WO1991000773A1 - Composition catalytique a base de zeolithe y utilisable dans le traitement des effluents oxygenes contenant des oxydes d'azote, sa preparation et son procede d'utilisation - Google Patents

Composition catalytique a base de zeolithe y utilisable dans le traitement des effluents oxygenes contenant des oxydes d'azote, sa preparation et son procede d'utilisation Download PDF

Info

Publication number
WO1991000773A1
WO1991000773A1 PCT/FR1990/000519 FR9000519W WO9100773A1 WO 1991000773 A1 WO1991000773 A1 WO 1991000773A1 FR 9000519 W FR9000519 W FR 9000519W WO 9100773 A1 WO9100773 A1 WO 9100773A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
exchanged
preparation
exchange
ions
Prior art date
Application number
PCT/FR1990/000519
Other languages
English (en)
Inventor
Gilles Descat
Christian Hamon
Original Assignee
Societe Chimique De La Grande Paroisse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Chimique De La Grande Paroisse filed Critical Societe Chimique De La Grande Paroisse
Priority to EP90910752A priority Critical patent/EP0483201B1/fr
Priority to US07/809,492 priority patent/US5369070A/en
Priority to DE69024217T priority patent/DE69024217T2/de
Publication of WO1991000773A1 publication Critical patent/WO1991000773A1/fr
Priority to US08/297,934 priority patent/US5536483A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst

