WO1991003639A1 - Kraftstoffverteilereinspritzpumpe für brennkraftmaschinen - Google Patents

Kraftstoffverteilereinspritzpumpe für brennkraftmaschinen Download PDF

Info

Publication number
WO1991003639A1
WO1991003639A1 PCT/DE1990/000576 DE9000576W WO9103639A1 WO 1991003639 A1 WO1991003639 A1 WO 1991003639A1 DE 9000576 W DE9000576 W DE 9000576W WO 9103639 A1 WO9103639 A1 WO 9103639A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
fuel
piston
pressure
bore
Prior art date
Application number
PCT/DE1990/000576
Other languages
English (en)
French (fr)
Inventor
Walter Schlagmüller
Helmut Rembold
Gottlob Haag
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1019910701924A priority Critical patent/KR0167112B1/ko
Priority to EP90910549A priority patent/EP0489740B1/de
Priority to DE59005382T priority patent/DE59005382D1/de
Publication of WO1991003639A1 publication Critical patent/WO1991003639A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0001Fuel-injection apparatus with specially arranged lubricating system, e.g. by fuel oil

Definitions

  • the invention relates to a fuel distributor injection pump for internal combustion engines of the type defined in the preamble of claim 1.
  • the solenoid valve In a known fuel injection pump of this type of distributor (DE 36 05 452 AI), the solenoid valve is designed so that it closes when an excitation current is applied and opens when it is omitted. During the suction stroke of the pump piston, the solenoid valve remains de-energized, so that fuel can be drawn into the pump working space from the fuel inlet by the pump piston. As soon as the solenoid valve is energized, it closes and the suction process is finished. Then the compression or pressure stroke of the pump piston begins, whereby the fuel present in the pump work space is pressurized.
  • the fuel under pressure passes through the axial bore and the distributor bore in one of the distributor channels in the pump cylinder, from where the fuel is fed into the connected injection valve for injection into one of the cylinders of the internal combustion engine.
  • the fuel injection is ended as soon as the excitation of the solenoid valve is switched off.
  • the solenoid valve opens and any fuel that may still be in the pump workspace is pushed out into the fuel supply via the solenoid valve.
  • the process of opening and closing the solenoid valve thus controls the amount of fuel injection to be injected.
  • the dimensioning of the flow cross section for the fuel in the solenoid valve is problematic. In order to fill the pump workspace well, it should be as large as possible. A large flow cross section, however, requires longer ones
  • the fuel injector fuel pump according to the invention with the characterizing features of claim 1 has the advantage that the flow cross section of the solenoid valve can be kept small with good filling of the pump work space and accordingly the solenoid valve is characterized by short switching times and low power consumption. This is achieved according to the invention in that during the suction stroke of the pump piston an additional filling of the pump work space takes place via the filling and relief bore, bypassing the solenoid valve. The relief hole is thus used twice. On the one hand - as already described in DE 24 49 332 C2 - to compensate for the lateral forces during the pressure stroke of the pump piston, which act on the pump piston via the distributor bore, and - on the other hand, as an additional filling aid during the suction stroke of the pump piston.
  • the use of the relief bore for filling the pump work s has the advantage that no additional dead volume is created in the filling area, which is particularly important when using the fuel type gasoline because of its low compression module.
  • the diaphragm accumulator prevents brief pressure drops during the suction stroke of the pump piston, so that an exactly reproducible filling of the pump work space is ensured with each suction stroke.
  • the filling bores in the pump cylinder are inclined, i.e. arranged at an acute angle of inclination to the cylinder axis. This results in an elliptical opening area of the filling bores at the transition from the pump cylinder to the pump piston, which is advantageous for cross-sectional reasons, since the pump piston also executes an axial movement during the rotation.
  • the diaphragm accumulator is connected to an unpressurized fuel return via a throttle, a certain amount of fuel continuously flows out. This will make the
  • Membrane accumulator specifically flushed and additional heat loss dissipated, which promotes the accuracy and reliability of the fuel filling of the pump work space during the suction stroke.
  • the pump piston carries a on its piston section near the engine compartment within the pump cylinder annular leakage oil groove, which is connected on the one hand to the diaphragm accumulator and on the other hand to the fuel return. In this way, the small amount of leakage oil coming from the engine compartment into the annular gap between the pump piston and the pump cylinder is discharged.
  • a non-return valve is arranged in the lubricant inflow of the drive chamber and in the fuel inlet, and a pressure limiter is arranged in the lubricant outflow of the drive chamber, and in addition the feed chamber with a
  • Immersion of the pump piston in the drive chamber is used to support the filling of the pump work space due to the volume displacement of the lubricant.
  • This pressure surge acts on the membrane of the membrane accumulator
  • the lubricant pressure in the engine compartment is set approximately equal to the fuel pressure in the fuel storage space of the diaphragm accumulator.
  • a higher lubricant pressure would bias the membrane in the wrong direction and severely affect the intended effect.
  • the lubricant drain receives a pressure relief valve for pressure adjustment.
  • the lubricant flow is limited by a Throttle in lubricant inflow reached.
  • the drawing shows a longitudinal section of a fuel injection pump of the distributor type.
  • Internal combustion engine has a two-part pump housing 10, which consists of a base body 11 with a hollow cylindrical recess and a pump body 12 which is placed on the end face of the latter and which seals the hollow cylindrical recess in a liquid-tight manner.
  • the hollow cylindrical recess forms a drive chamber 13 filled with lubricating oil, which is connected to a lubricating oil circuit via a lubricating oil inflow 14 and a lubricating oil outflow 15.
  • a drive unit 16 is arranged in the drive unit space 13 and is driven by a drive shaft 17 mounted in the base body 11.
  • a pump cylinder 19 In a coaxial through bore 18 in the pump body 12, a pump cylinder 19 is inserted, in which a pump piston 20 is guided so as to be axially displaceable.
  • the pump piston 20 has an axial blind bore 26 which opens into the pump work chamber 22.
  • a radial distributor bore 27 leads from the blind bore 26 and on the other hand two radial relief bores 28, 29 arranged at a distance from one another and symmetrically to the distributor bore 27.
  • the relief bores 28, 29 are arranged diametrically to the distributor bore 27, that is to say they are rotated through 180 ° in the pump piston 20.
  • the distributor bore 27 communicates with a number of distributor channels (not visible) in the pump cylinder 19.
  • the number of distributor channels arranged offset by the same circumferential angle in the pump cylinder 19 corresponds to the number of cylinders of the internal combustion engine.
  • Each distribution channel is connected to an injection valve or injection nozzle assigned to a cylinder of the internal combustion engine.
