WO1990012409A1 - Procede de traitement d'un fil a supraconducteur d'oxide et objet ainsi realise - Google Patents

Procede de traitement d'un fil a supraconducteur d'oxide et objet ainsi realise Download PDF

Info

Publication number
WO1990012409A1
WO1990012409A1 PCT/JP1990/000421 JP9000421W WO9012409A1 WO 1990012409 A1 WO1990012409 A1 WO 1990012409A1 JP 9000421 W JP9000421 W JP 9000421W WO 9012409 A1 WO9012409 A1 WO 9012409A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide superconducting
superconducting wire
base material
long base
product
Prior art date
Application number
PCT/JP1990/000421
Other languages
English (en)
French (fr)
Inventor
Noriki Hayashi
Satoshi Takano
Shigeru Okuda
Hajime Hitotsuyanagi
Original Assignee
Sumitomo Electric Industries, Ltd.
The Kansai Electric Power Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1179423A external-priority patent/JP2986107B2/ja
Application filed by Sumitomo Electric Industries, Ltd., The Kansai Electric Power Co., Inc. filed Critical Sumitomo Electric Industries, Ltd.
Priority to DE69015524T priority Critical patent/DE69015524T2/de
Priority to EP90905662A priority patent/EP0417329B1/en
Publication of WO1990012409A1 publication Critical patent/WO1990012409A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a method of handling an oxide superconducting wire and a product such as a coil using the oxide superconducting wire.
  • oxide superconducting materials for applications such as coils and cables, for example, technology is needed to make them longer. Also, long ones must have some flexibility.
  • a method of elongating the oxide superconducting material that can satisfy the above-mentioned requirements, that is, a method of obtaining an oxide superconducting wire having a certain degree of flexibility, for example, a method in which a long base material having flexibility is provided
  • a method for forming an oxide superconducting layer is known.
  • a vapor phase thin film forming method such as vapor deposition, sputtering, and CVD can be applied.
  • Oxide superconducting materials are generally vulnerable to strain, especially tensile strain. For example, when tensile strain is applied, there is a disadvantage that the superconducting properties such as critical temperature and current density are significantly deteriorated.
  • the tensile strain if this exceeds a predetermined magnitude, even if such tensile strain is removed, However, the superconducting properties obtained before the application of tensile strain could not be obtained anymore. On the other hand, when the tensile strain did not exceed the predetermined value, it was possible to reproduce the superconducting characteristics obtained before applying the tensile strain by removing the tensile strain. .
  • the oxide superconducting layer when an oxide superconducting layer is formed on a flexible elongate base material to obtain an oxide superconducting wire, the oxide superconducting layer needs to pass through at least a heating step. Formed. Therefore, the long base material used for forming the oxide superconducting layer thereon can withstand such a heating step and undesired reaction or diffusion with the oxide superconducting layer in this heating step. Materials that do not cause any problems must be composed. For this reason, for example, YZZ (yttria-stabilized zirconia) is advantageously used as the long base material. In addition to YSZ, there are several other materials that are suitable as materials for long substrates for forming oxide superconductors within ⁇ _.
  • the oxide superconducting layer in which the oxide superconducting layer is formed on the long base material as described above is, for example, in a preparation stage for subjecting it to the next ⁇ ) process such as enamel coating, or in a stage of shipping the same. Requires a process of winding on a bobbin, and when trying to obtain a product using an oxide superconducting wire, for example, in the case of a coil, this is wound into a coil! ) In the case of a cable, this can be A process of spirally winding the surface of the long body is required. In handling such an oxide superconducting wire, it is necessary to bend the oxide superconducting wire in any case.
  • an object of the present invention is to provide an oxide superconducting wire that includes a process of bending an oxide superconducting wire, and to prevent the deterioration of the superconducting characteristics of the oxide superconducting layer as described above. Is to provide a method of handling superconducting wires.
  • Another object of the present invention is to provide a product in which an oxide superconducting wire is used in such a state that deterioration of superconducting characteristics of an oxide superconducting layer contained therein can be prevented as much as possible. Disclosure of the invention
  • the present invention is directed to a method for handling an oxide superconducting wire formed on a flexible long base material at least through a heating step and having an oxide superconducting layer. It was made based on seeing.
  • the oxide superconducting material generally has a disadvantage that it is vulnerable to strain.
