à commande active, les circuits de test sont réalisés en même temps que les 0 éléments de commande de la matrice . De préférence, les circuits de test sont réalisés en utilisant une technologie couche -mince.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description de divers modes de réalisation faite avec référence aux dessins ci-annexés 5 dans lesquels :
- la figure 1 est une vue schématique d'un écran électrooptique matriciel comportant des transistors de commande comme éléments de commande actifs selon l'art connu auquel peut s'appliquer la présente invention ; 0 - la figure 2 est une vue schématique d'un mode de réalisation d'un écran matriciel à circuits de test intégrés selon la présente invention ;
- les figures 3A et 3B sont respectivement un schéma fonctionnel et un chronogramme d'un premier mode de réalisation d'un registre à décalage pouvant être utilisé dans la présente invention ;
- les figures 4A et 4B sont respectivement un schéma fonctionnel et un chronogramme d'un deuxième mode de réalisation d'un registre à décalage pouvant être utilisé dans la présente invention ;
- les figures 5A et 5B sont respectivement un schéma fonctionnel et un chronogramme d'un troisième mode de réalisation d'un registre à décalage pouvant être utilisé dans la présente invention ; - les figures 6A, 6B et GC sont des schémas et des courbes expliquant le fonctionnement de la présente invention .
La présente invention est expliquée ci-après en se référant à un écran matriciel à cellules de cristaux liquides . Il est évident pour l'homme de l'art, qu'elle peut être mise en oeuvre pour réaliser des écrans matriciels à cellules faisant appel à des technologies autres que les cristaux liquides .
Comme représenté schématiquement sur la figure 1, un écran permettant la mise en oeuvre de la présente invention est constitué par deux réseaux orthogonaux de lignes Ll, L2 , . . . LN et de colonnes Cl, C2 , C3, C4, . . . , CN' . A l'intersection de chaque ligne et de chaque colonne, est connecté un point image formé d'un élément actif de commutation T et d'un condensateur C . Dans le mode de réalisation représenté, l'élément actif de commutation T est constitué par un transistor réalisé selon la technologie couche -mince ou TFT pour Thin Film Transistor (en langue anglaise) . En général le nombre N de lignes et N' de colonnes est très important, souvent supérieur à 100 et pouvant même aller jusqu'à 1000. De plus, pour que l'écran fonctionne, les lignes et les colonnes ne doivent présenter ni coupure ni court-circuit entre elles . Conformément à la présente invention, on prévoit donc sur le même substrat que le substrat servant à réaliser les transistors T en couche mince, un certain nombre de circuits de test qui sont connectés directement aux différentes colonnes et aux différentes lignes . De préférence, ces circuits de test sont fabriqués en même temps que les transistors T, comme cela sera expliqué de manière plus détaillée ci-après.
Selon un mode de réalisation préférentiel représenté à la figure 2, les circuits de test sont constitués par des registres à décalage RI, R2, R3, R4 connectés directement aux lignes et aux colonnes. De manière plus détaillée, les registres
RI et R3 qui sont connectés à chaque colonne Cl, C2, C3, . . . , CN' sont des registres à N' étages dont chaque étage est connecté à une colonne. De même les registres à décalage R2 et R4 qui sont connectés aux lignes Ll à LN sont des registres à décalage à N étages dont chaque étage est connecté à une ligne, comme représenté sur la figure 2. Dans ce cas, pour réaliser un test on applique sur un des registres une séquence de signaux permettant de faire fonctionner le registre choisi, les autres registres étant mis à 0V et, soit on examine le niveau des tensions à la sortie de chaque étage, soit on mesure la consommation de courant sur les conducteurs d'alimentation, comme cela sera expliqué de manière plus détaillée ci-après.
De préférence, chaque étage des registres à décalage RI, R2, R3, R4 est constitué par une bascule D qui peut être une bascule D statique ou dynamique. On décrira ci-après, avec référence aux figures 3 à 5, différents modes de réalisation de registres utilisant des bascules D. Ces registres seront décrits à l'aide de quatre bascules. Toutefois, il est évident pour l'homme de l'art que ces registres seront réalisés avec N ou N' bascules en fonction du nombre de colonnes ou de lignes .