  • the relief bore 28 connects during the rotation of the pump piston 20 with a number of filling bores 30, which are arranged offset by the same angle of rotation in the pump cylinder 19.
  • the filling bores 30, which run obliquely at an acute angle to the pump piston axis, are connected to an annular channel 31 which is connected to the inclined channel 24 leading to the diaphragm accumulator 23.
  • the number of filling bores 30 corresponds to the number of distribution channels, the
  • Filling bores 30 are arranged so that the relief bore 28 is always connected to one of the filling bores 30 when the distributor bore 27 does not correspond to one of the distributor channels.
  • the pump piston 20 is driven in a rotating and at the same time axially back and forth movement by the drive mechanism 16, for which purpose the pump piston 20 projects with its free end remote from the pump working chamber 22 into the drive mechanism chamber 13 and there with a Cam 32 is rotatably connected.
  • the cam disk 32 is axially movably connected to the drive shaft 17 via a dog clutch 33.
  • a roller holder 34 is arranged in a rotationally fixed manner.
  • the roller holder 34 carries a plurality of rollers 35 which are engaged with a cam surface formed on the end face of the cam plate 32.
  • the cam disk 32 is pressed onto the rollers 35 in the axial direction by means of a plate spring 36, which is supported on the pump body 12. If the drive shaft 17 rotates, the rotational movement is transmitted to the pump piston 20 via the dog clutch 33 and the cam disk 32. At the same time, the pump piston 20 is set in a reciprocating movement via the cam disk 32 and the rollers 35.
  • the membrane accumulator 23 has a membrane 37 which separates a fuel storage chamber 38 from a pressure chamber 39. In the fuel storage space 38, the one
  • Fuel inlet 40 is connected, the inclined channel 24 of the connection between the pump working chamber 22 and the diaphragm accumulator 23 opens.
  • the fuel storage chamber 38 is connected to a leakage oil groove 42 on the pump piston 20 via a connecting bore 41 penetrating the pump body 12 and the pump cylinder 19.
  • a throttle 50 is formed in the connecting bore 41.
  • the leakage oil groove 42 is formed as an annular groove on the piston section close to the engine compartment 13.
  • the leakage oil groove 42 is connected to a fuel return 44 via a further connection bore 43 which penetrates the pump cylinder 19 and the pump body 12.
  • the pressure chamber 39 of the diaphragm accumulator 23 can be connected to the ambient air, or - as shown in the drawing - can be connected to the engine compartment 13 via a lubricating oil hole 45 in the pump body 19.
  • a check valve 46 or 47 is arranged both on the lubricating oil inflow -14 and on the fuel inflow 40, and the lubricating oil drain 15 is provided with a pressure limiter 48.
  • the pressure limiter 48 By means of the pressure limiter 48, the pressure level in the engine compartment 13 is set to approximately the same pressure level as that prevailing in the fuel storage space 38. Limitation of the lubricating oil flow is achieved by means of a throttle 49 in the lubricating oil inflow 14.
  • the pump piston 20 is set in a rotating and back-and-forth movement by the drive shaft 17.
  • the pump piston 20 carries out a suction stroke when the volume of the pump work chamber 22 increases, when it moves downward and penetrates deeper into the engine compartment 13, and a compression or pressure stroke when the volume of the pump work chamber 22 decreases, when it moves upwards , so again moved out of the engine compartment 13.
  • the switching valve 21 is opened, so that fuel from the fuel storage space 38 of the membrane accumulator 23 via the opened connection 24, 25 into the
  • the pump piston 20 has rotated so far that at the end of the suction stroke the connection between relief bore 28 and filling bore 30 is interrupted.
  • the pump piston 20 now begins to move upward, the distributor bore 27 communicating with a distributor channel leading to an injection valve.
  • the fuel which is under injection pressure in the pump working chamber 22 is conveyed via the axial blind bore 26 and the distributor bore 27 to the associated injection valve and is injected there into the combustion chamber of the cylinder.
  • the pressure acting radially on the pump piston 20 via the distributor bore 27 is opposed by the same pressure acting radially on the pump piston 20 via the relief bores 28, 29.
  • the diaphragm accumulator 23 serves to prevent brief pressure drops during the suction stroke as a result of the large filling volume flowing out into the pump working space 22. If - as shown in the drawing - the pressure chamber 39 of the diaphragm accumulator 23 is connected to the engine compartment 13, the merabran accumulator 23 can also be used to improve the filling of the pump working chamber 22. During the suction stroke, the pump piston 20 penetrates deeper into the engine compartment 13 and causes one here
  • the pressure surge occurring in the engine compartment 13 acts in the pressure chamber 39 of the diaphragm accumulator 23 on the diaphragm 37 and brings about a brief pressure increase in the fuel storage chamber 38. This pressure increase improves and accelerates the filling of the pump work chamber 22 with fuel.
  • An optimal effect is obtained when the lubricating oil pressure in the engine compartment 13 is approximately equal to the fuel pressure usually prevailing in the fuel storage space 38 of the membrane accumulator 23. If the lubricating oil pressure is too high, the diaphragm 37 is biased in the wrong direction and the effect of the pump piston 20 immersed in the lubricating oil volume is greatly reduced.
  • the fuel storage space 38 of the diaphragm accumulator 23 By connecting the fuel storage space 38 of the diaphragm accumulator 23 to the fuel return 44, the fuel storage space 38 is flushed in a targeted manner and additional heat is dissipated. As a result, the fuel is essentially kept at a constant temperature level, which increases the reliability and reproducibility of the fuel filling of the pump work chamber 22. A restriction of the fuel outflow is achieved by means of the throttle 50.
  • the invention is not limited to the described embodiment of a fuel injection pump.
  • the relief bore 28 can be used for additional filling of the pump work chamber 22 with fuel bypassing the electromagnetic switching valve 21.
  • the filling bores 30 would then have to be designed accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Eine Kraftstoffeinspritzpumpe der Verteilerbauart für Brennkraftmaschinen weist in bekannter Weise einen in einem Pumpenzylinder (19) geführten Pumpenkolben (20) auf, der einen Pumpenarbeitsraum (22) begrenzt und von einen in einem Schmiermittelölbad eingebetteten Förderwerk (16) in eine hin- und hergehende und rotierende Bewegung angetrieben wird. Der Pumpenkolben (20) weist eine Verteilerbohrung (27) auf, die mit dem Pumpenarbeitsraum (22) in Verbindung steht und diesen nacheinander beim Druckhub des Pumpenkolbens (20) mit Einspritzdüsen verbindet. Die Kraftstoffüllung des Pumpenarbeitsraums (22) erfolgt über ein während des Saughubs des Pumpenkolbens (20) geöffnetes Magnetventil (21), das während des Druckhubs geschlossen ist. Zur Vergrößerung des Füllquerschnitts beim Saughub ohne Vergrößerung der Ventilöffnung des Magnetventils (21) wird eine im Pumpenkolben (20) angeordnete, dem Kräfteausgleich beim Druckhub dienende Entlastungsbohrung (28) herangezogen, die während des Saughubs mit einer mit dem Membranspeicher (23) verbundenen Füllbohrung (30) in Verbindung tritt.

