WO1991011919A1 - Process for producing water-soluble vegetable fiber, and biodegradable film, sizing agent, chewing gum and low-calorie food obtained from said fiber - Google Patents

Process for producing water-soluble vegetable fiber, and biodegradable film, sizing agent, chewing gum and low-calorie food obtained from said fiber Download PDF

Info

Publication number
WO1991011919A1
WO1991011919A1 PCT/JP1991/000132 JP9100132W WO9111919A1 WO 1991011919 A1 WO1991011919 A1 WO 1991011919A1 JP 9100132 W JP9100132 W JP 9100132W WO 9111919 A1 WO9111919 A1 WO 9111919A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
plant fiber
soluble
soluble plant
protein
Prior art date
Application number
PCT/JP1991/000132
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Maeda
Hitoshi Furuta
Chiemi Takei
Toshiaki Saito
Hiroyuki Mori
Kazunobu Tsumura
Original Assignee
Fuji Oil Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2788290A external-priority patent/JP2552375B2/en
Priority claimed from JP2030677A external-priority patent/JP2599477B2/en
Application filed by Fuji Oil Company, Limited filed Critical Fuji Oil Company, Limited
Priority to DE4190252A priority Critical patent/DE4190252B4/en
Priority to GB9120268A priority patent/GB2256570B/en
Priority to PCT/JP1991/000132 priority patent/WO1991011919A1/en
Publication of WO1991011919A1 publication Critical patent/WO1991011919A1/en
Priority to US08/437,983 priority patent/US5587197A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/14Chewing gum characterised by the composition containing organic or inorganic compounds containing peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/068Chewing gum characterised by the composition containing organic or inorganic compounds containing plants or parts thereof, e.g. fruits, seeds, extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/10Chewing gum characterised by the composition containing organic or inorganic compounds characterised by the carbohydrates used, e.g. polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres

Definitions

  • the present invention is a method for producing water-soluble plant fiber from water-insoluble plant fiber such as residue obtained by defatting oil seeds such as soybeans and extracting protein, for example, residue from rice flour and the like, and extracting flour from cereals. On how to do it. Further, the present invention relates to a transparent biodegradable film, a sizing agent, a chewing gum and a low-strength mouth food using the water-soluble plant fiber.
  • the residue from extracting oil and fat from oil seeds and extracting protein, and the residue from extracting cereal from starch are rich in plant fiber, but the remaining protein is entangled with plant fiber, so plant fiber It is difficult to recover high yields.
  • these plant fibers are insoluble in water, In other words, it is also difficult to obtain water-soluble plant fiber in a high yield while minimizing protein contamination.
  • Taikira which is a residue extracted from fats and oils and proteins from soybeans, is a water-insoluble plant fiber that still contains soybean protein, which is hydrolyzed to extract water-soluble polysaccharides.
  • it is difficult to obtain high-purity plant fiber with high yield by decomposing saccharides into oligosaccharides or by mixing soybean protein and degraded soybean peptide-amino acids.
  • plastic packaging films are not naturally degraded, and collagen films and pullulan films are biodegradable by microorganisms, while collagen films are healing. Lacks sealability, and pull-run films are expensive. You. However, if the water-soluble plant fiber is used, a film free of these problems can be obtained.
  • Adhesives such as animal glue, denatured powder, arabic gum, pullulan, polyvinyl alcohol, etc., especially adhesives as rewetting adhesives are practical because they have low adhesive strength and are expensive. However, such a problem can be solved by using the water-soluble plant fiber.
  • pullulan which is a water-soluble polysaccharide derived from microorganisms
  • pullulan is more expensive than the water-soluble plant fiber, and the resulting chewing gum provides a longer lasting feeling.
  • the water-soluble plant fiber has poor water retention and poor water retention, such a problem can be solved by using the water-soluble plant fiber.
  • water-soluble plant fiber can be used for low-strength food products, but such low-calorie food products have not been known.
  • An object of the present invention is to provide a method for preparing a water-insoluble plant fiber containing protein from water. ⁇
  • the method for producing a water-soluble plant fiber of the present invention comprises: converting a water-insoluble plant fiber containing a protein under acidic conditions near the isoelectric point of the protein;
  • water-insoluble plant fibers containing proteins examples include oilseed (eg, soybeans, pam, pear, corn, cottonseed, corn, etc.) shells and residues excluding fats and proteins, The residue of cereals (rice, wheat, etc.) excluding flour, etc. can be used.
  • oilseed eg, soybeans, pam, pear, corn, cottonseed, corn, etc.
  • residues excluding fats and proteins The residue of cereals (rice, wheat, etc.) excluding flour, etc. can be used.
  • Highly pure water-soluble plant fiber with low white content can be obtained: It is also contained in water-insoluble plant fiber that is productively favorable without producing harmful substances such as lysinoalanine
  • the pH near the isoelectric point of proteins is usually acidic (pH 6 or less).
  • PH 3 to 6 is preferable.
  • the produced water-soluble plant fiber becomes less flavorful. Therefore, in the present invention, the shell obtained by removing the shell such as the skin is used. It is preferable to use it.
  • the water-insoluble plant fiber is derived from oil seeds, if the water-insoluble plant fiber is used, it is possible to reduce the green odor or the like of the obtained water-soluble plant fiber.
  • okaras obtained from dehulled soybeans. Decomposition under acidity near the point is under acidity considerably stronger than the isoelectric point of the protein.
  • a water-insoluble plant fiber containing protein is neutralized or neutralized with a pH significantly higher than the isoelectric point of the protein.
  • the protein is decomposed under high strength, the protein is decomposed and eluted with the plant fiber, and the solution becomes cloudy or decomposed.
  • the acid is a tendency for the acid to react with the acid and brown to a dark brown color.
  • Water-insoluble plant fibers containing proteins are degraded at a temperature of 130 ° C or lower.
  • the temperature is higher than 130 ° C, the sugar (reducing sugar) and amino acid generated by the decomposition are decomposed. Reacts and turns brown, or smells bad
  • the temperature at which protein-containing water-insoluble plant fibers are decomposed may be as low as 130 or less, but in order to perform the decomposition efficiently, it should be at or above room temperature, preferably 8 (Temperature above TC, more preferably above about 100 ° C-Water-soluble plant fibers obtained by hot fractionation of water-insoluble plant fibers under acidic conditions are preferred. Alternatively, it is appropriate to further remove activated water and ⁇ -molecular substances by treating with activated carbon, which can further increase the purity of the water-soluble plant fiber.
  • the water-soluble plant fiber thus obtained contains water-soluble micelles, such as, for example, water-soluble soy fiber obtained from soybean residue okara, ramose, Fucose, arabinose, xylose, galactose, glucose and carboxylic acid are the constituent sugar components and have an average molecular weight of 5 to 100,000 and preferably 10 to 4 million. Things are:
  • the average molecular weight of ⁇ of the present invention by standard Purura emissions (manufactured by Hayashibara Biochemical Laboratories Inc.) as a standard substance 0.1 of X a chi 0 3 in the solution ⁇ Is determined by an intrinsic viscosity method for measuring the viscosity.
  • the sugar ratio was determined according to the following prayer method.
  • the water-soluble plant fiber of the present invention has the properties of adhesiveness, film-forming property, membrane tensile strength, and thickening property (particularly, the property of increasing viscosity in the alkaline region but decreasing the viscosity when returned to acidic). Has).
  • the film of the present invention is a thin film, has sufficient strength, can perform heat sealing, is inexpensive to manufacture, and is a biodegradable film.
  • Fibers can be manufactured using known film forming methods: for example, water-soluble plant fiber
  • the biodegradable film can be manufactured by stretching it to a suitable thickness on a resin film or the like and drying it.
  • the biodegradable film in order to improve the properties of the biodegradable film, it is possible to add an additive such as a plasticizer and a surfactant.
  • an additive such as a plasticizer and a surfactant.
  • the biodegradable film may be used. It is preferable to use additives that do not impair the food quality.
  • the sizing agent of the present invention is a sizing agent for adhesives containing water-soluble plant fibers as a main component, in particular, a rewet adhesive.
  • the protein content of the water-soluble vegetable fiber used usually 10% by weight or less per dry solid content
  • the stronger the adhesive strength preferably the protein content is 8% by weight or less, more preferably 5% by weight.
  • the chewing gum of the present invention is a chewing gum containing a water-soluble plant fiber.
  • chewing gum is gum base (usually 15 to 30 weights), sweeteners (sugar, grapes, syrup, etc.), flavors and nutrients (usually 0.2 to Of these, the gum base consists of natural resin, vinyl acetate resin, polyester gum, synthetic gum, natural wax, emulsifier, carbonated calcium carbonate, etc.
  • the content of the water-soluble vegetable fiber in the chewing gum of the present invention is suitably 1 to 40 parts by weight, preferably 2 to 30 parts by weight, based on 100 parts by weight of the gum base.
  • the content of the water-soluble plant fiber in the chewing gum is usually about 0.2 to 10% by weight.
  • Low-sweet chewing gum has a higher content of water-soluble plant fiber due to the lower sugar content. If the content of the water-soluble plant fiber is too large, the viscoelasticity increases and becomes hard during chewing. If the amount is too small, the effect of the present invention is not obtained.
  • the dissolution rate in the mouth is slower than that of pullulan, so that it not only has a long lasting feeling but also has an excellent flavor retention property.
  • the low-calorie food of the present invention contains protein, fat and oil and carbohydrate as main raw materials. '-ii-In a food, the water-soluble plant fiber of the present invention is partially substituted to reduce the calories.
  • raw soybean obtained in the step of producing soybean protein isolated from defatted soybean was used as the protein-containing water-insoluble plant fiber.
  • the raw cocoa contains about 80% by weight of water, and the solid content contains about 65% by weight of plant fiber and about 20% by weight of crude protein.
  • the isoelectric point of the protein is around pH 4.5 c
  • the pH was adjusted to 3 to 6 by adding hydrochloric acid having a concentration of 36%. Then, it was thermally decomposed at a temperature of 130 ° C. or less. Disassembled in this way In Okara, water-insoluble plant fibers were decomposed into water-soluble plant fibers, while many of the proteins contained in the genius La were aggregated without being decomposed.
  • the obtained decomposed product was centrifuged at 800 rpm for 30 minutes to remove the precipitated fraction containing the aggregated protein, and the supernatant from which the water-soluble plant fiber was eluted was taken out.
  • the supernatant contains a large amount of water-soluble plant fiber obtained by decomposing water-insoluble plant fiber, while the amount of protein decomposed and eluted is reduced, and the solution browns, The solution did not become cloudy when combined.
  • the mixture was heat-decomposed at 130 ° C. for 1.5 hours, centrifuged in the same manner as described above to remove the sedimented fraction, and the supernatant was taken out.
  • the plant fibers of water-insoluble c the raw Oka la the resulting raw Oka La was Shi ⁇ in the process of producing the soy protein isolate from defatted soybeans contain water about 8 0%
  • the solid content contained about 65% by weight of vegetable fiber and about 20% by weight of crude protein.
  • the degraded protein was centrifuged at 800,000 rpm for 30 minutes to remove the solubilized protein, and water was added to the remaining sedimented fraction to adjust the solid concentration to about 4% by weight. Thereafter, the pH was adjusted to pH 3 by adding hydrochloric acid at a concentration of 36%, and the mixture was decomposed at 100 ° C. for 6 hours to decompose water-insoluble plant fibers into water-soluble plant fibers.
  • the resulting digest was neutralized to pH 7.0 by adding 10% sodium hydroxide solution and centrifuged at 8000 rpm for 30 minutes to increase the amount of water-soluble plant fiber.
  • the water-soluble fraction containing was taken out. This After concentrating the water-soluble fraction to a solid concentration of about 5% by weight, stretch it thinly on a synthetic resin film, dry it to form a film, and form a film on the base resin film. The pull came off.
  • the biodegradable film thus obtained has high transparency, is almost transparent and strong, and does not disperse in water but dissolves in its entirety. Heat seal was also possible.
  • Example 2 As in Example 2, 99% of ethanol was added to the water-soluble fraction containing a large amount of water-soluble plant fiber obtained by centrifugation, and 80% of ethanol was added. The water-soluble plant fiber was adjusted so as to be a single solution, and the high molecular weight fraction of the water-soluble plant fiber in the water-soluble fraction was precipitated.
  • the biodegradable film thus obtained is almost a transparent and strong film as in Example 2 and dissolves entirely in water without dispersing, and also has a heat seal. It was possible and remained in a transparent film for a longer period.
  • the pH was adjusted to 2.5 by adding hydrochloric acid having a concentration of 36%, and the pH was adjusted to 100 for 1.5 hours. Decomposed over.
  • the digest was then treated with a homogenizer.
  • a homogenizer By treating the decomposed product with a homogenizer in this manner, a smooth paste was obtained.
  • the obtained biodegradable film was transparent, a strong and smooth film, and was capable of heat sealing.
  • the biodegradable film produced in this manner was transparent and had a low protein content, and could be heat-sealed.
  • Example 6 Two times by weight of water was added to the raw material obtained in the production process of isolated soybean protein, the pH was adjusted to 4.5 with hydrochloric acid, and the mixture was hydrolyzed with 120 at 1.5 hours. After cooling, the mixture was centrifuged (1 000 Og x 30 minutes) to separate into supernatant and sediment. The sediment was further washed with an equal weight of water, and the supernatant obtained by centrifugation was combined with the supernatant, followed by activated carbon column treatment. The obtained liquid was dried to obtain a water-soluble plant fiber (i). -Furthermore, this water-soluble plant fiber was dissolved in 0.5% saline, and reprecipitation was repeated three times so that the ethanol concentration became 50%.
  • Uses ion exchange resin (Amberlite IR-120B- from Organo) 9
  • Adhesive strength (kgf / cm2) 56.4
  • the water-soluble plant fiber obtained in the same manner as in (a) of Example 6 was mixed with dextrin (manufactured by Sigma) at the ratio shown in Table 9, and the adhesive strength was measured in the same manner as in Example 6. did. The results are shown in Table 9.
  • the adhesive strength of dextrin can be increased or adjusted by using a sizing agent such as dextrin and water-soluble plant fiber in combination Example 8
  • Polysaccharide 8 9.8 2% The composition of the polysaccharide was analyzed in the same manner as described above.
  • Example 1 1 After a sheet-like chewing gum having a thickness of 5 cm was discharged by an extruder, the sheet was rolled to a thickness of 2 by a rolling roller.
  • Example 1 1
  • a gingham was obtained in the same manner as in Example 10 except that the water-soluble soybean plant fiber obtained in the same manner as in Example 6 (c) was used instead of the water-soluble soybean plant fiber (a).
  • Chewing gum was obtained in the same manner as in Example 10, except that the water-soluble plant fiber derived from corn hulls obtained in the same manner as in Example 8 was used instead of the water-soluble soybean plant fiber (a).
  • a chewing gum was obtained in the same manner as in Example 10, except that 6.7 parts by weight of syrup and 3.3 parts by weight of water were used instead of the water-soluble soybean plant fiber (a) and water.
  • Chewing gum was obtained in the same manner as in Example 10 except that pullulan (manufactured by Hayashibara Biochemical Laboratory) was used instead of the water-soluble soybean plant fiber (a). Comparative Example 3
  • the chewing gums obtained in the above Examples and Comparative Examples were stored at 20 ° C and a humidity of 40% RH for 1 week, and then subjected to a sensory evaluation by 30 panelists.
  • the amount of water rise was calculated from the following equation.
  • Example 1 Low-calorie cholate TDF (Total Dietary Fiber) of water-soluble soybean plant fiber (a) was measured according to an enzyme gravimetric method (Prosky method) and found to be 70.6%. It turns out that it is a low calorie water-soluble fiber. Therefore, using the water-soluble fiber of the low-strength mouth, chocolate
  • the present invention has made it possible to produce water-soluble plant fibers from water-insoluble plant fibers at a high yield.
  • the sizing agent of the present invention can be esterified or esterified to increase the adhesive strength, and can be cross-linked or impart water resistance by using in combination with a cross-linking agent. Also, it can be used in combination with other adhesives, and the adhesive strength can be increased or synergistically increased depending on the type of the adhesive.
  • chewing gum with excellent sustainability of salivation and flavor. That is, chewing gum containing water-soluble hemicellulose, candy, soft chewing gum, and chewing gum. — It is now possible to obtain ingham confectionery, balloon gum, etc.
  • low-calorie foods can be obtained by substituting a part of proteins and carbohydrates with the water-soluble plant fiber of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

