WO1992010685A1 - Hydrauliksystem - Google Patents

Hydrauliksystem Download PDF

Info

Publication number
WO1992010685A1
WO1992010685A1 PCT/DE1991/000976 DE9100976W WO9210685A1 WO 1992010685 A1 WO1992010685 A1 WO 1992010685A1 DE 9100976 W DE9100976 W DE 9100976W WO 9210685 A1 WO9210685 A1 WO 9210685A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
pressure
control
consumer
hydraulic system
Prior art date
Application number
PCT/DE1991/000976
Other languages
English (en)
French (fr)
Inventor
Otwin Eich
Franz-Peter Salz
Original Assignee
Barmag Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag Ag filed Critical Barmag Ag
Priority to EP92901394A priority Critical patent/EP0515639B1/de
Priority to US07/920,375 priority patent/US5394696A/en
Priority to DE59104897T priority patent/DE59104897D1/de
Publication of WO1992010685A1 publication Critical patent/WO1992010685A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/07Pressure difference over the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/253Pressure margin control, e.g. pump pressure in relation to load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6333Electronic controllers using input signals representing a state of the pressure source, e.g. swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/65Methods of control of the load sensing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders

Definitions

  • the invention relates to a hydraulic system according to the preamble of the claim.
  • a control valve is notified on the one hand of the pressure at the pump and on the other hand of the highest load pressure. If the pump can no longer deliver the volume flow required by the valves assigned to the individual consumers, the pressure difference between the pressure of the pump and the highest load pressure is reduced. Consequently, the control valve reduces the supply to the control pressure transmitter, by means of which the valves assigned to the consumers are activated. This limits the flow of the valves. However, this limitation only becomes effective if there is already an excessive demand.
  • the electrical control signals of the controlled directional valves are added.
  • the volume flow which corresponds to the sum of the control signals, is compared with the maximum possible pump flow. If the sum of the control signals exceeds the possible pump current, the control signals are reduced. With this system, all control signals must be recorded. In addition, the dependence of the valve flows on the actuating signals must be properly taken into account by means of a computer.
  • the object of the invention is to design the hydraulic system in such a way that it is not susceptible to vibration and that, moreover, any weighting and adaptation of the individual consumer flows to the operating parameters of the pump is possible.
  • the solution results from the characterizing part of claim 1.
  • the solution has the advantage that, in contrast to the previous hydraulic systems, the operating state of the pump is recorded directly. Fluctuations in the operating state can therefore be effectively compensated for.
  • control circuit which is the subject of this invention, intervenes only in exceptional cases, namely when the pumpable pump flow is not sufficient for the consumer flows set on the respective valves, which in total result in the current flow rate.
  • the current flow rate is reduced by reducing the respective consumer flows supplied.
  • Standard measuring devices are available for measuring the current delivery rate of the pump.
  • the current delivery volume can be measured by connecting the valves to the valves assigned to the individual consumers in the pump line (total delivery line), ie before the branching off of the consumer lines lead, a throttle or orifice arranged and the pressure drop is measured at this orifice.
  • the current delivery rate based on the predetermined possible delivery rate - at a given speed - can also be determined by the configurations according to claims 2 and 3.
  • valves that are assigned to the consumers. Basically, it can be assumed that these valves are adjusted electromagnetically or hydraulically from the outside, that is, by hand or by external input parameters. According to this invention, however, an adjustment signal for reducing the modulation of the valve piston is superimposed on these input signals if it is determined in the hydraulic system by measuring the current delivery rate that the pumpable pump flow is exceeded.
  • the predeterminable pumpable pump current does not necessarily correspond to the maximum pumpable pump current. Rather, a lower limit, e.g. B. 80% of the maximum producible pump current. This ensures that the hydraulic system does not fall out of its control range due to an absolute overload of the pump.
  • the adaptation of the consumer flows to the predeterminable pumpable pump flow when the limit value is exceeded is basically done by reducing the sum of the consumer flows to the predefined limit value. In the simplest case, this can be done by reducing all consumer flows by the same percentage. However, it is also possible to weight the control signals, by means of which the consumer currents are reduced, differently for each consumer. Individual consumers can thereby be given priority over other consumers. It can e.g. B. ensure that those consumers who, for security reasons, always use a specific consumer must be charged stream, z. B. hydraulic brakes have priority over other consumers. This will be discussed later.
  • the embodiment of the invention according to claim 2 takes advantage of the knowledge that the delivery rate is also determined by the deflection of the balance piston of a 3-way pressure balance, which is deflected by the pressure difference between the pump pressure and the highest load pressure.
  • the current delivery rate is measured by measuring the deflection of the piston of a 3-way pressure compensator, which serves to keep the pressure difference between the pump pressure and the highest consumer pressure constant in a superimposed control loop.
  • the claim 3 relates to a hydraulic circuit with a control pump.
  • the instantaneous delivery volume is adjusted by setting the relative value between the stator (fixed part of the pump) and the rotor (rotating part of the pump) (cf., for example, DE 26 51 325 C2), specifically - preferably Trap - depending on the pressure difference between the highest consumer pressure and the pump pressure.
  • the control position of the control pump is also used to measure the current flow.
  • a constant pump is used as the feed pump, which delivers a flow rate that is constant over time.
  • the delivery rate is measured immediately. That could e.g. B. happen directly by means of a built-in throttle on which a pressure difference is determined.
  • this can also be done by a 3-way pressure differential balance built into the delivery line, the balance piston of which is given the pressure difference between the pump pressure and the highest load pressure, the part of the delivery flow that is not required to maintain this pressure difference depending on the position of the Balance piston above a bypass to the tank is derived.
  • either the position of the piston of the pressure compensator or the oil flow in the bypass to the tank can be used as a measure of the delivery flow provided for all of the consumers.
  • This signal representing the flow rate is in turn compared in a comparator with a maximum flow rate and the difference signal is used to adjust or limit the flow rate supplied to the individual consumers.
  • this signal can either be superimposed with the delivery rate or the torque and / or the delivery pressure of the pump.
  • the pump current is regulated by adapting the consumer currents to a predetermined limit value (pump current that can be conveyed), but this regulation only then Function occurs when the specified limit is reached.
  • the control pump or pressure differential balance is included in a second control circuit as a measuring element. So several control loops are superimposed.
  • An internal control circuit uses the pressure difference delta p between the pump pressure and the highest load pressure as the control variable and the control position of the control pump or the pressure compensating piston as the control variable.
  • the pressure difference delta p is measured on a piston and specified by dimensioning the spring of the pressure differential balance.
  • the control position of the control pump or the differential pressure balance ie. H. the manipulated variable is specified.
  • the superimposed external control circuit uses the currently measured delivery rate, ie the position of the piston of the differential pressure compensator in the sense of claim 2 or the control position of the control pump in the sense of claim 3 in order to be used in an emergency, ie If the limit value representing the pumpable pump current is exceeded, by adjusting the consumer currents as a manipulated variable, the control variable specified by the limit value, namely to keep the current delivery rate constant.
  • the adaptation of the consumer flows of the individual consumers to the predetermined, maximum pumpable pump flow can also be achieved by superimposing the measurement signal obtained from the measurement of the current delivery quantity (deflection of the balance piston according to claim 2, control position of the control pump according to claim 3) with the pump output Pump torque (delivery volume x delivery pressure) and / or the delivery pressure take place.
  • This has the advantage that a desired weighting of the delivery quantity, the delivery torque and the delivery pressure of the control pump can be predetermined when the valve position is adapted to the maximum pump flow.
  • the delivery capacity or the torque of the pump which is determined from the respective control position of the pump and the delivery pressure of the pump by multiplication, is compared with a target torque and the output signal obtained from the difference is superimposed according to a selectable function, such that only when one is exceeded Given the predetermined drive torque, the position and adjustability of the valves assigned to the individual consumers are influenced, but not below this limit value.
  • the position and adjustability of the valves assigned to the individual consumers can be influenced when a certain pressure is exceeded by superimposing the delivery pressure after a certain function, but not below this pressure or only with a certain percentage.
  • the maximum external load is also taken into account when influencing the valves assigned to the consumers, in particular directional valves.
  • the influencing of the pump current supplied to each consumer and the total of the consumers takes place, for. B. electrically or hydraulically in that the individual consumers assigned valves depending on the control position or superimposed on the torque and / or superimposed on the delivery pressure of the control pump.
  • a pressure compensator can also be arranged in front of each valve, the pressure difference between the delivery pressure and the consumer pressure, which is determined by a spring and which is removed behind the respective valve, by adjusting the spring force as a function of the control position or superimposed on the torque and / or superimposed the delivery pressure of the control pump is adjusted.
  • a setpoint processing is expedient for special purposes of the hydraulic system according to the invention.
  • the setpoints are the manually or automatically specified control signals for the valves assigned to the consumers. These setpoints entered from outside can be fed to the system via attenuators (ramps). This specifies the rates of change at which the consumer currents can change if the setpoint values entered change suddenly; It is thereby achieved that the adjustment speed of the pump or pressure differential balance is sufficient in any case to follow the change in the consumer flows over time. There can therefore be no shortage of consumers for a short time. Furthermore, the consumer flows requested by the entered target values can be roughly adapted to the maximum flow rate that can be supplied by the pump.
  • the setpoints entered from outside are brought into dependence on the sum of the setpoints entered and, in addition, on the predetermined pump flow that can be conveyed.
  • this leads to a weighting of the individual consumers and ensures that for the - z. B. for safety reasons - important consumers always have an adequate oil flow.
  • the setpoints are reduced in advance if the specified pump flow that can be conveyed is expected to be exceeded on the basis of the input setpoint signals.
  • FIG. 1 shows a circuit diagram for a hydraulic system with a regulating pump
  • FIG. 2 shows a circuit diagram to illustrate the hydraulic system in which a pressure differential balance is used to measure the delivery rate
  • FIGS. 1 and 2 shows a circuit diagram with details according to FIGS. 1 and 2;
  • Fig. 4 is a circuit diagram for the setpoint conditioning.
  • a control pump 1 is adjusted hydraulically.
  • a hydraulic valve (spring-loaded pressure compensator) 2 which detects the pump flow, is used for hydraulic adjustment.
  • the pressure compensator 2 is given pump pressure on the one hand and the highest consumer pressure on the other hand together with a spring load by spring 15 via a cascade of shuttle valves 3.
  • Pump 1 feeds several consumers 4 ', 4' ', 4' ''. Each consumer 4 is first a pressure control valve (pressure compensator, pressure differential compensator) 5 '; 5 ''; 5 ''' 'upstream.
  • Each of the pressure control valves 5, on the one hand, the pressure upstream of the associated control valve 6 '; 6 ''; 6 '' '(directional control valve) and on the other hand the consumer pressure of the respective consumer 4 is abandoned.
  • a constant pressure difference is set on the individual control valve 6, so that a load-independent setting of the respective consumer 4 '; 4 ''; A '' 'volume flow (consumer flow) is possible.
