WO1991001386A1 - Verfahren zum härten der schneidkanten von sägen, messern und stanzwerkzeugen - Google Patents

Verfahren zum härten der schneidkanten von sägen, messern und stanzwerkzeugen Download PDF

Info

Publication number
WO1991001386A1
WO1991001386A1 PCT/AT1990/000071 AT9000071W WO9101386A1 WO 1991001386 A1 WO1991001386 A1 WO 1991001386A1 AT 9000071 W AT9000071 W AT 9000071W WO 9101386 A1 WO9101386 A1 WO 9101386A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
cutting edge
axis
indicates
jet
Prior art date
Application number
PCT/AT1990/000071
Other languages
English (en)
French (fr)
Inventor
Albert Schuler
Wladimir Tokmakov
Original Assignee
Albert Schuler
Wladimir Tokmakov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT179689A external-priority patent/AT392483B/de
Priority claimed from AT245189A external-priority patent/AT392981B/de
Application filed by Albert Schuler, Wladimir Tokmakov filed Critical Albert Schuler
Priority to DE59008039T priority Critical patent/DE59008039D1/de
Priority to EP90910482A priority patent/EP0483182B1/de
Publication of WO1991001386A1 publication Critical patent/WO1991001386A1/de
Priority to FI920328A priority patent/FI95048C/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/24Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for saw blades

Definitions

  • the invention relates to a method for hardening the cutting edges of saws, in particular for woodworking, as well as knives or punching tools for wood, paper, cardboard, plastics, leather or textile processing by means of an energy beam which is applied to the material to be hardened Areas of these tools is guided.
  • Saws, knives or punching tools for the named area of wear wear on the cutting edges.
  • the service life of these tools depends on the quality of the cutting edge (material used, hardening process), the material to be cut and the cutting performance. After the end of the service life, these tools are either reground or scrapped.
  • Many types of saws, knives and punching tools are made of carbon steel, which can be easily hardened by heating and subsequent rapid cooling. However, since such hardening is always associated with a decrease in toughness, great hardness is only desired in the area of the cutting edges.
  • the remaining parts of a saw, a knife or a punching tool should have a lower hardness but a higher toughness.
  • a further known hardening process is inductive hardening. After the cutting edge has been ground, the cutting area is heated by an eddy current, generated by a high-frequency alternating magnetic field, and hardened by rapid cooling.
  • the object of the present invention is to provide a method for hardening the cutting edges of saws, knives and punching tools, in which an energy beam which is simple to produce and inexpensive to use is used.
  • a plasma jet is used as the energy jet, the plasma jet being guided at a relative speed with respect to the tool of 5 to 100 mm / sec and the distance of the outlet nozzle of the plasma torch from the cutting edge is in the range between 2 and 14 mm and furthermore the power of the plasma jet is between 1 and 10 kW, and the diameter at the outlet nozzle of the plasma torch is between 3 and 7 mm.
  • the heating and cooling speed is adjusted to the optimum values for different i-c: - material thickness and cutting edge angle.
  • the feed rate should be chosen higher, since otherwise the cooling rate is too low due to the limited heat dissipation into the base material for sufficiently high hardening is.
  • the feed rate can be selected to be smaller in order to achieve larger hardness zones.
  • Plasma jets are produced by ionization of argon or nitrogen or mixed gases.
  • the ionization takes place by an electric arc discharge or by excitation with a high-frequency electromagnetic field.
  • REPLACEMENT LEAF The shape of the electrodes or the nozzles is aimed at a jet, in whose axis temperatures of up to 15,000 ° C are reached.
  • a plasma jet with the parameters according to the invention is guided over the ground cutting edge of a saw, a knife or a punching tool, then it heats up a local area of the cutting edge with heating rates of up to 5000 K / sec. After the end of the energy supply, the cutting edge cools down by self-scaring, i.e. by dissipating heat into the base material of the tool at cooling speeds of up to 1000 K / sec. This creates a fine-grained martensite structure with hardnesses up to 1000 HV (Vickers hardness).
  • Power of the plasma beam 1 to 5 kW