A process for producing a water-soluble vegetable fiber from a water-insoluble vegetable fiber containing a protein in a high yield with only a reduced extent of contamination with the protein and amino acids formed by the hydrolysis thereof, which comprises hydrolyzing the water-insoluble fiber below 130 °C under an acidic condition near the isoelectric point of the protein.

Description

明 細 書  Specification
水溶性植物繊維の製造方法、 生分解性フ ィ ルム、 糊剤、 チューィ ンガ厶および低カロ リ一食品  Manufacturing method of water-soluble vegetable fiber, biodegradable film, paste, chewing gum and low-calorie food
[発明の分野] [Field of the Invention]
本発明は、 大豆等の油糧種子を脱脂し、 蛋白を抽出した残査、 例 えば、 オカ ラ等や、 穀類から緞粉を抽出した残査等の水不溶性植物 繊維から水溶性植物繊維を製造する方法に関する。 また、 本発明は かかる水溶性植物繊維を用いた透明な生分解性フィルム、 糊剤およ びチューィ ンガムならびに低力口 リ一食品に関する。  The present invention is a method for producing water-soluble plant fiber from water-insoluble plant fiber such as residue obtained by defatting oil seeds such as soybeans and extracting protein, for example, residue from rice flour and the like, and extracting flour from cereals. On how to do it. Further, the present invention relates to a transparent biodegradable film, a sizing agent, a chewing gum and a low-strength mouth food using the water-soluble plant fiber.
[従来技術]  [Prior art]
油糧種子から油脂を抽出し、 蛋白を抽出した残査や、 穀類から澱 粉質を抽出した残査は植物繊維に富みながらも、 残存する蛋白質が 植物繊維と絡み合つているため、 植物繊維を収率よく回収すること は困難である。 また、 これら植物繊維は水不溶性であり、 これを分 解して水溶性の植物繊維を、 蛋白質の混入をできるだけ少なく して、 高収率で得ることも困難である。 例えば、 大豆から油脂や蛋白を抽 出した残査である才力ラ等は、 未だ大豆蛋白質を含有する水不溶性 植物繊維であるが、 これをアル力 リ分解して水溶性の多糖類を抽出 したのでは、 糖類が少糖類にまで分解されたり、 大豆蛋白質や分解 された大豆べプチ ドゃアミノ酸が混入して高純度の植物繊維を高収 率で得ることは困難である。 The residue from extracting oil and fat from oil seeds and extracting protein, and the residue from extracting cereal from starch are rich in plant fiber, but the remaining protein is entangled with plant fiber, so plant fiber It is difficult to recover high yields. In addition, these plant fibers are insoluble in water, In other words, it is also difficult to obtain water-soluble plant fiber in a high yield while minimizing protein contamination. For example, Taikira, which is a residue extracted from fats and oils and proteins from soybeans, is a water-insoluble plant fiber that still contains soybean protein, which is hydrolyzed to extract water-soluble polysaccharides. However, it is difficult to obtain high-purity plant fiber with high yield by decomposing saccharides into oligosaccharides or by mixing soybean protein and degraded soybean peptide-amino acids.
現在のところ、 このような水不溶性植物繊維から水溶性の植物繊 維を高純度で効率よく回収する方法は見当たらない。 もし、 該水溶 性植物繊維を高純度で効率よく得ることができれば、 各種のフィル ムゃ接着剤、 食品等に広範に応用できるものと考えられる。  At present, there is no method for efficiently recovering water-soluble plant fiber from such water-insoluble plant fiber with high purity. If the water-soluble plant fiber can be obtained efficiently with high purity, it is considered that it can be widely applied to various films, adhesives, foods and the like.
例えば、 プラ スティ ック製包装フ ィ ルムは自然には分解されず、 また、 コ ラーゲンフ ィ ルムやプルラ ンフ ィ ルムは微生物等によって 分解される生分解性を有するものの、 コラーゲンフ ィ ルムはヒー ト シール性が なく、 またプルラ ンフ ィ ルムは高価である問題を有す る。 しかし、 該水溶性植物繊維を用いれば、 これらの問題のないフ ィ ルムを得ることが可能となる。 For example, plastic packaging films are not naturally degraded, and collagen films and pullulan films are biodegradable by microorganisms, while collagen films are healing. Lacks sealability, and pull-run films are expensive. You. However, if the water-soluble plant fiber is used, a film free of these problems can be obtained.
また、 動物膠、 変性^粉、 アラ ビアガム、 プルラ ン、 ポ リ ビニル アルコール等の接着剤、 特に、 再湿性接着剤と しての糊剤は接着強 度が弱かったり、 高価である等実用的な問題を有するが、 該水溶性 植物繊維を用いることにより、 このような問題も解消できる。  Adhesives such as animal glue, denatured powder, arabic gum, pullulan, polyvinyl alcohol, etc., especially adhesives as rewetting adhesives are practical because they have low adhesive strength and are expensive. However, such a problem can be solved by using the water-soluble plant fiber.
さらに、 チューイ ンガムに、 例えば、 微生物由来の水溶性多糖類 であるプルラ ンを用いても、 プルラ ンは該水溶性植物繊維に比べ、 高価なうえに、 得られるチューィ ンガムは嚙み心地の持続性が弱く、 保水力が劣るが、 該水溶性植物繊锥の使用によりかかる問題も解消 できる。  Furthermore, even if, for example, pullulan, which is a water-soluble polysaccharide derived from microorganisms, is used for chewing gum, pullulan is more expensive than the water-soluble plant fiber, and the resulting chewing gum provides a longer lasting feeling. Although the water-soluble plant fiber has poor water retention and poor water retention, such a problem can be solved by using the water-soluble plant fiber.
さらにまた、 該水溶性植物繊維は低力口 リ一食品にも使用できる が、 このような低カロ リ一食品は従来知られていない。  Furthermore, the water-soluble plant fiber can be used for low-strength food products, but such low-calorie food products have not been known.
[発明の目的二  [Object of Invention 2
本発明の目的は、 蛋白質を含有する水不溶性植物繊維から水溶 ― 一 An object of the present invention is to provide a method for preparing a water-insoluble plant fiber containing protein from water. ― One
性植物繊維を製造する方法、 得られた水溶性植物繊維を用いるフィ ルム、 糊剤、 チューィ ンガムおよび低カロ リ一食品を提供すること である。 It is an object of the present invention to provide a method for producing sexual plant fiber, and a film, a paste, a chewing gum and a low calorie food using the obtained water-soluble plant fiber.
[発明の開示::  [Disclosure of the Invention ::
本発明の水溶性植物繊維の製造方法は、 蛋白質を含有する水不溶 性の植物繊維を、 蛋白質の等電点近くの酸性下において、 かつ The method for producing a water-soluble plant fiber of the present invention comprises: converting a water-insoluble plant fiber containing a protein under acidic conditions near the isoelectric point of the protein; and
1 3 0 °C以下の温度で分解させるようにしたものである。 It is designed to be decomposed at a temperature of 130 ° C or lower.
蛋白質を含有する水不溶性の植物繊維としては、 油糧種子 (例、 大豆、 パ一ム、 ヤ シ、 コー ン、 綿実、 コー ン等) の殻や油脂や蛋白 質を除いた残査、 穀類 (米、 小麦等) の粕ゃ殿粉等の除いた残查を 用いることができる。  Examples of water-insoluble plant fibers containing proteins include oilseed (eg, soybeans, pam, pear, corn, cottonseed, corn, etc.) shells and residues excluding fats and proteins, The residue of cereals (rice, wheat, etc.) excluding flour, etc. can be used.
本発明の製造方法においては水不溶性の植物繊維に含まれる蛋白 質の等電点付近 (通常酸性) で水不溶 t生の植物繊維を加熱分解する ことが適当である。 これにより、 アルカ リ分解に比べ、 蛋白質が分 解画分に溶け出すこともなく、 後で除蛋白する工程も必要でなく蛋 — o — In the production method of the present invention, it is appropriate to thermally decompose the water-insoluble raw plant fiber around the isoelectric point (usually acidic) of the protein contained in the water-insoluble plant fiber. As a result, compared to alkaline digestion, the protein does not dissolve into the digestion fraction, and no protein removal step is required later. — O —
白含量が低く、 純度の高い水溶性植物繊維を得るこ とができる: ま た、 リ ジノ アラ ニン等の有害物質の生成もな く生産的に好ま しい 水不溶性の植物篛維に aまれる蛋白質の等電点付近の P Hは通常 酸性 (p H 6以下) で、 例えば、 大豆の油脂や蛋白質を抽出した残 査であるオカ ラの場合は P H 3〜 6が好ま しい。 Highly pure water-soluble plant fiber with low white content can be obtained: It is also contained in water-insoluble plant fiber that is productively favorable without producing harmful substances such as lysinoalanine The pH near the isoelectric point of proteins is usually acidic (pH 6 or less). For example, in the case of soybean oil and the residue extracted from protein, PH 3 to 6 is preferable.
また、 水不溶性の植物繊維中に皮等の殻が含まれていると、 製造 された水溶性の植物繊維の風味力' 悪く なるため、 本発明においては 、 皮等の殻を除去したものを使用することが好ま しく、 水不溶性の 植物繊維が油糧種子に由来するものである場合には脱皮したものを 用いると、 得られる水溶性植物繊維の青臭み等を少なくすることが できる。 例えば、 大豆蛋白を含有するオカ ラの場合には、 脱皮した 大豆から得られたオカラを用いるようにすることが好ま しい: 本発明において、 蛋白質を含有する水不溶性の植物繊維を蛋白質 の等霉点近く の酸性下において分解させるのは、 蛋白質の等電点よ りかなり強い酸性下、 ^えば、 前記のよ う に大豆蛋白を含有するォ P T/JP91/00132Further, if shells such as skin are contained in the water-insoluble plant fiber, the produced water-soluble plant fiber becomes less flavorful. Therefore, in the present invention, the shell obtained by removing the shell such as the skin is used. It is preferable to use it. When the water-insoluble plant fiber is derived from oil seeds, if the water-insoluble plant fiber is used, it is possible to reduce the green odor or the like of the obtained water-soluble plant fiber. For example, in the case of soybeans containing soybean protein, it is preferable to use okaras obtained from dehulled soybeans. Decomposition under acidity near the point is under acidity considerably stronger than the isoelectric point of the protein. PT / JP91 / 00132
- - 6 - カラを P H 2以下の強い酸性下で分解させた場台には、 植物繊維が 分解され過ぎて、 植物繊維としての機能が低下すると共に、 植物繊 維と一緒に蛋白質も分薛されて溶出してしまい、 飲料等に使用する にあたって、 これを中和させた場合に液が白濁したり、 さらに p H が低いため、 中和を十分に行なわなければならず、 中和塩の量が多 くなつて、 脱塩工程が必要になったりするためである。 --6-In the place where Kara is decomposed under strong acidity of pH 2 or less, the plant fiber is decomposed too much, the function as the plant fiber is reduced and the protein is separated together with the plant fiber. When used in beverages, etc., when the solution is neutralized, the solution becomes cloudy or the pH is low, so that the solution must be sufficiently neutralized. This is because the desalination step becomes necessary as the amount increases.