  • the consumer current is therefore only dependent on signals a and b, with which the individual control valves are controlled. As long as these signals are constant remain, the consumer flow remains constant. However, this only applies on the condition that the control pump can provide a pump current sufficient for all consumers.
  • the control pump 1 is adjusted by an actuator 7.
  • the adjusting member 7 is a cylinder in which a piston with piston rod 17 is movable.
  • the piston adjusts the position of the rotor within the control pump, which is only indicated here.
  • the piston 16 is loaded on one side by a spring 18 and by the control pressure in line 19 emitted by the pressure compensator 2. As already described, this control pressure is dependent on the pressure difference between the pump pressure in the pump line 20 and the highest consumer pressure, which is determined by the cascade of shuttle valves 3.
  • the piston 16 is acted upon by the pump pressure in the pump line 20 on its side facing away from the spring 18.
  • the spring 18 and the control pressure 19 act in the sense of increasing the delivery volume of the control pump.
  • the control pump 1 is therefore included in a control circuit and has the function of supplying the manipulated variable to keep the controlled variable constant: pressure difference between the highest consumer pressure and the pump pressure.
  • the adjustment path with which the control pump 1 is adjusted by means of the actuator 7 is measured.
  • This adjustment path alpha is measured and given to the control unit 21, which will be described later.
  • the control unit is given a signal that represents the measured pump pressure and is designated P in the following.
  • both the adjustment value alpha and the pressure P via suitable converters are converted into a form suitable for the control unit, e.g. B. a voltage must be converted.
  • the control unit 21 is provided on the one hand with the setpoint input devices 13 ', 13 ", 13'” and on the other hand with the setpoint output devices, in particular amplifiers 14 ', 14 ", 14"".
  • Each output device is connected with its output lines A and B to the consumer, which has the same numbering. In order not to disturb the clarity of the circuit diagram, these connecting lines are not drawn.
  • control unit 21 also has the inlets for the adjustment path alpha and the pressure P.
  • the control unit is used to adapt the entered target values to the measured pump current.
  • the same control unit is also used for the hydraulic system according to FIG. 2. A description of FIG. 2 is therefore given first.
  • Three consumers 4 ', 4 ", 4' '' are fed by a constant hydraulic pump 1.
  • Volume flow control takes place by means of a pressure differential balance 22.
  • the piston 23 of the pressure differential balance is loaded on one side by a spring 24 and the highest load pressure.
  • the highest load pressure is determined by means of a cascade of shuttle valves 3.
  • the piston 23 is loaded by the pump pressure, the pressure differential balance is connected to the tank via a bypass channel, and a constant pressure difference is adjusted by adjusting the piston 23 Regulation remains effective until the sum of the consumer flows supplied to the consumers exceeds the maximum pump flow that can be conveyed.
  • Each consumer 4 is first a pressure control valve (Druck ⁇ balance, differential pressure balance) 5 '; 5 ";5"'upstream.
  • Each pressure control valve 5 is on the one hand the pressure upstream of the assigned control valve 6 ', 6'',6'"(directional control valve) and on the other hand the consumer pressure of the respective consumer 4 abandoned.
  • a constant pressure difference is set on the individual control valve 6, so that a load-independent setting of the respective consumer 4 '; 4 ''; 4 "'supplied volume flow (consumer flow) is possible.
  • the balance piston of the differential pressure balance has a piston rod 25.
  • the displacement of the piston 23 is measured.
  • the output signal is called alpha.
  • the pump pressure and the displacement of the piston alpha is given to the control unit 21, which has already been described above. Reference is made to this description.
  • the adjustment path alpha is entered into a module 11.
  • a limit value alpha max is specified for module 11. This limit value alpha max can be specified constantly if only the input of the adjustment path is connected to the control unit 21. If the pump pressure P is also connected, further processing follows, which will be discussed later.
  • the measured adjustment path and the limit value alpha max are weighted in module 11.
  • the output signal of the module 11 is given to another module 10.
  • This function block 10 produces a positive constant output signal equal to 1 as long as the limit value of the adjustment path alpha max is greater than the measured adjustment path alpha. If the adjustment path alpha exceeds the limit value, the output signal of the function block 10 becomes smaller than 1.
  • the output signal a des decreases Function block 10 or 30, as long as the adjustment path alpha exceeds the limit value and occurs between the two equilibrium.
  • the output signal of the function block 10, in the following weighting block can be further influenced by connecting the pressure measuring line P to the control unit 21. For this purpose, the measured value of the adjustment path is given to a multiplier 8 together with the final pump pressure.
  • the output signal of the multiplier 8 represents the hydraulic torque of the pump 1.
  • This output signal is related in block 9 to the maximum possible output signal.
  • the output signal of the module 9 is given to a further module 10, by means of which a weighting takes place.
  • the weighting can take place with the pump pressure and / or with the current adjustment path of the control pump.
  • the current adjustment path is again related to the maximum adjustment path via module 11.
  • the output signal of the multiplication device 8 is fed to the function block 9 via a comparison block 26.
  • the current torque pump determined by multiplication is related to the limit value Mmax of the pump, which is constantly specified.
  • the function block 9 now processes the output signal of the comparison block 26 so that it emits an output signal equal to 1 if the current torque is less than the limit value of the torque, and that it emits a time-reducing output signal as long as the currently determined torque is greater than that Limit is.
  • the output signal decreases according to a time-dependent function starting from 1 until equilibrium is reached by reducing the torque.
  • the output signal of the function block 9 is now used to process the maximum travel alpha max, as has already been indicated.
  • a multiplication module 27 is used for this purpose.
  • the limit value of the adjustment path alpha max is predetermined from the outside of this multiplication module, on the other the output signal of the function block 9, which is related to the current torque.
  • the output signal of the multiplication module 27 is in turn given to the comparator 11. This ensures that the delivery rate of the pump is reduced when the predetermined torque is exceeded.
  • a permanently entered limit value of the pump pressure is related to the currently measured pump pressure in a comparator 28 (comparison module).
  • the module 10 now also contains a function module 29 which is controlled by the output signal of the comparator 28 and additionally by a limit value which represents the maximum desired value.
  • These entered values are now processed in the function block 29 in such a way that the function block 29 gives an output signal B which is zero as long as the measured pump pressure is less than the limit value Pmax of the pressure and which is equal to the limit value Smax of the setpoints if the measured pump pressure exceeds the limit value Pmax of the pump pressure.
  • the weighting module 10 with its two output signals A of the function module 30 and B of the function module then controls comparison elements 12 ', 12 ", 12"', which each one of the valves 6 ', 6 ", 6'” for the individual consumers 4 ', 4 '', 4 '".
  • a different setpoint can be given to each of these comparison elements 12 via the setpoint generators 13', 13", 13 '".
  • the output signals of the comparison elements 12 are then transmitted via amplifiers 14', 14 ", 14"'the respective control signals for the magnets al, bl, a2, b2, a3, b3 of the respective valves 6', 6 ", 6 '” or the input signals of the actuators, by means of which the individual directional control valves 6 are controlled
  • amplifiers 14', 14 ", 14"'the respective control signals for the magnets al, bl, a2, b2, a3, b3 of the respective valves 6', 6 ", 6 '” or the input signals of the actuators by means of which the individual directional control valves 6 are controlled
  • the individual consumer ', 4 ", 4'” supplied to the individual consumer Volume flow are reduced so far that the total amount that can be pumped by the pump 1 is not exceeded.
  • the simultaneous detection and direct input of the adjustment path or the swivel angle of the control pump 1 can simultaneously ensure in the weighting module 10 that the current delivery rate is also adjusted to the maximum possible delivery rate simultaneously with the adjustment to the current torque of the pump 1 .
  • the current pump pressure P or other operating parameters of the hydraulic system can also be included in the weighting.
  • the comparison elements 12 - as shown in FIG. 13 - are subdivided into a multiplication module 31 ', 31 ", 31'” and a limitation module 32 ', 32 ", 32"'.
  • the output signal A of the function module 30 and the setpoint S1, S2, S3 are given to the multiplication module.
  • the setpoint S set is related to the current displacement of the pressure compensator or the variable displacement pump if the sum of the consumer flows exceeds the limit value of the pump flow.
  • the setpoints are reduced accordingly.
  • the output signal of the multiplication modules 31 is given to the limitation module 32 together with the output signal B of the function module 29, which establishes the relationship to the measured pump pressure.
  • the output signal of the limitation module 32 is limited to the entered limit value Smax of the setpoint.
  • a further evaluation of the limit value Smax can be carried out in the sense that there is either no limitation at all or a reduction or an increase in the limit value. This allows individual consumers to be given priorities. Other consumers can be shut down or treated subordinately if the setpoint values set would lead to the limit value of the pump current being exceeded.
  • a setpoint processing is now additionally shown, which can be used optionally.
  • a setpoint generator 33 can be arranged upstream of the control unit 21.
  • the setpoint generator has a first module 34 for each input setpoint, which is referred to below as a ramp.
  • This ramp means that an abruptly entered setpoint only changes over time. This has the effect that the signal processing and adaptation of the hydraulic system can follow in time even when the setpoint value is entered suddenly and there is no temporary undersupply of the consumers.
  • the output signals of the ramps 34 are then multiplied in multiplication modules 35 by input limit values G1 to G3. These limit values represent a certain percentage of the limit value of the pump current. This results in a weighting of the entered target values in the multiplication modules 35.
  • the output signals of the multiplication modules 35 are fed to a summing element 36 with the output signal P2, which represents the sum of the output signals of the multiplication modules.
  • the signal E2 is given to a function block 37 together with a signal El.
  • the signal El represents the maximum predetermined pump current in a form that is comparable to the signal E2.
  • the two input signals El and E2 are connected in function block 37.
  • the output signal A is equal to 1 as long as the predetermined limit value of the pump delivery flow is greater than the set and weighted sum of the setpoints.
  • the output signal is equal to the quotient of the limit value and the weighted sum if the weighted sum is greater than the limit value.
  • the output signal of the function block 37 is now passed to the multiplication blocks 38 ', 38 ", 38'".
  • the respective setpoint S1, S2, S3 is multiplied after it has preferably first been passed over the ramps 34 ', 34 ", 34'".
  • the output signal of the multiplication modules 38 represents the respective setpoint given to the control unit 21.
  • This setpoint processing ensures that the setpoint input ensures that the setpoint values do not lead to consumption which far exceeds the specified limit value of the pump current. However, this is only a rough precaution.
  • the inventive superimposition of the adaptation of the consumer currents to the measured pump current ensures that each consumer remains functional within the framework assigned to it.
  • the particular importance of the invention lies in the fact that on the one hand the pump torque is corrected, but that a torque control can be superimposed on this torque control by simultaneously also detecting the speed of the pump or its delivery rate.
  • a control system comes into operation with which the setpoint signals with which the valves 6 are actuated are adapted to the currently measured pump flow, preferably to the weighting of the currently measured pump flow with the maximum predetermined pump flow become.
  • Control pump pump pressure compensator, control valve shuttle valve consumer pressure control valve, pressure compensator, pressure differential compensator control valve, directional control valve actuator multiplier comparator (M / M) 0 component for weighting 1 comparator ( ⁇ * / ⁇ limit ) 2 comparator (actual / setpoint) 3 setpoint generator 4 amplifier a Signal for control solenoid b Signal for control solenoid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