Description

KraftstoffVerteilereinspritzpumpe für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht aus von einer Kraftstoffverteiler- einspritzpumpe für Brennkraftmaschinen der im Oberbegriff des Anspruchs 1 definierten Gattung.
Bei einer bekannten Kraftstoffeinspritzpumpe dieser Verteilerbauart (DE 36 05 452 AI) ist das Magnetventil so konzipiert, daß es bei Anlegen eines Erregerstroms schließt und bei Wegfall öffnet. Während des Saughubs des Pumpenkolbens bleibt das Magnetventil unerregt, so daß vom Pumpenkolben Kraftstoff aus dem Kraftstoffzulauf in den Pumpenarbeitsraum angesaugt werden kann. Sobald das Magnetventil erregt wird, schließt es, und der Ansaugvorgang ist beendet. Danach beginnt der Verdichtungs- oder Druckhub des Pumpenkolbens, wobei der im Pumpenarbeitsraum vorhandene Kraftstoff unter Druck gesetzt wird. Der unter Druck stehende Kraftstoff gelangt durch die Axialbohrung und die Verteilerbohrung in einen der Verteilerkanäle im Pumpenzylinder, von wo aus der Kraftstoff zur Einspritzung in einen der Zylinder der Brennkraftmaschine in das angeschlossene Einspritzventil gefördert wird. Die Kraftstoffeinspritzung ist beendet, sobald die Erregung des Magnetventils abgeschaltet wird. Das Magnetventil öffnet und evtl. noch vorhandener Kraftstoff im Pumpenarbeitsraum wird über das Magnetventil in den Kraftstoffzulauf ausgeschoben. Der Vorgang des öffnens und Schließens des Magnetventils steuert also die jeweils zur Einspritzung gelangende Kraftstoffeinspritzmenge. Problematisch ist dabei die Dimensionierung des Strömungsquerschnitts für den Kraftstoff im Magnetventil. Zwecks guter Füllung des Pumpenarbeitsraums sollte er möglichst groß sein. Ein großer Strömungsquerschnitt erfordert allerdings längere
Schaltzeiten und höhere Stromaufnahme des Magnetventils.
Vorteile der Erfindung
Die erfindungsgemäße Kraftstoff erteilereinspritzpumpe mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß bei guter Füllung des Pumpenarbeitsraums der Strömungsquerschnitt des Magnetventils klein gehalten werden kann und dementsprechend das Magnetventil sich durch kleine Schaltzeiten und geringe Stromaufnahme auszeichnet. Dies wird erfindungsgemäß dadurch erreicht, daß während des Saughubs des Pumpenkolbens über die Füll- und Entlastungsbohrung eine zusätzliche Befüllung des Pumpenarbeitsraums unter Umgehung des Magnetventils erfolgt. Die Entlastungsbohrung wird damit doppelt genutzt. Einmal - wie bereits in der DE 24 49 332 C2 beschrieben - zur Kompensierung der Seitenkräfte während des Druckhubs des Pumpenkolbens, die über die Verteilerbohrung auf den Pumpenkolben wirken, und -zum anderen als zusätzliche Füllhilfe während des Saughubs des Pumpenkolbens. Darüber hinaus hat die Verwendung der Entlastungsbohrung zum Befüllen des Pumpenarbeitsrau s den Vorteil, daß kein zusätzliches Totvolumen im Füllbereich entsteht, was speziell bei Verwendung der Kraftstoffart Benzin wegen dessen niedrigen Kompressionsmoduls von besonderer Bedeutung ist. Der Membranspeicher verhindert dabei kurzzeitige Druckeinbrüche während des Saughubs des Pumpenkolbens, so daß bei jedem Saughub eine exakt reproduzierbare Befüllung des Pumpenarbeitsraums sichergestellt ist.
Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen KraftstoffVerteilereinspritzpumpe möglich.
Gemäß einer vorteilhaften Ausführungsform der Erfindung werden die Füllbohrungen im Pumpenzylinder schräg, d.h. unter einem spitzen Neigungswinkel zur Zylinderachse, angeordnet. Dadurch ergibt sich am Übergang vom Pumpenzylinder zum Pumpenkolben eine elliptische Mündungsfläche der Füllbohrungen, was aus Querschnittsgründen vorteilhaft ist, da der Pumpenkolben während der Drehung auch eine Axialbewegung ausführt.
Wird gemäß einer weiteren Ausführungsform der Erfindung der Membranspeicher über eine Drossel an einen drucklosen Kraftstoffrücklauf angeschlossen, so strömt ständig eine gewisse Menge an Kraftstoff ab. Dadurch wird der
Membranspeicher gezielt gespült und zusätzlich Verlustwärrae abgeführt, was die Genauigkeit und Zuverlässigkeit der Kraftstoffüllung des Pumpenarbeitsraums während des Saughub fördert.