一方、 蛋白質を含有する水不溶性の植物繊維を蛋白質の等電点よ り P Hがかなり高い中性あるいはアル力 リ性の下において、 例えば、 大豆蛋白を含有する前記ォカラを、 P H値が 7より高いアル力 リ性 の下で分解させるようにした場台には、 蛋白質が分解されて植物镞 維と一锗に溶出してしまい、 液が白濁したり、 分解されて生じた耱 とァミ ノ酸とが反応して黒褐色に褐変する傾向にある。  On the other hand, a water-insoluble plant fiber containing protein is neutralized or neutralized with a pH significantly higher than the isoelectric point of the protein. When the protein is decomposed under high strength, the protein is decomposed and eluted with the plant fiber, and the solution becomes cloudy or decomposed. There is a tendency for the acid to react with the acid and brown to a dark brown color.
蛋白質を含有する水不溶性の植物繊維を 1 3 0 °C以下の温度で分 解させるのは、 温度が 1 3 0 °Cより高くなると、 分解されて生じた 糖 (還元糖) とアミ ノ酸とが反応して黑褐色に褐変したり、 悪臭が 激しく なるためである: 蛋白質を含有する水不溶性の植物繊 を分 解させる温度は、 1 3 0て以下であればよいが、 分解を効率良く行 うためには、 常温以上、 好ま し く は 8 (TC以上、 より好ま し く は約 1 0 0 °C以上の温度で行うようにする- 水不溶性植物繊禚を酸性下に高温分画して得られる水溶性植物镞 維は、 好ま し く は更に活性炭処理して琮水性物質や β分子物質を除 去することが適当であり、 これにより, さらに水溶性植物繊維の純 度を上げることができる。 Water-insoluble plant fibers containing proteins are degraded at a temperature of 130 ° C or lower. When the temperature is higher than 130 ° C, the sugar (reducing sugar) and amino acid generated by the decomposition are decomposed. Reacts and turns brown, or smells bad The temperature at which protein-containing water-insoluble plant fibers are decomposed may be as low as 130 or less, but in order to perform the decomposition efficiently, it should be at or above room temperature, preferably 8 (Temperature above TC, more preferably above about 100 ° C-Water-soluble plant fibers obtained by hot fractionation of water-insoluble plant fibers under acidic conditions are preferred. Alternatively, it is appropriate to further remove activated water and β-molecular substances by treating with activated carbon, which can further increase the purity of the water-soluble plant fiber.
このよ う に して得られた水溶性植物鏟維には水溶性へ ミ セル π— スが包含され、 例えば、 大豆残査のオカラから得られた水溶性大豆 繊維は、 ラ ムノ ース、 フ コース、 ァラ ビノ ース、 キ シロース、 ガラ ク トース、 グルコースおよびゥ ロ ン酸を構成糖成分と し、 平均分子 量 5〜 1 0 0万、 纾ま しく は 1 0〜 4 G万のものである:  The water-soluble plant fiber thus obtained contains water-soluble micelles, such as, for example, water-soluble soy fiber obtained from soybean residue okara, ramose, Fucose, arabinose, xylose, galactose, glucose and carboxylic acid are the constituent sugar components and have an average molecular weight of 5 to 100,000 and preferably 10 to 4 million. Things are:
なお、 本発明の镲類の平均分子量は標準プルラ ン (林原生物化学 研究所株製) を標準物質と して 0 . 1 の X a Χ 0 3溶液中の钻度 を測定する極限粘度法で求めたものである。 また、 糖類の割合は次 の分祈法によつた。 The average molecular weight of镲類of the present invention by standard Purura emissions (manufactured by Hayashibara Biochemical Laboratories Inc.) as a standard substance 0.1 of X a chi 0 3 in the solution钻度 Is determined by an intrinsic viscosity method for measuring the viscosity. In addition, the sugar ratio was determined according to the following prayer method.
ゥ口 ン酸の測定はブルーメ ン一ク ラ ンツ (Bl umen - Krant z) 法に よった。 中性糖の測定はアルジ トールァセテ一 ト法によった。  ゥ The measurement of humic acid was performed by the Blumen-Krant z method. Neutral sugar was measured by the alditol acetate method.
かく して、 得られる本発明の水溶性植物繊維は接着性、 膜形成性、 膜の抗張性、 増粘性 (特にアル力 リ域で増粘するが酸性に戻すと粘 度も下がる性質を有する) 等に優れるものである。  Thus, the water-soluble plant fiber of the present invention obtained has the properties of adhesiveness, film-forming property, membrane tensile strength, and thickening property (particularly, the property of increasing viscosity in the alkaline region but decreasing the viscosity when returned to acidic). Has).
以下、 水不溶性植物繊維から得られた本発明の水溶性植物繊維を 利用して製造される透明な生分解性フィ ルム、 糊剤、 チューイ ンガ 厶および低力口 リ一食品について説明する。  Hereinafter, a transparent biodegradable film, a paste, a chewing gum and a low-strength raw food manufactured using the water-soluble plant fiber of the present invention obtained from the water-insoluble plant fiber will be described.
本発明のフィルムは、 薄膜で十分な強度を有し、 ヒー ト シールを 行うこともでき、 さらに製造コス トも安く、 生分解性のフ イ ルムで 該生分解性フィルムは、 水溶性植物镞維を公知の成膜方法を. ぃ て製造することができる: 例えば、 水溶性植物繊維を、 プレー トや 樹脂膜等の上に適当な厚みになるように引き伸ばし、 これを乾燥さ せて、 生分解性フ ィ ルムを製造することができる。 The film of the present invention is a thin film, has sufficient strength, can perform heat sealing, is inexpensive to manufacture, and is a biodegradable film. Fibers can be manufactured using known film forming methods: for example, water-soluble plant fiber The biodegradable film can be manufactured by stretching it to a suitable thickness on a resin film or the like and drying it.
さらに、 生分解性フ ィ ルムの特性を改良するために、 可塑剤ゃ界 面活性剤等の添加剤を加えることも可能であり、 この場合には、 前 記生分解性フ ィ ルムの可食性を損なわない添加剤を用いるようにす る こ とが好ま しい。  Further, in order to improve the properties of the biodegradable film, it is possible to add an additive such as a plasticizer and a surfactant. In this case, the biodegradable film may be used. It is preferable to use additives that do not impair the food quality.
本発明の糊剤は、 水溶性植物繊維を主成分とする接着用糊剤、 特 に、 再湿性接着剤である。  The sizing agent of the present invention is a sizing agent for adhesives containing water-soluble plant fibers as a main component, in particular, a rewet adhesive.
用いる水溶性植物繊維の蛋白含量は低い (通常、 乾燥固形分当た り 1 0重量%以下) ほど接着力が強く なり、 好ま しく は蛋白含量が 8重量%以下、 より好ま しく は 5重量%以下が適当である。  The lower the protein content of the water-soluble vegetable fiber used (usually 10% by weight or less per dry solid content), the stronger the adhesive strength, preferably the protein content is 8% by weight or less, more preferably 5% by weight. The following are appropriate:
本発明のチューィ ンガムは、 水溶性植物繊維を含有するチューィ ンガムである。  The chewing gum of the present invention is a chewing gum containing a water-soluble plant fiber.
一般に、 チューィ ンガムはガムべ一ス (通常 1 5〜 3 0重量 、 甘味料 (砂糖、 ぶどう镜、 水飴等) 、 香料 ·栄養剤 (通常 0 . 2〜 2重量%) からなる このうち、 ガムベースは天然樹脂、 酢酸ビニ ル樹脂、 ヱステルガム、 合成ガム、 天然ワ ッ ク ス、 乳化剤、 炭酸力 ルシゥム等からなる。 In general, chewing gum is gum base (usually 15 to 30 weights), sweeteners (sugar, grapes, syrup, etc.), flavors and nutrients (usually 0.2 to Of these, the gum base consists of natural resin, vinyl acetate resin, polyester gum, synthetic gum, natural wax, emulsifier, carbonated calcium carbonate, etc.
本発明のチューイ ンガム中の水溶性植物繊維の含有量はガムべ一 ス 1 0 0 重量部に対して 1〜4 0重量部、 好ま し く は 2〜3 0重 量部が適当である。 味ガム、 風船ガム等のチューイ ンガムであれば、 チューィ ンガム中の水溶性植物繊維の含有量は通常約 0 . 2〜 1 0 重量%が適当である。 低甘味のチューィ ンガムでは糖類の量が少な く なるので水溶性植物繊維の含有量はこれより多く なる。 水溶性植 物繊維の含有量が多すぎると粘弾性が増加し咀嚼時に硬くなる。 ま た、 少なすぎると本発明の効果がない。  The content of the water-soluble vegetable fiber in the chewing gum of the present invention is suitably 1 to 40 parts by weight, preferably 2 to 30 parts by weight, based on 100 parts by weight of the gum base. In the case of chewing gum such as taste gum and balloon gum, the content of the water-soluble plant fiber in the chewing gum is usually about 0.2 to 10% by weight. Low-sweet chewing gum has a higher content of water-soluble plant fiber due to the lower sugar content. If the content of the water-soluble plant fiber is too large, the viscoelasticity increases and becomes hard during chewing. If the amount is too small, the effect of the present invention is not obtained.
適度な水溶性植物繊維の含有量で、 プルラ ンに比べ、 口中での溶 解速度が遅いので嚙み心地の持続性に優れるのみならず、 香味の持 铳性にすぐれる効果がある。  With a moderate content of water-soluble plant fiber, the dissolution rate in the mouth is slower than that of pullulan, so that it not only has a long lasting feeling but also has an excellent flavor retention property.
本発明の低カロ リー食品は蛋白、 油脂および炭水化物を主原料と ' - i i - する食品において、 これらの一部を本発明の水溶性植物繊維で置換 し、 カ ロ リ ーを下げた食品である。 The low-calorie food of the present invention contains protein, fat and oil and carbohydrate as main raw materials. '-ii-In a food, the water-soluble plant fiber of the present invention is partially substituted to reduce the calories.
二実施例]  Two Examples]
以下、 実施例により本発明をさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
実施例 1  Example 1
水溶性植物繊維の製造方法  Method for producing water-soluble plant fiber
本実施例においては、 蛋白質を含有する水不溶性の植物繊維とし て脱脂大豆から分離大豆蛋白を製造する工程において得られた生ォ カ ラを使用した。 この生オカ ラ には、 水分が約 8 0重量%含まれて おり、 また、 固形分中には、 植物繊維が約 6 5重量%、 粗蛋白が約 2 0重量%含まれており、 前記蛋白の等電点は P H 4 . 5付近であつ c  In this example, as the protein-containing water-insoluble plant fiber, raw soybean obtained in the step of producing soybean protein isolated from defatted soybean was used. The raw cocoa contains about 80% by weight of water, and the solid content contains about 65% by weight of plant fiber and about 20% by weight of crude protein. The isoelectric point of the protein is around pH 4.5 c
この生オカ ラに対して、 2倍の量の水を加えた後、 これに濃度 3 6 %の塩酸を加えて p H 3〜 6に調整するようにした。 次いで、 これを 1 3 0 °C以下の温度で加熱分解した。 このようにして分解し たオカラにおいては、 水不溶性の植物織維が水溶性の植物繊維に分 解される一方、 生才力ラ中に含まれる蛋白の多くが分解されずに凝 集した状態であった。 After adding twice the amount of water to the raw chara, the pH was adjusted to 3 to 6 by adding hydrochloric acid having a concentration of 36%. Then, it was thermally decomposed at a temperature of 130 ° C. or less. Disassembled in this way In Okara, water-insoluble plant fibers were decomposed into water-soluble plant fibers, while many of the proteins contained in the genius La were aggregated without being decomposed.