In einem Hydrauliksystem werden mehrere Verbraucher (4) von einer gemeinsamen Pumpe gespeist. Dabei werden die Verbraucher (4) durch Steuerventile (6) gesteuert. Wenn die abgerufenen Ölströme die maximal förderbare Fördermenge überschreiten, tritt eine Regelung in Funktion, mit der die Sollwertsignale, mit welchen die Ventile (6) angesteuert werden, an den aktuell gemessenen Pumpenförderstrom, vorzugsweise an die Gewichtung des aktuell gemessenen Pumpenförderstroms mit dem maximal vorgegebenen Pumpenförderstrom, angepaßt werden.

Description

HydraulikSystem
Die Erfindung betrifft ein Hydrauliksystem nach dem Oberbegriff des Anspruchs.
Dieses Hydrauliksystem ist bekannt durch die DE 26 51 325 C2.
Dabei wird einem Regelventil einerseits der an der Pumpe anstehende Druck und andererseits der höchste Lastdruck gemeldet. Kann die Pumpe den von den Ventilen, welche den einzelnen Verbrauchern zugeordnet sind, geforderten Volumen¬ strom nicht mehr fördern, so reduziert sich die Druckdifferenz zwischen dem Druck der Pumpe und dem höchsten Lastdruck. Folglich reduziert das Regelventil die Versorgung der Steuer¬ druckgeber, durch welche die den Verbrauchern zugeordneten Ventile angesteuert werden. Dadurch werden die Ventile in ihrem Durchfluß begrenzt. Diese Begrenzung wird jedoch erst bei schon vorhandenem Überbedarf wirksam.
Bei dem durch das Patent 35 46 336 bekannten System werden die elektrischen Stellsignale der angesteuerten Wegeventile addiert. Der Volumenstrom, welcher der Summe der Stellsignale entspricht, wird mit dem maximal möglichen Pumpenstrom ver¬ glichen. Wenn die Summe der Stellsignale den möglichen Pumpen¬ strom überschreitet, werden die Stellsignale reduziert. Bei diesem System müssen alle Stellsignale erfaßt werden. Außerdem muß die Abhängigkeit der Ventildurchflüsse von den Stellsi¬ gnalen mittels eines Rechners richtig berücksichtigt werden. Aufgabe der Erfindung ist es, das Hydrauliksystem so auszuge¬ stalten, daß es nicht schwingungsanfällig ist und daß im übri¬ gen eine beliebige Gewichtung und Anpassung der einzelnen Ver¬ braucherströme an die Betriebsparameter der Pumpe möglich ist.
Die Lösung ergibt sich aus dem Kennzeichen des Anspruchs 1. Die Lösung hat den Vorteil, daß im Gegensatz zu den bisherigen Hydrauliksystemen der Betriebszustand der Pumpe unmittelbar erfaßt wird. Daher können Schwankungen des Betriebszustandes wirksam ausgeregelt werden.
Steigt die Summe der Verbraucherströme, die durch entspre¬ chende Einstellung der den Verbrauchern zugeordneten Ventile gefordert wird, über die von der Pumpe maximal lieferbare Fördermenge an7 so werden die Ansteuersignale der Ventile reduziert. Durch Messung des Pumpenstromes kann stets aktuell ermittelt werden, ob die Versorgung der einzelnen Verbraucher gewährleistet ist. Eine ünterversorgung wird dadurch vermieden. Die Reduzierung der Verbraucherströme kann verhältnisgleich erfolgen. Es ist jedoch auch eine Reduzierung nach Prioritäten möglich, wenn z. B. ein einzelner Verbraucher seine Geschwin¬ digkeit im Gegensatz zu den anderen nicht reduzieren soll.
Dabei erfolgt jedoch ein Eingriff des Regelkreises, der Gegenstand dieser Erfindung ist, nur in Ausnahmefällen, und zwar dann, wenn der förderbare Pumpenstrom nicht ausreicht für die an den jeweiligen Ventilen eingestellten Verbraucherströme, die in ihrer Summe die aktuelle Fördermenge ergeben. In diesem Falle wird die aktuelle Fördermenge durch Reduzierung der jeweils zugeführten Verbraucherströme vermindert.
Zur Messung der aktuellen Fördermenge der Pumpe stehen übliche Meßgeräte bereit. Insbesondere kann die aktuelle Fördermenge dadurch gemessen werden, daß in die Pumpenleitung (Gesamtför¬ derleitung), also vor der Abzweigung der Verbraucherleitungen, welche zu den den einzelnen Verbrauchern zugeordneten Ventilen führen, eine Drossel oder Blende angeordnet und der Druckabfall an dieser Blende gemessen wird. Die aktuelle Fördermenge, bezogen auf die vorgegebene mögliche Fördermenge - bei vor¬ gegebener Drehzahl - kann aber auch durch die Ausgestaltungen nach Anspruch 2 und 3 bestimmt werden.
Die Anpassung der Verbraucherströme an den förderbaren Pumpenstrom geschieht durch die Verstellung der Ventile, die den Verbrauchern jeweils zugeordnet sind. Grundsätzlich ist davon auszugehen, daß diese Ventile von außen, also von Hand oder durch fremde Eingabeparameter elektromagnetisch oder hydraulisch verstellt werden. Nach dieser Erfindung wird diesen Eingabesignalen jedoch ein Verstellsignal zur Verminderung der Aussteuerung des Ventilkolbens überlagert, wenn in dem Hydrau¬ liksystem durch Messung der aktuellen Fördermenge festgestellt wird, daß der förderbare Pumpenstrom überschritten wird.
Der vorgebbare förderbare Pumpenstrom entspricht nicht not¬ wendigerweise dem maximalen förderbaren Pumpenstrom. Vielmehr wird ein geringerer Grenzwert, z. B. 80 % des maximal förder¬ baren Pumpenstromes vorgegeben. Dadurch wird erreicht, daß das Hydrauliksystem durch absolute Überlastung der Pumpe nicht aus seinem Regelbereich herausfällt.
Die Anpassung der Verbraucherströme an den vorgegebenen förder¬ baren Pumpenstrom bei Überschreitung des Grenzwertes geschieht grundsätzlich dadurch, daß die Summe der Verbraucherströme bis auf den vorgegebenen Grenzwert vermindert wird. Dies kann im einfachsten Falle dadurch geschehen, daß sämtliche Verbraucher¬ ströme um den gleichen Prozentsatz vermindert werden. Es ist jedoch auch möglich, die Ansteuersignale, durch welche die Verbraucherströme reduziert werden, für jeden Verbraucher unterschiedlich zu gewichten. Dadurch kann einzelnen Verbrau¬ chern ein Vorrang vor anderen Verbrauchern eingeräumt werden. Es kann z. B. gewährleistet werden, daß solche Verbraucher, die aus Sicherheitsgründen immer mit einem bestimmten Verbraucher- ström beschickt werden müssen, z. B. hydraulische Bremsen, Vorrang haben vor anderen Verbrauchern. Hierauf wird an späterer Stelle noch eingegangen.
Die Ausgestaltung der Erfindung nach Anspruch 2 macht sich die Erkenntnis zunutze, daß die Fördermenge auch durch die Aus- lenkung des Waagekolbens einer 3-Wege-Druckwaage bestimmt wird, der durch die Druckdifferenz zwischen dem Pumpendruck und dem höchsten Lastdruck ausgelenkt wird. Nach dieser Lösung erfolgt die Messung der aktuellen Fördermenge durch Messung der Auslenkung des Kolbens einer 3-Wege-Druckwaage, die in einem überlagerten Regelkreis der Konstanthaltung der Druckdifferenz zwischen dem Pumpendruck und dem höchsten Verbraucherdruck dient.
Der Anspruch 3 betrifft eine hydraulische Schaltung mit einer Regelpumpe. Bei einer solchen Regelpumpe wird das momentane Fördervolumen durch Relatiwerstellung zwischen Stator (orts¬ fester Teil der Pumpe) und Rotor (drehender Teil der Pumpe) (vgl. z. B. DE 26 51 325 C2) verstellt, und zwar - im bevorzug¬ ten Falle - in Abhängigkeit von der Druckdifferenz zwischen dem höchsten Verbraucherdruck und dem Pumpendruck. Hier wird zusätzlich die Regelstellung der Regelpumpe zur Messung des aktuellen Förderstroms benutzt.
Bei der Lösung nach Anspruch 2 wird eine Konstantpumpe als Förderpumpe eingesetzt, die einen zeitlich konstanten Förder¬ strom liefert. In diesem Falle wird die Fördermenge unmittelbar gemessen. Das könnte z. B. direkt mittels einer eingebauten Drossel geschehen, an der eine Druckdifferenz ermittelt wird. Dies kann aber auch durch eine in die Förderleitung eingebaute 3-Wege-Druckdifferenzwaage geschehen, deren Waagekolben die Druckdifferenz zwischen dem Pumpendruck und dem höchsten Lastdruck aufgegeben wird, wobei der zur Aufrechterhaltung dieser Druckdifferenz nicht erforderliche Teil des Förderstro¬ mes in Abhängigkeit von der Stellung des Waagekolbens über einen Bypass zum Tank abgeleitet wird. Hierbei kann entweder die Stellung des Kolbens der Druckwaage oder der Ölfluß im Bypass zum Tank als Maß für den für die Gesamtheit der Verbrau¬ cher bereitgestellten Förderstrom benutzt werden. Dieses den Förderstrom repräsentierende Signal wird wiederum in einem Vergleichsglied mit einem maximalen Förderstrom verglichen und das Differenzsignal wird zur Verstellung oder Begrenzung des den einzelnen Verbrauchern zugeführten Förderstroms benutzt. Dabei kann dieses Signal - wie bereits zuvor beschrieben - entweder mit der Förderleistung bzw. dem Drehmoment und/oder dem Förderdruck der Pumpe überlagert werden.