Gemäß einer weiteren Ausführungsform der Erfindung trägt de Pumpenkolben auf seinem dem Treibwerkraum naheliegenden Kolbenabschnitt innerhalb des Pumpenzylinders eine ringförmige Leckölnut, die einerseits mit dem Membranspeicher und andererseits mit dem Kraftstoffrücklauf in Verbindung steht. Auf diese Weise wird zugleich die aus dem Treibwerkraum in den Ringspalt zwischen Pumpenkolben und Pumpenzylinder gelangende geringe Leckölmenge abgeführt.
In einer bevorzugten Ausführungsform der Erfindung ist im Ξchmiermittelzufluß des Treibwerkraums und im KraftstoffZulauf jeweils ein Rückschlagventil und im Schmiermittelabfluß des Treibwerkraums ein Druckbegrenzer angeordnet und zusätzlich der Förderwerkraum mit einem
Druckraum verbunden, der im Membranspeicher von der Membran mit ihrer vom Kraftstoffspeicherraum abgekehrten Membranfläche begrenzt ist. Durch diese konstruktive Ausgestaltung wird erreicht, daß der während des Saughubs des Pumpenkolbens und des damit verbundenen tieferen
Eintauchens des Pumpenkolbens in den Treibwerkraum infolge der Volumenverdrängung des Schmiermittels auftretende Druckstoß zur Unterstützung der Befüllung des Pumpenarbeitsraums ausgenutzt wird. Dieser Druckstoß wirkt über die Membran des Membranspeichers auf den
Kraftstoffspeicherraum und erhöht hier während des Saughubs kurzfristig den Kraftstoffdruck. Das Ergebnis ist eine verbesserte Befüllung des Pumpenarbeitsraums.
Für die zuverlässige Funktion der Druckunterstützung beim Befüllen des Pumpenarbeitsraums wird gemäß einer weiteren Ausführungsform der Erfindung der Schmiermitteldruck im Treibwerkraum etwa gleich dem Kraftstoffdruck im Kraftstoffspeicherraum des Membranspeichers eingestellt. Ein höherer Schmiermitteldruck würde die Membran in die falsche Richtung vorspannen und die beabsichtigte Wirkung stark beeinträchtigen. Zur Druckeinstellung erhält der Schmiermittelabfluß ein Druckbegrenzungsventil. Eine Begrenzung des Schmiermitteldurchflusses wird durch ein Drossel im Schmiermittelzufluß erreicht.
Zeichnung
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels in der nachfolgenden Beschreibung näher erläutert. Dabei zeigt die Zeichnung einen Längsschnitt einer Kraftstoffeinspritzpumpe der Verteilerbauart.
Beschreibung des Ausführungsbeispiels
Die in der Zeichnung im Längsschnitt dargestellte KraftstoffVerteilereinspritzpumpe für eine
Brennkraftmaschine weist ein zweiteiliges Pumpengehäuse 10 auf, das aus einem Grundkörper 11 mit hohlzylindrischer Ausnehmung und einem auf diesen stirnseitig aufgesetzten Pumpenkörper 12 besteht, der die hohlzylindrische Ausnehmung flüssigkeitsdicht abschließt. Die hohlzylindrische Ausnehmung bildet einen mit Schmieröl gefüllten Treibwerkraum 13, der über einen Schmierölzufluß 14 und einen Schmierölabfluß 15 mit einem Schmierölkreislauf verbunden ist. Im Treibwerkraum 13 ist ein Treibwerk 16 angeordnet, das von einer im Grundkörper 11 gelagerten Antriebswelle 17 angetrieben wird.
In einer koaxialen Durchgangsbohrung 18 im Pumpenkörper 12 ist ein Pumpenzylinder 19 eingesetzt, in dem ein Pumpenkolben 20 axial verschiebbar geführt ist. Der Pumpenkolben 20 begrenzt zusammen mit dem nicht zu sehenden Ventilglied und Ventilsitz eines elektromagnetischen Schaltventils 21 einen Pumpenarbeitsraum 22. Das als 2-Wegeventil ausgebildete Schaltventil 21 steuert eine Verbindung zwischen dem Pumpenarbeitsraum 22 und einem Membranspeicher 23. Von dieser Verbindung ist die
Schrägbohrung 24 und die beiden Axialbohrungen 25 zu sehen. Der Pumpenkolben 20 weist eine axiale Sackbohrung 26 auf, die im Pumpenarbeitsraum 22 mündet. Von der Sackbohrung 26 führt einerseits eine radiale Verteilerbohrung 27 und andererseits zwei im Abstand voneinander und symmetrisch zur Verteilerbohrung 27 angeordnete radiale Entlastungsbohrungen 28,29 nach außen. Die Entlastungsbohrungen 28,29 sind dabei diametral zu der Verteilerbohrung 27 angeordnet, gegenüber dieser also um 180° im Pumpenkolben 20 gedreht. Die Verteilerbohrung 27 tritt bei einer Drehung des Pumpenkolbens 20 mit einer Anzahl von nicht zu sehenden Verteilerkanälen im Pumpenzylinder 19 in Verbindung. Die Anzahl der um gleiche Umfangswinkel im Pumpenzylinder 19 versetzt angeordneten Verteilerkanälen entspricht der Anzahl der Zylinder der Brennkraftmaschine. Jeder Verteilerkanal ist mit einem einem Zylinder der Brennkraftmaschine zugeordneten Einspritzventil oder Einspritzdüse verbunden. Die Entlastungsbohrung 28 tritt während der Drehung des Pumpenkolbens 20 mit einer Anzahl von Füllbohrungen 30 in Verbindung, die um gleiche Drehwinkel zueinander versetzt im Pumpenzylinder 19 angeordnet sind. Die schräg unter einem spitzen Winkel zur Pumpenkolbenachse verlaufenden Füllbohrungen 30 sind mit einem Ringkanal 31 verbunden, der an dem zu dem Membranspeicher 23 führenden Schrägkanal 24 angeschlossen ist. Die Anzahl der Füllbohrungen 30 entspricht der Anzahl der Verteilerkanäle, wobei die