得られた分解物を 8 0 0 0 r p mで 3 0分間遠心分離し、 凝集さ れた蛋白を含む沈鏺画分を除去し、 水溶性の植物繊維が溶出した上 澄液を取り出した。  The obtained decomposed product was centrifuged at 800 rpm for 30 minutes to remove the precipitated fraction containing the aggregated protein, and the supernatant from which the water-soluble plant fiber was eluted was taken out.
該上澄液中には、 水不溶性の植物繊維が分解されて得られた水溶 性の植物繊維が多く含まれる一方、 分解されて溶出する蛋白の量が 少なくなり、 溶液が褐変したり、 中和した際に液が白濁するという こともなかった。  The supernatant contains a large amount of water-soluble plant fiber obtained by decomposing water-insoluble plant fiber, while the amount of protein decomposed and eluted is reduced, and the solution browns, The solution did not become cloudy when combined.
次に、 前記のように生才力ラに 2倍の量の水を加えたものに対し て、 濃度 3 6 %の塩酸または濃度 5 0 %の水酸化ナ ト リゥムを加え る量を変えて、 その p Hを変更したり、 p H調整後のものを加熱分 解する温度を適当に変更して、 水溶性の植物繊維を製造する実験を 行い、 前記実施例の条件に該当するものと、 前記実施例の条件に該 当しないものとを比較した。 Next, the amount of adding 36% hydrochloric acid or 50% sodium hydroxide to the mixture of water and twice the amount of water as described above was changed. An experiment was conducted to produce a water-soluble plant fiber by changing the pH or by appropriately changing the temperature at which the product after the pH adjustment was heated and decomposed. According to the conditions of the embodiment, We compared those that did not hit.
(実験 No. 1〜 1 1 )  (Experiment No. 1 to 1 1)
これらの実験においては、 前記のように生オカラに 2倍の量の水 を加えたものに対し、 濃度 3 6 %の塩酸または濃度 5 0 %の水酸化 ナ トリ ウムを加える量を適当に変えて、 以下の第 1表に示すように、 その p Hが 1 ~ 1 4の範囲内になつたものを調製した。  In these experiments, the amount of 36% hydrochloric acid or 50% sodium hydroxide added to raw okara with twice the amount of water as described above was changed appropriately. As shown in Table 1 below, those whose pH was in the range of 1 to 14 were prepared.
次いで、 このように p Hを調整したものを、 1 2 0てで 1 . 5時 間加熱分解させた後、 前記のように遠心分離して沈藏画分を除去し、 上澄液を取り出した。  Then, the thus adjusted pH was decomposed by heating at 120 ° C. for 1.5 hours, and then centrifuged as described above to remove the precipitated fraction, and the supernatant was taken out. Was.
得られた上澄液を必要に応じて中和し、 その色の状態および風味 を評価し、 その結果を第 1表にあわせて表示した。  The obtained supernatant was neutralized as necessary, and its color state and flavor were evaluated. The results are shown in Table 1.
第 1表における上澄液の色の評価については、 濃褐色〜黒色の場 台を X Xで、 褐色の場台を Xで、 淡褐色の場合を△で、 無色の場台 を〇で表示した。 第 1表 実験 No. p H 色の評価 風味の評価 For the evaluation of the color of the supernatant in Table 1, the dark brown to black stage was indicated by XX, the brown stage by X, the light brown case by △, and the colorless stage by 〇. . Table 1 Experiment No. pH Evaluation of color Evaluation of flavor
x げ臭♦塩味  x Germ ♦ Salty
9 X げ臭 ·塩味  9 X odor · salty
3 △ 良好 *若干塩味  3 △ good * slightly salty
4 4 〇 良好  4 4 〇 Good
0 〇 良好  0 〇 good
6 6 〇 良好  6 6 良好 Good
7 7 Δ 良好 ·若千異味  7 7 Δ good
8 8 △ 異味  8 8 △ Off-taste
9 1 0 △ 異味 ·塩味 9 1 0 △ Off-taste, salty
1 0 1 2 X 異味 ·塩味1 0 1 2 X Offensive / Salty
1 1 1 4 X 異味 ·塩味 また、 実験 χ0. 1〜6のものについては、 上澄液中における水溶 性画分の収率、 水溶性画分中における蛋白の量 (重量%) および中 一 1 δ 1 1 1 4 X foreign taste salty addition, for those experiments chi 0. 1 to 6, the amount of protein in the water-soluble fraction of the yield, water soluble fraction in the supernatant (wt%) and medium One 1 δ
和後において水溶性画分が 4重量%含まれるように調整した水溶液 の濁度 (〇 D 610nm ) を測定した ^ After the addition, the turbidity (〇D 610 nm) of the aqueous solution adjusted to contain 4% by weight of the water-soluble fraction was measured ^
の結果は、 第 2表に示す通りであった  Are as shown in Table 2.
第 2表 実験 No. 収率 蛋白量 濁 度  Table 2 Experiment No. Yield Protein Amount Turbidity
7 8. 5 20. 5 2. 7 29 7 8.5 20.5 2.7 29
2 7. 8 1 6. 0 1. 39 6  2 7.8 1 6.0 0 1.39 6
o 7 6. 2 1 0. 5 0. 0 8 5  o 76.2 1 0 .5 0 .0 8 5
4 7 2. 9 6. 2 0. 068  4 7 2.9 6.2 0.068
0 62. 8 5. 2 0. 0 9 0  0 62. 8 5.2 2 0. 0 9 0
6 6 1. 7 7. 2 0. 1 6 1 (実験 o. 1 2-22) 6 6 1.7 7.2 0.1 6 1 (Experiment o. 1 2-22)
これらの実験においても、 生才力ラに対して 2倍の量の水を加え た。 前記実験 No. 1 1 1の場合と同様に、 濃度 3 6 %の塩酸また は濃度 50 %の水酸化ナ ト リゥムを加える量を変更させて、 以下の 第 3表に示すように、 その p Hが 1 1 4の範囲内のものを調製し プ  In these experiments, twice the amount of water was added to the genius La. As in the case of Experiment No. 11 above, the amount of adding 36% concentration of hydrochloric acid or 50% concentration of sodium hydroxide was changed, and as shown in Table 3 below, Prepare H with the range of 114
次いで、 1 30°Cで 1. 5時間加熱分解させた後、 前記と同様に 遠心分離して沈殺画分を除去し、 上澄液を取り出した。  Next, the mixture was heat-decomposed at 130 ° C. for 1.5 hours, centrifuged in the same manner as described above to remove the sedimented fraction, and the supernatant was taken out.
得られた上澄液を必要に応じて中和し、 その色の状態および風味 を前記と同様にして評価し、 その結果を第 3表に示した。 The obtained supernatant was neutralized as necessary, and its color and flavor were evaluated in the same manner as described above. The results are shown in Table 3.
系 3表 実験 No. p H 色の評価 風味の評価 System 3 Table Experiment No. pH Evaluation of color Evaluation of flavor
1 2 X こげ臭♦塩味 1 3 2 X こげ臭 ·塩味 1 4 3 Δ 良好 ·若干塩味 1 5 4 〇 良好 1 6 〇 良好 1 7 6 〇 良好 1 8 7 △ 良好 ·若干異味 1 9 8 Δ 異味1 2 X Burnt odorSalt 1 3 2 X Burnt odor · Salty 1 4 3 Δ Good · Slightly salty 1 5 4 〇 Good 16 〇 Good 1 7 6 良好 Good 1 8 7 △ Good · Slightly unusual 1 9 8 Δ Off taste
2 0 1 0 X 異味 ·塩味2 0 1 0 X Offensive / Salty
2 1 1 2 X 異味 ·塩味2 1 1 2 X Offensive / Salty
2 2 1 4 X 異味 ·塩味 P TJP91/001322 2 1 4 X Offensive saltiness P TJP91 / 00132
- - 1 8 - (実験 Xo.23〜4 4 ) --18-(Experiment Xo.23 ~ 44)
これらの実験においても、 生オカラに対して 2倍の量の水を加え た。 前記と同様に, 濃度 3 6%の塩酸または濃度 5 0 %の水酸化ナ ト リ ゥムを加える量を変更させて、 その p Hが 1〜 1 4の範囲内に なるように調整した。  In these experiments, twice the amount of water was added to the raw okara. Similarly to the above, the amount of addition of 36% hydrochloric acid or 50% sodium hydroxide was adjusted so that the pH was within the range of 1 to 14.
次いで、 実験 No.23〜 3 3のものにおいては, i 4 0 °Cで 1 · δ時間加熱分解し、 また、 実験 So.34〜4 4のものにおいては 1 δ 0°Cで 1. 5時間加熱分解した。  Next, in Experiments Nos. 23 to 33, they were thermally decomposed at i 40 ° C for 1 · δ hours, and in Experiments So 34 to 44, they were 1.5 ° C at 1 δ 0 ° C. Decomposed by heating for hours.
その後、 前記と同様に遠心分離して沈殺画分を除去し、 上澄液を 取り出し、 こを必要に応じて中和し、 その色の状態および風味を前 記と同様にして評価し、 その結果を第 4表および第 5表に示した。 Thereafter, centrifugation was performed as described above to remove the sedimented fraction, the supernatant was taken out, neutralized as necessary, and the color state and flavor were evaluated in the same manner as described above. The results are shown in Tables 4 and 5.
第 4表 実験 No. p H 色の評価 風味の評価 Table 4 Experiment No. pH Evaluation of color Evaluation of flavor
23 X X こげ臭 ·塩味 24 2 X X こげ臭 ·塩味 25 3 X げ臭 ·若干塩味 26 4 X こげ臭 27 5 △ こげ臭 28 6 △ こげ臭 2 9 7 X こげ臭23 XX Burnt odorSaltiness 24 2 XX Burnt odorSaltiness 25 3 X Burnt odorSlightly salty 26 4 X Burnt odor 27 5 △ Burnt odor 28 6 △ Burnt odor 2 9 7 X Burnt odor
3 0 8 X こげ臭3 0 8 X Burnt smell
3 1 1 0 こげ臭♦塩味3 1 1 0 Burnt smell
2 1 2 X こげ臭 ♦塩味2 1 2 X Burnt
3 3 1 4 X X こげ臭♦ 塩味 ^ o表 実験 No. p H 色の評価 風味の評価 3 3 1 4 XX Burnt smell ^ o Table Experiment No. p H Color evaluation Flavor evaluation
34 χ χ げ臭♦塩味34 χ げ Smell ♦ Salty
3 δ 2 X X げ臭 ·塩味3 δ 2 X X Smell, salty
3 6 ο X X げ臭♦若千塩味3 6 ο X X Germ
37 4 X X こげ臭 37 4 X X Burnt odor
3 8 0 X X こげ臭  3 8 0 X X Burnt smell
3 9 6 X X こげ臭  3 9 6 X X Burnt odor
4 0 X X こげ臭  4 0 X X Burnt smell
4 1 8 X X こげ臭  4 1 8 X X Burnt odor
4 2 1 0 こげ臭 ·塩味 4 2 1 0 Burnt smell, salty
4 3 1 2 x x こげ臭♦塩味4 3 1 2 x x Burnt
4 4 I 4 x x こげ臭♦塩味 前記の各実験における結果から明らかなように、 前記実施例の条 件に該当するように、 生オカ ラに 2倍の量の水を加えたものを P H 3〜 6を調整すると共に、 これを 1 3 0で以下の温度で加熱分解し た実験 (実験 No. 3〜 6および 1 4 ~ 1 8 ) のものは、 実施例の条 件に該当しない条件で分解を行った他の実験のものに比べて、 溶出 する蛋白質の量が少なく なり、 得られた溶液が白濁したり、 褐変し たりすることが少なく、 また、 風味の点においても優れていた。 実施例 2 4 4 I 4 xx Burnt smell As is evident from the results of each of the above experiments, PH 3 to 6 were prepared by adding twice the amount of water to raw okara so as to meet the conditions of the above examples, and Experiments in which heat decomposition was performed at the following temperature at 130 (Experiment Nos. 3 to 6 and 14 to 18) were performed in other experiments in which decomposition was performed under conditions that did not fall under the conditions of the examples. The amount of eluted protein was smaller than that of, and the resulting solution was less turbid or browned, and was excellent in flavor. Example 2
本実施例においては、 水不溶性の植物繊維と して、 脱脂大豆から 分離大豆蛋白を製造する工程において得られた生オカ ラを使甩した c この生オカ ラは水分が約 8 0重量%含まれており、 また、 固形分に おいては、 植物繊維が約 6 5重量%、 粗蛋白が約 2 0重量%含まれ ていた。 In the present embodiment, as the plant fibers of water-insoluble, c the raw Oka la the resulting raw Oka La was Shi甩in the process of producing the soy protein isolate from defatted soybeans contain water about 8 0% In addition, the solid content contained about 65% by weight of vegetable fiber and about 20% by weight of crude protein.