Definitions

  • the present invention relates to catalytic compositions intended for the selective reduction by ammonia of nitrogen oxides (NO x ) contained in gaseous effluents. It also relates to the manufacture of these compositions and to a purification process using them.
  • NO x nitrogen oxides
  • the Applicant has sought to reduce the nitrogen oxides contained in a wide range of concentrations in oxygenated effluents by implementing lower NH 3 / NO x concentration ratios, in particular ratios of the order of 1, 1 and first proposed catalytic compositions based on mordenite with a reduced Na content, making it possible to obtain excellent reduction results with NO ammonia.
  • oxygenated effluents at relatively high temperatures between 300 and 375o when the mordenite is in ammonium form, between 300 and 550o when it is in acid form. Then she realized that these treatment temperatures of the same effluents could be further lowered considerably by using as active material a mordenite exchanged with copper; this temperature is then in the range of 225 to 400o. All of these results appear in 1 a European patent application 0286507.
  • US Pat. No. 4,052,337 describes the use of various catalysts of the zeolite type, in particular of the zeolite ⁇ to reduce NO x in the presence of NH 3 .
  • This catalyst intended to be used at relatively high temperatures to reduce nitrogen oxides containing sulfur is effective only if it is prepared in a process using a prior exchange of the cations of the zeolite by alkaline ions. earthy followed by impregnation with metal ions, in particular cupric.
  • the Applicant has now discovered a catalytic system obtained by exchange reaction with cupric ions from a NaY zeolite selected as a function of its specific surface area which is perfectly effective in reducing nitrogen oxides NO x by ammonia at temperatures further lowered than that reached, with the copper-exchanged mordenite catalysts described in the application for EP 0286507, especially between 200 and 400 oC.
  • the basic zeolite used to prepare the catalytic compositions of the present invention is an NaY zeolite with a specific surface of between 750 and 950 m 2 / g.
  • This zeolite has a more open structure than that of mordenite.
  • One finds there the largest cavities given in the structures of the zeolite type called supercages whose diameter is close to 13 ⁇ ; these cavities communicate with each other through openings whose diameter is of the order of 8 to 9 ⁇ and their succession constitutes the pores of the network.
  • the structure is cubic and the Pores run in the 3 perpendicular directions of space while crossing at the level of the supercages.
  • the basic NaY zeolite used for the preparation of the catalysts of the invention has an Si / Ai framework atomic ratio of between 2 and 3.
  • the Si and Al analyzes are carried out by X-ray fluorescence.
  • the specific surface is calculated according to the BET method from the desorption adsorption isotherm carried out at the temperature of liquid nitrogen after pretreatment at 500 ° C. under dry nitrogen sweep.
  • the parameter of the crystal mesh is generally between 24.60. 10 -10 m and 24.75 10 -10 m. It is calculated from the X-ray diffraction diagram according to the method described in sheet ASTM D 3.942. 80.
  • the present invention therefore relates to new catalytic compositions applicable to the reduction by NH 3 of nitrogen oxides NO x and containing as active material a zeolite Y obtained from a zeolhite NaY with a specific surface of between 750 to 950 m 2 / g and preferably greater than 800 m 2 / g exchanged by the cupric ion.
  • zeolite exchanged by the cupric ion is meant in this text both the products of a direct exchange with Cu ++ ions and the products obtained by a first exchange with NH 4 + ions followed by an exchange with Cu 2+ ions.
  • the zeolite Y in the form exchanged by copper in the 2 + state represents 70 to 90% of the total weight of these new catalytic compositions, the rest being constituted by a binder and the copper content relative to by weight of zeolite is advantageously 2 - at 12%, preferably 5 to 11%, which represents an exchange rate with respect to this cation of 40 to 85 L
  • the present invention also relates to a process for the preparation of these catalytic compositions from Y zeolite by indirect or direct exchange of the sodium ions of the base zeolite with Cu 2+ ions.
  • the ammonium nitrate solutions used have a NH 4 NO 3 concentration of between 400 and 850 g / l.
  • the reaction temperature being between 100 and 150 ° and the V / P ratio of the volume of solution to the weight of solid in the dry state is generally close to 5.
  • the residual sodium content depends on the number of exchange operations. For example, after 3 cycles, with an NH 4 NO 3 concentration of 800 g / l and a temperature of 130 ° C, it becomes less than 1% whereas initially it was close to 9.5%.
  • the product obtained is dried at a temperature of the order of 120 oC for a period of 10 to 20 h and then subjected to a kneading operation with a binder.
  • a binder This is an element of the group consisting of kaolinite clay, bentonite, alumina alone or in combination.
  • the catalytic composition obtained is packaged in a suitable form, such as pellets or preferably extrudates. Drying is then carried out for a few hours at a temperature between 100 and 120 ° C.
  • the specific surface area measured according to the BET method is greater than 700 m 2 / g and the diameter of the macropores measured with a mercury porosimeter re between 100 and 10,000 ⁇ essentially.
  • the exchange by Cu + + is produced on powder, after washing it is first dried between 80 and 100 "C then mixed with an appropriate binder and shaped.
  • the preformed products are first subjected to a heat treatment in a crossed bed under a strong current of dry air between 300 and 500 oCC by operating in stages.
  • the Cu ++ content relative to the weight of zeolite is advantageously between 3 and 12% and preferably between 5 and 11%, which represents an exchange rate with respect to this cation included., Between 40 and 85% . After washing, these products are dried on trays at a temperature between 80 and 100 ° C for 12 to 24 hours.
  • the invention also relates to a process for the treatment of oxygenated effluents containing NO x , using the catalytic compositions of the present invention.
  • These catalytic compositions are used in a traversed fixed bed reactor. Before injecting the reaction mixture containing NO x and NH 3, these products are subjected to an in situ treatment under high flow of dry air, at least 1 to 2 Nm 3 h -1 / l of catalyst with gradual rise in the temperature from 50 to 100 ° C / h up to a temperature between 350 and 450 oC while maintaining this temperature level for 5 to 10 h.
  • catalytic compositions are applicable to the purification, in the presence of ammonia, of oxygenated gaseous effluents containing nitrogen oxides (NO x ) at a temperature between 200 and 400 ° C., under a pressure of at least 0.1 MPa absolute, with an hourly volumetric gas circulation speed (WH), which can be very high and reach 80,000 h -1 , and a ratio of the concentration of ammonia to the concentration of oxides d nitrogen NH 3 / NO x at most equal to 1.25.
  • WH hourly volumetric gas circulation speed
  • the influence of the pressure is comparable to that observed with the catalysts based on mordenite in ammonium form exchanged or not by Cu 2+ and described in European patent EP 0286507. An increase in pressure is therefore favorable.
  • the advantage of the catalytic compositions of the present invention lies in the conduct of the purification operation at low temperature.
  • the purification process implemented on the catalytic compositions of the invention is particularly suitable for the depollution of tail gases released to the atmosphere in the manufacture of nitric acid.
  • the process is extremely flexible, suitable for the purification of gaseous effluents with all nitrogen oxide contents.
  • the efficiency of the process is remarkable even at high NO * contents, of the order of 20,000 ppm and also at low contents of the order of 100 ppm of nitrogen oxides.
  • catalytic compositions are resistant industrial products which do not undergo any mechanical deterioration or loss of activity after very long periods of operation.
  • the Si / Al atomic ratio is 2.6 and the sodium content in the dry product is 9.7%.
  • the loss on ignition at 1000 ° C is 18%.
  • the specific surface is 830 m2 / g and the crystalline parameter of 24.63 ⁇ .
  • the average particle diameter is 3 microns.
  • This zeolite is suspended in an ammonium nitrate solution containing 800 g / l of NH 4 NO 3 .
  • the set point is fixed at 130 ° C and the level maintained at this level for 30 minutes.
  • the suspension is then transferred to a filter.
  • the zeolite cake obtained is washed by percolation with 120 parts of demineralized water at 80 oC.
  • the exchange is renewed several times. At the end of this operation, the product is dried in a stream of hot air.
  • the loss on ignition (PAF) is then 25%, the residual sodium content on the dry product is 0.8%, ie an exchange rate of Na + by NH 4 + of 92%.
  • Intimately mixed in a kneader 12 parts of this zeolite is the dry equivalent of 9 parts with 2.7 parts of kaolinite clay whose PAF is 17%. After adjusting the humidity, the mixture obtained is subjected to extrusion through a die. The extrudates with a diameter of 3 mm are then dried and calcined at a temperature between 300 and 400 ° C to increase their mechanical strength.
  • the extrudates are placed in a basket made of stainless steel cloth.
  • a cupritetrammine solution is prepared by adding a concentrated ammonia solution to a copper nitrate salt. A precipitate of copper hydroxide is initially formed which disappears in an excess of ammoniacal solution. The clear blue solution is diluted by adding demineralized water. The stainless steel basket with the extrudates is placed in a container.
  • the copper solution is poured until its level sums up that of the extrudates.
  • the whole is brought to 60 ° C. and the exchange reaction is maintained for 1 h.
  • the basket is then lifted; the extrudates are washed by soaking in demineralized water and the operation is repeated several times with the fresh cupric solution.
  • the product is then washed several times by soaking and then dried. The loss on ignition is 22%.
  • the copper content of the extrudates is 8.5% (on dry product) which represents, taking into account the binder content of 20%, an exchange rate of residual ammonium and / or sodium ions by Cu 2+ of 80% .
  • Example 3 The preparation of Example 2 is repeated by carrying out only one exchange with the solution of copper tetrammine.
  • the copper content on the dry product is 2.3%, which corresponds to a Cu ++ exchange rate of 22%.
  • the residual sodium content is 0.4%.
  • the NaY zeolite used to prepare the catalysts of Examples 1, 2 and 3 is used.
  • This zeolite is shaped according to the techniques of the prior art with 20% of binder of the kaolinite clay type.
  • the extrudates have a diameter of 1.8 mm.
  • the copper content on the dry product (1000 oC) is 7% which, taking into account the binder content of 20%, represents a rate of exchange of sodium by copper of 67%.
  • the residual sodium content is 3%.
  • EXAMPLE 5 This example illustrates the use of the catalysts, prepared according to the procedures described in the preceding examples, in a catalytic test unit in a fixed bed, under various conditions. operating conditions, for the reduction of nitrogen oxides by ammonia using tail gases from an industrial unit of nitric acid.
  • the volume of catalyst used is 37.5 cm3, it is brought to 350 oC under a gas stream rich in nitrogen of (96% N 2 -4% O 2 ) of 750 Nl / h at a rate of a temperature rise of 100 ° C / h.
  • the mixture (N 2 -O 2 ) is then replaced by the effluent to be treated which is mixed with an amount of ammonia depending on the nitrogen oxide content.
  • the reduction process is carried out at a pressure varying from
  • the hourly volumetric speed (WH) expresses the flow of gas entering the catalyst in Nl / h divided by the volume of catalyst.
  • the NO x content is expressed in ppmv (parts per million by volume). It is 1500 ppmv for all the tests carried out.
  • the amount of ammonia added to the incoming gas is expressed by the NHa / NO x molar ratio which is close to 1.16.
  • the residual ammonia content after the reaction is expressed in ppmv.
  • the temperature indicated is the average temperature of the catalytic bed.
  • the reduction yield expressed in% corresponds to the ratio of the difference between the NO x content of the inlet gases and the content of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