  • oxidation occurs on a certain kind of flexible long substrate.
  • the oxide superconducting layer is bent in a certain direction after obtaining the oxide superconducting wire formed at least through the heating step, despite the fact that the oxide superconducting layer is inevitably strained,
  • the superconducting characteristics hardly deteriorated, or rather, that the superconducting characteristics improved.
  • this was caused by the difference between the thermal expansion coefficient of the long base material and the thermal expansion coefficient of the oxide superconducting layer material. That is, at present, most flexible long substrates suitable for forming an oxide superconducting wire for obtaining an oxide superconducting wire have a higher thermal expansion coefficient than that of the oxide superconducting layer. It has a small coefficient of thermal expansion.
  • oxide superconducting layer 2 when oxide superconducting layer 2 is formed on long base material 1, it is subjected to a heating step at a temperature of, for example, 400 to 100,000. After the desired oxide superconducting layer 2 is formed, the oxide superconducting layer 2 is cooled together with the long base material 1. During this cooling, the long base material 1 shrinks as indicated by the arrow symbol 3, while the oxide superconducting layer 2 shrinks as indicated by the arrow symbol 4. At this time, the arrow symbol 3 is shown shorter than the arrow symbol 4 to indicate that the thermal expansion coefficient of the long base material 1 is smaller than the thermal expansion coefficient of the oxide superconducting layer 2. Therefore, after cooling, the oxide superconductor 2 is given a tensile strain based on such a difference in the coefficient of thermal expansion, as indicated by an arrow 5.
  • the present invention provides a thermal expansion It is intended for an oxide superconducting wire whose coefficient is smaller than the thermal expansion coefficient of the material of the oxide superconducting layer 2.
  • the oxide superconducting layer in order to solve the above-mentioned technical problem, in handling the oxide superconducting wire, the oxide superconducting layer is positioned inside and the long base material is positioned outside the bending center with respect to the bending center.
  • the oxide superconducting wire is bent. Referring again to FIG. 1, according to the characteristic handling method described above, the tensile strain indicated by the arrow symbol 5 previously given to the oxide superconducting layer 2 is relaxed. Become like
  • a tape-shaped substrate is preferably used as the long base material.
  • Examples of the material of the long base material that can satisfy the above-described conditions of the thermal expansion coefficient include, for example, zirconia, alumina, glass, titanium, zirconium, tungsten, platinum, chrome, nickel, and niobium. , Molybdenum, iron, stainless steel mesh and nickel alloy.
  • the present invention also provides a product using the above-described oxide superconducting wire.
  • the oxide superconducting wire is bent so that the oxide superconducting layer is located inside and the force and the long base material are located outside the bending center.
  • Examples of the above-mentioned products include a coil using an oxide superconducting wire, a bobbin around which an oxide superconducting wire is wound, and a cable formed by spirally winding an oxide superconducting wire on the surface of a long body. There is.
  • the oxide superconducting wire is handled so that the tensile strain inevitably remaining in the oxide superconducting layer contained therein is released, so that the superconducting characteristics of the oxide superconducting layer are deteriorated. Is prevented. According to the present invention, not only the deterioration of the superconducting property is simply prevented but also the improvement of the superconducting property can be expected in some cases. Further, as described above, when the oxide superconducting wire is bent, the tensile strain previously given to the oxide superconducting layer is not only relieved, but also a compressive strain may be generated. It has been found that a large compressive strain does not adversely affect the superconducting properties as much as a bow-strain, and may possibly further improve the superconducting properties.
  • the long base material if a tape-shaped material is used as the long base material, it becomes easier to bend the oxide superconducting wire in a desired direction.
  • the superconducting characteristics of the oxide superconducting wire should be used to the utmost. Can be.
  • FIG. 1 is an explanatory diagram showing the influence of the coefficient of thermal expansion in the manufacturing process of an oxide superconductor that triggered the invention.
  • FIG. 2 is an explanatory view schematically showing an apparatus used in Embodiment 1 of the present invention.
  • FIG. 3 is a front view showing a bobbin arranged in the winding chamber 8 shown in FIG.
  • FIG. 4 is an enlarged sectional view showing a state in which oxide superconducting wire 11 is wound around core 10 of bobbin 9 shown in FIG.