  • Plasma torch outlet nozzle 4 to 5.5 mm
  • Plasma torch from the cutting edge 3 to 9 mm
  • Relative speed of the plasma jet with respect to the cutting edge 15 to 50 mm / sec
  • a knife or a punching tool is preferably guided by mechanical movement along the cutting edge through the plasma beam, the axis of the plasma beam coinciding with the axis of symmetry of the cutting edge. In this way, the most uniform possible heat is achieved over the flanks of the cutting edge.
  • the plasma jet is guided across the back of the tooth in the region of the upper cutting edge by mechanical movement of the plasma torch transversely to the saw blade. In this way, the most uniform possible heat exposure over the entire length of the cutting edge
  • REPLACEMENT LEAF Tooth tip achieved.
  • An electromagnetic deflection by means of a coil which is arranged in the area between the cathode and the lower edge of the nozzle, enables a defined broadening of the plasma jet and thus an adaptation to the tooth geometry (for example with set saws).
  • the difference from the known method of deflecting the plasma jet electromagnetically during the reflow treatment (build-up welding) is that the electromagnetic field acts in the area between the lower edge of the nozzle and the workpiece surface. With this method, a focal spot of the arc must be on the workpiece surface. This known method does not work in plasma curing, since the arc must burn between the cathode and the lower edge of the nozzle.
  • the axis of the plasma jet (c eg 90, 135 ° or half the cutting angle) assumes a certain angle to the axis of symmetry of the cutting edge.
  • a distribution of the hardening zone which is asymmetrical with respect to the axis of symmetry and thus an adaptation to special wear situations can be achieved in this way.
  • knife blades with a thickness of more than 5 mm a good adaptation of the hardness zone to different cutting edge geometries is possible.
  • FIG 1 schematically shows the basic arrangement of the plasma system using the example of saw hardening.
  • the plasma torch 1 uses an electrical arc discharge to generate a plasma jet 2 from the gas supplied, which emerges at the outlet nozzle of the plasma torch 1.
  • the distance between the exit nozzle and the cutting edge is a.
  • REPLACEMENT LEAF The plasma jet is directed onto the tooth tip 5 of a saw tooth and heats this area. After the end of the energy effect, the heated area cools rapidly and hardens. Then the saw blade 3 is moved further and the plasma beam is directed onto the tooth tip 5a of the following tooth 4a.
  • Figure 2 shows the area of the tooth tip of a saw blade in detail in an axonometric view.
  • the plasma jet has a diameter d and is moved at a relative speed v either along the cutting edge 6 or in the direction of the teeth.
  • FIG 3 shows schematically the basic arrangement of the plasma system using the example of a knife hardening.
  • the plasma beam is directed onto the cutting edge 9 of the knife at an angle ⁇ and is moved along this edge at the speed v, this edge being heated. After the end of the energy exposure, the heated area cools down quickly by self-deterrence and hardens.
  • Figure 4 shows schematically a cross section through the plasma torch in the region of the outlet nozzle.
  • An electro-magnet 10 arranged in the area between the cathode 8 and the lower edge 11 of the nozzle, causes an expansion of the plasma jet 2 by high-frequency deflection of the arc within the area of the nozzle.
  • Example 1 Hardening a frame saw.
  • strip steel B412 alloy steel with 0.85% C, 0.3% Si,
  • Width b of the cutting edge 3.5 mm
  • Plasma power 2.5 3.5
  • Beam diameter d in mm
  • 4.0 4.0
  • Distance a in mm
  • Feed rate 25 30 20
  • HV maximum hardness
  • Example 2 Hardening a circular saw.
  • Material saw steel B412, 50 teeth, tooth spacing 30 mm.
  • Width b of the cutting edge 4.0 mm
  • Plasma power kW
  • Beam diameter d in mm
  • Distance a in mm
  • Saw steel B412 band length 6 m, tooth spacing 15 mm.
  • Width b of the cutting edge 1.5 mm, hardness in the untreated state 410 HV.
  • Plasma power 1.5 beam diameter (d in mm) 3.0 distance (a in mm) 5.0 feed speed 20
  • Example 4 Hardening a punch knife for leather and textiles:
  • Thickness 2 mm
  • Plasma power (kW) 1 2 4 Beam diameter (d in mm) 4 4 4 4 4 Distance (a in mm) 4 6 8 Angle between the plasma axis and
  • HV maximum hardness
  • REPLACEMENT LEAF Example 5 Hardening a planer knife for woodworking