L'invention concerne une nouvelle composition catalytique à base de zéolithe Y destinée au traitement des effluents oxygénés des oxydes d'azote. La composition contient comme matière active une zéolithe NaY échangée au cuivre. Application à l'épuration des effluents gazeux oxygénés à toutes teneurs en oxydes d'azote.

Description

Composition catalytique à base de zéolithe y utilisable dans le traitement des effluents oxygénés contenant des oxydes d ' azote , sa préparation et son procédé d ' utilisation
La présente invention concerne des compositions catalytiques destinées à la réduction sélective par l ' ammoniac des oxydes d ' azote ( NO x) contenus dans des effluents gazeux. Elle concerne également la fabrication de ces compositions et un procédé d' épuration les mettant en oeuvre .
Parmi ces procédés on connaît en particulier un procédé décrit dans le brevet français 2 56S 789 qui propose un procédé de réduction-dénitration par l ' ammoniac de gaz résiduaires en présence d 'une zéolithe du type à substitution par l 'hydrogène et/ou le fer à une vitesse surfacique de 5m/h au moins et avec un rapport supérieur à 1.3 de la concentration en ammoniac à la concentration en dioxyde d 'azote NO2.
La demanderesse a cherché à réduire les oxydes d'azote contenus dans une large gamme de concentrations dans des effluents oxygénés en mettant en oeuvre des rapports plus faibles de concentrations NH3/NOx en particulier des rapports de l 'ordre de 1 , 1 et a proposé tout d'abord des compositions catalytiques à base de mordénite à taux abaissé en Na permettant d'obtenir d'excellents résultats de réduction par l 'ammoniac des NO,. dans des effluents oxygénés à des températures relativement élevées comprises entre 300 et 375º lorsque la mordénite est sous forme ammonium, entre 300 et 550º lorsqu' elle est sous forme acide. Puis elle s ' est aperçue que ces températures de traitement des mêmes effluents pouvaient être encore considérablement abaissées en utilisant comme matière active une mordénite échangée au cuivre ; cette température est alors de l 'ordre de 225 à 400º . L ' ensemble de ces résultats figure dans 1 a demande de brevet européen 0286507.
Le brevet US 4052337 décrit l 'utilisation de différents catalyseurs de type zéolithe, en particulier de la zéolithe ï pour réduire les NOx en présence de NH3. Ce catalyseur destiné à être utilisé à des températures relativement élevées pour réduire des oxydes d'azote contenant du soufre n' est efficace que s 'il est préparé dans un procédé mettant en oeuvre un échange préalable des cations de la zéolithe par des ions alcalino-terreux suivi d'une imprégnation par des ions métalliques, en particulier cuivriques.
La demanderesse a maintenant découvert un système catalytique obtenu par réaction d'échange par des ions cuivriques à partir d'une zéolithe NaY sélectionnée en fonction de sa surface spécifique parfaitement efficace pour réduire les oxydes d'azote NOx par l'ammoniac à des températures encore abaissées par rapport à celle atteinte, avec les catalyseurs à base de mordénite échangée au cuivre décrits dans la demande de brevet EP 0286507, notamment entre 200 et 400 ºC.
La zéolithe de base utilisée pour préparer les compositions catalytiques de la présente invention est une zéolithe NaY de surface spécifique comprise entre 750 et 950 m2/g. Cette zéolithe présente une structu¬re plus ouverte que celle de la mordénite. On y trouve les plus grosses cavités donnues dans les structures de type zéolithe appelées supercages dont le diamètre est voisin de 13 Å ; ces cavités communiquent entre elles par des ouvertures dont le diamètre est de l'ordre de 8 à 9 Å et leur succession constitue les pores du réseau. La structure est cubique et lesPores courent dans les 3 directions perpendiculaires de l'espace en se croisant an niveau des supercages.
La zéolithe de base NaY utilisée pour la préparation des catalyseurs de l'invention a un rapport atomique de charpente Si/Ai compris entre 2 et 3.
Les analyses Si et Al sont effectuées par fluorescence X.
La surface spécifique est calculée selon la méthode BET à partir de l'isotherme d'adsorption désorption effectuée à la température de l'azote liquide après prétraitement à 500°C sous balayage d'azote sec.
Le paramètre de la maille cristalline est généralement comprisentre 24,60. 10-10 m et 24,75 10-10 m. Il est calculé à partir du diagramme de diffraction X selon la méthode décrite dans la fiche ASTM D 3.942. 80.
La présente invention concerne donc de nouvelles compositions catalytiques applicables à la réduction par NH3 des oxydes d'azote NOx etcontenant comme matière active une zéolithe Y obtenue à partir d'une zéolhite NaY de surface spécifique comprise entre 750 à 950 m2/g et de préférence supérieure à 800 m2/g échangée par l'ion cuivrique. Par zéolithe échangée par l'ion cuivrique, on entend dans ce texte aussi bien les produits d'un échange direct par des ions Cu++ que des produits obtenus par un premier échange par des ions NH4 + suivi d'un échange par des ions Cu2+.Plus particulièrement la zéolithe Y sous forme échangée par le cuivre à l'état 2+ représente 70 à 90 % du poids total de ces nouvelles compositions catalytiques, le reste étant constitué par un liant et la teneur en cuivre par rapport au poids de zéolithe est avantageusement de 2 - à 12 %, de préférence de 5 à 11 %, ce qui représente un taux d'échange vis à vis de ce cation de 40 à 85 L
La présente invention concerne également un procédé de préparation de ces compositions catalytiques à partir de zéolithe Y par échange indirect ou direct des ions sodium de la zéolithe de base par des ions Cu 2+.