Die besondere Bedeutung der Erfindung nach Anspruch 1 in der Ausgestaltung nach den Ansprüchen 2 und 3 besteht darin, daß eine Regelung des Pumpenstromes durch Anpassung der Verbrau¬ cherströme an einen vorgegebenen Grenzwert (förderbaren Pum¬ penstrom) erfolgt, daß diese Regelung aber nur dann in Funktion tritt, wenn der vorgegebene Grenzwert erreicht wird. Im Gegen¬ satz zu der üblichen Funktion der sog. Regelpumpe bzw. Druck¬ differenzwaage, die in Wirklichkeit eine Steuerfunktion innerhalb eines ersten Regelkreises ist, ist hier die Regel¬ pumpe bzw. Druckdifferenzwaage in einen zweiten Regelkreis als Meßglied eingeschlossen. Es werden also mehrere Regelkreise überlagert. Ein innerer Regelkreis benutzt die Druckdifferenz delta p zwischen dem Pumpendruck und dem höchsten Lastdruck als Regelgröße und die Regelstellung der Regelpumpe bzw. des Druckwaagekolbens als Stellgröße. Dabei wird die Druckdifferenz delta p an einem Kolben gemessen und durch Dimensionierung der Feder der Druckdifferenzwaage vorgegeben. Durch die Stellung des Kolbens wird die Regelstellung der Regelpumpe bzw. der Druckdifferenzwaage, d. h. die Stellgröße vorgegeben.
Der überlagerte äußere Regelkreis benutzt die aktuell gemessene Fördermenge, d. h. im Sinne des Anspruchs 2 die Stellung des Kolbens der Druckdifferenzwaage oder im Sinne des Anspruchs 3 die Regelstellung der Regelpumpe, um im Notfall, d. h. bei Überschreiten des den förderbaren Pumpenstrom repräsentierenden Grenzwerts, durch Anpassung der Verbraucherströme als Stell¬ größe die durch den Grenzwert vorgegebene Regelgröße, nämlich die aktuelle Fördermenge konstant zu halten.
Zusätzlich kann die Anpassung der Verbraucherströme der einzel¬ nen Verbraucher an den vorgegebenen, maximal förderbaren Pumpenstrom auch durch Überlagerung des aus der Messung der aktuellen Fördermenge (Auslenkung des Waagekolbens gemäß Anspruch 2, Regelstellung der Regelpumpe gemäß Anspruch 3) gewonnenen Meßsignals mit der Pumpenleistung entsprechend dem Pumpenmoment (Fördervolumen x Förderdruck) und/oder dem Förder¬ druck erfolgen. Das hat den Vorteil, daß eine gewünschte Gewichtung der Fδrdermenge, des Fördermoments und des Förder¬ drucks der Regelpumpe bei der Anpassung der Ventilstellung an den maximalen Pumpenstrom vorgebbar ist. Dabei wird die aktuell aus der jeweiligen Regelstellung der Pumpe und dem Förderdruck der Pumpe durch Multiplikation ermittelte Förderleistung bzw. das Drehmoment der Pumpe mit einem Solldrehmoment verglichen und das aus der Differenz gewonnene Ausgangssignal nach einer wählbaren Funktion überlagert, etwa derart, daß nur bei Überschreiten eines vorgegebenen Antriebsmoments eine Beein¬ flussung der Stellung und Stellbarkeit der den einzelnen Verbrauchern zugeordneten Ventile erfolgt, unterhalb dieses Grenzwerts dagegen nicht. Ebenso kann durch Überlagerung des Förderdruckes nach einer bestimmten Funktion die Stellung und Stellbarkeit der den einzelnen Verbrauchern zugeordneten Ventile bei Überschreitung eines bestimmten Druckes beeinflußt werden, unterhalb dieses Druckes jedoch nicht oder nur mit einem bestimmten Prozentsatz. Dadurch wird auch die maximale äußere Last bei der Beeinflussung der den Verbrauchern zuge¬ ordneten Ventile, insbesondere Wegeventile berücksichtigt.
Die Beeinflussung des jedem Verbraucher und der Gesamtheit der Verbraucher zugeführten Pumpenstroms erfolgt z. B. elektrisch oder hydraulisch dadurch, daß die den einzelnen Verbrauchern zugeordneten Ventile in Abhängigkeit von der Regelstellung oder überlagert dem Drehmoment und/oder überlagert dem Förderdruck der Regelpumpe beeinflußt wird. Alternativ kann jedoch auch vor jedem Ventil eine Druckwaage angeordnet sein, deren durch eine Feder vorgegebene Druckdifferenz zwischen Förderdruck und Verbraucherdruck, der hinter dem jeweiligen Ventil abgenommen wird, durch Verstellung der Federkraft in Abhängigkeit von der Regelstellung oder überlagert dem Drehmoment und/oder über¬ lagert dem Förderdruck der Regelpumpe angepaßt wird.
Für besondere Einsatzzwecke des erfindungsgemäßen Hydraulik¬ systems ist eine Sollwert-Aufbereitung zweckmäßig. Die Sollwerte sind die von Hand oder automatisch vorgegebenen Ansteuersignale für die den Verbrauchern zugeordneten Ventile. Diese von außen eingegebenen Sollwerte können über Dämpfungs- glieder dem System zugeführt werden (Rampen). Dadurch werden die Änderungsgeschwindigkeiten vorgegeben, mit welchen sich die Verbraucherströme bei sprunghafter Änderung der eingegebenen Sollwerte ändern können; Dadurch wird erreicht, daß die Ver¬ stellgeschwindigkeit der Pumpe bzw. Druckdifferenzwaage in jedem Falle ausreicht, um der zeitlichen Änderung der Verbrau¬ cherströme zu folgen. Es kann daher auch kurzzeitig nicht zu einer Unterversorgung der Verbraucher kommen. Ferner können die durch die eingegebenen Sollwerte angeforderten Verbraucher¬ ströme grob an die von der Pumpe maximal lieferbare Durchflu߬ menge angepaßt werden. Hierzu werden die von außen eingegebenen Sollwerte in Abhängigkeit gebracht von der Summe der einge¬ gebenen Sollwerte und zusätzlich von dem vorgegebenen förder¬ baren Pumpenstrom. Dadurch wird zum einen eine Gewichtung der einzelnen Verbraucher erreicht und gewährleistet, daß für die - z. B. aus Sicherheitsgründen - wichtigeren Verbraucher stets ein ausreichender Ölstrom bereitsteht. Es erfolgt zum anderen bereits vorab eine Reduzierung der Sollwerte, wenn eine Überschreitung des vorgegebenen förderbaren Pumpenstroms auf¬ grund der eingegebenen Sollwertsignale zu erwarten ist. Im folgenden werden Ausführungsbeispiele der Erfindung anhand der nachfolgend beschriebenen Schaltpläne dargestellt.
Es zeigen:
Fig. 1 einen Schaltplan für ein Hydrauliksystem mit Regel¬ pumpe;
Fig. 2 einen Schaltplan zur Darstellung des Hydrauliksystems, bei dem zur Messung der Fördermenge eine Druckdif¬ ferenzwaage benutzt wird;
Fig. 3 einen Schaltplan mit Einzelheiten nach den Figuren 1 bzw. 2;
Fig. 4 einen Schaltplan für die Sollwert-Aufbereitung.
Zu Fig. 1:
Eine Regelpumpe 1 wird hydraulisch verstellt. Zur hydraulischen Verstellung dient ein Regelventil (federbelastete Druckwaage) 2, die den Pumpenstrom erfaßt. Zur Erfassung des Pumpenstroms wird der Druckwaage 2 einerseits Pumpendruck und andererseits der höchste Verbraucherdruck gemeinsam mit einer Federbelastung durch Feder 15 über eine Kaskade von Wechselventilen 3 aufge¬ geben. Durch die Pumpe 1 werden mehrere Verbraucher 4', 4' ' , 4' ' ' beschickt. Jedem Verbraucher 4 ist zunächst ein Druck¬ regelventil (Druckwaage, Druckdifferenzwaage) 5'; 5''; 5''' vorgeschaltet. Jedem der Druckregelventile 5 wird einerseits der Druck vor dem zugeordneten Steuerventil 6' ; 6' ' ; 6 ' ' ' (Wegeventil) und andererseits der Verbraucherdruck des jewei¬ ligen Verbrauchers 4 aufgegeben. Dadurch wird an dem einzelnen Steuerventil 6 eine konstante Druckdifferenz eingestellt, so daß in weiten Bereichen eine lastunabhängige, der Ansteuerung proportionale Einstellung des dem jeweiligen Verbraucher 4' ; 4''; A ' ' ' zugeführten Volumenstroms (Verbraucherstrom) möglich ist.
Der Verbraucherstrom ist also in weiten Bereichen nur von den Signalen a bzw. b abhängig, mit denen die einzelnen Steuerven¬ tile angesteuert werden. Solange diese Signale konstant bleiben, bleibt auch der Verbraucherstro konstant eingeregelt. Dies gilt allerdings nur unter der Voraussetzung, daß die Regelpumpe einen für sämtliche Verbraucher ausreichenden Pumpenstrom bereitstellen kann.