  • FIG. 5 is a front view showing a part of the coil 18 obtained according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an enlarged part of the oxide superconducting wire 14 included in the coil 18 shown in FIG.
  • a Y-Ba-Cu-0 superconductor is deposited on a long tape-shaped base material (5 mm wide, 0.1 mm thick) made of stabilized zirconia and lzm Films were formed with a thickness.
  • the film forming conditions are as follows.
  • composition Y, Ba 2 Cu 3 3 3 ⁇
  • the moving speed of the long base material is set to 4 c hours. Meanwhile, in the heat treatment room 7, the heat treatment of the obtained oxide superconducting wire was performed at 900 for 10 minutes. Subsequently, in the winding chamber 8, as shown in FIGS. 3 and 4, the oxide superconducting wire 11 was wound on the winding core 10 of the bobbin 9 by 5 hours. At this time, as shown in FIG. 4, the film was wound so that the oxide superconducting layer 12 was positioned inside and the long base material 13 was positioned outside. The core 10 had a diameter of 30 min.
  • oxide superconducting wire 1 1 taken Pobin 9 wound where, immersed in liquid nitrogen, and measuring the critical current, rarely 0 5 A
  • Example 1 when the oxide superconducting wire 11 was wound around the core 10 of the bobbin 9, the same conditions as in Example 1 were used except that the oxide superconducting layer 12 was positioned outside.
  • the critical current of the oxide superconducting wire 11 wound on bobbin 9 was measured under the same conditions, it was only 2 A.
  • An oxide superconducting wire was obtained using the same long substrate and the same film forming conditions as in Example 1. Using this oxide superconducting wire, a superconducting coil was produced as follows.
  • the oxide superconducting wire 14 As shown in Fig. 5, start winding the oxide superconducting wire 14 on the circumference having a radius of 30 mm from the center 15 of the coil 18 and wind it up to five layers, and then wind the coil 18 Produced. This and As shown in FIG. 6, the oxide superconducting wire 14 was wound so that the oxide superconducting layer 16 was positioned inside and the long base material 17 was positioned outside.
  • Example 2 a coil was manufactured under the same conditions as in Example 2 except that the oxide superconductor 16 was wound so as to be on the outside, and the critical current was measured under the same conditions, and only a value of 8 A was obtained. It wasn't.