Füllbohrungen 30 so angeordnet sind, daß eine Verbindung der Entlastungsbohrung 28 mit einer der Füllbohrungen 30 immer dann besteht, wenn die Verteilerbohrung 27 nicht mit einem der Verteilerkanäle korrespondiert.
Der Antrieb des Pumpenkolbens 20 in einer rotierenden und zugleich axial hin- und hergehenden Bewegung erfolgt durch das Treibwerk 16, wozu der Pumpenkolben 20 mit seinem vom Pumpenarbeitsraum 22 abgekehrten freien Ende in den Treibwerkraum 13 hineinragt und dort mit einer Nockenscheibe 32 drehfest verbunden ist. Die Nockenscheibe 32 ist axial beweglich mit der Antriebswelle 17 über eine Klauenkupplung 33 verbunden. Um die Klauenkupplung 33 ist ringförmig ein Rollenhalter 34 drehfest angeordnet. Der Rollenhalter 34 trägt eine Mehrzahl von Rollen 35, die mit einer auf der Stirnseite der Nockenscheibe 32 ausgebildeten Nockenoberfläche in Eingriff stehen. Die Nockenscheibe 32 wird mittels einer Tellerfeder 36, die sich am Pumpenkörper 12 abstützt in Axialrichtung auf die Rollen 35 gepreßt. Dreht die Antriebswelle 17, so wird die Rotationsbewegung über die Klauenkupplung 33 und die Nockenscheibe 32 auf den Pumpenkolben 20 übertragen. Gleichzeitig wird über die Nockenscheibe 32 und die Rollen 35 der Pumpenkolben 20 in eine hin- und hergehende Bewegung versetzt.
Der Membranspeicher 23 weist eine Membran 37 auf, die einen Kraftstoffspeicherraum 38 von einem Druckraum 39 trennt. In dem Kraftstoffspeicherraum 38, der mit einem
KraftstoffZulauf 40 verbunden ist, mündet der Schrägkanal 24 der Verbindung zwischen Pumpenarbeitsraum 22 und Membranspeicher 23. Außerdem ist der Kraftstoffspeicherraum 38 über eine den Pumpenkörper 12 und den Pumpenzylinder 19 durchdringende Verbindungsbohrung 41 an einer Leckölnut 42 auf dem Pumpenkolben 20 angeschlossen. In der Verbindungsbohrung 41 ist eine Drossel 50 ausgebildet. Die Leckölnut 42 ist als Ringnut auf dem dem Treibwerkraum 13 naheliegenden Kolbenabschnitt ausgebildet. Die Leckölnut 42 steht über eine weitere, den Pumpenzylinder 19 und den Pumpenkörper 12 durchdringende Verbindungsbohrung 43 mit einem Kraftstoffrücklauf 44 in Verbindung. Der Druckraum 39 des Membranspeichers 23 kann mit der Umgebungsluft verbunden sein, oder - wie in der Zeichnung dargestellt - über eine im Pumpenkörper 19 verlaufende Schmierölbohrung 45 an dem Treibwerkraum 13 angeschlossen sein. Im letzteren Fall ist sowohl am Schmierölzufluß -14 als auch am KraftstoffZulauf 40 jeweils ein Rückschlagventil 46 bzw. 47 angeordnet, sowie der Schmierölabfluß 15 mit einem Druckbegrenzer 48 versehen. Mittels des Druckbegrenzers 48 wird das Druckniveau im Treibwerkraum 13 etwa auf das gleiche Druckniveau eingestellt, wie es im Kraftstoffspeicherraum 38 herrscht. Eine Begrenzung des Schmieröldurchflusses wird mittels einer Drossel 49 im Schmierölzufluß 14 erreicht.
Die Wirkungsweise der beschriebenen Kraftstoffeinspritzpumpe ist wie folgt:
Von der Antriebswelle 17 wird der Pumpenkolben 20 in eine rotierende und hin- und hergehende Bewegung versetzt. Dabei führt der Pumpenkolben 20 unter Vergrößerung des Volumens des Pumpenarbeitsraum 22 einen Saughub aus, wenn er sich nach unten bewegt und tiefer in den Treibwerkraum 13 eindringt, und unter Verkleinerung des Volumens des Pumpenarbeitsraums 22 einen Verdichtungs- oder Druckhub aus, wenn er sich nach oben, also wieder stärker aus dem Treibwerkraum 13 herausbewegt. Während des Saughubs ist das Schaltventil 21 geöffnet, so daß aus dem Kraftstoffspeicherraum 38 des Membranspeichers 23 über die geöffnete Verbindung 24,25 Kraftstoff in den