Lorsqu'on procède par un échange indirect à partir d'une zéolithe d'abord échangée à l'ammonium, on pratique cet échange de la façonsuivante : la zéolithe Na Y est traitée par une solution de nitrate d'ammonium dans un réacteur agité. Le taux d'échange est limité par la thermodynamique et pour un système donné dépend donc de la concentration en nitrate d'ammonium, de la teneur en zéolithe Y de la suspension et de la température. On s'affranchit de la limite cinétique en maintenant untemps de réaction suffisant pour atteindre l'équilibre thermodynamique. En général dans le domaine de température utilisé compris entre 100 et 150 °C, le temps est fixé à 30 minutes. L'obtention de teneurs en sodium résiduelles faibles implique l'élimination du sodium extrait présent dans la solution. Ces opérations d'échanges sont renouvelées autant de foisque nécessaires en séparant la zéolithe Y partiellement échangée par filtration suivie de lavage à l'eau déminéralisée du gâteau de zéolithe. Les solutions de nitrate d'ammonium utilisées ont une concentration en NH4 NO3 comprise entre 400 et 850 g/l. La température de réaction étant comprise ente 100 et 150° et le rapport V/P du volume de solutionau poids de solide à l'état sec est généralement voisin de 5. La teneur en sodium résiduel dépend du nombre d'opérations d'échange. Par exemple, après 3 cycles, avec une concentration en NH4 NO3 de 800 g/l et une température de 130 °C elle devient inférieure à 1 % alors qu'initialement elle était voisine de 9.5 %.
Le produit obtenu est séché à une température de l'ordre de 120 ºC pendant une durée de 10 à 20 h puis soumis à une opération de malaxage avec un liant. Celui-ci est un élément du groupe constitué par l'argile kaolinite, la bentonite, l'alumine seule ou en combinaison. La composition catalytique obtenue est conditionnée sous une forme adaptée, telle que des pastilles ou de préférence des extradés. On procède alors à un séchage pendant quelques heures à une température comprise entre 100 et 120 °C.
La surface spécifique mesurée selon la méthode BET est supérieure à 700 m2/g et le diamètre des macropores mesuré au porosimètre à mercu- re compris entre 100 et 10000 Å essentiellement.
Pour préparer les compositions catalytiques échangées au cuivre on part donc soit de la zéolithe Y sous forme sodique soit de la zéolithe échangée par NH4 + décrite précédemment et utilisée soit sous forme de poudre soit mise en forme comme décrit précédemment.
Pour réaliser cet échange, il a été trouvé avantageux d'utiliser le cuivre sous sa forme complexée par l'ammoniac (Cu (NH3)4)2+ ; ce complexe étant obtenu à partir d'une solution aqueuse de nitrate de cuivre par ajout d'ammoniaque concentrée. La teneur en cuivre échangé est fonction des paramètres opératoires : concentration en (Cu (NH3)A)2+, température, teneur en zéolithe (V/P). Entre chaque échange le produit est lavé avec de l'eau déminéralisée. Généralement la concentration en complexe exprimé en cuivre est comprise entre 15 et 60 g/1 et de préférence entre 20 et 30 g/1 et la température entre 20 et 80 "C et de préférence 40 à 60º . Lorsque l'échange par Cu++ est réalisé sur de la poudre, après lavage celle-ci est d'abord séchée entre 80 et 100 "C puis mélangée avec un liant approprié et mise en forme. Lorsque l'échange intervient après une mise en forme, les produits préformés sont au préalable soumis à un traitement thermique en lit traversé sous fort courant d'air sec entre 300 et 500 ºCC en opérant par palier. La teneur en Cu++ rapporté au poids de zéolithe est avantageusement comprise entre 3 et 12 % et de préférence entre 5 et 11 %, ce qui représente un taux d'échange vis à vis de ce cation compris., entre 40 et 85 %. Après lavage, ces produits sont séchés sur plateaux à une température comprise entre 80 et 100 °C pendant 12 à 24 h.
L'invention concerne également un procédé de traitement des effluents oxygénés contenant des NOx, mettant en oeuvre les compositions catalytiques de la présente invention.
Ces compositions catalytiques sont mises en oeuvre dans un réacteur à lit fixe traversé. Avant d'injecter le mélange réactionnel contenant les NOx et NH3 on soumet ces produits à un traitement in situ sous fort débit d'air sec, au minimum de 1 à 2 Nm3 h-1/l de catalyseur avec élévation progressive de la température de 50 à 100 °C/h jusqu'à une température comprise er-tre 350 et 450 ºC en maintenant ce palier de température pendant 5 à 10 h.
Ces compositions catalytiques, sont applicables à l'épuration, en présence d'ammoniac, d' effluents gazeux oxygénés contenant des oxydes d'azote (NOx) à une température comprise entre 200 et 400 °C, sous une pression d'au moins 0,1 MPa absolu, avec une vitesse volumétrique horaire de circulation des gaz (WH), qui peut être très élevée et atteindre 80.000 h-1, et un rapport de la concentration en ammoniac à la concentration en oxydes d'azote NH3/NOx au plus égal à 1,25.
On obtient des rendements exceptionnels dans ce type d'épuration, avec des rapports molaires NH3/NOx compris entre 1,05 et 1,2 ; un rapport de 1,15 peut être avantageusement choisi.
L'influence de la pression est comparable à celle observée avec les catalyseurs à base de mordénite sous forme ammonium échangée ou non par Cu2+ et décrits dans le brevet européen EP 0286507. Une augmentation de pression est donc favorable. L'avantage des compositions catalytiques de la présente invention réside dans la conduite de l'opération d'épuration à basse température.
On obtient des résultats très satisfaisants à 220 °C. Les compositions catalytiques échangées au cuivre permettent de combiner des rendements d'épuration très élevés supérieurs à 98 % avec des quantités d'ammoniac très proches de la stoechiométrie et surtout des teneurs en ammoniac résiduel, après réaction, très faibles, ce qui représente un avantage indéniable pour ce type de catalyseur.
Le procédé d'épuration mis en oeuvre sur les compositions catalytiques de l'invention convient particulièrement bien à la dépollution des gaz de queue rejetés à l'atmosphère dans la fabrication de l'acide nitrique.
Le procédé est extrêmement souple, adapté à l'épuration des effluents gazeux à toutes teneurs en oxydes d'azote. L'efficacité du procédé est remarquable même à des teneurs élevées en NO*, de l'ordre de 20000 ppm et également aux faibles teneurs de l'ordre de 100 ppm en oxydes d'azote.
Ces compositions catalytiques sont des produits industriels résistants ne subissant aucune détérioration mécanique, ni perte d'activité après de très longues périodes de fonctionnement.