この生オカ ラに水を加えて乾燥固形分濃度が約 5重量%になるよ う に調整し、 高圧ホモゲナイザー (MAXT0 - GAUL (株)製 「Sub- icron-'dis-perser 一 ) を用いて、 200 kg/cm2 の圧力で 2回均 質化した。 Water was added to the raw okara to adjust the dry solid concentration to about 5% by weight, and a high-pressure homogenizer (MAX-T0-GAUL Co., Ltd. “Sub- Using an icron-'dis-perser 1), homogenization was performed twice at a pressure of 200 kg / cm 2 .
次に、均質化したものに等重量の水を加えて攪拌した後、 EZS比 が 1 / 1 0 0となるようにァスペルギルス♦才 リザェ(Aspergillus oryzae)由来のプロテア一ゼ (力価 24 0 pu/mg) を加え、 生才力 ラ中に含まれる蛋白を 5 0。Cで 3時間分解した。 なお、 プロテア一 ゼのカ価は、 萩原一ア ンソ ン (Anson) 法に準じて測定した。  Next, an equal weight of water was added to the homogenized mixture, and the mixture was stirred. Then, a proteinase derived from Aspergillus oryzae (titer: 240 pu) was added such that the EZS ratio was 1/1100. / mg) to add 50% of the protein in the genius. Decomposed with C for 3 hours. In addition, the potency of the protease was measured according to the Hagiwara-Anson method.
蛋白を分解したものを 80 00 r pinで 30分間遠心分離し、 可 溶化した蛋白を除去し、 残った沈殺画分に水を加えて固形分濃度が 約 4重量%になるように調整した後、 これに濃度 3 6 %の塩酸を加 えて p H 3に調整し、 1 00° Cで 6時間かけて分解を行い、 水不 溶性の植物繊維を水溶性の植物繊維に分解した。  The degraded protein was centrifuged at 800,000 rpm for 30 minutes to remove the solubilized protein, and water was added to the remaining sedimented fraction to adjust the solid concentration to about 4% by weight. Thereafter, the pH was adjusted to pH 3 by adding hydrochloric acid at a concentration of 36%, and the mixture was decomposed at 100 ° C. for 6 hours to decompose water-insoluble plant fibers into water-soluble plant fibers.
得られた分解物に 1 0 %の水酸化ナ ト.リウム溶液を加えて P H 7. 0になるように中和し、 これを 8000 r p mで 30分間遠心 分離し、 水溶性の植物繊維を多く含む水溶性画分を取り出した。 こ の水溶画分を固形分濃度が約 5重量%になるまで濃縮させた後、 こ れを合成樹脂フ ィ ルム上に薄く引き伸ばし、 乾燥して成膜し、 台成 樹脂フ ィ ル厶上から引きが剥がした。 このよ うにして得られた生分 解性フ ィ ルムは、 透明度が高く なつており、 ほとんど透明の強固な 膜であり、 また、 水に対しては分散することもなく、 全体が溶解し、 ヒー ト シールも可能であった。 The resulting digest was neutralized to pH 7.0 by adding 10% sodium hydroxide solution and centrifuged at 8000 rpm for 30 minutes to increase the amount of water-soluble plant fiber. The water-soluble fraction containing was taken out. This After concentrating the water-soluble fraction to a solid concentration of about 5% by weight, stretch it thinly on a synthetic resin film, dry it to form a film, and form a film on the base resin film. The pull came off. The biodegradable film thus obtained has high transparency, is almost transparent and strong, and does not disperse in water but dissolves in its entirety. Heat seal was also possible.
実施例 3  Example 3
本実施例においては, 前記実施例 2のように、 遠心分離して得た 水溶性の植物繊維を多く含む水溶性画分に 9 9 %のユタノ ールを加 えて 8 0 %のェタ ノ 一ル溶液になるように調整し、 水溶性画分中に おける水溶性の植物繊維の高分子画分を沈殿させた。  In this example, as in Example 2, 99% of ethanol was added to the water-soluble fraction containing a large amount of water-soluble plant fiber obtained by centrifugation, and 80% of ethanol was added. The water-soluble plant fiber was adjusted so as to be a single solution, and the high molecular weight fraction of the water-soluble plant fiber in the water-soluble fraction was precipitated.
沈殿した高分子画分を熱風乾燥させた後、 これに水を加えて 2 0 %の水溶液に調整した後、 前記実施例 2と同様に、 これを台成樹脂 フ ィ ルム上に薄く引き伸ばして乾燥し、 成膜した後、 合成樹脂フ ィ ルム上から引き剥がした。 このようにして得られた生分解性フイ ルムは、 前記実施例 2と同 様に、 ほとんど透明の強固な膜であり、 水に対しては分散すること なく全体が溶解し、 ヒー ト シールも可能であり、 さらに長期にわたつ ても透明な膜の状態で維持された。 After the precipitated polymer fraction was dried with hot air, water was added thereto to adjust the solution to a 20% aqueous solution, and then, similarly to Example 2 described above, it was thinly stretched on a base resin film to form a film. After drying and forming a film, the film was peeled off from the synthetic resin film. The biodegradable film thus obtained is almost a transparent and strong film as in Example 2 and dissolves entirely in water without dispersing, and also has a heat seal. It was possible and remained in a transparent film for a longer period.
実施例 4  Example 4
本実施例においては、 前記の生オカラに対して、 その 2倍の水を 加えた後、 濃度 3 6 %の塩酸を加えて P Hを 2 . 5に調整し、 1 0 0 で 1 . 5時間かけて分解した。  In this example, after adding twice the amount of water to the raw okara, the pH was adjusted to 2.5 by adding hydrochloric acid having a concentration of 36%, and the pH was adjusted to 100 for 1.5 hours. Decomposed over.
次いで、 分解物をホモゲナイザ一によって処理した。 このように 分解物をホモゲナイザーによつて処理することにより、 滑らかなぺ —ス トになった。  The digest was then treated with a homogenizer. By treating the decomposed product with a homogenizer in this manner, a smooth paste was obtained.
この滑らかなペース ト状の分解物に、 可塑剤としてグリセリ ンと ソルビトールとをそれぞれ 1 . 0 %加えた後、 このペース トをキヤ スティ ング法によってキャ スティ ング時における厚さが 1 . 0 mmに なるようにしてキャ スティ ングし、 これを乾燥して厚さ 0 . 1 mmに ' 一 2 δ - なった生分解性フィルムを得た。 After adding 1.0% each of glycerin and sorbitol as plasticizers to the smooth paste-like decomposition product, the paste was cast to a thickness of 1.0 mm by a casting method. And dried to a thickness of 0.1 mm. 'Obtained a biodegradable film which became 1 2 δ-.
得られた生分解性フィルムは透明性があり、 強固でかつ滑らかな 膜であり、 ヒ一 ト シ一ルも可能であった。  The obtained biodegradable film was transparent, a strong and smooth film, and was capable of heat sealing.
実施例 5  Example 5
本実施例においても、 前記実施例 4 と同様に, 生オカラに対して 2倍の水を加えた後、 濃度 3 6 %塩酸を加えてその Ρ Ηを調整した- 本実施例では, その ρ Ηを生才力ラに含まれる大豆蛋白の等電点近 く の 4 . 5に調整し、 これを 1 2 0。Cで 1 . 5時間かけて分解した。 このように生オカラを大豆蛋白の等電近くの p H 4 . 5で分解する と、 生オカラ中における水不溶性の植物繊維が適度に分解されて水 溶性の植物繊維が溶出する一方、 この生才力ラに含まれる大豆蛋白 が凝集して、 水溶性の植物繊維が溶出した水溶液側への蛋白の溶出 が抑制された。 得られた分解物を、 前記実施例 2 と同様にして 8 0 0 0 r p mで 3 0分間遠心分離し、 水溶性の植物繊維を多く含 む水溶性画分を取り出し、 この画分を固形分濃縮が約 5重量%にな T 100132In this embodiment, as in the case of the fourth embodiment, twice the water was added to the raw okara, and then the concentration was adjusted by adding 36% hydrochloric acid to the raw okara. Η was adjusted to 4.5, which is close to the isoelectric point of soy protein contained in the genius, and this was adjusted to 120. Decomposed with C for 1.5 hours. When raw okara is decomposed at a pH of 4.5 near the isoelectricity of soybean protein, water-insoluble plant fibers in raw okara are appropriately decomposed and water-soluble plant fibers are eluted. The soybean protein contained in the genius was agglomerated, and the elution of the protein into the aqueous solution from which the water-soluble plant fiber eluted was suppressed. The obtained decomposed product was centrifuged at 800 rpm for 30 minutes in the same manner as in Example 2 to obtain a water-soluble fraction containing a large amount of water-soluble plant fiber. About 5% by weight T 100132
' ' - 26 - るまで濃縮した。 ''.
次いで、 濃縮物を前記実施例 4 と同様にして成膜した。  Next, the concentrate was formed into a film in the same manner as in Example 4 above.
このようにして製造した生分解性フイ ルムは、 透明で蛋白含量の 低いものであり、 ヒー ト シールも可能であった。  The biodegradable film produced in this manner was transparent and had a low protein content, and could be heat-sealed.
実施例 6 分離大豆蛋白製造工程で得られた生才力ラに 2倍重量部の加水を し、 塩酸にて P Hを 4. 5に調製し、 1 2 0でで 1. 5時間加水分 解し、 冷却後、 遠心分離 ( 1 000 Ogx 30分間) し、 上澄と沈 藏部に分離した。 沈踡部をさらに等重量の水で水洗し、 遠心分離し て得た上澄と前記上澄とを一緒にし、 活性炭カ ラム処理をした。 得 られた液を乾燥して水溶性植物繊維 (ィ) を得た。 - さらに、 この水溶性植物繊維を 0. 5 %食塩水に溶解し、 エタ ノール濃度が 5 0 %となるように再沈餒を 3回繰り返した。 イ オ ン 交換樹脂 (オルガノ株製 Γア ンバーライ ト I R— 1 2 0B— ) を用 9 Example 6 Two times by weight of water was added to the raw material obtained in the production process of isolated soybean protein, the pH was adjusted to 4.5 with hydrochloric acid, and the mixture was hydrolyzed with 120 at 1.5 hours. After cooling, the mixture was centrifuged (1 000 Og x 30 minutes) to separate into supernatant and sediment. The sediment was further washed with an equal weight of water, and the supernatant obtained by centrifugation was combined with the supernatant, followed by activated carbon column treatment. The obtained liquid was dried to obtain a water-soluble plant fiber (i). -Furthermore, this water-soluble plant fiber was dissolved in 0.5% saline, and reprecipitation was repeated three times so that the ethanol concentration became 50%. Uses ion exchange resin (Amberlite IR-120B- from Organo) 9
いて脱塩して水溶性植物繊維 (π ) を得た To obtain water-soluble plant fiber (π)
一方、 前記方法において活性炭力ラム処理をしないで同様に水溶 性植物繊維 (ハ) を得た,  On the other hand, a water-soluble vegetable fiber (c) was similarly obtained without performing the activated carbon power ram treatment in the above method,
結果を第 6表に示す。  The results are shown in Table 6.
第 6表 組成割合 (%)  Table 6 Composition ratio (%)
成 分 ィ 水分 5. 71 7. 75 5. 10 粗蛋白 1. 93 1. 03 5. 43 粗灰分 5. 29 0. 22 δ. 30  Component Moisture 5.71 7.75 5.10 Crude protein 1.93 1.03 5.43 Crude ash 5.29 0.22 δ.30
87. 07 91. 00 84. 17  87.07 91.00 84.17
平均分子量 178Q G G 207000 114000  Average molecular weight 178Q G G 207 000 114000
活性炭処理によって色素成分ゃ琼水性成分、 低分子成分も除かれ 次に、 (ィ)、 (π)および (ハ) の水溶性植物繊維の糖組成を分析 した。 ゥ ロ ン酸の測定はブルーメ ンーク ラ ンツ (Blumen-Krantz) 法、 中性糖の測定はアルジトールァセテ一 ト法によつた Activated carbon treatment removes pigment components, aqueous components and low molecular components Next, the sugar composition of the water-soluble plant fibers (a), (π) and (c) was analyzed. Peronic acid was measured by the Blumen-Krantz method, and neutral sugar was measured by the alditol acetate method.