Abstract

Verfahren zum Härten der Schneidkanten von Sägen, Messern und Stanzwerkzeugen, vornehmlich für die Bearbeitung von Holz, Papier, Karton, Kunststoffen, Leder und Textilien mittels eines Energiestrahles, der über die zu härtenden Bereiche des Werkszeuges geführt wird. Eine optimale Härtung wird dadurch erreicht, daß als Energiestrahl ein Plasmastrahl verwendet wird, wobei der Plasmastrahl (2) mit einer Relativgeschwindigkeit (v) in bezug auf die Schneidkante des Werkzeuges von 5 bis 100 mm/sek geführt wird und wobei der Abstand der Austrittsdüse des Plasmabrenners (1) von der Schneidkante 2 bis 14 mm beträgt und wobei weiters die Leistung des Plasmastrahles zwischen 1 und 10 kW liegt, sowie der Durchmesser (d) bei der Austrittsdüse des Plasmabrenners (1) 3 bis 7 mm beträgt.

Description

VERFAHREN ZUM HÄRTEN DER SCHNEIDKANTEN VON SÄGEN, MESSERN UND
STANZWERKZEUGEN
Die Erfindung betrifft ein Verfahren zum Härten der Schneidkanten von Sägen, insbesonders für die Holzbearbeitung, sowie Messern oder Stanzwerkzeugen für die Holz-, Papier-, Kar- tonagen-, Kunststoff-, Leder- oder Textilienbearbeitung mittels eines Energiestrahles, der über die zu härtenden Bereiche die¬ ser Werkzeuge geführt wird. Sägen, Messer oder Stanzwerkzeuge für den genannten Einsatzbereich verschleißen an den Schneid¬ kanten. Die Standzeit dieser Werkzeuge hängt ab von der Quali¬ tät der Schneide (verwendetes Material, Härteverfahren), vom Schneidgut und von der Schnittleistung. Nach dem Ende der Standzeit werden diese Werkzeuge entweder nachgeschliffen oder verschrottet. Viele Sägen-, Messer- und Stanzwerkzeugtypen be¬ stehen aus Kohlenstoffstahl, der durch Erwärmung und anschlie¬ ßender schneller Abkühlung leicht gehärtet werden kann. Da eine solche Härtung jedoch stets mit der Abnahme der Zähigkeit ver¬ bunden ist, ist eine große Härte lediglich im Bereich der Schneidkanten erwünscht. Die übrigen Teile einer Säge, eines Messers oder eines Stanzwerkzeuges sollen eine geringere Härte, dafür jedoch eine größere Zähigkeit aufweisen.
Bekannte Verfahren zur partiellen Härtung der Schneidkanten verwenden Elektronen- oder Laserstrahlen als En¬ ergiequelle. Nachteilig bei der Härtung mit Elektronenstrahlen oder Laserstrahlen sind die aufwendigen Vorrichtungen die zur Durchführung solcher Verfahren benötigt werden. Av - diesem Grund haben sich solche Verfahren in der Praxis biEier kaum durchgesetzt.
Ein weiters bekanntes Härtungsverfahren ist die In¬ duktive Härtung. Nach dem Schleifen der Schneidkante wird der Schneidenbereich durch einen Wirbelstrom, erzeugt durch ein hochfrequentes magnetisches Wechselfeld, erhitzt und durch ra¬ sche Abkühlung gehärtet.
Weiters ist es aus der WO 83/00051 bekannt, eine oberflächige Härtung flächiger Bereiche mittels eines Plas¬ mastrahles durchzuführen. Eine Härtung von Schneidkanten mit¬ tels Plasmastrahlen wurde bisher noch nicht in Betracht gezo-
ERSÄTZBLATT gen, da solche Plasmastrahlen eine zu geringe Stabilität auf¬ weisen.
Bei Sägen ist das Aufschweißen von Stellite auf die Zahnspitzen bekannt. Das aufgeschweißte Stellite-Material wird anschließend auf die gewünschte Zahnspitzenform zugeschliffen. Dieses Verfahren ist jedoch sehr aufwendig. Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Härten der Schneidkanten von Sägen, Messern und Stanzwerkzeugen anzugeben, bei dem ein einfach herzustellender und kostengünstig zu be¬ treibender Energiestrahl verwendet wird.
Erfindungsgemäß ist daher vorgesehen, daß als Ener¬ giestrahl ein Plasmastrahl verwendet wird, wobei der Plas¬ mastrahl mit einer Relativgeschwindigkeit in Bezug auf das Werkzeug von 5 bis 100 mm/sek geführt wird und wobei der Ab¬ stand der Austrittsdüse des Plasmabrenners von der Schneidkante im Bereich zwischen 2 und 14 mm liegt und wobei weiters die Leistung des Plasmastrahles zwischen 1 und 10 kW liegt, sowie der Durchmesser bei der Austrittsdüse des Plasmabrenners zwi¬ schen 3 und 7 mm liegt.
Überraschenderweise wurde festgestellt, daß es bei genau abgestimmter Konstellation von Parametern durchaus mög¬ lich ist, einen Plasmastrahl zum Härten der Schneidkanten die¬ ser Werkzeug einzusetzen, wobei es weiters nur bei diesen Pa¬ rametern möglich ist, die Härtung durch Selbstabschreckung, also ohne zusätzliche Abkühlung, etwa durch Luft oder Wasser, zu erreichen.