Les exemples qui suivent illustrent de façon non limitative la préparation de compositions catalytiques selon l'invention et leur mise en oeuvre. Toutes les quantités sont exprimées en parties en poids.
EXEMPLE 1 : Préparation d'une zéolithe échangée avec NH4 +
On utilise 25 parties de Zéolithe NaY en poudre. Le rapport atomique Si/Al est de 2,6 et la teneur en sodium sur le produit sec de 9,7 %. La perte au feu à 1000 °C est de 18 %. La surface spécifique est de 830 m2/g et le paramètre cristallin de 24.63 Â.
Le diamètre moyen des particules est de 3 microns.
On procède à plusieurs échanges successifs des ions Na+ par des ions NH4 + dans un réacteur fermé.
Cette zéolithe est mise en suspension dans une solution de nitrate d'ammonium contenant 800 g/l de NH4 NO3. Le point de consigne est fixé à 130 °C et le palier maintenu à ce niveau pendant 30 minutes.
La suspension est alors transférée sur un filtre. Le gâteau de zéolithe obtenu est lavé en percolation avec 120 parties d'eau déminéralisée à 80 ºC.
L'échange est renouvelé plusieurs fois. A la fin de cette opération le produit est séché dans un courant d'air chaud.
La perte au feu (PAF) est alors de 25 %, la teneur en sodium résiduel sur le produit sec est de 0.8 % soit un taux d'échange de Na+ par NH4 + de 92 %.
On mélange intimement dans un malaxeur 12 parties de cette zéolithe soit l'équivalent sec de 9 parties avec 2.7 parties d'argile kaolinite dont la PAF est de 17 %. Après ajustement de l'humidité, on soumet le mélange obtenu à l'extrusion au travers d'une filière. Les extrudés d'un diamètre de 3 mm sont alors séchés et calcinés à une température comprise entre 300 et 400°C pour augmenter leur résistance mécanique.
Ces extrudés dont la teneur en liant sur le produit sec est de 20 % servent de base à la préparation des catalyseurs décrits dans les exemples 2 et 3.
EXEMPLE 2 : Préparation d'une zéolithe échangée au Cu à partir d'une zéolithe préalablement échangée à NH4 +
Les extrudés dont la préparation est décrite dans l'exemple 1, sont placés dans un panier en toile d'acier inoxydable.
On prépare une solution cupritétrammine en ajoutant une solution d'ammoniaque concentrée à un sel de nitrate de cuivre. Il se forme initialement un précipité d'hydroxyde de cuivre qui disparait dans un excès de solution ammoniacale. La solution, bleu limpide, est diluée par ajout d'eau déminéralisée. Le panier inox avec les extrudés est placé dans un récipient.
On verse la solution cuivrique jusqu'à ce que son niveau sumage celui des extrudés. L'ensemble est porté à 60 °C et la réaction d'échange est maintenue pendant 1 h.
Le panier est ensuite soulevé ; les extrudés sont lavés par trempage dans de l'eau déminéralisée et l'opération est renouvelée plusieurs fois avec la solution cuivrique fraîche. Le produit est alors lavé plusieurs fois par trempage puis séché. La perte au feu est de 22 %.
La teneur en cuivre des extrudés est de 8.5 % (sur produit sec) ce qui représente, compte tenu de la teneur en liant de 20 %,un taux d'échange des ions ammonium et /ou sodium résiduel par Cu2+ de 80 %.
EXEMPLE 3 : On renouvelle la préparation de l'exemple 2 en n'effectuant qu'un seul échange par la solution de cuivre tétrammine. La teneur en cuivre sur le produit sec est de 2.3 % ce qui correspond à un taux d'échange par Cu++ de 22 %. La teneur en sodium résiduel est de 0.4 %.
EXEMPLE 4 : Préparation d'une composition catalytique par échange direct de la zéolithe de départ
On utilise la zéolithe NaY ayant servi à la préparation des catalyseurs des exemples 1, 2, et 3.
Cette zéolithe est mise en forme selon les techniques de l'art antérieur avec 20 % de liant de type argile kaolinite. Les extrudés ont un diamètre de 1.8 mm.
Après séchage, ces extrudés sont calcinés puis soumis à un échange par une solution de cuivre tétrammine à une température de 60 ºC pendant 2 h. Cette solution a été préparée à partir de 25 g de nitrate de cuivre Cu (NO3)2, 6H2O mis en solution dans 100 cm3 d'eau déminéralisée et de 100 cm3 d'ammoniaque concentré.
Après lavage par trempage ces extrudés sont séchés.
La teneur en cuivre sur le produit sec (1000 ºC) est de 7 % ce qui, compte tenu de la teneur en liant de 20 %, représente un taux d'échange du sodium par le cuivre de 67 % . La teneur en sodium résiduel est de 3 %.
EXEMPLE 5 : Cet exemple illustre la mise en oeuvre des catalyseurs, préparés selon les procédures décrites dans les exemples précédent, dans une unité de test catalytique en lit fixe,dans diverses condi- tions de fonctionnement, pour la réduction des oxydes d'azote par l'ammoniac en utilisant les gaz de queue d'une unité industrielle d'acide nitrique.
Le volume de catalyseur mis en oeuvre est de 37,5 cm3, celui-ci est porté à 350 ºC sous un courant gazeux riche en azote de (96 % N2 -4 % O2) de 750 Nl/h à raison d'une montée en température de 100 ° C/h. Le mélange (N2 -O2) est ensuite remplacé par l'effluent à traiter qui est mélangé avec une quantité d'ammoniac fonction de la teneur en oxyde d'azote.
Le procédé de réduction est conduit à une pression variant de
0,104 à 0,45 MPa absolus. La vitesse volumétrique horaire (WH) exprime le débit de gaz entrant sur le catalyseur en Nl/h divisé par le volume de catalyseur. La teneur en NOx est exprimée en ppmv (partie par million par volume). Elle est de 1500 ppmv pour l'ensemble des tests effectués. La quantité d'ammoniac ajoutée au gaz entrant est exprimée par le rapport molaire NHa/NOx qui est voisin de 1,16.
La teneur résiduelle d'ammoniac après la réaction est exprimée en ppmv. La température indiquée est la température moyenne du lit catalytique. Le rendement de la réduction exprimé en % correspond au rapport de la différence entre la teneur en NOx des gaz en entrée et la teneur en
NOx des gaz en sortie, à la teneur en NOx des gaz en entrée.
Les résultats obtenus avec les catalyseurs obtenus dans les exemples de l'invention sont respectivement consignés dans les tableaux I et II pour l'exemple 2, III pour l'exemple 3, IV pour l'exemple 4.
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000012_0001
Figure imgf000012_0002