  • Example 3 The oxide superconducting wire obtained in Example 1 was cut into an appropriate length without winding, and the critical current in liquid nitrogen was measured in a linear state. was obtained ⁇ Example 3
  • the film forming conditions are as follows.
  • Target composition Y, B a 2 C u 3 0 7 —
  • the critical current density was 90% or more. Showed a decrease.
  • the oxide superconducting wire when handled according to the present invention, the tensile strain of the oxide superconducting layer contained in the oxide superconducting wire is released, and the oxide superconducting layer is not deteriorated without deteriorating the superconducting characteristics of the oxide superconducting layer. Since the wire can be bent, the present invention can be advantageously applied in the manufacture of products such as coils, cables, or intermediate products such as bobbins, where the oxide superconducting wire must be bent. I can do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

明 細 書
発明の名称
酸化物超電導線の取扱い方法およびそれを用いた製品 技術分野
この発明は、 酸化物超電導線の取扱い方法および酸化物 超電導線を用いたコィルのような製品に関するものである。 背景技術
酸化物超電導材料を、 たとえばコイルやケーブルなどの 用途に向けようとする場合、 これを長尺化するための技術 が必要である。 また、 長尺されたものは、 ある程度の可撓 性を有していなければならない。
上述した要件を満たし得る、 酸化物超電導材料を長尺化 する方法、 すなわちある程度の可撓性を有する酸化物超電 導線を得る方法としては、 たとえば、 可撓性を有する長尺 基材上に酸化物超電導層を形成する方法が知られている。 このとき、 酸化物超電導層を形成する方法としては、 蒸着、 スパッタ リ ング、 C V D等の気相薄膜形成方法を適用する ことができる。
酸化物超電導材料は、 一般に、 歪、 特に引張り歪に対し て弱く、 たとえば引張り歪が与えられると、 臨界温度、 電 流密度といつた超電導特性が著しく劣化するという欠点が あった 0
また、 たとえば引張り歪に関して、 これが所定の大きさ を越えると、 たとえそのような引張り歪が除去されたとし ても、 引張り歪を与える前に得られていた超電導特性をも はや得ることはできなかった。 これに対して、 引張り歪が 所定の大きさを越えない場合には、 その引張り歪を除去す れば、 引張り歪を与える前に得られていた超電導特性を再 現することが可能であった。
ところで、 前述したように、 酸化物超電導線を得るため、 可撓性を有する長尺基材上に酸化物超電導層を形成すると き、 酸化物超電導層は、 少なく とも加熱工程を通ることに よつ'て形成される。 したがって、 酸化物超電導層をその上 に形成する めに用いられる長尺基材としては、 このよう な加熱工程に耐えるとともに、 この加熱工程において酸化 物超電導雇との間で不所望な反応または拡散等が生じない 材料 構 されなければならない。 そのため、 長尺基材と しては、 たとえば、 Y S Z (イ ッ ト リア安定化ジルコニァ) が有利に用いられている。 Y S Z以外にも、 酸化物超電導 雇をその ±_に形成するための長尺基材の材料として適した ものが、 いくつかある。
上述のような長尺基材上に酸化物超電導層が形成された 酸化物超電導 は、 たとえば、 これをエナメル塗布のよう な次^)工程に付すための準備段階において、 あるいはこれ を出荷する段階において、 ボビンに巻取るという工程が必 要であり、 また、 酸化物超電導線を用いた製品を得ようと するとき、 たとえばコイルの場合には、 これをコイル状に 巻いた!) ケーブルの場合には、 これをたとえばパイプ状 の長尺体の表面に螺旋状に巻付けたりする工程が必要であ る。 このような酸化物超電導線の取扱いにあたっては、 そ のどれをとつてみても、 酸化物超電導線を曲げることが必 ず行なわれる。 しかしながら、 このように酸化物超電導線 を曲げたとき、 必然的に、 酸化物超電導層には、 歪が生じ ることが理解されよう。 この歪は、 前述したように、 酸化 物超電導層を構成する酸化物超電導材料の超電導特性を劣 化させる原因になることがある。