Mit der Vorschubgeschwindigkeit v wird die Aufheiz- u^ - -fckühlgeschwindigkeit auf optimale Werte an unterschied!i- c:- Materialdicken und Schneidenwinkel angepaßt. Bei dünneren B rtstärken, insbesonders unter 3 mm, bzw. bei kleineren £ -neidenwinkeln, insbesonders unter 25°, ist die Vorschubge¬ schwindigkeit höher zu wählen, da sonst die Kühlrate infolge der beschränkten Wärmeableitung in das Grundmaterial für eine ausreichend höhe Härtung zu klein ist. Bei größeren Blattstär¬ ken bzw. Schneidenwinkeln kann die Vorschubgeschwindigkeit zur Erzielung größerer Härtezonen kleiner gewählt werden.
Plasmastrahlen werden durch Ionisation von Argon oder Stickstoff bzw. Mischgasen hergestellt. Die Ionisation erfolgt durch eine elektrische Bogenentladung oder durch Anregung mit einem hochfrequenten elektromagnetischen Feld. Durch geeignete
ERSATZBLATT Formgebung der Elektroden bzw. der Düsen wird ein Strahl er zielt, in dessen Achse Temperaturen bis 15.000°C erreicht wer den.
Wird ein solcher Plasmastrahl mit den erfindungs gemäßen Parametern über die geschliffene Schneidkante eine Säge, eines Messers oder eines Stanzwerkzeuges geführt, so er hitzt sich ein lokaler Bereich der Schneidkante mit Erwär mungsraten bis 5000 K/sek. Nach der Beendigung der Energiezu fuhr kühlt die Schneidkante durch Selbst bschreckung, d.h durch Wärmeabfuhr in das Grundmaterial des Werkzeuges mit Ab kühlgeschwindigkeiten bis 1000 K/sek ab. Dabei entsteht ei feinkörniges Martensitgefüge mit Härten bis 1000 HV (Vickers Härte) .
Kritisch ist jedoch bei solchen Verfahren, daß di Schneidkante während der Wärmebehandlung nicht aufschmelze darf. Trotzdem muß eine ausreichend hohe Erwärmung im Bereic der Schneidkante gegeben sein, um die gewünschte Aushärtun sicherzustellen. Dies wird nur bei den oben angegebenen Para meterkonstellationen erreicht.
Besonders günstige Bedingungen für die Härtung erge ben sich bei folgenden Werten:
Leistung des Plasmastrahles: 1 bis 5 kW
Durchmesser des Strahles bei der
Austrittsdüse des Plasmabrenners: 4 bis 5,5 mm
Abstand der Austrittsdüse des
Plasmabrenners von der Schneidkante : 3 bis 9 mm
Relativgeschwindigkeit des Plasmastrahles bezüglich der Schneidkante: 15 bis 50 mm/sek
Vorzugsweise wird ein Messer oder ein Stanzwerkzeu durch mechanische Bewegung entlang der Schneidkante durch de Plasmastrahl geführt, wobei die Achse des Plasmastrahles mit der Symmetrieachse der Schneidkante zusammenfällt. Auf dies Weise wird eine möglichst gleichmäßige Wärmeeinwirkung über Flanken der Schneidkante erzielt. Bei Sägen wird der Plas¬ mastrahl durch mechanische Bewegung des Plasmabrenners quer zu Sägeblatt über die Zahnrückseite im Bereich der oberen Schneid¬ kante geführt. Auf diese Weise wird eine möglichst gleichmäßige Wärmeeinwirkung über die gesamte Länge der Schneidkante der
ERSATZBLATT Zahnspitze erzielt. Bei bestimmten Sägeformen ist es hingegen vorteilhaft und technisch einfacher, den Plasmabrenner ohne Querbewegung entlang des Sägeblattes zu führen. Durch eine elektromagnetische Ablenkung mittels einer Spule, die im Be¬ reich zwischen Kathode und Düsenunterkante angeordnet ist, ist eine definierte Verbreiterung des Plasmastrahles und damit eine Anpassung an die Zahngeometrie (z.B. bei geschränkten Sägen) möglich. Der Unterschied zur bekannten Methode, den Plas¬ mastrahl beim Aufschmelzbehandeln (Auftragsschweißen) elektro¬ magnetisch abzulenken, besteht darin, daß dort die Einwirkung des elektromagnetischen Feldes im Bereich zwischen Düsenunter¬ kante und Werkstückoberfläche erfolgt. Bei diesem Verfahren muß sich ein Brennfleck des Lichtbogens auf der WerkStückoberfläche befinden. Diese bekannte Methode funktioniert bei der Plas¬ mahärtung nicht, da hier der Lichtbogen zwischen Kathode und Düsenunterkante brennen muß.
Eine Verringerung des Energiebedarfes beim Härten kann dadurch erreicht werden, daß der Plasmastrahl im Impulsbe¬ trieb arbeitet, mit einer Impulsfrequenz f, mit f=Vorschubgeschwindigkeit des Sägeblattes dividiert durch den Zahnabstand, wobei die Impulsdauer im Bereich von 0,2 bis 0,8 sek. liegt.