Sur la figure 3A, l'on a représenté un registre à décalage statique constitué de quatre bascules D 1, 2, 3, 4 synchronisées sur un état d'horloge . Dans ce cas, les bascules
1, 2, 3, 4 sont connectées de telle sorte que les sorties Q, Q d'une bascule soient reliées respectivement aux entrées D, D de la bascule suivante. De plus, pour obtenir la synchronisation sur un état d'horloge, les bascules 1 et 3 reçoivent sur leur entrée -horloge le signal H tandis que les bascules 2 et 4 reçoivent sur leur entrée-horloge le signal H. Dans ce cas, l'on obtient sur les sorties D des différentes bascules , les impulsions Dl, D2, D3, D4 représentées sur le chronogramme de la figure 3B . Ces impulsions sont maintenues pendant une période d'horloge H ou H.
Sur la figure 4A, on a représenté un registre à décalage statique constitué de quatre bascules D l', 2', 3', 4' synchronisées sur un front d'horloge . Dans ce cas, les entrée s -horloge des quatre bascules D reçoivent le même signal horloge H' . Comme représenté sur la figure 4A, les bascules D connectées en série sont synchronisées sur le front descendant du signal d'horloge H' et commutent en fonction du signal d'horloge H' . Dans ce cas, l'on obtient sur les sorties D les impulsions Dl, D2, D3, D4 représentées sur le chronogramme de la figure 4B .
Sur la figure 5A, l'on a représenté un troisième mode de réalisation d'un registre à décalage utilisable dans la présente invention. Dans ce cas, les bascules D 1" , 2", 3" , 4" sont des bascules dynamiques à deux phases . La sortie Q d'une bascule est reliée à l'entrée D de la bascule suivante et des impulsions 0 1, 0 2 déphasées de ~~" sont appliquées sur les entrées correspondantes des bascules . L'on obtient donc sur les sorties SI, S2, S3, S4, les impulsions SI, S2, S3, S4 représentées sur le chronogramme de la figure 5B .
On expliquera maintenant avec référence aux figures 6A, 6B et 6C le fonctionnement des circuits de test conformes à la présente invention. Sur la figure 6A, on a représenté un écran à cristaux liquides à quatre colonnes et quatre lignes présentant une coupure au niveau de la troisième colonne et un court- circuit entre la quatrième colonne et la troisième ligne . D'autre part, les circuits de test sont constitués par des registres à décalage RI, R2, R3, R4 formés de bascules D statiques synchronisées sur un front d'horloge. Les registres R2, R3, R4 sont mis à la masse tandis que le registre RI reçoit une séquence de signaux V--.J-., Vgg, H, DQ permettant son fonctionnement. Lorsque Dn est appliqué sur le registre, on obtient successivement sur les colonnes reliées aux sorties Sl, l ; S2, l ; S3, l ; S4, 1 les impulsions représentées sur le chronogramme de la figure 6B en fonction de l'impulsion-horloge H.
Pour tester les coupures et/ou les courts -circuits au niveau des colonnes et des lignes , on contrôle le courant d'alimentation sur V-^y, ou V„„ sur les quatre registres .
Si le fonctionnement est normal, l'on détecte un courant 12 dû à la différence de tension entre la sortie activée du registre RI (V .,-.) et la sortie non activée du registre R3. Si il y a une coupure, l'on détecte un courant II plus faible et si il y a un court- circuit, l'on détecte un courant 13 plus élevé . Une analyse temporelle du courant, comme représenté sur la figure 6C, permet de connaître la piste en défaut.
On peut tester aussi l'écran en faisant fonctionner un registre parmi quatre et en détectant le signal avec un test à pointe à l'autre extrémité.
Comme décrit dans le brevet français N°87 07941 au nom de THOMSON-CSF, les registres RI, R2, R3, R4 formés des bascules D représentées sur les figures 3 à 5 peuvent être réalisés en utilisant une technologie couche-mince, c'est-à-dire une technologie identique à celle utilisée pour réaliser les transistors de commande T de l'écran à cristaux liquides . De ce fait, les registres à décalage utilisés pour former les circuits de test des lignes et des colonnes peuvent être réalisés en même temps que les transistors T à l'aide de cette technologie couche-mince. La technologie de réalisation de transistors en couche-mince est bien connue de l'homme de l'art et ne sera pas redécrite ici. En effet, pour mettre en oeuvre cette technologie, l'homme de l'art peut se référer notamment à l'article de la revue technique THOMSON-CSF, Vol. 18 n°4
Décembre 1986 ou à d'autres revues .
D'autre part, les circuits de test, à savoir les registres RI, R2, R3 et R4, peuvent être localisés dans un endroit spécifique sur le substrat qui permet de les couper à l'issue de la phase finale de la réalisation de l'écran.