そこで、 この発明の目的は、 酸化物超電導線を曲げると いつた工程を含む酸化物超電導線の取扱いにおいて、 上述 したような酸化物超電導層の超電導特性の劣化をできるだ け防止し得る、 酸化物超電導線の取扱い方法を提供しょう とすることである。
また、 この発明は、 酸化物超電導線が、 そこに含まれる 酸化物超電導層の超電導特性の劣化をできるだけ防止し得 る状態で用いられた製品を提供しようとするものである。 発明の開示
この発明は、 可撓性を有する長尺基材上に酸化物超電導 層が少なく とも加熱工程を通って形成された酸化物超電導 線の取扱い方法に向けられるものであるが、 次のような知 見に基づき成されたものである。
本発明者は、 前述したように、 酸化物超電導材料は、 一 般に、 歪に対して弱いという欠点があることを認識してい た。 ところが、 可撓性を有する或る種の長尺基材上に酸化 物超電導層が少なく とも加熱工程を通って形成された酸化 物超電導線を得てから、 或る方向にこれを曲げたとき、 酸 化物超電導層に必然的に歪が生じているにもかかわらず、 超電導特性がほとんど劣化しなかったり、 むしろ超電導特 性が向上する場合があることを発見した。 この原因につい て、 追及した結果、 これは、 長尺基材の熱膨張係数と酸化 物超電導層材料の熱膨張係数の差に起因していることがわ かった。 すなわち、 現在、 酸化物超電導線を得るために、 酸化物超電導雇を形成するのに適した可撓性を有する長尺 基材は、 そのほとんどが、 酸化物超電導層の熱膨張係数よ り も小さい熱膨張係数を有している。
第 1図を参照して、 長尺基材 1上に、 酸化物超電導層 2 が形成されるとき、 たとえば 4 0 0〜 1 0 0 0での温度の 加熱工程に付される。 所望の酸化物超電導層 2が形成され た後、 酸化物超電導層 2は、 長尺基材 1 とともに冷却され る。 この冷却中において、 長尺基材 1には、 矢印記号 3で 示すような収縮が生じ、 他方、 酸化物超電導層 2には、 矢 印記号 4で示すような収縮が生じる。 このとき、 長尺基材 1 の熱膨張係数が酸化物超電導層 2の熱膨張係数より も小 さいことを示すため、 矢印記号 3は矢印記号 4より も短く 図示されている。 したがって、 冷却後においては、 このよ うな熱膨張係数の差に基づき、 矢印 5で示すように、 酸化 物超電導雇 2には、 引張り歪が与えられる。
この発明は、 第 1図に示すように、 長尺基材 1の熱膨張 係数が酸化物超電導層 2の材料の熱膨張係数より も小さい、 酸化物超電導線に向けられるものである。
この発明において、 前述した技術的課題を解決するため、 酸化物超電導線の取扱いにあたっては、 曲げ中心に対して、 酸化物超電導層が内側に、 かつ長尺基材が外側に位置する ように、 酸化物超電導線が曲げられる。 再び第 1図を参照 して説明すれば、 上述したような特徴的な取扱い方法によ れば、 酸化物超電導層 2に予め与えられている矢印記号 5 で示した引張り歪は、 緩和されるようになる。
この発明において、 長尺基材としては、 好ましく は、 テ ープ状のものが用いられる。
また、 上述したような熱膨張係数の条件を満たし得る長 尺基材の材料と しては、 たとえば、 ジルコニァ、 アルミ ナ、 ガラス、 チタ ン、 ジルコニウム、 タ ングステン、 白金、 ク ロム、 ニッケル、 ニオブ、 モリ ブデン、 鉄、 ステンレス網 およびニッケル合金などがある。
この発明では、 また、 上述したような酸化物超電導線を 用いた製品が提供される。 この製品において、 酸化物超電 導線は、 曲げ中心に対して、 酸化物超電導層が内側に、 力、 つ長尺基材が外側に位置するように、 曲げられた状態とさ れている。
上述した製品としては、 たとえば、 酸化物超電導線を用 いたコイル、 酸化物超電導線を巻取ったボビン、 長尺体の 表面に酸化物超電導線を螺旋状に巻いてなるケーブル、 な どがある。
この発明によれば、 酸化物超電導線は、 そこに含まれる 酸化物超電導層において不可避的に残存している引張り歪 が解放されるように取扱われるので、 酸化物超電導層の超 電導特性を劣化させることが防止される。 なお、 この発明 に れば、 超電導特性の劣化を単に防止するだけではなく、 むしろ、 超電導特性の向上が期待できる場合もある。 また、 前述したように、 酸化物超電導線を曲げるとき、 酸化物超 電導層に予め与えられている引張り歪は、 緩和されるだけ でなく、 逆に圧縮歪を生じる場合もあるが、 このような圧 縮歪は、 弓 ί張り歪ほど、 超電導特性に悪影響を及ぼさず、 また、 超電導特性をより向上させる場合もあり得ることが わかっている。
この発明において、 長尺基材として、 テープ状のものを 用いると、 酸化物超電導線を所望の方向に曲げることがよ り容易になる。
また、 この発明にかかる取扱い方法を用いて得られたコ ィル、 ケーブルのような製品、 またはボビンのような中間 製品によれば、 酸化物超電導線が有する超電導特性を最大 限に利用することができる。
図面の簡単な説明