Bei Messern ist es weiters ist es möglich, daß die Achse des Plasmastrahles einen bestimmten Winkel (z.B. 90c, 135° oder die Hälfte des Schneidenwinkels) zur Symmetrieachse der Schneidkante einnimmt. Man kann so eine zur Symmetrieachse unsymmetrische Verteilung der Härtezone und damit eine Anpas¬ sung an spezielle Verschleißsituationen erreichen. Insbeson¬ ders bei Messerblättern mit einer Dicke über 5 mm ist damit eine gute Anpassung der Härtezone an verschiedene Schneiden¬ geometrien möglich.
Im Folgenden wird die Erfindung anhand der beigefüg¬ ten Figuren näher erläutert:
Die Fig. 1 zeigt schematisch die prinzipielle Anord¬ nung der Plasmaanlage am Beispiel einer Sägehärtung.
Der Plasmabrenner 1 erzeugt aus dem zugeführten Gas mit Hilfe einer elektrischen Bogenentladung einen Plasmastrahl 2, der an der Austrittsdüse des Plasmabrenners 1 austritt. Der Abstand zwischen der Austrittsdüse und der Schneidkante ist a.
ERSATZBLATT Der Plasmastrahl wird auf die Zahnspitze 5 eines Sägezahnes gerichtet und erhitzt diesen Bereich. Nach Beendigung der En ergieeinwirkung kühlt der erhitzte Bereich rasch ab und härtet Danach wird das Sägeblatt 3 weiterbewegt und der Plasmastrahl auf die Zahnspitze 5a des folgenden Zahnes 4a gerichtet.
Figur 2 den Bereich der Zahnspitze eines Sägeblatte im Detail in axonometrischer Darstellung. Der Plasmastrahl hat einen Durchmesser d und wird mit einer Relativgeschwindig keit v entweder entlang der Schneidkante 6 oder in Richtung de Zähnung bewegt.
Figur 3 zeigt schematisch die prinzipielle Anordnun der Plasmaanlage am Beispiel einer Messerhärtung. Der Plas mastrahl wird unter einem Winkel α auf die Schneidkante 9 de Messers gerichtet und mit der Geschwindigkeit v entlang diese Kante bewegt, wobei diese Kante erhitzt wird. Nach Beendigun der Energieeinwirkung kühlt der erhitzte Bereich durch Selbst abschreckung rasch ab und härtet.
Figur 4 zeigt schematisch eine Querschnitt durch de Plasmabrenner im Bereich der Austrittsdüse. Eine Elektromagne 10, angeordnet im Bereich zwischen Kathode 8 und Düsenunter kante 11 bewirkt durch hochfrequente Ablenkung des Lichtbogen innerhalb des Düsenbereiches eine Aufweitung des Plasmastrahle 2.
ERSATZBLATT Die folgenden Ausführungsbeispiele sollen den Einsatz des Verfahrens näher erläutern:
Beispiel 1: Härtung einer Gattersäge.
Material: Bandstahl B412 (legierter Stahl mit 0,85% C, 0,3% Si,
0,3% Mn, 0,5% Cr, 0,4% Ni, 0,25% V) 45 Zähne, Zahnabstand
30 mm,
Breite b der Schneidkante: 3,5 mm,
Härte in unbehandeltem Zustand 420 HV.
Plasmaleistung (kW) 2,5 3,5 2,0 Strahldurchmesser (d in mm) 4,0 4,0 4,0 Abstand (a im mm) 5,0 6,0 4,0 Vorschubgeschwindigkeit 25 30 20
(v in mm/sek) Gasdurchfluß (1/min) 10
maximale Härte (HV) 920 940 900
Praktische Schneidversuche in Sägewerken ergaben eine Erhö¬ hung der Standzeit um den Faktor 5.
Beispiel 2: Härtung einer Kreissäge.
Material: Sägestahl B412, 50 Zähne, Zahnabstand 30 mm.
Breite b der Scneidkante: 4,0 mm,
Härte in unbehandeltem Zustand 410 HV.
Plasmaleistung (kW) 3,0 Strahldurchmesser (d in mm) 4,0 Abstand (a im mm) 5,0 Vorschubgeschwindigkeit 30
(v in mm/sek) Gasdurchfluß (1/min)
maximale Härte (HV) 900
ERSATZBLATT Beispiel 3: Härtung einer Bandsäge
Material Sägestahl B412, Bandlänge 6 m, Zahnabstand 15 mm. Breite b der Scneidkante: 1,5 mm, Härte in unbehandeltem Zustand 410 HV.
Plasmaleistung (kW) 1,5 Strahldurchmesser (d in mm) 3,0 Abstand (a im mm) 5,0 Vorschubgeschwindigkeit 20
(v in mm/sek) Gasdurchfluß (1/sek)
maximale Härte (HV) 900
Beispiel 4: Härtung eines Stanzmessers für Leder und Textilien:
Material Bandstahl CK60 (Werkstoff-Nr. 1.1221)
Dicke: 2 mm
Härte in unbehandeltem Zustand: 300 HV (Vickers)
Plasmaleistung (kW) 1 2 4 Strahldurchmesser (d in mm) 4 4 4 Abstand (a in mm) 4 6 8 Winkel zwischen Plasmaachse und
Achse der Schneidkante (Grad) Vorschubgeschwindigkeit
(v in mm/sek) 25 35 50 Gasdurchfluß (1/min) 5 5 5
maximale Härte (HV) 860 890 940
ERSATZBLATT Beispiel 5: Härtung eines Hobelmessers für die Holzbearbeitung
Material: 80 CrV 2 (Werkstoff-Nr. 1.2235)
Dicke: 8 mm
Härte in unbehandeltem Zustand: 280 HV (Vickers)
Plasmaleistung (kW) 2 3 5
Strahldurchmesser (d in mm) 4 4 4
Abstand (a in mm) 4 6 8
Winkel zwischen Plasmaachse und
Achse der Scheidkante (Grad) 60 90 120 Vorschubgeschwindigkeit
(v in mm/sek) Gasdurchfluß (1/min) maximale Härte (HV)
Figure imgf000010_0001
ERSATZBLATT