Die Regelpumpe 1, deren grundsätzlicher Aufbau bereits zuvor beschrieben wurde, wird durch ein Stellglied 7 verstellt. Bei dem Verstellglied 7 handelt es sich um einen Zylinder, in dem ein Kolben mit Kolbenstange 17 beweglich ist. Der Kolben ver¬ stellt die Position des Rotors innerhalb der Regelpumpe, was hier nur angedeutet wird. Der Kolben 16 wird auf einer Seite belastet durch eine Feder 18 und von durch den von der Druck¬ waage 2 abgegebenen Steuerdruck in Leitung 19. Dieser Steuer¬ druck ist - wie bereits zuvor geschildert - abhängig von der Druckdifferenz zwischen dem Pumpendruck in der Pumpenleitung 20 und dem höchsten Verbraucherdruck, der durch die Kaskade von Wechselventilen 3 ermittelt wird. Der Kolben 16 wird auf seiner von der Feder 18 abgewandten Seite mit dem Pumpendruck in Pumpenleitung 20 beaufschlagt. Die Feder 18 und der Steuerdruck 19 wirken im Sinne einer Vergrößerung des Fördervolumens der Regelpumpe.
Die Regelpumpe 1 ist also in einen Regelkreis eingeschlossen und hat die Funktion, die Stellgröße zu liefern zur Konstant¬ haltung der Regelgröße: Druckdifferenz zwischen dem höchsten Verbraucherdruck und dem Pumpendruck.
Der Verstellweg, mit dem die Regelpumpe 1 mittels des Stell¬ gliedes 7 verstellt wird, wird gemessen. Dieser Verstellweg alpha wird gemessen und dem Steuergerät 21 aufgegeben, das später beschrieben wird. Ferner wird dem Steuergerät ein Signal aufgegeben, das den gemessenen Pumpendruck repräsentiert und im folgenden mit P bezeichnet wird. Es ist selbstverständlich, daß sowohl der Verstellwert alpha als auch der Druck P über geeig¬ nete Wandler in eine für das Steuergerät geeignete Form, z. B. eine Spannung umgewandelt werden müssen. Es sei erwähnt, daß das Steuergerät 21 zum einen mit den Sollwert-Eingabegeräten 13', 13", 13'" und zum anderen mit den Sollwert-Ausgabegeräten, insbesondere Verstärkern 14', 14' ' , 14' ' ' versehen is . Jedes Ausgabegerät ist mit seinen Ausgabeleitungen A und B mit dem Verbraucher verbunden, der die gleiche Numerierung aufweist. Um die Übersichtlichkeit des Schaltplanes nicht zu stören, sind diese Verbindungsleitungen nicht gezeichnet.
Wie bereits erwähnt, besitzt das Steuergerät 21 ferner die Einlasse für den Verstellweg alpha und den Druck P. Das Steuergerät dient zur Anpassung der eingegebenen Sollwerte an den gemessenen Pumpenstrom.
Dasselbe Steuergerät wird auch für das Hydrauliksystem nach Fig. 2 verwandt. Daher erfolgt zunächst eine Beschreibung der Fig. 2.
Zu Fig. 2:
Drei Verbraucher 4', 4", 4' ' ' werden durch eine konstante Hydraulikpumpe 1 gespeist. Dabei erfolgt eine Volumenstrom¬ regelung mittels einer Druckdifferenzwaage 22. Der Kolben 23 der Druckdifferenzwaage wird auf einer Seite durch eine Feder 24 sowie den höchsten Lastdruck belastet. Der höchste Lastdruck wird über eine Kaskade von Wechselventilen 3 ermittelt. Auf der anderen Seite wird der Kolben 23 durch den Pumpendruck belastet. Die Druckdifferenzwaage ist über einen Bypass-Kanal mit dem Tank verbunden. Durch Verstellung des Kolbens 23 wird eine konstante Druckdifferenz eingeregelt. Diese Regelung bleibt solange wirksam, bis die Summe der den Verbrauchern zugeführten Verbraucherströme den maximal förderbaren Pum¬ penstrom übersteigt.
Jedem Verbraucher 4 ist zunächst ein Druckregelventil (Druck¬ waage, Druckdifferenzwaage) 5'; 5"; 5"' vorgeschaltet. Jedem Druckregelventil 5 wird einerseits der Druck vor dem zugeord¬ neten Steuerventil 6' , 6' ', 6' " (Wegeventil) und andererseits der Verbraucherdruck des jeweiligen Verbrauchers 4 aufgegeben. Dadurch wird an dem einzelnen Steuerventil 6 eine konstante Druckdifferenz eingestellt, so daß in weiten Bereichen eine lastunabhängige, der Ansteuerung proportionale Einstellung des dem jeweiligen Verbraucher 4' ; 4' ' ; 4" ' zugeführten Volumen¬ stroms (Verbraucherström) möglich ist.
Der Waagekolben der Druckdifferenzwaage besitzt eine Kol¬ benstange 25. Der Verstellweg des Kolbens 23 wird gemessen. Das Ausgangssignal wird mit alpha bezeichnet. Der Pumpendruck und der Verstellweg des Kolbens alpha wird dem Steuergerät 21 aufgegeben, was bereits zuvor beschrieben worden ist. Auf diese Beschreibung wird Bezug genommen.
Anhand von Fig. 3 und unter Bezugnahme auf die insoweit gleichen Figuren 1 und 2 wird im folgenden die Verarbeitung der eingegebenen Sollwerte in Steuergerät 21 zu Stellgrößen für die Wegeventile 6 beschrieben.
In dem Steuergerät 21 wird der Verstellweg alpha einem Baustein 11 eingegeben. Gleichzeitig wird dem Baustein 11 ein Grenzwert alpha max vorgegeben. Dieser Grenzwert alpha max kann konstant vorgegeben werden, wenn nur die Eingabe des Verstellweges am Steuergerät 21 angeschlossen ist. Wenn auch der Pumpendruck P angeschlossen ist, folgt eine weitere Verarbeitung, auf die später noch eingegangen wird.
In dem Baustein 11 erfolgt eine Gewichtung des gemessenen Ver¬ stellweges und des Grenzwertes alpha max. Das Ausgangssignal des Bausteines 11 wird einem weiteren Baustein 10 aufgegeben. Dieser Funktionsbaustein 10 ergibt ein positives konstantes Ausgangssignal gleich 1, solange der Grenzwert des Verstell¬ weges alpha max größer ist als der gemessene Verstellweg alpha. Wenn der Verstellweg alpha den Grenzwert überschreitet, wird das Ausgangssignal des Funktionsbausteines 10 kleiner als 1. Von 1 ausgehend verkleinert sich das Ausgangssignal a des Funktionsbausteins 10 bzw. 30, solange der Verstellweg alpha den Grenzwert überschreitet und bis zwischen beiden Gleich¬ gewicht eintritt. Das Ausgangssignal des Funktionsbausteines 10, im folgenden Gewichtungsbaustein, kann durch Anschluß der Druckmeßleitung P an das Steuergerät 21 weiter beeinflußt werden. Hierzu wird der Meßwert des Verstellweges gemeinsam mit dem Pumpenddruck einem Multipliziergerät 8 aufgegeben. Das Ausgangssignal des Multipliziergeräts 8 repräsentiert das hydraulische Drehmoment der Pumpe 1. Dieses Ausgangssignal wird im Baustein 9 zu dem maximal möglichen Ausgangssignal in Beziehung gesetzt. Das Ausgangssignal des Bausteins 9 wird einem weiteren Baustein 10 aufgegeben, durch den eine Gewich¬ tung erfolgt. Die Gewichtung kann mit dem Pumpendruck und/oder mit dem aktuellen Verstellweg der Regelpumpe erfolgen. Über den Baustein 11 wird dazu auch der aktuelle Verstellweg wieder zu dem maximalen Verstellweg in Beziehung gesetzt.
Dabei wird - wie Fig. 3 zeigt - das Ausgangssignal des Multi¬ pliziergerätes 8 über ein Vergleichsbaustein 26 dem Funktions¬ baustein 9 aufgegeben. In dem Vergleichsbaustein wird das durch Multiplikation ermittelte aktuelle Drehmoment Pumpe in Beziehung gesetzt zu dem Grenzwert Mmax der Pumpe, der konstant vorgegeben wird. Der Funktionsbaustein 9 verarbeitet nun das Ausgangssignal des Vergleichsbausteins 26 so, daß er ein Ausgangssignal gleich 1 abgibt, wenn das aktuelle Drehmoment kleiner als der Grenzwert des Drehmomentes ist, und daß er ein sich zeitlich verkleinerndes Ausgangssignal abgibt, solange das aktuell ermittelte Drehmoment größer als der Grenzwert ist. Das Ausgangssignal verkleinert sich nach einer zeitabhängigen Funktion von 1 ausgehend, bis durch Herabsetzung des Dreh¬ momentes Gleichgewicht eintritt. Das Ausgangssignal des Funktionsbausteines 9 wird nun zur Aufarbeitung des maximalen Stellweges alpha max benutzt, wie dies bereits zuvor angedeutet worden ist. Dazu dient ein Multiplikationsbaustein 27. Diesem Multiplikationsbaustein wird einerseits der Grenzwert des Verstellweges alpha max von außen fest vorgegeben, zum anderen das Ausgangssignal des Funktionsbausteines 9, das in Beziehung steht zum aktuellen Drehmoment. Das Ausgangssignal des Multi¬ plikationsbausteines 27 wird wiederum dem Komparator 11 vor¬ gegeben. Hierdurch wird erreicht, daß bei Überschreitung des vorgegebenen Drehmomentes die Fördermenge der Pumpe verkleinert wird.