第 1図は、 この発明が生まれる契機となった酸化物超電 導線の製造工程における熱膨張係数の影響を示す説明図で
<Όる。 第 2図は、 この発明の実施例 1において用いられる装置 を概略的に示す説明図である。
第 3図は、 第 2図に示した巻取室 8に配置されるボビン を示す正面図である。
第 4図は、 第 3図に示したボビン 9の卷芯 1 0に酸化物 超電導線 1 1が巻かれる状態を示す拡大断面図である。 第 5図は、 この発明の実施例 2により得られたコイル 1 8の一部を示す正面図である。
第 6図は、 第 5図に示したコイル 1 8に含まれる酸化物 超電導線 1 4の一部を拡大して示す断面図である。
発明の実施するための最良の形態
実施例 1
レーザ蒸着法を用いて、 Y - B a - C u— 0系超電導物 質を、 安定化ジルコニァからなるテープ状の長尺基材 (幅 5 m m、 厚み 0 . 1 m m ) 上に、 l z mの厚みをもって成 膜した。 成膜条件は、 次のとおりである。
夕一ゲッ ト組成 : Y , B a 2 C u 3 Ο χ
成膜温度: 7 5 0で
ガス圧 : 0 . 1 T o r r
ガス : 0 2
レーザ波長 : 1 9 3 n m
エネルギ密度: 1 J / c m 2
第 2図に示すように、 成膜室 6において、 上述したよう な成膜を行なった後、 長尺基材の移動速度を 4 c 時と しながら、 熱処理室 7において、 得られた酸化物超電導線 の熱処理を、 9 0 0でで 1 0分間の条件で行なった。 続い て、 巻取り室 8において、 第 3図および第 4図に示すよう に、 ボビン 9の卷芯 1 0上に、 酸化物超電導線 1 1を 5夕 —ンだけ巻取った。 このとき、 第 4図に示されるように、 酸化物超電導層 1 2が内側に、 かつ長尺基材 1 3が外側に 位置するように巻取られた。 また、 巻芯 1 0の直径は 3 0 m inであった。
このようにポビン 9に巻取られた酸化物超電導線 1 1を、 液体窒素中に浸漬し、 臨界電流を測定したところ、 5 Aで めった 0
比較例 1
上述した実施例 1 において、 ボビン 9の巻芯 1 0に酸化 物超電導線 1 1を巻取るとき、 酸化物超電導層 1 2が外側 に位置するようにした以外は実施例 1 と同じ条件で、 ボビ ン 9に巻取った酸化物超電導線 1 1の臨界電流を同じ条件 で測定したところ、 2 Aしかなかった。
実施例 2
実施例 1 と同じ長尺基材および同じ成膜条件を用いて、 酸化物超電導線を得た。 この酸化物超電導線を用いて、 次 のように、 超電導コイルを作製した。
第 5図に示すように、 酸化物超電導線 1 4を、 コイル 1 8の中心 1 5から半径 3 0 m mの距離となる円周上から巻 き始め、 5層まで巻いて、 コイル 1 8を作製した。 このと き、 第 6図に示すように、 酸化物超電導線 14は、 酸化物 超電導層 1 6が内側に、 かつ長尺基材 1 7が外側に位置す るように巻かれた。
このようにして得られたコイル 18を、 液体窒素中に浸 漬し、 臨界電流を測定したところ、 23Aの値が得られた ¾ 比較例 2
実施例 2において、 酸化物超電導雇 16が外側になるよ うに巻いたことを除いて実施例 2と同じ条件で、 コイルを 作製し、 同じ条件で臨界電流を測定したところ、 8Aの値 しか得られなかつた。
比較例 3
実施例 1によって得られた酸化物超電導線を、 巻取るこ となく 、 適当な長さで切断して、 直線状態で、 液体窒素中 での臨界電流を測定したところ、 5. 2 Aの値が得られた < 実施例 3
厚さ 50 ^ πιの Y S Z (9 %Υ 2 03 添加) からなるテ ープ状の長尺基材上に、 レーザ蒸着法により、 厚さ 2 m の B a 2 C u 3 075からなる酸化物超電導層を形成 した。 成膜条件は、 次のとおりである。
ターゲッ ト組成 : Y, B a 2 C u 3 07
基材温度 : 720で
レーザビーク出力 : 2 J
レ一ザパルス幅 : 1 5 n s
レーザ周波数: 1 0 H z 0 2 圧力 : 0 . 0 1 T o r r
次に、 0 2 中で、 9 5 0てで 1時間の熱処理を施した。 得られた酸化物超電導線において、 酸化物超電導層が内 側に、 かつ長尺基材が外側に位置するように、 直径 4 0 m mまで曲げた場合、 臨界電流密度の低下は、 8 %であった 比較例 4
実施例 3と同様の条件で得られた酸化物超電導線におい て、 長尺基材が内側に位置するように、 同じく 直径 4 0 m mまで曲げた場合、 臨界電流密度は、 9 0 %以上の低下を 示した。
産業上の利用可能性
以上のように、 この発明に従って酸化物超電導線を取扱 えば、 酸化物超電導線に含まれる酸化物超電導層の引張り 歪が解放され、 酸化物超電導層の超電導特性を劣化させる ことなく、 酸化物超電導線を曲げることができるので、 こ の発明は、 酸化物超電導線を曲げなければならない場面に 遭遇する、 コイル、 ケーブルのような製品、 またはボビン のような中間製品の製造において有利に適用することがで きる。

Claims

請求の範囲
1 . 可撓性を有する長尺基材上に酸化物超電導層が少 なく とも加熱工程を通って形成されたものであり、 前記長 尺基材の熱膨張係数が前記酸化物超電導層の熱膨張係数よ り も小さい、 酸化物超電導線の取扱い方法であって、