Claims

P A T E N T A N S P R Ü C H E
1. Verfahren zum Härten der Schneidkanten von Sägen,Messern und Stanzwerkzeugen, vornehmlich für die Bearbeitung von Holz, Papier, Karton, Kunststoff n, Leder und Textilien, mittels eines Energiestrahles, der über die zu härtenden Bereiche des Werkzeuges geführt wird, dadurch gekennzeich¬ net, daß als Energiestrahl ein Plasmastrahl verwendet wird, wobei der Plasmastrahl (2) mit einer Relativgeschwindigkeit (v) in Bezug auf die Schneidkante des Werkzeuges von 5 bis 100 mm/sek geführt wird und wobei der Abstand der Aus¬ trittsdüse des Plasmabrenners (1) von der Schneidkante 2 bis 14 mm beträgt und wobei weiters die Leistung des Plas¬ mastrahles zwischen 1 und 10 kW liegt sowie der Durchmesser (d) bei der Austrittsdüse des Plasmabrenners (1) 3 bis 7 mm beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Leistung des Plasmastrahles zwischen 1 und 5 kw liegt.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch ge¬ kennzeichnet, daß der Durchmessers des Plasmastrahles (2) bei der Austrittsdüse des Plasmabrenners zwischen 4 und 6 mm liegt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch ge¬ kennzeichnet, daß der Abstand (a) der Austrittsdüse des Plasmabrenners (1) von der Schneidkante 3 bis 10 mm beträgt
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch ge¬ kennzeichnet, daß die Relativgeschwindigkeit (v) des Plas¬ mastrahles (2) bezüglich der Schneidkante 15 bis 50 mm/sek beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß der Plasmastrahl (2) durch mechanische Bewegung des Plasmabrenners (1) quer zum Sägeblatt (3) über den Zahnrücken (7) im Bereich der oberen Schneidkante ge¬ führt wird.
ERSATZBLATT
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß während der Querbewegung des Plasmastrahles die Säge still¬ steht und daß anschließend die Säge um eine Zahnteilung weitertransportiert wird, worauf die nächste Querbewegung des Plasmastrahles die folgende Zahnspitze (5) härtet.
8. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß der Plasmastrahl beim Härten von Sägen auf die Mitte der Zahnspitze ausgerichtet ist und das Sägeblatt eine kontinuierliche oder schrittweise Bewegung in Richtung der Zähnung durchführt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Plasmastrahl im Impulsbetrieb arbeitet, mit einer Impuls¬ frequenz f von f = Vorschubgeschwindigkeit des Sägeblattes dividiert durch den Zahnabstand, wobei die Impulsdauer im Bereich von 0,2 bis 0,8 Sekunden liegt.
10. Verfahren nach einem der Ansprüche 8, dadurch gekenn¬ zeichnet, daß das Sägeblatt (3) einen kontinuierlichen Vor¬ schub in Richtung der Zähnung durchführt, während der Plas¬ mastrahl (2) eine Querbewegung mit einer Frequenz zwischen 10 und 200 Hertz durchführt, hervorgerufen durch eine elektromagnetische Ablenkung im Bereich zwischen Kathoden¬ spitze und Düsenunterkante des Plasmabrenners.
11. Verfahren nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß die Achse des Plasmastrahles mit der Symmetrieachse des Schneidkante eines Messers zusammen¬ fällt.
12. Verfahren nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß die Achse des Plasmastrahles mit der Symmetrieachse der Schneidkante eines Messers einen Winkel α einschließt, der etwa dem halben Schneidenwinkel ß ent¬ spricht.
13. Verfahren nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß die Achse des Plasmastrahles mit der Symmetrieachse der Schneidkante eines Messers einen Winkel α von etwa 90° einschließt.
ERSATZBLATT
14. Verfahren nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß die Achse des Plasmastrahles mit der Symmetrieachse der Schneidkante einen Winkel α von etwa 135° einschließt.
ERSATZBLATT
PCT/AT1990/000071 1989-07-25 1990-07-18 Verfahren zum härten der schneidkanten von sägen, messern und stanzwerkzeugen WO1991001386A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59008039T DE59008039D1 (de) 1989-07-25 1990-07-18 Verfahren zum härten der schneidkanten von sägen, messern und stanzwerkzeugen.
EP90910482A EP0483182B1 (de) 1989-07-25 1990-07-18 Verfahren zum härten der schneidkanten von sägen, messern und stanzwerkzeugen
FI920328A FI95048C (fi) 1989-07-25 1992-01-24 Menetelmä saha-, veitsi- ja meistotyökaluterien karkaisemiseksi