Um auch den Pumpendruck zu berücksichtigen, wird in einem Komparator 28 (Vergleichsbaustein) ein fest eingegebener Grenzwert des Pumpendrucks zu dem aktuell gemessenen Pum¬ pendruck in Beziehung gesetzt. Der Baustein 10 enthält nun auch einen Funktionsbaustein 29, der durch das Ausgangssignal des Komparators 28 und zusätzlich durch einen Grenzwert angesteuert wird, der den maximalen Sollwert repräsentiert. Diese eingegebenen Größen werden nun in dem Funktionsbaustein 29 derart verarbeitet, daß der Funktionsbaustein 29 ein Ausgangssignal B gibt, das gleich Null ist, solange der gemessene Pumpendruck kleiner als der Grenzwert Pmax des Druckes ist, und das gleich dem Grenzwert Smax der Sollwerte ist, wenn der gemessene Pumpendruck den Grenzwert Pmax des Pumpendrucks übersteigt.
Der Gewichtungsbaustein 10 mit seinen beiden Ausgangssignalen A des Funktionsbausteines 30 und B des Funktionsbausteines steuert sodann Vergleichsglieder 12', 12", 12"' an, die jeweils einem der Ventile 6', 6", 6'" für die einzelnen Verbraucher 4', 4'', 4'" zugeordnet sind. Jedem dieser Ver¬ gleichsglieder 12 kann über die Sollwertgeber 13', 13", 13'" ein unterschiedlicher Sollwert aufgegeben werden. Die Ausgangs¬ signale der Vergleichsglieder 12 werden sodann über Verstärker 14', 14", 14"' den jeweiligen Stellsignalen für die Magnete al, bl, a2, b2, a3, b3 der jeweiligen Ventile 6', 6", 6'" oder den Eingangssignalen der Stellgeber, durch die die einzel¬ nen Wegeventile 6 angesteuert werden, überlagert. Dadurch kann nach einer voreingestellten Funktion und einem voreingestellten Sollwert der dem einzelnen Verbraucher ' , 4" , 4' " zugeführte Volumenstrom so weit herabgenommen werden, daß die von der Pumpe 1 förderbare Gesamtmenge nicht überschritten wird. Durch die gleichzeitige Erfassung und direkte Eingabe des Verstell¬ weges bzw. des Schwenkwinkels der Regelpumpe 1 kann im Gewichtungsbaustein 10 gleichzeitig sichergestellt werden, daß auch eine Anpassung der aktuellen Fördermenge an die maximal mögliche Fördermenge gleichzeitig mit der Anpassung an das aktuelle Drehmoment der Pumpe 1 erfolgt. Ebenso können in die Gewichtung der aktuelle Pumpendruck P oder sonstige Betriebs¬ parameter des Hydrauliksystems mit eingehen.
Hierzu sind die Vergleichsglieder 12 - wie Fig. 13 zeigt - aufgegliedert in einen Multiplikationsbaustein 31', 31", 31'" sowie in einen Begrenzungsbaustein 32', 32", 32"'. Dem Multiplikationsbaustein wird das Ausgangssignal A des Funk¬ tionsbausteines 30 sowie der eingestellte Sollwert Sl, S2, S3 jeweils vorgegeben. Dadurch wird der eingestellte Sollwert S in Beziehung gesetzt zu dem aktuellen Verstellweg der Druck¬ waage bzw. der Verstellpumpe, wenn die Summe der Verbraucher¬ ströme den Grenzwert des Pumpenstromes übersteigt. Die Sollwerte werden entsprechend vermindert. Das Ausgangssignal der Multiplikationsbausteine 31 wird dem Begrenzungsbaustein 32 vorgegeben gemeinsam mit dem Ausgangssignal B des Funktions¬ bausteines 29, der die Beziehung zu dem gemessenen Pumpendruck herstellt. Bei Überschreitung des vorgegebenen Grenzwertes des Pumpendruckes wird das Ausgangssignal des Begrenzungsbausteines 32 begrenzt auf den eingegebenen Grenzwert Smax des Sollwerts. In jedem der Bausteine 32', 32", 3 ''' kann eine weitere Bewertung des zugeführten Grenzwertes Smax erfolgen in dem Sinne, daß entweder gar keine Begrenzung erfolgt oder eine Herabsetzung oder eine Vergrößerung des Grenzwertes. Hierdurch können einzelnen Verbrauchern Prioritäten eingeräumt werden. Andere Verbraucher können stillgesetzt oder nachrangig behandelt werden, wenn die eingestellten Sollwertvorgaben zu einer Überschreitung des Grenzwertes des Pumpenstromes führen würden. In Fig. 4 ist nun zusätzlich noch eine Sollwertaufbereitung gezeigt, die wahlweise eingesetzt werden kann. Hierzu kann dem Steuergerät 21 ein Sollwertgeber 33 vorgeordnet werden. Der Sollwertgeber weist einen ersten Baustein 34 für jeden ein¬ gegebenen Sollwert auf, der im folgenden als Rampe bezeichnet wird. Diese Rampe bewirkt, daß ein sprunghaft eingegebener Sollwert sich nur zeitlich abhängig ändert. Dadurch wird bewirkt, daß auch bei sprunghafter Sollwerteingabe die Signal¬ verarbeitung und Anpassung des Hydrauliksystems zeitlich folgen kann und es nicht zu einer zeitweiligen Unterversorgung der Verbraucher kommt. Die Ausgangssignale der Rampen 34 werden sodann in Multiplikationsbausteinen 35 mit eingegebenen Grenz¬ werten Gl bis G3 multipliziert. Diese Grenzwerte repräsen¬ tieren einen bestimmten Prozentsatz des Grenzwertes des Pumpen¬ stromes. Hierdurch erfolgt in den Multiplikationsbausteinen 35 eine Gewichtung der eingegebenen Sollwerte. Die Ausgangssignale der Multiplikationsbausteine 35 werden einem Summierglied 36 aufgegeben mit dem Ausgangssignal P2, das die Summe der Aus¬ gangssignale der Multiplikationsbausteine repräsentiert.
Das Signal E2 wird einem Funktionsbaustein 37 aufgegeben gemeinsam mit einem Signal El. Das Signal El repräsentiert den maximal vorgegebenen Pumpenstrom in einer Form, die dem Signal E2 vergleichbar ist. Im Funktionsbaustein 37 werden die beiden Eingangssignale El und E2 in Verbindung gesetzt. Das Ausgangs¬ signal A ist gleich 1, solange der vorgegebene Grenzwert des Pumpenförderstroms größer als die eingestellte und gewichtete Summe der Sollwerte ist. Das Ausgangssignal ist gleich dem Quotienten aus Grenzwert und gewichteter Summe, wenn die gewichtete Summe größer ist als der Grenzwert.
Das Ausgangssignal des Funktionsbausteines 37 wird nun den Multiplikationsbausteinen 38', 38", 38'" aufgegeben. In jedem der Multiplikationsbausteine 38 wird der jeweilige Sollwert Sl, S2, S3, nachdem er vorzugsweise zunächst über die Rampen 34', 34", 34'" geführt worden ist, multipliziert. Das Ausgangssignal der Multiplikationsbausteine 38 stellt den dem Steuergerät 21 vorgegebenen jeweiligen Sollwert dar. Durch diese Sollwertaufbereitung wird bereits bei der Sollwertaufgabe Vorsorge getragen, daß die eingestellten Sollwerte nicht zu einem Verbrauch führen, der den vorgegebenen Grenzwert des Pumpenstroms bei weitem übersteigt. Es handelt sich dabei jedoch nur um eine grobe Vorsorge. Die erfindungsgemäße Über¬ lagerung der Anpassung der Verbraucherströme an den gemessenen Pumpenstrom gewährleistet, daß jeder Verbraucher in dem ihm zugewiesenen Rahmen funktionsfähig bleibt.
Die besondere Bedeutung der Erfindung liegt dabei darin, daß einerseits das Pumpendrehmoment ausgeregelt wird, daß dieser Momentenregelung aber eine Leistungsregelung überlagert werden kann, indem gleichzeitig auch noch die Drehzahl der Pumpe oder ihre Fördermenge erfaßt wird.
In einem Hydrauliksystem werden mehrere Verbraucher 4 von einer gemeinsamen Pumpe gespeist. Dabei werden die Verbraucher 4 durch Steuerventile 6 gesteuert. Wenn die abgerufenen Olströme die maximal förderbare Fördermenge überschreiten, tritt eine Regelung in Funktion, mit der die Sollwertsignale, mit welchen die Ventile 6 angesteuert werden, an den aktuell gemessenen Pumpenförderstrom, vorzugsweise an die Gewichtung des aktuell gemessenen Pumpenförderstroms mit dem maximal vorgegebenen Pumpenförderstrom, angepaßt werden.
BEZUGSZEICHENAUFSTELLUNG
Regelpumpe, Pumpe Druckwaage, Regelventil Wechselventil Verbraucher Druckregelventil, Druckwaage, Druckdifferenzwaage Steuerventil, Wegeventil Stellglied Multipliziergerät Komparator (M/M ) 0 Baustein für Gewichtung 1 Komparator (<*/αgrenz) 2 Komparator (Ist-/Sollwert) 3 Sollwertgeber 4 Verstärker a Signal für Stellmagnet b Signal für Stellmagnet
P Pummpendruck
U elektrische Spannung 5 Feder 6 Kolben 7 Kolbenstange 8 Feder 9 Steuerdruck 0 Pumpenleitung 1 Steuergerät 2 Druckdifferenzwaage, Druckwaage 3 Kolben 4 Feder 5 Kolbenstange 6 Vergleichsbaustein 0685
18
Multiplikationsbaustein Komparator Funktionsbaustein Funktionsbaustein ' ' Multiplikationsbaustein ' ' ' Begrenzungsbaustein ' Sollwertgeber