Claims

REVENDICATIONS
1. Ecran électrooptique matriciel à commande active, caractérisé en ce que les lignes (Ll à LN) et les colonnes (Cl à CN') de la matrice de conducteurs d'adressage sont connectées à des circuits de test (RI, R2, R3, R4) réalisés sur le même
5 substrat que ladite matrice.
2. Ecran selon la revendication 1, caractérisé en ce que les circuits de test sont constitués par deux registres (R2, R4) à décalage à N étages connectés aux N lignes de la matrice et par deux registres (RI, R3) à décalage à N' étages connectés
-0 aux N' colonnes de la matrice .
3. Ecran selon la revendication 2, caractérisé en ce que chaque étage du registre à décalage est constitué par une bascule D statique ou dynamique.
4. Ecran selon l'une quelconque des revendications 1 à 15 3, caractérisé en ce que les circuits de test sont réalisés en même temps que les éléments de commande de la matrice.
5. Ecran selon l'une quelconque des revendications 1 à
4, caractérisé en ce que les circuits de test sont réalisés en utilisant une technologie couche -mince . 0 6. Ecran selon l'une quelconque des revendications 1 à
5, caractérisé en ce que les circuits de test sont positionnés en un endroit permettant de couper lesdits circuits du reste de l'écran après sa phase finale de réalisation .
PCT/FR1991/001049 1990-12-20 1991-12-20 Ecran electrooptique matriciel a commande active a systeme de test integre WO1992011560A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9015999A FR2670937A1 (fr) 1990-12-20 1990-12-20 Ecran electrooptique matriciel a commande active a systeme de test integre.
FR90/15999 1990-12-20

Publications (1)

Publication Number Publication Date
WO1992011560A1 true WO1992011560A1 (fr) 1992-07-09

Family

ID=9403456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1991/001049 WO1992011560A1 (fr) 1990-12-20 1991-12-20 Ecran electrooptique matriciel a commande active a systeme de test integre

Country Status (2)

Country Link
FR (1) FR2670937A1 (fr)
WO (1) WO1992011560A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627722A2 (fr) * 1993-05-12 1994-12-07 Seiko Instruments Inc. Valve de lumière avec circuit pour la détection de défauts
US6511187B1 (en) 1992-02-20 2003-01-28 Kopin Corporation Method of fabricating a matrix display system
GB2403581A (en) * 2003-07-01 2005-01-05 Sharp Kk A substrate and a display device incorporating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2594580A1 (fr) * 1982-07-12 1987-08-21 Hosiden Electronics Co Procede de fabrication d'afficheur a cristaux liquides en matrice de points et afficheur ainsi fabrique
FR2616270A1 (fr) * 1987-06-05 1988-12-09 Thomson Csf Reseau de transistors predeposes, procede de realisation de ce reseau et d'un circuit electronique au moyen de ce reseau
JPH01130132A (ja) * 1987-11-16 1989-05-23 Seiko Epson Corp アクティブマトリクス基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2594580A1 (fr) * 1982-07-12 1987-08-21 Hosiden Electronics Co Procede de fabrication d'afficheur a cristaux liquides en matrice de points et afficheur ainsi fabrique
FR2616270A1 (fr) * 1987-06-05 1988-12-09 Thomson Csf Reseau de transistors predeposes, procede de realisation de ce reseau et d'un circuit electronique au moyen de ce reseau
JPH01130132A (ja) * 1987-11-16 1989-05-23 Seiko Epson Corp アクティブマトリクス基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 13, no. 375 (P-921)(3723) 21 Août 1989 & JP,A,1 130 132 ( SEIKO EPSON ) 23 Mai 1989 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511187B1 (en) 1992-02-20 2003-01-28 Kopin Corporation Method of fabricating a matrix display system
US6558008B1 (en) 1992-02-20 2003-05-06 Kopin Corporation Method of fabricating a matrix display system
EP0627722A2 (fr) * 1993-05-12 1994-12-07 Seiko Instruments Inc. Valve de lumière avec circuit pour la détection de défauts
EP0627722A3 (fr) * 1993-05-12 1995-07-19 Seiko Instr Inc Valve de lumière avec circuit pour la détection de défauts.
US6204836B1 (en) 1993-05-12 2001-03-20 Seiko Instruments Inc Display device having defect inspection circuit
GB2403581A (en) * 2003-07-01 2005-01-05 Sharp Kk A substrate and a display device incorporating the same