結果を第 7表に示'  The results are shown in Table 7 '
第 7表 糖組成 %) ィ ゥ 口 ン酸 20.4 16.9 19.4 ラムノ ース  (Table 7: Sugar composition%) Diponic acid 20.4 16.9 19.4 Rhamnose
フコース
Figure imgf000030_0001
Fucose
Figure imgf000030_0001
ァラ ビノース 19.9 19.2 23.1 キンロース 6.4 8.4 5.8 ガラ ク 卜一ス 47.3 40.8 43.4 グルコース 1.8 0.9 2.3 の水溶性植物繊維を、 J I S規格 K 6 8 4 8一 1987及び K 6 8Arabinose 19.9 19.2 23.1 Kinloose 6.4 8.4 5.8 galactose 47.3 40.8 43.4 Glucose 1.8 0.9 2.3 JIS K 6 8 4 8 1 1987 and K 6 8
5 1 一 1976 u テス ト により けや (水分 8. 比重 G.53 g/cm2) 一 を用いて接着強度試験を行った。 すなわち、 水溶性植¾ 繊維を水に溶解させて 2 0 %溶液となし、 けやきに対して 1 0 0 g/ となるよに塗布し、 加熱圧締は行わず '後 2 0 °C · R H 6 0An adhesive strength test was performed using a gel (water content 8. specific gravity G.53 g / cm 2 ) 1 by a 511-1976 u test. That is, the water-soluble plant fiber is dissolved in water to make a 20% solution, and applied so that the weight of the fiber becomes 100 g / keyaki, without heating and pressing. 6 0
% · 4 8時間乾燥後に引っ張り剪断強 8度 5 を測定した, % · 4 After drying for 8 hours, the tensile shear strength was measured at 8 ° 5,
結果を第 8表に示す  The results are shown in Table 8
第 8表 引っ張り剪断強度  Table 8 Tensile shear strength
接着強度 ( kgf /cm2 ) ィ 56.4  Adhesive strength (kgf / cm2) 56.4
44.1  44.1
ブルラ ン * 1 40.5  Bull Run * 1 40.5
ア ラ ビアガム * 2 30.7 PCI7JP91纏 32A la bea gum * 2 30.7 PCI7JP91 Summary 32
' . - 3 0 - * 1 プルラ ンは林原生物化学研究所株製 「 P F— 2 0— '.-30-* 1 Pullulan is manufactured by Hayashibara Biochemical Research Laboratories.
* 2キ シダ化学株製 「ァラ ビアガム」  * 2 "Kara Chemicals Co., Ltd."
実施例 6で得られた水溶性植物繊維の引つ張り強度が強いことが わかった。  It was found that the tensile strength of the water-soluble vegetable fiber obtained in Example 6 was strong.
また、 この水溶性植物繊維の純度が高い程引っ張り剪断強度も増 加することがわかつた。  It was also found that the higher the purity of the water-soluble plant fiber, the higher the tensile shear strength.
実施例 7  Example 7
実施例 6の (ィ) と同様にして得た水溶性植物繊維をデキス ト リ ン (シグマ株製) と第 9表に示す割合にて混合し、 実施例 6と同様 にして接着強度を測定した。 結果を第 9表に示した。 The water-soluble plant fiber obtained in the same manner as in (a) of Example 6 was mixed with dextrin (manufactured by Sigma) at the ratio shown in Table 9, and the adhesive strength was measured in the same manner as in Example 6. did. The results are shown in Table 9.
o o
第 9表 接着強度 gi / cm デ牛ス ト リ ン (ィ)  Table 9 Adhesive strength gi / cm
1 0 0 0 1 9 · 6 1 0 0 0 1 9
8 0 2 0 3 6.  8 0 2 0 3 6.
δ 0 5 0 5 0. 0  δ 0 5 0 5 0. 0
2 0 8 0 54. 9  2 0 8 0 54. 9
0 1 00 δ 8. 9 デキス ト リ ン等の糊剤と水溶性植物繊維を併用することによりデ キス ト リ ンの接着強度を増したり、 調節したりすることができる 実施例 8  0 1 00 δ 8.9 The adhesive strength of dextrin can be increased or adjusted by using a sizing agent such as dextrin and water-soluble plant fiber in combination Example 8
市販食物繊維 (日本食品加工株製 —セルフ ァー _ 、 とう もろ 二 の外皮から鏺粉、 蛋白、 脂質等を除去した繊維) 3 0 0 gに水 3 2 -Commercial dietary fiber (manufactured by Nippon Shokuhin Processing Co., Ltd.—fiber obtained by removing flour, protein, lipids, etc. from the outer skin of corn) 300 g in water 3 2-
27 0 Οί を加え、 才一 卜 ク レーブ 理 ( 1 2て >: 6 0分) して7;:: 熱分解し、 遠心分離 (5 0 0 0 g X 1 0分 して上澄を得、 二 ノ —ルをエタノール濃度が 60 %となるように加えた。 沈殿画分を回 収する操作をもう一回繰り返して得た沈澱画分を乾燥して 1 1 l g の水溶性植物繊維を得た。 この水溶性植物繊維を前記と同様に分析 した値は第 1 0表の通りであった。 Add 270 ° C, and perform a heat treatment (12>>: 60 minutes), then 7 ; :: pyrolyze, and centrifuge (500 g x 10 minutes to obtain a supernatant). And ethanol were added to bring the ethanol concentration to 60% .The operation of collecting the precipitate fraction was repeated once and the precipitate fraction was dried to obtain 11 lg of the water-soluble plant fiber. The values of this water-soluble vegetable fiber analyzed in the same manner as described above are shown in Table 10.
第 1 0表 水分 8. 7 0 %  Table 10 Moisture 8.70%
粗蛋白 0. 36 %  Crude protein 0.36%
粗灰分 1. 1 2 %  Crude ash 1. 1 2%
多糖類 8 9. 8 2 % 多糖類の組成を前記と同様にして分析した锆杲、 第 1 1 表 Polysaccharide 8 9.8 2% The composition of the polysaccharide was analyzed in the same manner as described above.
,一/ άつ  、 一 / ά つ
第 1 1表 ゥ C ン酸 4. 9 %  Table 11 ゥ C acid 4.9%
A r a ό o 9 %  A r a ό o 9%
X y 4 δ 7 %  X y 4 δ 7%
G a 6 1 %  G a 6 1%
G 1 c 4 %  G 1 c 4%
また、 前記と同様にして測定した平均分子量は 1 7 8 0 0 0で接着 強度は 3 1. 9 kgf /cm2であつ The adhesive strength average molecular weight measured in the same manner as described above in 1 7 8 0 0 0 filed in 3 1. 9 kgf / cm 2
実施例 9  Example 9
実施例 6の (ィ) と同様にして得た水溶性植物繊維 5重量部を水 分 7 0 %の水ガラ スに加えたところ、 接着速度は水ガラスだけのも のに比べ約 2倍速くなつた。 5 parts by weight of the water-soluble plant fiber obtained in the same manner as in Example 6 (a) When added to 70% water glass, the bonding speed was about twice as fast as that of water glass alone.
実施例 1 0  Example 10
混練機に酢酸ビニル樹脂 3 4 0 重量部、 天然チクル 3 3 0 重量 部、 ポリイ ソブチレン 2 0 0 童量部を添加し、 1 2 0。(:で溶融混 練した後、 グリセリン脂肪酸ヱステル 3 0重量部を加えて混練した。 さらに、 タルク (粉末) 1 0 0 重量部を添加し、 混練してガムべ —スを得た。  Add 320 parts by weight of vinyl acetate resin, 330 parts by weight of natural chickle, and 200 parts of polyisobutylene to the kneader, and add 120 parts. After melt-kneading in (:), 30 parts by weight of glycerin fatty acid ester was added and kneaded. Further, 100 parts by weight of talc (powder) was added and kneaded to obtain a gum base.
次いで、 6 0 °Cに保温したチューィ ンガム · ニーダ一に前記ガム ベース 25重量部、 実施例 6 (ィ) と同様にして得た水溶性大豆植物 繊維 5重量部、 水 5重量部、 イ ンスタ ン トコー ヒー 1重量部からな る混合物を添加♦混練した後、 粉糖 5 5重量部、 ブドウ糖 8重量部、 香料 1重量部を加えて混練した。  Next, 25 parts by weight of the gum base were added to a chewing gum kneader kept at 60 ° C., 5 parts by weight of a water-soluble soybean plant fiber obtained in the same manner as in Example 6 (a), 5 parts by weight of water, and A mixture consisting of 1 part by weight of coffee was added. ◆ After kneading, 55 parts by weight of powdered sugar, 8 parts by weight of glucose, and 1 part by weight of flavor were added and kneaded.
次に、 押出機にて厚さ 5 cmのシー ト状チューイ ンガムを吐出した 後、 圧延ローラーにて厚さ 2 に圧延した。 実施例 1 1 Next, after a sheet-like chewing gum having a thickness of 5 cm was discharged by an extruder, the sheet was rolled to a thickness of 2 by a rolling roller. Example 1 1
水溶性大豆植物繊維 (ィ) の代わりに実施例 6 (ハ) と同様にし て得た水溶性大豆植物繊維を用いる他は実施例 1 0と同様にしてチ. —ィ ンガムを得た。  A gingham was obtained in the same manner as in Example 10 except that the water-soluble soybean plant fiber obtained in the same manner as in Example 6 (c) was used instead of the water-soluble soybean plant fiber (a).
実施例 1 2  Example 1 2
実施例 8と同様にして得たとう もろこし外皮由来の水溶性植物繊 維を水溶性大豆植物繊維 (ィ) の代わりに用いる他は実施例 1 0と 同様にしてチューィ ンガムを得た。  Chewing gum was obtained in the same manner as in Example 10, except that the water-soluble plant fiber derived from corn hulls obtained in the same manner as in Example 8 was used instead of the water-soluble soybean plant fiber (a).
比較例 1  Comparative Example 1
水溶性大豆植物繊維 (ィ) および水の代わりに水飴 6 . 7 重量 部、 水 3 . 3 重量部を用いる他は実施例 1 0と同様にしてチュ一 ィ ンガムを得た。  A chewing gum was obtained in the same manner as in Example 10, except that 6.7 parts by weight of syrup and 3.3 parts by weight of water were used instead of the water-soluble soybean plant fiber (a) and water.
比較例 2  Comparative Example 2
水溶性大豆植物繊維 (ィ) の代わりにプルラ ン (林原生物化学研 究所製) を用いる他は実施例 1 0と同様にしてチューィ ンガムを得 比較例 3 Chewing gum was obtained in the same manner as in Example 10 except that pullulan (manufactured by Hayashibara Biochemical Laboratory) was used instead of the water-soluble soybean plant fiber (a). Comparative Example 3
水溶性大豆植物繊維 (ィ) の代わりにァラ ビヤガム (牛シダ化学 株製) を用いる他は実施例 1 0と同様にしてチューィ ンガムを得た c 試験 1 C test 1 in which chewing gum was obtained in the same manner as in Example 10 except that arabia gum (manufactured by Beef Fern Chemical) was used instead of the water-soluble soybean plant fiber (ii)
前記実施例および比較例で得られたチューィ ンガムを 20°C、 栢 対湿度 4 0 %RHで 1週間保存後、 30人のパネ ラーにより官能評 価しァこ  The chewing gums obtained in the above Examples and Comparative Examples were stored at 20 ° C and a humidity of 40% RH for 1 week, and then subjected to a sensory evaluation by 30 panelists.
結果を第 1 2表に示す。 The results are shown in Table 12.
o o
2表 サ ンプル 嚙みだし 味の持続 風味  Table 2 Sample sashimi
の硬さ 性 実施例 1 0 8.0 8. i 8.2  Example 1 0 8.0 8.i 8.2
実施例 1 1 8.1  Example 1 1 8.1
実施例 1 2 7.6  Example 1 2 7.6
比較例 1 8.0  Comparative Example 1 8.0
比較例 2 7.0
Figure imgf000039_0001
Comparative Example 2 7.0
Figure imgf000039_0001
比較例 3 6.8 6.3 6.4  Comparative Example 3 6.8 6.3 6.4
なお、 評価は最良を 1 0とする 1 0段階評価で行った。 数値の大き い任良好なことを示す: この試験から5月らかなごと く、 水溶性植饬 繊維を用いたチューィ ンガムは嚙みだしが柔らかく、 味の持続性の 良好なことがわかった。 The evaluation was performed on a 10-point scale with the best being 10. Large numbers indicate good results: As of May from this test, water-soluble plants The chewing gum using fiber was found to have a soft puff and a good taste persistence.
試験 2  Exam 2
前記実施例および比較例で得られたチューィ ンガムを 4 0°C、 相 対湿度 80 %R Hで 1週間保存後の水分上昇量をみた。  The amount of water rise of the chewing gums obtained in the above Examples and Comparative Examples after storage at 40 ° C. and a relative humidity of 80% RH for one week was measured.
なお、 水分上昇量は次式から計算した。  The amount of water rise was calculated from the following equation.