Pumpenarbeitsraum 22 eindringen kann. Während dieses Saughubs steht auch die Entlastungsbohrung 28 mit einer der Füllbohrungen 30 in Verbindung, so daß Kraftstoff auch aus dem Kraftstoffspeicherraum 28 des Membranspeichers 23 über die Entlastungsbohrung 38 und die axiale Sackbohrung 26 in dem Pumpenarbeitsraum 22 gelangt. Bei relativ kleiner Ventilöffnung des Schaltventils 21 wird über den zweiten Füllweg ein insgesamt großer Füllquerschnitt für den Pumpenarbeitsraum 22 erzeugt, der zu einer schnellen und zuverlässigen Befüllung des Pumpenarbeitsraums 22 mit Kraftstoff führt. Die dabei erforderliche nur kleine Ventilöffnung des Schaltventils 21 ermöglicht sehr kleine Schaltzeiten des Schaltventils 21. Am Ende des Saughubs schließt das Schaltventil 21 infolge der Magneterregung. Während des Saughubs hat sich der Pumpenkolben 20 soweit gedreht, daß am Ende des Saughubs die Verbindung zwischen Entlastungsbohrung 28 und Füllbohrung 30 unterbrochen ist. Nunmehr beginnt sich der Pumpenkolben 20 nach oben zu bewegen, wobei die Verteilerbohrung 27 mit einem zu einem Einspritzventil führenden Verteilerkanal in Verbindung tritt. Der im Pumpenarbeitsraum 22 unter Einspritzdruck stehende Kraftstoff wird über die axiale Sackbohrung 26 und die Verteilerbohrung 27 zu dem zugeordneten Einspritzventil gefördert und dort in dem Brennraum des Zylinders eingespritzt. Dem über die Verteilerbohrung 27 radial auf den Pumpenkolben 20 wirkenden Druck steht ein gleicher über die Entlastungsbohrungen 28,29 radial auf den Pumpenkolben 20 wirkender Druck gegenüber. Damit wird während des Druckhubs des Pumpenkolbens 20 ein Kräfteausgleich in Radialrichtung bewirkt, so daß der Pumpenkolben 20 sich konzentrisch im Pumpenzylinder 19 bewegt und Kolbenfresser, wie sie bei Pumpenkolben 20 mit fehlenden Entlastungsbohrungen 28,29 zu beobachten sind, vermieden werden. Während des Druckhubs des Pumpenkolbens 20 sind die Entlastungsbohrungen 28,29 durch die Innenwand des Pumpenzylinders 19 abgeschlossen und besitzen keine Verbindung zu den Füllbohrungen 30. Mit Wegfall der Erregung des elektromagnetischen Schaltventils 21 öffnet dieses und die Kraftstoffeinspritzung ist beendet. Der im Pumpenarbeitsraum 22 noch vorhandene Kraftstoff wird durch den Pumpenkolben 20 in den Membranspeicher 23 ausgeschoben.
Der Membranspeicher 23 dient dazu, beim Saughub kurzzeitige Druckeinbrüche infolge des in den Pumpenarbeitsraum 22 abfließenden großen Füllvolumens zu verhindern. Ist - wie in der Zeichnung dargestellt - der Druckraum 39 des Membranspeichers 23 mit dem Treibwerkraum 13 verbunden, so kann der Merabranspeicher "23 zusätzlich zu einer verbesserten Befüllung des Pumpenarbeitsraums 22 herangezogen werden. Beim Saughub dringt der Pumpenkolben 20 tiefer in den Treibwerkraum 13 ein und bewirkt hier eine
Volumenve.rdrängung des Schmieröls. Der im Treibwerkraum 13 auftretende Druckstoß wirkt im Druckraum 39 des Membranspeichers 23 auf die Membran 37 und bewirkt eine kurzzeitige Druckerhöhung im Kraftstoffspeicherraum 38. Diese Druckerhöhung erzielt eine Verbesserung und Beschleunigung der Befüllung des Pumpenarbeitsraums 22 mit Kraftstoff. Eine optimale Wirkung erhält man, wenn der Schmieröldruck im Treibwerkraum 13 etwa gleich dem üblicherweise im Kraftstoffspeicherraum 38 des Membranspeichers 23 herrschenden Kraftstoffdruck ist. Ist der Schmieröldruck zu groß, so wird die Membran 37 in die falsche Richtung vorgespannt und die Wirkung des in das Schmierölvolumen eintauchenden Pumpenkolbens 20 ist stark reduziert.
Durch den Anschluß des Kraftstoffspeicherraums 38 des Membranspeichers 23 an den Kraftstoffrücklauf 44 wird der Kraftstoffspeicherraum 38 gezielt gespült und zusätzlich Verlustwärme abgeführt. Dadurch wird der Kraftstoff im wesentlichen auf ein gleichbleibendes Temperaturniveau gehalten, was die Zuverlässigkeit und Reproduzierbarkeit der Kraftstoffbefüllung des Pumpenarbeitsraums 22 erhöht. Mittels der Drossel 50 wird eine Begrenzung des Kraftstoffabflusses erreicht.
Die Erfindung ist nicht auf das beschriebene Ausführungsbeispiels einer Kraftstoffeinspritzpumpe beschränkt. So kann zum zusätzlichen Befüllen des Pumpenarbeitsraums 22 mit Kraftstoff unter Umgehung des elektromagnetischen Schaltventils 21 nicht nur die Entlastungsbohrung 28 sondern auch noch zusätzlich die Ξntlastungsbohrung 29 herangezogen werden. Die Füllbohrungen 30 wären dann entsprechend auszubilden.