Also Published As

Publication number Publication date
FR2670937A1 (fr) 1992-06-26

Similar Documents

Publication Publication Date Title
EP0760149B1 (fr) Registre a decalage utilisant des transistors m.i.s. de meme polarite
EP0586398B1 (fr) Registre a decalage utilise comme balayeur de lignes de selection pour un afficheur a cristaux liquides
EP0051521B1 (fr) Procédé de commande d'une caractéristique optique d'un matériau
FR2542119A1 (fr) Procede pour commander un ecran d'affichage matriciel a cristaux liquides
EP0143039B1 (fr) Procédé de fabrication d'une matrice de composants électroniques
EP0506906B1 (fr) Systeme pour appliquer des signaux de luminosite a un dispositif
FR2833396A1 (fr) Affichage a cristaux liquides, ainsi qu'un registre a decalage, un circuit de commande de balayage et un generateur de donnees integres pour un tel affichage
FR2834814A1 (fr) Dispositif et procede pour piloter un afficheur a cristaux liquides
EP0815562A1 (fr) Perfectionnement aux registres a decalage utilisant des transistors "mis" de meme polarite
EP0584087A1 (fr) Circuit de test integre pour dispositifs d'affichage tels que des afficheurs a cristaux liquides
EP0245147A1 (fr) Panneau de prise de vue radiologique, et procédé de fabrication
FR2793934A1 (fr) Procede et systeme de pilotage de lignes de donnees et dispositif d'affichage a cristal liquide l'utilisant
FR2621728A1 (fr) Systeme de visualisation d'images en demi-teintes sur un ecran matriciel
EP0146661B1 (fr) Procédé de diagnostic électrique pour identifier une cellule défectueuse dans une chaîne de cellules formant un registre à décalage
JP2004061243A (ja) 電気的検査方法及び半導体表示装置の作製方法
EP0965224B1 (fr) Procede de commande d'un dispositif photosensible a faible remanence, et dispositif photosensible mettant en oeuvre le procede
WO1992011560A1 (fr) Ecran electrooptique matriciel a commande active a systeme de test integre
EP0487389A1 (fr) Ecran plat à matrice active
EP1156491A2 (fr) Perfectionnement aux registres à décalage utilisant des transistors "mis" de même polarité
EP0055153B1 (fr) Dispositif de commande d'un écran de visualisation et écran de visualisation commandé par ce dispositif
FR2670939A1 (fr) Ecran matriciel couleur a filtres colores en triade.
EP0573607B1 (fr) Registres a decalage redondants pour dispositifs de balayage
EP0151077A2 (fr) Circuit d'adressage d'un imageur matriciel comportant des registres à décalage formés de mémoires statiques et procédé d'adressage avec un tel circuit
EP0152708B1 (fr) Procédé de commande d'un dispositif de visualisation à accès matriciel, et dispositif de visualisation utilisant ce procédé
EP2104092B1 (fr) Dispositif d'affichage pouvant fonctionner en mode partiel d'affichage basse consommation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

122 Ep: pct application non-entry in european phase