Claims

PATENTANSPRÜCHE
1. Hydrauliksystem, bei dem mehrere Verbraucher (4) durch eine gemeinsame Pumpe über je ein Steuerventil gespeist werden, wobei die den einzelnen Verbrauchern (4) zugeführten Verbraucherströme durch die zugeordneten Steuerventile (6) derart steuerbar sind, daß die der Gesamtheit der Verbrau¬ cher (4) zugeführte aktuelle Fördermenge der Pumpe an den vorgegebenen förderbaren Pumpenstrom anpaßbar ist, dadurch gekennzeichnet, daß die aktuelle Fördermenge der Pumpe (der Pumpenstrom) gemessen und bei Überschreitung eines vorgegebenen Grenzwertes (GP) zur Anpassung der Verbraucherströme benutzt wird.
2. Hydrauliksystem nach Anspruch 1, dadurch gekennzeichnet, daß eine 3-Wege-Druckwaage zur Regelung der Druckdifferenz zwischen dem Pumpendruck und dem höchsten Lastdruck an die Pumpenleitung angeschlossen ist, die einerseits durch den Pumpendruck und auf der Federseite durch den höchsten Lastdruck beaufschlagt wird, und daß zur Messung der aktuellen Fördermenge entweder der Durchfluß im Bypass der Druckwaage oder die Kolbenbewegung der Druckwaage gemessen wird.
3. Hydrauliksystem nach Anspruch 1, dadurch gekennzeichnet, daß die Pumpe eine Regelpumpe ist, und daß die aktuelle Fördermenge dadurch gemessen wird, daß die Regelstellung der Regelpumpe gemessen wird.
4. Hydrauliksystem nach Anspruch 3, dadurch gekennzeichnet, daß die Regelstellung der Regelpumpe in Abhängigkeit von der Druckdifferenz aus dem Pumpendruck und dem höchsten gemessenen Lastdruck steuerbar ist.
5. Hydrauliksystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das Produkt aus der aktuellen Fördermenge und dem Pumpendruck zur Anpassung der Verbraucherströme zusätzlich benutzt wird.
6. Hydrauliksystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Pumpendruck zusätzlich zur Anpassung der Verbraucher¬ ströme benutzt wird.
7. Hydrauliksystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das Sollwertsignal, durch welches jedes der Steuerventile (6) zur Verstellung des Verbraucherstroms ansteuerbar ist, in Abhängigkeit von dem vorgegebenen förderbaren Pumpenstrom sowie der Summe der eingestellten Sollwert¬ signale reduziert wird.
8. Hydrauliksystem nach Anspruch 7, dadurch gekennzeichnet, daß vor der Summenbildung der Sollwertsignale jedes Soll¬ wertsignal mit einem Grenzwert (GV) multipliziert wird, welches für den jeweiligen Verbraucher vorgegeben ist.
PCT/DE1991/000976 1990-12-15 1991-12-14 Hydrauliksystem WO1992010685A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP92901394A EP0515639B1 (de) 1990-12-15 1991-12-14 Hydrauliksystem
US07/920,375 US5394696A (en) 1990-12-15 1991-12-14 Hydraulic system
DE59104897T DE59104897D1 (de) 1990-12-15 1991-12-14 Hydrauliksystem.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4040177 1990-12-15
DEP4040177.4 1990-12-15
DE4124792 1991-07-26
DEP4124792.2 1991-07-26

Publications (1)

Publication Number Publication Date
WO1992010685A1 true WO1992010685A1 (de) 1992-06-25

Family

ID=25899382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1991/000976 WO1992010685A1 (de) 1990-12-15 1991-12-14 Hydrauliksystem

Country Status (6)

Country Link
US (1) US5394696A (de)
EP (1) EP0515639B1 (de)
JP (1) JPH05504820A (de)
DE (1) DE59104897D1 (de)
DK (1) DK0515639T3 (de)
WO (1) WO1992010685A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786600A1 (de) * 1996-01-26 1997-07-30 José Maria Las Navas Garcia Hydraulisches System zur Betätigung mehrerer Verbraucher
EP2686645A1 (de) * 2011-05-16 2014-01-22 Siemens Aktiengesellschaft Verfahren, verwaltungsvorrichtung und erdgasspeichersystem für die automatisierte verwaltung mehrerer durchflussvorrichtungen
EP3597941A1 (de) * 2018-07-19 2020-01-22 Deere & Company Verfahren zum betreiben eines hydraulischen verbrauchers an einem elektrisch betätigbaren steuerventil