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ATA1796/89 1989-07-25
AT179689A AT392483B (de) 1989-07-25 1989-07-25 Verfahren zum haerten der schneidkanten von saegen
ATA2451/89 1989-10-24
AT245189A AT392981B (de) 1989-10-24 1989-10-24 Verfahren zum haerten der schneidkanten von messern

Publications (1)

Publication Number Publication Date
WO1991001386A1 true WO1991001386A1 (de) 1991-02-07

Family

ID=25596830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1990/000071 WO1991001386A1 (de) 1989-07-25 1990-07-18 Verfahren zum härten der schneidkanten von sägen, messern und stanzwerkzeugen

Country Status (12)

Country Link
EP (1) EP0483182B1 (de)
CN (1) CN1027907C (de)
AT (1) ATE115639T1 (de)
AU (1) AU5960690A (de)
CA (1) CA2064032A1 (de)
CS (1) CS367490A3 (de)
DE (1) DE59008039D1 (de)
FI (1) FI95048C (de)
PL (1) PL286149A1 (de)
SK (1) SK279015B6 (de)
WO (1) WO1991001386A1 (de)
YU (1) YU135290A (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0527485A1 (de) * 1991-08-14 1993-02-17 GEORG WEISS GmbH Hackmaschine
EP0640693A1 (de) * 1993-08-27 1995-03-01 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Papiermesser und Verfahren zu dessen Herstellung
EP0667175A2 (de) * 1994-01-17 1995-08-16 Fischer Gesellschaft M.B.H. Verfahren zur Bearbeitung von Stahlkanten für Ski od. dgl.
EP0703299A1 (de) * 1994-09-21 1996-03-27 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Härten von Skistahlkanten
EP0780199A1 (de) * 1995-12-19 1997-06-25 Katayama Steel Rule Die, Inc. Stanzplatte sowie Stanzwerkzeug für eine Stanzmaschine
EP0718013A3 (de) * 1994-12-23 1997-08-06 Fischer Gmbh Verfahren zur Bearbeitung von Stahlkanten für Ski od. dgl.
WO1997029878A1 (en) * 1996-02-15 1997-08-21 Stevens International Inc. Cutting die and method of making
US6189414B1 (en) 1995-12-19 2001-02-20 Yoshizawa Industry Inc. Counter plate and cutting die for die cutting machine
USRE37366E1 (en) 1993-01-19 2001-09-18 Bernal International, Inc. Method of making rotary cutting dies
CN110066994A (zh) * 2018-01-23 2019-07-30 武汉苏泊尔炊具有限公司 刀具及该刀具的加工方法
CN110581049A (zh) * 2018-06-08 2019-12-17 财团法人工业技术研究院 处理基板边缘缺陷的等离子体系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1040070C2 (nl) * 2013-02-27 2014-08-28 Hho Heating Systems B V Plasmatron en verwarmingsinrichtingen omvattende een plasmatron.
CN108866303B (zh) * 2018-08-02 2024-02-27 泉州市海恩德机电科技发展有限公司 一种大直径锯片铁基体快推上下喷油机构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1233454A (fr) * 1958-09-18 1960-10-12 Plasma Flame Corp Procédé de traitement de métaux par flux de plasma
DE2623731A1 (de) * 1975-05-26 1977-01-20 Fuji Sangyo Co Ltd Verfahren zum haerten von saegezaehnen
GB2172821A (en) * 1984-05-08 1986-10-01 Bolshevik Ki Proizv Ob Polimer Method of making hollow cylindrical articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1233454A (fr) * 1958-09-18 1960-10-12 Plasma Flame Corp Procédé de traitement de métaux par flux de plasma
DE2623731A1 (de) * 1975-05-26 1977-01-20 Fuji Sangyo Co Ltd Verfahren zum haerten von saegezaehnen
GB2172821A (en) * 1984-05-08 1986-10-01 Bolshevik Ki Proizv Ob Polimer Method of making hollow cylindrical articles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Advances in Welding Processes, Band 1, 1978, (Proc. Conf., 9-11 Mai 1978, Abington, GB), D. GOODWIN et al.: " Surface Heat Treatment using a Plasma Torch with a Magnetically Traversed Arc" siehe seite 181, rechte spalte, zeilen 1-30; seite 182, linke spalte, zeilen 1-2; seite 183, tabelle 1 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0527485A1 (de) * 1991-08-14 1993-02-17 GEORG WEISS GmbH Hackmaschine
USRE37366E1 (en) 1993-01-19 2001-09-18 Bernal International, Inc. Method of making rotary cutting dies
EP0640693A1 (de) * 1993-08-27 1995-03-01 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Papiermesser und Verfahren zu dessen Herstellung
EP0667175A2 (de) * 1994-01-17 1995-08-16 Fischer Gesellschaft M.B.H. Verfahren zur Bearbeitung von Stahlkanten für Ski od. dgl.
EP0667175A3 (de) * 1994-01-17 1996-08-28 Fischer Gmbh Verfahren zur Bearbeitung von Stahlkanten für Ski od. dgl.
EP0703299A1 (de) * 1994-09-21 1996-03-27 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Härten von Skistahlkanten
EP0718013A3 (de) * 1994-12-23 1997-08-06 Fischer Gmbh Verfahren zur Bearbeitung von Stahlkanten für Ski od. dgl.
US6189414B1 (en) 1995-12-19 2001-02-20 Yoshizawa Industry Inc. Counter plate and cutting die for die cutting machine
EP0780199A1 (de) * 1995-12-19 1997-06-25 Katayama Steel Rule Die, Inc. Stanzplatte sowie Stanzwerkzeug für eine Stanzmaschine
WO1997029878A1 (en) * 1996-02-15 1997-08-21 Stevens International Inc. Cutting die and method of making
CN1117649C (zh) * 1996-02-15 2003-08-13 贝尔纳国际公司 切割模具的制造方法
CN110066994A (zh) * 2018-01-23 2019-07-30 武汉苏泊尔炊具有限公司 刀具及该刀具的加工方法
CN110581049A (zh) * 2018-06-08 2019-12-17 财团法人工业技术研究院 处理基板边缘缺陷的等离子体系统及方法