Claims

REVENDICATIONS
1 - Compositions catalytiques à base de zéolithe Y utilisables pour le traitement des effluents oxygénés contenant des NOx caractérisées en ce qu'elles contiennent 70 à 90 % de zéolithe NaY de surface spécifique comprise entre 750 et 950 m2/g échangée par des ions cuivriques, la teneur en cuivre étant de 2 à 12 % par rapport au poids de la zéolithe, le reste étant constitué par un liant.
2 - Compositions catalytiques selon la revendication 1 caractérisées en ce que la surface spécifique de la zéolithe NaY est supérieurfà 800 m2/g.
3 - Procédé de préparation des compositions selon la revendication 1 ou 2 caractérisé en ce que l'on traite une zéolithe NaY préalablement échangée ou non par des ions NH4 + par des échanges successifs par des ions cuivriques.
4 - Procédé selon la revendication 3 caractérisé en ce que la solution cuivrique contient le complexe (Cu (NH3)A)2+.
5 - Procédé selon la revendication 3 ou 4 caractérisé en ce que le produit est ensuite séché puis mis en forme.
6 - Procédé de préparation des compositions selon la revendica¬tion 1 ou 2 caractérisé en ce que l'on réalise l'échange par une solution cuivrique sur une composition catalytique échangée ou non au NH4 +mais déjà mise en forme.
7 - Procédé de traitement des effluents oxygénés contenant des NOx caractérisé en ce qu'il utilise des compositions catalytiques selon la revendication 1 ou 2 ou obtenues selon les procédés des revendications 3 à 6.
8 - Procédé selon la revendication 7 caractérisé en ce que l'effluent oxygéné contenant les NOx est traité à une température comprise entre 200 et 400 ° sous une pression d'au moins 0,1 MPa avec une vitesse vo¬lumétrique pouvant atteindre 80000 h-1 et un rapport NH3/NOx au plus égal à 1,25.
PCT/FR1990/000519 1989-07-12 1990-07-10 Composition catalytique a base de zeolithe y utilisable dans le traitement des effluents oxygenes contenant des oxydes d'azote, sa preparation et son procede d'utilisation WO1991000773A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP90910752A EP0483201B1 (fr) 1989-07-12 1990-07-10 Traitement d'effluents gazeux contenant des NOx et de l'oxygène avec des compositions catalytiques à base de zéolites Y échangés au Cu
US07/809,492 US5369070A (en) 1989-07-12 1990-07-10 Zeolite Y-based catalytic composition which can be used in treating oxygenated effluent containing nitrogen oxides, its preparation and process for use
DE69024217T DE69024217T2 (de) 1989-07-12 1990-07-10 Behandlung von NOx und Sauerstoffhaltigen Abgasen mit einer katalytischen Zusammensetzung auf Basis von Zeolith Y, die mit Cu ausgetauscht sind
US08/297,934 US5536483A (en) 1989-07-12 1994-08-31 Zeolite Y-based catalytic composition for use in the treatment of oxygenated effluents containing nitrogen oxides, its preparation and process for use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR89/09402 1989-07-12
FR8909402A FR2649622B1 (fr) 1989-07-12 1989-07-12 Composition catalytique a base de zeolithe y, utilisable dans le traitement d'effluents oxygenes contenant des nox, sa preparation et son application

Publications (1)

Publication Number Publication Date
WO1991000773A1 true WO1991000773A1 (fr) 1991-01-24

Family

ID=9383732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1990/000519 WO1991000773A1 (fr) 1989-07-12 1990-07-10 Composition catalytique a base de zeolithe y utilisable dans le traitement des effluents oxygenes contenant des oxydes d'azote, sa preparation et son procede d'utilisation