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT402280B (de) * 1995-08-01 1997-03-25 Hoerbiger Gmbh Hydraulische betätigungsanordnung für ein fahrzeugverdeck
JP3750841B2 (ja) * 1998-11-12 2006-03-01 新キャタピラー三菱株式会社 作業機械における油圧制御装置
US6286299B1 (en) * 1999-04-26 2001-09-11 General Electric Co. Gas turbine combined lift/hydraulic system
DE10308289B4 (de) * 2003-02-26 2010-11-25 Bosch Rexroth Aktiengesellschaft LS-Wegeventilblock
JP2004347040A (ja) * 2003-05-22 2004-12-09 Kobelco Contstruction Machinery Ltd 作業機械の制御装置
EP2250379B1 (de) * 2008-03-10 2013-03-20 Parker-Hannifin Corporation Hydraulisches system mit mehreren stellantrieben und verfahren zu dessen steuerung
DE102009028816A1 (de) * 2009-08-21 2011-02-24 Deere & Company, Moline Hydraulische Anordnung
US9371898B2 (en) 2012-12-21 2016-06-21 Cnh Industrial America Llc Control system for a machine with a dual path electronically controlled hydrostatic transmission
JP6656913B2 (ja) * 2015-12-24 2020-03-04 株式会社クボタ 作業機の油圧システム
US10718100B2 (en) * 2016-11-21 2020-07-21 Van-Tech Corporation Electro-hydraulic feed delivery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165613A (en) * 1978-03-27 1979-08-28 Koehring Company Control apparatus for a plurality of simultaneously actuatable fluid motors
EP0191275A1 (de) * 1985-02-14 1986-08-20 TRINOVA S.p.A. Anti-Sättigungssystem für hydraulische Steuerkreisläufe von Arbeitsgeräten von Erdbewegungsmaschinen
US4712376A (en) * 1986-10-22 1987-12-15 Caterpillar Inc. Proportional valve control apparatus for fluid systems
FR2609120A1 (fr) * 1986-12-30 1988-07-01 Rexroth Mannesmann Gmbh Dispositif de commande pour au moins deux organes consommateurs hydrauliques alimentes par au moins une pompe
EP0275968A2 (de) * 1987-01-23 1988-07-27 Brueninghaus Hydromatik Gmbh Steuervorrichtung für ein hydrostatisches Getriebe für wenigstens zwei Verbraucher
FR2650635A1 (fr) * 1989-08-07 1991-02-08 Rexroth Sigma Procede de commande d'au moins une pompe a debit variable dans une installation electrohydraulique, et installation electrohydraulique mettant en oeuvre ce procede

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987622A (en) * 1976-02-02 1976-10-26 Caterpillar Tractor Co. Load controlled fluid system having parallel work elements
US4103489A (en) * 1977-04-15 1978-08-01 Deere & Company Total power fluid system
JPS56139316A (en) * 1980-01-07 1981-10-30 Komatsu Ltd Power loss reduction controller for oil-pressure type construction machine
US4537364A (en) * 1982-12-15 1985-08-27 Sundstrand Corporation Constant tension cable reel drive
US4723478A (en) * 1983-02-04 1988-02-09 The Cessna Aircraft Company Series self-leveling valve
DE3321483A1 (de) * 1983-06-14 1984-12-20 Linde Ag, 6200 Wiesbaden Hydraulische einrichtung mit einer pumpe und mindestens zwei von dieser beaufschlagten verbrauchern hydraulischer energie
US4554992A (en) * 1983-09-09 1985-11-26 Fmc Corporation Hydraulically operated four wheel sweeper
DE3535771A1 (de) * 1985-10-07 1987-04-09 Linde Ag Hydrostatischer antrieb mit mehreren verbrauchern
DE3644736C2 (de) * 1985-12-30 1996-01-11 Rexroth Mannesmann Gmbh Steueranordnung für mindestens zwei von mindestens einer Pumpe gespeiste hydraulische Verbraucher
DE3546336A1 (de) * 1985-12-30 1987-07-02 Rexroth Mannesmann Gmbh Steueranordnung fuer mindestens zwei von mindestens einer pumpe gespeiste hydraulische verbraucher
DE3623066A1 (de) * 1986-07-09 1988-01-28 Rexroth Mannesmann Gmbh Schaltungsanordnung zur drehzahlregelung einer an eine leitung mit eingepraegtem druck angeschlossenen hydrostatischen maschine
US4922787A (en) * 1987-06-26 1990-05-08 Kanzaki Kokyukoki Mfg. Co. Ltd. HST (hydrostatic transmission) housing axle driving apparatus
IN171213B (de) * 1988-01-27 1992-08-15 Hitachi Construction Machinery
US5134853A (en) * 1988-05-10 1992-08-04 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for construction machines
EP0379595B1 (de) * 1988-07-08 1993-09-29 Hitachi Construction Machinery Co., Ltd. Hydrodynamische antriebsvorrichtung
SE8803181D0 (sv) * 1988-09-09 1988-09-09 Atlas Copco Ab Hydraulic driving system with a priority function for hydraulic motors
US4936095A (en) * 1988-10-28 1990-06-26 Eaton Corporation Hydrostatic transmission system and power limiter control therefor
US5048293A (en) * 1988-12-29 1991-09-17 Hitachi Construction Machinery Co., Ltd. Pump controlling apparatus for construction machine
EP0440802B1 (de) * 1989-07-27 1995-10-18 Hitachi Construction Machinery Co., Ltd. Anordnung zur steuerung einer hydraulischen pumpe
US5167121A (en) * 1991-06-25 1992-12-01 University Of British Columbia Proportional hydraulic control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165613A (en) * 1978-03-27 1979-08-28 Koehring Company Control apparatus for a plurality of simultaneously actuatable fluid motors
EP0191275A1 (de) * 1985-02-14 1986-08-20 TRINOVA S.p.A. Anti-Sättigungssystem für hydraulische Steuerkreisläufe von Arbeitsgeräten von Erdbewegungsmaschinen
US4712376A (en) * 1986-10-22 1987-12-15 Caterpillar Inc. Proportional valve control apparatus for fluid systems
FR2609120A1 (fr) * 1986-12-30 1988-07-01 Rexroth Mannesmann Gmbh Dispositif de commande pour au moins deux organes consommateurs hydrauliques alimentes par au moins une pompe
EP0275968A2 (de) * 1987-01-23 1988-07-27 Brueninghaus Hydromatik Gmbh Steuervorrichtung für ein hydrostatisches Getriebe für wenigstens zwei Verbraucher
FR2650635A1 (fr) * 1989-08-07 1991-02-08 Rexroth Sigma Procede de commande d'au moins une pompe a debit variable dans une installation electrohydraulique, et installation electrohydraulique mettant en oeuvre ce procede

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786600A1 (de) * 1996-01-26 1997-07-30 José Maria Las Navas Garcia Hydraulisches System zur Betätigung mehrerer Verbraucher
EP2686645A1 (de) * 2011-05-16 2014-01-22 Siemens Aktiengesellschaft Verfahren, verwaltungsvorrichtung und erdgasspeichersystem für die automatisierte verwaltung mehrerer durchflussvorrichtungen
EP2686645B1 (de) * 2011-05-16 2022-04-13 Siemens Energy Global GmbH & Co. KG Verfahren, verwaltungsvorrichtung und erdgasspeichersystem für die automatisierte verwaltung mehrerer durchflussvorrichtungen
EP3597941A1 (de) * 2018-07-19 2020-01-22 Deere & Company Verfahren zum betreiben eines hydraulischen verbrauchers an einem elektrisch betätigbaren steuerventil
US11326592B2 (en) 2018-07-19 2022-05-10 Deere & Company Method for operating a hydraulic consumer on an electrically actuated control valve

Also Published As

Publication number Publication date
EP0515639B1 (de) 1995-03-08
JPH05504820A (ja) 1993-07-22
DE59104897D1 (de) 1995-04-13
US5394696A (en) 1995-03-07
EP0515639A1 (de) 1992-12-02
DK0515639T3 (da) 1995-05-22

Similar Documents

Publication Publication Date Title
EP0515608B1 (de) Hydrauliksystem
EP1664551B1 (de) Steueranordnung und verfahren zur druckmittelversorgung von zumindest zwei hydraulischen verbrauchern
DE102005031732B4 (de) Verfahren und Vorrichtung zur Regelung von Pneumatikzylindern
DE3629638C2 (de) Kolbenpumpe mit variierbarer Verdrängung
DE4127342C2 (de) Hydraulisches System mit einer Pumpe
EP0515639B1 (de) Hydrauliksystem
DE19681386C2 (de) Regelkreis eines fahrbaren Brechers
DE3044515A1 (de) Verstelleinrichtung fuer hydraulikpumpe mit verstellbarer foerdermenge
WO2005008076A1 (de) Steueranordnung und verfahren zur ansteuerung von wenigstens zwei hydraulischen verbrauchern
DE4428929A1 (de) Verfahren und Einrichtung zur Druckregelung
EP1296865A1 (de) Verfahren und regelsystem zur ansteuerung eines elektronisch regelbaren bremsbetätigungssystems
DE3441185A1 (de) Antriebssystem
EP0275969A2 (de) Steuervorrichtung fuer ein hydrostatisches Getriebe fuer wenigstens zwei Verbraucher
DE102016214708A1 (de) Stetigventileinheit, hydraulische Achse und Verfahren zum Betreiben einer hydraulischen Achse
WO2009156022A1 (de) Steueranordnung mit einem druckbegrenzungsventil
EP3816455A1 (de) Hydraulische steueranordnung zur druckmittelversorgung wenigstens zweier hydraulischer verbraucher
DE10308289B4 (de) LS-Wegeventilblock
DE3528096C2 (de)
DE4327313C2 (de) Verfahren zur Druckregelung einer hydrostatischen Maschine mit verstellbarem Fördervolumen
EP0745189B1 (de) Vorrichtung zur summenleistungsregelung von wenigstens zwei hydrostatischen verstellpumpen
DE112004002768B4 (de) Hydraulisches Steuersystem
DE60033097T2 (de) Hydraulische Antriebseinheit
DE19742157C2 (de) Regeleinrichtung für eine verstellbare Hydropumpe mit mehreren Verbrauchern
EP1934487A1 (de) Hydraulische steuervorrichtung
EP3135924B1 (de) Hydrauliksteuerung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992901394

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992901394

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992901394

Country of ref document: EP