水分上昇量-保存後の水分一初期水分  Moisture rise-moisture after storage-initial moisture
(Δ%) (%) (%)  (Δ%) (%) (%)
結果を第 1 3表に示す。 The results are shown in Table 13.
第 1 3表 サンプル 水分の上昇量 (Δ%) 実施例 1 0 1. 0 Table 13 Sample Sample Water Rise (Δ%) Example 1 0 1.0
実施例 1 1 1. 2  Example 1 1 1.2
実施例 1 2 2. 1  Example 1 2 2.1
比較例 1 3. 4  Comparative Example 1 3.4
比較例 2 1. 9  Comparative Example 2 1. 9
比較例 3 2. 0  Comparative Example 3 2.0
この試験でわかるよう に、 水溶性へミ セルロースを用いたチュー ィ ンガムは啮みだしが柔らかいわりには吸湿性の低い良好なもの あつた 実施例 1 o 低カ ロ リ ーチ ョ コ レー ト 水溶性大豆植物繊維 (ィ) の T D F (Total Dietary Fiber) を 酵素重量法 (Prosky法) に従って測定した結果 70. 6%であった すなわち、 低カロリーの水溶性繊維であることがわかる。 そこで の低力口 リ一の水溶性繊維を用い、 次の配合で常法によりチョコレ As can be seen from this test, the chewing gum using water-soluble hemicellulose was soft but had good moisture absorption and low hygroscopicity. Example 1 o Low-calorie cholate TDF (Total Dietary Fiber) of water-soluble soybean plant fiber (a) was measured according to an enzyme gravimetric method (Prosky method) and found to be 70.6%. It turns out that it is a low calorie water-soluble fiber. Therefore, using the water-soluble fiber of the low-strength mouth, chocolate
―トを製造した, 配合表 (重量%) ―Produced, recipe (wt%)
原料 本発明 対照 απ カカオマス 8. 0 8. 0 ココアパ'ター 7. 0 7. 0 ラ ク ト 一ス 0 7. 0 水溶性繊維 1 0. 0 0 粉糖 47. 0 δ 0. 0 ココア '夕一 28. 0 28. 0 レ シチ ン 0. 3 0. 3 本発明品を試食した結果、 対照品との差は感じられなかつ 実施例 1 4 Raw material Invention Control απ cocoa mass 8.0 8.0 Cocoa pattern 7.0 7.0 Lactose 0 7.0 Water-soluble fiber 10.0 0.00 Powder sugar 47.0 δ 0.0 Cocoa One 28.0 28.0 Lecithin 0.3 0.3 0.3 As a result of tasting the product of the present invention, no difference from the control product was felt and Example 14
低カロ リーク ッキー 実施例 6と同様にして得た水溶性大豆植物繊維 (ィ) を用い、 次 の配合で常法によりク ツキ一を製造した。 配合表 (重量%)  Low calorie cookery Using the water-soluble soybean plant fiber (a) obtained in the same manner as in Example 6, a woodpecker was produced by the usual method with the following composition. Composition table (% by weight)
原料 本発明 対照口 マ一ガリ ン 26. 1 26. 1 上白糖 1 5. 7 1 δ. 7 全卵 5. 2 δ . 2  Ingredients of the present invention Control mouth Margarine 26.1 26.1 Upper sucrose 15.7 1 δ.7 Whole egg 5.2 δ.2
1¾ ^ L 0. 26 0. 26  1¾ ^ L 0.26 0.26
0. 26 0. 26  0.26 0.26
炭酸ァ ンモニゥム 0. 32 0. 32 薄力粉 39. 1 δ 2. 2 水溶性繊維 1 3. 1 0 本発明品を試食した結果、 対照品との差は感じられなかった。 Ammonium carbonate 0.32 0.32 Soft flour 39.1 δ 2.2 Water-soluble fiber 1 3.1 0 As a result of tasting the product of the present invention, no difference from the control product was felt.
[発明の効果]  [The invention's effect]
以上説明したように、 本発明により水不溶性の植物繊維から高収 率で水溶性植物繊維が製造することが可能になった。  As described above, the present invention has made it possible to produce water-soluble plant fibers from water-insoluble plant fibers at a high yield.
また、 得られた水溶性植物繊維を利用して強度が高く、 かつ不純 物も少なくて透明な生分解性フィルムの製造が可能になった。  In addition, it was possible to produce a transparent biodegradable film having high strength and less impurities by using the obtained water-soluble plant fiber.
さらに、 接着力に優れる接着用糊剤、 特に再湿性接着剤の製造が 可能になった。 本発明の糊剤はエステル化、 ヱ一テル化して接着力 を上げることもでき、 架橋させたり、 架橋剤と併用することにより 耐水性を付与することもできる。 また、 他の接着剤と併用すること ができ、 接着剤の種類により接着強度を増加させたり相乗的に接着 力を増すこともできる。  In addition, it has become possible to manufacture adhesive glues with excellent adhesive strength, especially rewetting adhesives. The sizing agent of the present invention can be esterified or esterified to increase the adhesive strength, and can be cross-linked or impart water resistance by using in combination with a cross-linking agent. Also, it can be used in combination with other adhesives, and the adhesive strength can be increased or synergistically increased depending on the type of the adhesive.
さらにまた、 唾み心地の持続性、 香味の持続性に優れたチューィ ンガムの製造が可能になった。 すなわち、 水溶性へミセルロース含 有のチューイ ンガム、 キャ ンディ 一、 ソフ トチューイ ンガム、 チュ —ィ ンガム菓子、 風船ガム等を得ることが可能になった。 In addition, it has become possible to produce chewing gum with excellent sustainability of salivation and flavor. That is, chewing gum containing water-soluble hemicellulose, candy, soft chewing gum, and chewing gum. — It is now possible to obtain ingham confectionery, balloon gum, etc.
さらにまた、 蛋白質や炭水化物の一部を本発明の水溶性植物繊維 で置換することにより低カロ リ一食品を得ることが可能になった。  Furthermore, low-calorie foods can be obtained by substituting a part of proteins and carbohydrates with the water-soluble plant fiber of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
1 . 蛋白質を含有する水不溶性植物繊維を、 該蛋白質の等電点付 近の酸性下 (P H 6以下) において 1 3 CTC以下の温度で分解する 水溶性植物繊維の製造方法。 1. A method for producing a water-soluble plant fiber, wherein a water-insoluble plant fiber containing a protein is decomposed at a temperature of 13 CTC or less under acidity (pH 6 or less) near the isoelectric point of the protein.
2 . 蛋白質を含有する水不溶性植物繊維が油糧種子または穀類に 由来する請求項 1記載の水溶性植物繊維の製造方法。  2. The method for producing a water-soluble plant fiber according to claim 1, wherein the water-insoluble plant fiber containing protein is derived from oil seeds or cereals.
3 . 油糧種子が大豆、 パーム、 ヤシ、 シァナ ツ ト、 コーン、 綿実 および菜種からなる群から選ばれた 1種または 2種である請求項 2 記載の水溶性植物繊維の製造方法。  3. The method for producing a water-soluble plant fiber according to claim 2, wherein the oil seed is one or two kinds selected from the group consisting of soybean, palm, palm, coconut, corn, cottonseed, and rapeseed.
4 . 穀類が米または小麦である請求項 2記載の水溶性植物繊維の 製造方法。  4. The method according to claim 2, wherein the cereals are rice or wheat.
5 . 蛋白質を含有する水不溶性植物辍維が才力ラである請求項 3 記載の水溶性植物繊維の製造方法。  5. The method for producing a water-soluble plant fiber according to claim 3, wherein the water-insoluble plant fiber containing the protein is a talent.
6 . 等電点付近の酸性下が P H 3〜6である請求項 1〜4のいず - 4 δ - れか 1つに記載の水溶性植物繊維の製造方法。 6. The pH under acidic conditions near the isoelectric point is PH 3-6. -4 δ-The method for producing a water-soluble plant fiber according to any one of the above.
7. 水溶性植物繊維が水溶性へミセルロースである請求項 1〜5 のいずれかに 1つ記載の水溶性植物繊維の製造方法。  7. The method for producing a water-soluble plant fiber according to any one of claims 1 to 5, wherein the water-soluble plant fiber is water-soluble hemicellulose.
8. 平均分子量が 5万〜 1 00万である請求項 1〜6のいずれか 1つに記載の水溶性植物繊維の製造方法。  8. The method for producing a water-soluble plant fiber according to any one of claims 1 to 6, wherein the average molecular weight is 50,000 to 1,000,000.
9. 平均分子量が 1 0万〜 40万である請求項 1〜6のいずれか 1つに記載の水溶性植物繊維の製造方法。  9. The method for producing a water-soluble plant fiber according to any one of claims 1 to 6, wherein the average molecular weight is 100,000 to 400,000.
1 0. ラムノース、 フ コース、 ァラ ビノ ース、 キシロース、 ガラ ク トース、 グルコースおよびゥロ ン酸を構成糖成分とする請求項 1 〜 8のいずれか 1つに記載の水溶性植物繊維の製造方法。  10. The water-soluble plant fiber according to any one of claims 1 to 8, wherein rhamnose, fucose, arabinose, xylose, galactose, glucose and peronic acid are used as constituent sugar components. Production method.
1 1. 植物性水溶性植物繊維を製膜して得た生分解性フ ィ ルム。  1 1. Biodegradable film obtained by film-forming vegetable water-soluble plant fiber.
1 2. 植物性水溶性植物繊維を主成分とする糊剤。  1 2. Sizing agent mainly composed of vegetable water-soluble plant fiber.
1 3. 植物性水溶性植物繊維を含有するチューイ ンガム。  1 3. Chewing gum containing vegetable water-soluble plant fiber.
1 4. ガムベース 1 00重量部に対し水溶性植物繊維を i〜40 重量部含有する請求項 1 1記載のチューィ ンガム。 14. The chewing gum according to claim 11, wherein the gum base contains i to 40 parts by weight of water-soluble vegetable fiber based on 100 parts by weight of the gum base.
1 5. ガムべ一ス 1 00重量部に対し水溶性植物繊維を 2〜30 重量部含有する請求項 1 1記載のチューイ ンガム。 15. The chewing gum according to claim 11, comprising 2 to 30 parts by weight of a water-soluble plant fiber based on 100 parts by weight of the gum base.
1 6. 植物性水溶性植物繊維を含有する低カ ロ リ ー食品。  1 6. Low-calorie food containing plant-based water-soluble plant fiber.
17. 低カ ロ リー食品が蛋 、 油脂および炭水化物を主原料とす る食品であって、 これらの一部を水溶性植物繊維で置換し、 カロ リ —を下げた請求項 1 6記載の低力口 リ—食品。  17. The low-calorie food according to claim 16, wherein the low-calorie food is a food mainly containing proteins, oils and fats, and carbohydrates, and a part of the low-calorie food is replaced with water-soluble plant fiber to reduce the calories. Rikiguchi Lee-food.
PCT/JP1991/000132 1990-02-07 1991-02-05 Process for producing water-soluble vegetable fiber, and biodegradable film, sizing agent, chewing gum and low-calorie food obtained from said fiber WO1991011919A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE4190252A DE4190252B4 (en) 1990-02-07 1991-02-05 Process for the preparation of water-soluble soybean fibers and their use
GB9120268A GB2256570B (en) 1990-02-07 1991-02-05 Process for production of water-soluble vegetable fibers, biodegradable film, paste, chewing gum and low calorie food products
PCT/JP1991/000132 WO1991011919A1 (en) 1990-02-07 1991-02-05 Process for producing water-soluble vegetable fiber, and biodegradable film, sizing agent, chewing gum and low-calorie food obtained from said fiber
US08/437,983 US5587197A (en) 1990-02-07 1995-05-10 Process for production of water-soluble vegetable fiber