Country Status (8)

Country Link
US (2) US5369070A (fr)
EP (1) EP0483201B1 (fr)
AT (1) ATE131409T1 (fr)
DE (1) DE69024217T2 (fr)
DK (1) DK0483201T3 (fr)
ES (1) ES2081994T3 (fr)
FR (1) FR2649622B1 (fr)
WO (1) WO1991000773A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2072813A1 (es) * 1993-06-11 1995-07-16 Consejo Superior Investigacion Catalizador de cobre para la eliminacion de no, soportado en carbon activo o en grafito de alta superficie y procedimiento de preparacion.
DE4413359A1 (de) * 1994-04-18 1995-10-19 Ftu Gmbh Forschung Und Tech En Mittel und Verfahren zur Reinigung von Gasen und Abgasen von NOx

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770418B1 (fr) 1997-11-04 1999-12-03 Grande Paroisse Sa Procede pour l'elimination dans le gaz des oxydes d'azote nox par reduction catalytique selective (scr) a l'ammoniac sur catalyseurs zeolitiques ne provoquant pas la formation de protoxyde d'azote
US6136291A (en) * 1998-10-08 2000-10-24 Mobile Oil Corporation Faujasite zeolitic materials
US6685897B1 (en) 2000-01-06 2004-02-03 The Regents Of The University Of California Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures
US7585490B2 (en) * 2005-04-15 2009-09-08 University Of Iowa Research Foundation Synthesis and use of nanocrystalline zeolites
US7396517B2 (en) * 2005-08-05 2008-07-08 Gm Global Technology Operations, Inc. Reduction of NOx emissions using a staged silver/alumina catalyst system
RU2008128363A (ru) * 2005-12-14 2010-01-20 Басф Каталистс Ллк (Us) ЦЕОЛИТНЫЙ КАТАЛИЗАТОР С УЛУЧШЕННЫМ ВОССТАНОВЛЕНИЕМ NOх В SCR
JP2008221203A (ja) * 2007-02-13 2008-09-25 Babcock Hitachi Kk 窒素酸化物除去用触媒及び窒素酸化物除去方法
US9090525B2 (en) 2009-12-11 2015-07-28 Exxonmobil Research And Engineering Company Process and system to convert methanol to light olefin, gasoline and distillate
US9919269B2 (en) 2013-03-15 2018-03-20 3D Clean Coal Emissions Stack Llc Clean coal stack
US9067837B2 (en) 2013-03-15 2015-06-30 Three D Stack, LLC Cleaning stack gas
US8821818B1 (en) 2013-03-15 2014-09-02 Three D Stack, LLC Cleaning stack gas
EP3368500A1 (fr) 2015-10-28 2018-09-05 ExxonMobil Research and Engineering Company Procédés et appareil de conversion en essence et distillats de charges d'alimentation contenant des composés oxygénés
WO2017200875A1 (fr) 2016-05-14 2017-11-23 3 D Clean Coal Emissions Stack, Llc Épuration d'effluents gazeux
US10875777B2 (en) * 2016-07-29 2020-12-29 Basf Corporation Process for the preparation of a zeolitic material having a FAU-type framework structure and use thereof in the selective catalytic reduction of NOx
EP3388392B1 (fr) * 2017-04-12 2021-01-20 Umicore Ag & Co. Kg Zéolites à petits pores contenants du cuivre ayant une faible teneur de métaux alcalins, procédés de leur fabrication, et leur utilisaion comme catalyseurs scr

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1523017A (fr) * 1966-06-08 1968-04-02 Marathon Oil Co Catalyseur au cuivre et son procédé d'utilisation
US3929621A (en) * 1973-05-24 1975-12-30 Grace W R & Co Copper containing hydrocarbon cracking catalyst
US4052337A (en) * 1975-03-28 1977-10-04 Toa Nenryo Kogyo Kabushiki Kaisha Catalyst for reduction of nitrogen oxides and process for preparing same
EP0199169A1 (fr) * 1985-04-16 1986-10-29 Bayer Ag Procédé de réduction d'oxydes d'azote
DE3802871A1 (de) * 1987-01-31 1988-08-11 Ibs Engineering & Consulting I Anwendung eines katalysators auf der basis von modifiziertem zeolith, beladen mit einem oder mehreren metallen aus der gruppe von fe, cu, ni und co, im scr-verfahren
EP0286507A1 (fr) * 1987-04-03 1988-10-12 Societe Chimique De La Grande Paroisse Procédé d'épuration des effluents gazeux oxygénées par un réduction sélective des oxydes d'azote
EP0326667A1 (fr) * 1987-11-28 1989-08-09 Dornier Gmbh Catalyseur pour la réduction selective d'oxydes d'azote

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013985A (en) * 1958-09-24 1961-12-19 Union Carbide Corp Group ib metal catalysts
US3346328A (en) * 1967-03-30 1967-10-10 Francis J Sergeys Method of treating exhaust gases
US3497462A (en) * 1967-09-20 1970-02-24 Union Carbide Corp Copper (i) zeolites
US3595611A (en) * 1969-02-03 1971-07-27 Grace W R & Co Cation and thermal stabilization of faujasite-type zeolites
US3649177A (en) * 1969-10-13 1972-03-14 Universal Oil Prod Co Method for preparing copper-exchanged type y zeolite
US4157375A (en) * 1977-12-02 1979-06-05 Engelhard Minerals & Chemicals Corporation Conversion of nitrogen oxides
US5024981A (en) * 1989-04-20 1991-06-18 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1523017A (fr) * 1966-06-08 1968-04-02 Marathon Oil Co Catalyseur au cuivre et son procédé d'utilisation
US3929621A (en) * 1973-05-24 1975-12-30 Grace W R & Co Copper containing hydrocarbon cracking catalyst
US4052337A (en) * 1975-03-28 1977-10-04 Toa Nenryo Kogyo Kabushiki Kaisha Catalyst for reduction of nitrogen oxides and process for preparing same
EP0199169A1 (fr) * 1985-04-16 1986-10-29 Bayer Ag Procédé de réduction d'oxydes d'azote
DE3802871A1 (de) * 1987-01-31 1988-08-11 Ibs Engineering & Consulting I Anwendung eines katalysators auf der basis von modifiziertem zeolith, beladen mit einem oder mehreren metallen aus der gruppe von fe, cu, ni und co, im scr-verfahren
EP0286507A1 (fr) * 1987-04-03 1988-10-12 Societe Chimique De La Grande Paroisse Procédé d'épuration des effluents gazeux oxygénées par un réduction sélective des oxydes d'azote
EP0326667A1 (fr) * 1987-11-28 1989-08-09 Dornier Gmbh Catalyseur pour la réduction selective d'oxydes d'azote