Claims

Ansprüche
1. KraftstoffVerteilereinspritzpumpe für Brennkraftmaschine mit einem in einem Pumpenzylinder geführten Pumpenkolben, der einen Pumpenarbeitsraum begrenzt und mit seinem vom Pumpenarbeitsraum abgekehrten Ende in einen über einen Schmiermittelzu- und -abfluß mit Schmiermittel gefüllten Treibwerkraum hineinragt, mit einem im Treibwerkraum angeordneten Treibwerk, das die Rotation einer Antriebswelle in eine hin- und hergehende ° und zugleich drehende Bewegung des Pumpenkolbens umsetzt, mit einer im Pumpenkolben angeordneten radialen Verteilerbohrung, die über eine Axialbohrung im Pumpenkolben mit dem Pumpenarbeitsraum in Verbindung steht und während des Druckhubs des Pumpenkolbens 5 infolge dessen Drehbewegung nacheinander mit jeweils einer von zu Einspritzventilen führenden Verteilerkanälen im Pumpenzylinder in Verbindung tritt, und mit einem mit einem KraftstoffZulauf und dem Pumpenarbeitsraum in Verbindung stehenden Magnetventil zum Steuern der vom Pumpenkolben zu den Einspritzventilen geförderten Kraftstoffeinspritzmenge, dadurch gekennzeichnet, daß in der Verbindung (24,25) zwischen Magnetventil (21) und Kraftstoffzulauf (40) ein von einer Membran (37) begrenzter Kraftstoffspeicherraum (38) eines Membranspeichers (23) angeordnet ist, daß im Pumpenkolben (20) mindestens eine zur Verteilerbohrung (27) diametral verlaufende Entlastungbohrung (28) vorgesehen ist, die in der Axialbohrung (26) mündet und während der Drehbewegung des Pumpenkolbens (20) mit
Füllbohrungen (30) im Pumpenzylinder (19) in Verbindung tritt, und daß die Füllbohrungen (30) mit dem Kraftstoffspeicherraum (38) des Membranspeichers (23) verbunden und im Pumpenzylinder (19) so angeordnet sind, daß die Verbindung zur Entlastungsbohrung (28) während eines jeden zwischen den Druckhuben erfolgenden Saughubs des Pumpenkolbens (20) besteht und während des Druckhubs unterbrochen ist.
2. Einspritzpumpe nach Anspruch 1, dadurch gekennzeichnet, daß die Füllbohrungen (30) unter einem spitzen Winkel zur Zylinderachse des Pumpenzylinders (19) verlaufen.
3. Einspritzpumpe nach Anspruch 1 ode 2, dadurch gekennzeichnet, daß der Kraftstoffspeicherraum (38) des Membranspeichers (23) über eine Drossel (50) an einen Kraftstoffrücklauf (44) angeschlossen ist.
4. Einspritzpumpe nach Anspruch 3, dadurch gekennzeichnet, daß der Pumpenkolben (20) auf seinem dem Treibwerkraum (13) naheliegenden Kolbenabschnitt innerhalb des Pumpenzylinders (19) eine ringförmige Leckölnut (42) trägt und daß im Innenmantel des Pumpenzylinders (19) im Bereich der Leckölnut. (42) eine erste mit dem Kraftstoffspeicherraum (38) des Membranspeichers (23) und eine zweite mit dem Kraftstoffrücklauf (44) verbundene Verbindungsbohrung (41,43) mündet.
5. Einspritzpumpe nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß im Schmierölzufluß (14) des Treibwerkraums (13) und im KraftstoffZulauf (40) jeweils ein Rückschlagventil (46,47) und im Schmiermittelabfluß (15) des Treibwerkraums (13) ein Druckbegrenzer (48) angeordnet ist und daß der Treibwerkraum (13) mit einem im Membranspeicher (23) von der Membran (37) mit ihrer ° vom Kraftstoffspeicherraum (38) abgekehrten
Membranfläche begrenzten Druckraum (39) verbunden ist.
6. Einspritzpumpe nach Anspruch 5, dadurch gekennzeichnet, daß der Schmiermitteldruck im Treibwerkraum (13) auf etwa das gleiche Druckniveau wie der Kraftstoffdruck im Kraftstoffspeicherraum (38) des Membranspeichers (23) eingestellt ist.
7. Einspritzpumpe nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß im Schmiermittelzufluß (14) eine Drossel (49) angeordnet ist.
PCT/DE1990/000576 1989-08-30 1990-07-26 Kraftstoffverteilereinspritzpumpe für brennkraftmaschinen WO1991003639A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019910701924A KR0167112B1 (ko) 1989-08-30 1990-07-26 내연기관용 연료 분배식 분사 펌프
EP90910549A EP0489740B1 (de) 1989-08-30 1990-07-26 Kraftstoffverteilereinspritzpumpe für brennkraftmaschinen
DE59005382T DE59005382D1 (de) 1989-08-30 1990-07-26 Kraftstoffverteilereinspritzpumpe für brennkraftmaschinen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3928612.6 1989-08-30
DE3928612A DE3928612A1 (de) 1989-08-30 1989-08-30 Kraftstoffverteilereinspritzpumpe fuer brennkraftmaschinen

Publications (1)

Publication Number Publication Date
WO1991003639A1 true WO1991003639A1 (de) 1991-03-21

Family

ID=6388143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1990/000576 WO1991003639A1 (de) 1989-08-30 1990-07-26 Kraftstoffverteilereinspritzpumpe für brennkraftmaschinen

Country Status (6)