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2788290A JP2552375B2 (en) 1990-02-07 1990-02-07 Method for producing biodegradable film
JP2/27882 1990-02-07
JP2/30677 1990-02-09
JP2030677A JP2599477B2 (en) 1990-02-09 1990-02-09 Method for producing water-soluble plant fiber
PCT/JP1991/000132 WO1991011919A1 (en) 1990-02-07 1991-02-05 Process for producing water-soluble vegetable fiber, and biodegradable film, sizing agent, chewing gum and low-calorie food obtained from said fiber

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US76841291A A-371-Of-International 1990-02-07 1991-10-07
US7694693A Continuation 1990-02-07 1993-06-16

Publications (1)

Publication Number Publication Date
WO1991011919A1 true WO1991011919A1 (en) 1991-08-22

Family

ID=27285985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000132 WO1991011919A1 (en) 1990-02-07 1991-02-05 Process for producing water-soluble vegetable fiber, and biodegradable film, sizing agent, chewing gum and low-calorie food obtained from said fiber

Country Status (1)

Country Link
WO (1) WO1991011919A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710270A (en) * 1992-03-23 1998-01-20 Fuji Oil Co., Ltd. Water-soluble polysaccharide and a process for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143554A (en) * 1983-02-04 1984-08-17 Wakoudou Kk Preparation of food
JPS6462303A (en) * 1987-09-03 1989-03-08 Japan Maize Prod Method for extracting hemicellulose
JPH01104144A (en) * 1987-10-19 1989-04-21 Takeko Suda Treatment of fiber substance obtained by treating natural husk and high fiber substance obtained by treatment thereof
JPH02303459A (en) * 1989-05-16 1990-12-17 Nippon Shokuhin Kako Co Ltd Production of water-soluble dietary fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143554A (en) * 1983-02-04 1984-08-17 Wakoudou Kk Preparation of food
JPS6462303A (en) * 1987-09-03 1989-03-08 Japan Maize Prod Method for extracting hemicellulose
JPH01104144A (en) * 1987-10-19 1989-04-21 Takeko Suda Treatment of fiber substance obtained by treating natural husk and high fiber substance obtained by treatment thereof
JPH02303459A (en) * 1989-05-16 1990-12-17 Nippon Shokuhin Kako Co Ltd Production of water-soluble dietary fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710270A (en) * 1992-03-23 1998-01-20 Fuji Oil Co., Ltd. Water-soluble polysaccharide and a process for producing the same
CN1078595C (en) * 1992-03-23 2002-01-30 不二制油株式会社 Water-soluble polysaccharide and a process for producing the same

Similar Documents

Publication Publication Date Title
US7943766B2 (en) Low-carbohydrate digestible hydrocolloidal fiber compositions
WO2006129647A1 (en) Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean
WO2008004512A1 (en) Method for producing high-protein soybean snack food
US5587197A (en) Process for production of water-soluble vegetable fiber
JPWO2019163965A1 (en) High fiber content starch suitable for food and drink
US6004616A (en) Biodegradable vegetable film
KR20170018122A (en) Method for manufacturing jujube jelly and jujube jelly manufactured by the same
CN114287564B (en) Coarse cereal fine dried noodles with strong gluten property and preparation method thereof
KR20200054957A (en) Low-carbohydrate noodles and its manufacturing method
WO1991011919A1 (en) Process for producing water-soluble vegetable fiber, and biodegradable film, sizing agent, chewing gum and low-calorie food obtained from said fiber
KR101832102B1 (en) Manufacturing method of beef flavor flake and beef flavor flake produced thereby
CN113951303A (en) Biscuit and making method thereof
JPS59203462A (en) Preparation of protein-rich soya milk
JP3393623B2 (en) Dietary fiber-containing cereal noodles and method for producing the same
FR2834862A1 (en) DEAMERIZED CHICORE, PROCESS FOR PREPARING SAME FROM CHICORE ROOTS AND APPLICATIONS THEREOF
JP3672682B2 (en) Dietary fiber production method and dietary fiber-containing food containing dietary fiber
JPS60120954A (en) Production of composite material of konjak (devil's-tongue) and bean curd
JP2919605B2 (en) Chewing gum
WO2024067922A2 (en) Functional native potato protein, and method for producing same
JPS5836945B2 (en) Manufacturing method of diet food composition
JP2552375B2 (en) Method for producing biodegradable film
KR101517735B1 (en) Meju comprising enriched rice rinse water, soybean pulp and wheat bran and a condiment sauceg using the same
JP2023028032A (en) Production method of functional rice processed food
DE4190252B4 (en) Process for the preparation of water-soluble soybean fibers and their use
KR20220055918A (en) manufacturing method of korean traditional rice taffy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB US

WWE Wipo information: entry into national phase

Ref document number: 9120268.9

Country of ref document: GB

RET De translation (de og part 6b)

Ref document number: 4190252

Country of ref document: DE

Date of ref document: 19920312

WWE Wipo information: entry into national phase

Ref document number: 4190252

Country of ref document: DE