Also Published As

Publication number Publication date
YU135290A (sh) 1992-12-21
EP0483182B1 (de) 1994-12-14
CN1027907C (zh) 1995-03-15
CS367490A3 (en) 1992-01-15
FI95048B (fi) 1995-08-31
ATE115639T1 (de) 1994-12-15
CN1049030A (zh) 1991-02-06
DE59008039D1 (de) 1995-01-26
CA2064032A1 (en) 1991-01-26
PL286149A1 (en) 1991-03-11
AU5960690A (en) 1991-02-22
SK279015B6 (sk) 1998-05-06
FI95048C (fi) 1995-12-11
FI920328A0 (fi) 1992-01-24
EP0483182A1 (de) 1992-05-06

Similar Documents

Publication Publication Date Title
EP0483182B1 (de) Verfahren zum härten der schneidkanten von sägen, messern und stanzwerkzeugen
EP4035823B1 (de) Prozess zur strahlbearbeitung eines platten- oder rohrförmigen werkstücks
DE2740569A1 (de) Oberflaechenlegierungs- und waermebehandlungsverfahren
US5360495A (en) Process for hardening cutting edges with an oval shaped plasma beam
DE1553761A1 (de) Verfahren zum UEberziehen der Schneiden von geschaerften Geraeten
EP2296842A1 (de) Verfahren zur trennenden bearbeitung von werkstücken mit einem laserstrahl
DE2111183C3 (de)
EP0009532A1 (de) Verfahren und Vorrichtung zum Unterwasser-Plasmaschneiden von Werkstücken, insbesondere Baustahl
DE1066676B (de)
DE4009994A1 (de) Schneidorgan fuer drehbearbeitung von holz
DE19530641C1 (de) Schneidwerkzeug und Verfahren zum Herstellen desselben
DE3121555C2 (de) Verfahren zum Bearbeiten von Stahl mittels Laserstrahlung
EP0290051B1 (de) Verfahren zum Herstellen einer selbstschärfenden Schneid- oder Messerkante
AT392483B (de) Verfahren zum haerten der schneidkanten von saegen
DE202014011237U1 (de) Vorrichtung zum Auftragsschweißen
DE2054939A1 (de) Verfahren zur Herstellung von Stahl schneiden, insbesondere Sageblattern
AT392981B (de) Verfahren zum haerten der schneidkanten von messern
DE102007035403A1 (de) Verfahren zum thermischen Trennen
AT404798B (de) Verfahren zum härten von stahl-laufkanten für ski sowie plasmakopf zur härtung von kanten bei stahlmaterialien und vorrichtng zur härtung von kanten bei stahlmaterialien
AT403805B (de) Verfahren zur bearbeitung von stahlkanten für ski od.dgl.
DE2435446A1 (de) Verfahren und vorrichtung zum haerten von drahtfoermigen werkstuecken
DE19900477A1 (de) Thermisches Schneiden und Schweißen mit Verschleißschutz
WO2002043917A1 (de) Schniedgas und verfahren zum laserstrahlbrennschneiden
AT315221B (de) Verfahren zur zweistufigen Oberflächenhärtung von Werkstücken aus Eisen- und Stahllegierungen und Anordnung Durchführung des Verfahrens
DE2355522B2 (de) Verfahren zum Herstellen von Metallrohren mittels Stumpf nahtverschweißen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA FI HU JP KP KR LK MC MG MW NO RO SD SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1990910482

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2064032

Country of ref document: CA

Ref document number: 920328

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1990910482

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990910482

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 920328

Country of ref document: FI