Country Link
US (1) US5207201A (de)
EP (1) EP0489740B1 (de)
JP (1) JPH05500697A (de)
KR (1) KR0167112B1 (de)
DE (2) DE3928612A1 (de)
WO (1) WO1991003639A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4315646A1 (de) * 1993-05-11 1994-11-17 Bosch Gmbh Robert Kraftstoffeinspritzpumpe für Brennkraftmaschinen
JP3567485B2 (ja) 1994-05-13 2004-09-22 株式会社デンソー 燃料噴射ポンプ
US6161770A (en) 1994-06-06 2000-12-19 Sturman; Oded E. Hydraulically driven springless fuel injector
US6257499B1 (en) 1994-06-06 2001-07-10 Oded E. Sturman High speed fuel injector
US5471959A (en) * 1994-08-31 1995-12-05 Sturman; Oded E. Pump control module
US6148778A (en) 1995-05-17 2000-11-21 Sturman Industries, Inc. Air-fuel module adapted for an internal combustion engine
DE19531811A1 (de) * 1995-08-30 1997-03-06 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE19543116A1 (de) * 1995-11-18 1997-05-22 Bosch Gmbh Robert Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE19542952A1 (de) * 1995-11-18 1997-05-22 Bosch Gmbh Robert Kraftstoffeinspritzpumpe für Brennkraftmaschinen
US6085991A (en) 1998-05-14 2000-07-11 Sturman; Oded E. Intensified fuel injector having a lateral drain passage
DE10156429A1 (de) * 2001-11-16 2003-06-12 Bosch Gmbh Robert Hochdruckkraftstoffpumpe mit entlüftetem Membranspeicher
US6668797B2 (en) * 2002-05-13 2003-12-30 Advanced Vehicle Technologies Fuel injection pump system
US9334968B2 (en) 2013-10-10 2016-05-10 PSI Pressure Systems Corp. High pressure fluid system
USD749692S1 (en) 2014-10-08 2016-02-16 PSI Pressure Systems Corp. Nozzle
JP6411313B2 (ja) * 2015-11-26 2018-10-24 ヤンマー株式会社 燃料噴射ポンプ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB468958A (en) * 1936-01-15 1937-07-15 John Forster Alcock Improvements in fuel injection pumps for internal combustion engines
US2582535A (en) * 1948-04-14 1952-01-15 Preeision Mecanique Soc Fuel injection pump
GB2090632A (en) * 1980-12-29 1982-07-14 Spica Spa Distributor pump for injecting fuel into internal combustion engines
US4412519A (en) * 1982-09-13 1983-11-01 General Motors Corporation Diesel fuel distributor type injection pump
US4697565A (en) * 1984-12-28 1987-10-06 Diesel Kiki Co., Ltd. Distributor-type fuel injection pump

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3017276A1 (de) * 1980-05-06 1981-11-12 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
US4485789A (en) * 1981-07-31 1984-12-04 The Bendix Corporation Fuel injector with inner chamber vacuum
JPS5912131A (ja) * 1982-07-13 1984-01-21 Nippon Denso Co Ltd 燃料噴射ポンプの噴射率制御装置
DE3310049A1 (de) * 1983-03-19 1984-09-20 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzeinrichtung zur einspritzung einer aus mindestens zwei komponenten bestehenden kraftstoffmischung
JPS623133A (ja) * 1985-06-28 1987-01-09 Nippon Soken Inc 内燃機関の燃料噴射制御装置
DE3719831A1 (de) * 1987-06-13 1988-12-22 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE3722265A1 (de) * 1987-07-06 1989-01-19 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE3722264A1 (de) * 1987-07-06 1989-01-19 Bosch Gmbh Robert Kraftstoffeinspritzanlage fuer brennkraftmaschinen
US5000668A (en) * 1988-04-27 1991-03-19 Diesel Kiki Co., Ltd. Distribution-type fuel injection pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB468958A (en) * 1936-01-15 1937-07-15 John Forster Alcock Improvements in fuel injection pumps for internal combustion engines
US2582535A (en) * 1948-04-14 1952-01-15 Preeision Mecanique Soc Fuel injection pump
GB2090632A (en) * 1980-12-29 1982-07-14 Spica Spa Distributor pump for injecting fuel into internal combustion engines
US4412519A (en) * 1982-09-13 1983-11-01 General Motors Corporation Diesel fuel distributor type injection pump
US4697565A (en) * 1984-12-28 1987-10-06 Diesel Kiki Co., Ltd. Distributor-type fuel injection pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 13, no. 380 (M-863)() 23 August 1989, & JP-A-01 134062 (NIPPON DENSO CO. LTD.) 26 Mai 1989, siehe das ganze Dokument *

Also Published As

Publication number Publication date
JPH05500697A (ja) 1993-02-12
KR920702750A (ko) 1992-10-06
EP0489740A1 (de) 1992-06-17
KR0167112B1 (ko) 1998-12-15
DE3928612A1 (de) 1991-03-07
EP0489740B1 (de) 1994-04-13
US5207201A (en) 1993-05-04
DE59005382D1 (de) 1994-05-19

Similar Documents

Publication Publication Date Title
EP0489740B1 (de) Kraftstoffverteilereinspritzpumpe für brennkraftmaschinen
EP0733798A2 (de) Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicherprinzip für Brennkraftmaschinen
EP0295420B1 (de) Kraftstoffeinspritzpumpe
DE19801294A1 (de) Hochdruckkraftstoffpumpe
DE3235413A1 (de) Brennstoffeinspritzvorrichtung
DE19545162B4 (de) Brennstoffeinspritzvorrichtung mit federvorgespanntem Steuerventil
DE4417950C1 (de) Einspritzsystem
EP0694123A1 (de) Einspritzsystem
EP0290797B1 (de) Kraftstoffeinspritzpumpe
EP0235569B1 (de) Einrichtung zum wahlweisen Einspritzen von Dieselöl und Zündöl in den Brennraum einer Dieselöl oder mit Gas als Hauptbrennstoff betriebenen Hubkolbenbrennkraftmaschine
EP0775260B1 (de) Kraftstoffeinspritzpumpe
EP0688950A1 (de) Kraftstoffeinspritzsystem
DE19515782A1 (de) Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen
DE19833692C2 (de) Injektoreinheit mit Zeitsteuerplungerkolben mit festem Anschlag
DE60018245T2 (de) Brennstoffinjektor
WO1999028620A1 (de) Schnellstart einer hochdruckpumpe mittels druckübersetzungskolben
DE3743532A1 (de) Kraftstoffeinspritzanlage fuer brennkraftmaschinen
DE3347430A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
EP0265460A1 (de) Kraftstoffeinspritzpumpe für brennkraftmaschinen.
DE3911160C2 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
EP1423599A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
EP0461213B1 (de) Kraftstoffeinspritzpumpe für brennkraftmaschinen
EP0318534A1 (de) Verteilerkraftstoffeinspritzpumpe der radialkolbenbauart.
DE3236828A1 (de) Brennstoffeinspritzvorrichtung
DE3719832A1 (de) Kraftstoffeinspritzpumpe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990910549

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990910549

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990910549

Country of ref document: EP