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Vol. 91, 1979 (Columbus, Ohio, US) S. KASAOKA et al.: "Relations Between Low Temperature Reduction of Nitrogen Oxides with Ammonia and Adsorption Site of Ammonia over Copper-Exchanged Y-Type Zeolite Catalyst", voir page 298, Resume No. 128126s, & Kankyo Gijutsu 1979, 8(4), 392-8 *
CIT, Vol. 55, No. 2, 1983, Verlag Chemie GmbH (Weinheim, DE) E. HAFELE et al.: "Versuche zur Konvertierung von Wassergas an Zeolith-Katalysatoren", pages 148-149, voir page 148, colonne 1, paragraphe 2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2072813A1 (es) * 1993-06-11 1995-07-16 Consejo Superior Investigacion Catalizador de cobre para la eliminacion de no, soportado en carbon activo o en grafito de alta superficie y procedimiento de preparacion.
DE4413359A1 (de) * 1994-04-18 1995-10-19 Ftu Gmbh Forschung Und Tech En Mittel und Verfahren zur Reinigung von Gasen und Abgasen von NOx

Also Published As

Publication number Publication date
DE69024217D1 (de) 1996-01-25
FR2649622B1 (fr) 1993-12-24
EP0483201A1 (fr) 1992-05-06
FR2649622A1 (fr) 1991-01-18
US5369070A (en) 1994-11-29
DE69024217T2 (de) 1996-09-05
DK0483201T3 (da) 1996-03-04
ATE131409T1 (de) 1995-12-15
EP0483201B1 (fr) 1995-12-13
US5536483A (en) 1996-07-16
ES2081994T3 (es) 1996-03-16

Similar Documents

Publication Publication Date Title
WO1991000773A1 (fr) Composition catalytique a base de zeolithe y utilisable dans le traitement des effluents oxygenes contenant des oxydes d'azote, sa preparation et son procede d'utilisation
RU2732126C2 (ru) Afx цеолит
EP0286507B1 (fr) Procédé d'épuration des effluents gazeux oxygénées par un réduction sélective des oxydes d'azote
FR2553679A1 (fr) Catalyseur pour purifier les gaz d'echappement et les gaz residuaires par elimination des oxydes d'azote
CA2827534C (fr) Procede de traitement d'un gaz contenant des oxydes d'azote (nox) utilisant comme catalyseur une composition a base de zirconium, de cerium et de niobium
KR20110119804A (ko) 구리계 촉매의 제조 방법, 구리계 촉매 및 그의 전처리 방법
CN104475122A (zh) 一种同时抗水抗硫的成型scr催化剂及其制备方法
EP3174631B1 (fr) Adsorbant a base d'alumine contenant du sodium et dopee par un element alcalin pour la captation de molecules acides
EP3519358A1 (fr) Zéolite aei à forte teneur en silice
WO2018064276A1 (fr) Nouvelle synthèse de catalyseur de zéolite activé par un métal
CA2739360C (fr) Procede de decomposition du n2o utilisant un catalyseur a base d'un oxyde de cerium et de lanthane
CZ20022723A3 (cs) Katalyzátor pro odbourání N2O, jeho použití a způsob jeho výroby
CA2748004A1 (fr) Procede d'elimination d'impuretes soufrees, azotees et halogenees contenues dans un gaz de synthese
FR2625919A1 (fr) Procede et catalyseur pour la reduction selective des oxydes d'azote
CA2123265A1 (fr) Procede d'elimination du protoxyde d'azote
CA2472916C (fr) Oxidation directe de composes soufres a moins de 200.degree.c et par catalyseur avec 2% a 5% de fer
JP4744270B2 (ja) 硫黄化合物除去剤、その製造方法、及び硫黄化合物除去用フィルター
FR2847830A1 (fr) Procede de decomposition catalytique de n2o en n2 et o2 realise a haute temperature
FR2779360A1 (fr) Procede pour l'abattement du protoxyde d'azote dans les gaz et catalyseurs correspondants
FR2804675A1 (fr) Procede pour l'elimination dans les gaz des oxydes d'azote nox par reduction catalytique selective (scr) a l'ammoniac sur catalyseurs zeolitiques agglomeres ne provoquant pas la formation de protoxyde d'azote
CN103551105A (zh) 一种电石炉尾气净化剂及其制备方法和应用
RU2088316C1 (ru) Способ очистки отходящих газов от оксидов азота
CN102895978A (zh) 一种用于合成多氨基化合物的催化剂及其制备方法与应用
FR2613253A1 (fr) Composition catalytique de reduction selective des oxydes d'azote contenus dans des effluents gazeux oxygenes et procede d'epuration desdits effluents
WO2019224089A1 (fr) CATALYSEUR A BASE D'UN MATERIAU ALUMINOSILICATE COMPOSITE COMPRENANT DU CUIVRE ET UN MELANGE DE ZEOLITHES DE TYPE STRUCTURAL AFX ET DE TYPE STRUCTURAL BEA, POUR LA REDUCTION SELECTIVE DE NOx

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990910752

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990910752

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990910752

Country of ref document: EP