曲げ中心に対して、 前記酸化物超電導層が内側に、 かつ 前記長尺基材が外側に位置するように、 前記酸化物超電導 層を曲げることを特徴とする、 酸化物超電導線の取扱い方 法 o
2 . 前記長尺基材がテープ状である、 請求の範囲第 1 項に記載の酸化物超電導線の取扱い方法。
3 . 前記長尺基材が、 ジルコニァ、 アルミ ナ、 ガラス、 チタン、 ジルコニウム、 タ ングステン、 白金、 クロム、 二 ッゲル、 ニオブ、 モリ ブデン、 鉄、 ステンレス鋼および二 ッゲル合金からなる群から選ばれた材料によつて構成され る、 請求の範囲第 1項に記載の酸化物超電導線の取扱い方 法 o
4 . 可撓性を有する長尺基材上に酸化物超電導層が少 なく とも加熱工程を通って形成されたものであり、 前記長 尺基材の熱膨張係数が前記酸化物超電導層の熱膨張係数よ り も小さい、 酸化物超電導線を用いた製品において、 曲げ中 に対して、 前記酸化物超電導層が内側に、 かつ 前記長尺基材が外側に位置するように、 前記酸化物超電導 層が曲げられた状態とされていることを特徵とする、 酸化 物超電導線を用いた製品。
5 . 前記長尺基材がテープ状である、 請求の範囲第 4 項に記載の酸化物超電導線を用いた製品。
6 . 前記長尺基材が、 ジルコニァ、 アルミ ナ、 ガラス チタン、 ジルコニウム、 タングステン、 白金、 クロム、 二 ッゲル、 ニオブ、 モリプデン、 鉄、 ステンレス鋼および二 ッケル合金からなる群から選ばれた材料によつて構成され る、 請求の範囲第 4項に記載の酸化物超電導線を用いた製 口 α
α ο
7 . 前記製品は、 前記酸化物超電導線を用いたコイル である、 請求の範囲第 4項に記載の酸化物超電導線を用い た製 □α ο
8 . 前記製品は、 前記酸化物超電導線を卷取ったボビ ンである、 請求の範囲第 4項に記載の酸化物超電導線を用 いた製品。
9 . 前記製品は、 長尺体の表面に前記酸化物超電導線 を螺旋状に卷いてなるケーブルである、 請求の範囲第 4項 に記載の酸化物超電導線を用いた製品。
PCT/JP1990/000421 1989-03-31 1990-03-29 Procede de traitement d'un fil a supraconducteur d'oxide et objet ainsi realise WO1990012409A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69015524T DE69015524T2 (de) 1989-03-31 1990-03-29 Verfahren zur herstellung eines supraleitenden drahtes auf oxidbasis.
EP90905662A EP0417329B1 (en) 1989-03-31 1990-03-29 Method of producing an oxide superconducting wire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1/82556 1989-03-31
JP8255689 1989-03-31
JP1179423A JP2986107B2 (ja) 1989-03-31 1989-07-12 酸化物超電導線の製造方法および酸化物超電導線を用いた製品の製造方法
JP1/179423 1989-07-12

Publications (1)

Publication Number Publication Date
WO1990012409A1 true WO1990012409A1 (fr) 1990-10-18

Family

ID=26423581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000421 WO1990012409A1 (fr) 1989-03-31 1990-03-29 Procede de traitement d'un fil a supraconducteur d'oxide et objet ainsi realise

Country Status (4)

Country Link
EP (1) EP0417329B1 (ja)
CA (1) CA2030559C (ja)
DE (1) DE69015524T2 (ja)
WO (1) WO1990012409A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050826A1 (fr) * 2001-12-10 2003-06-19 Mitsubishi Denki Kabushiki Kaisha Materiau de base metallique pour film epais supraconducteur renfermant un oxyde et procede de preparation associe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501828B2 (ja) 1993-10-21 2004-03-02 住友電気工業株式会社 酸化物超電導導体の製造方法
DE102004048646B4 (de) * 2004-10-04 2006-08-10 Siemens Ag Supraleitende Strombegrenzereinrichtung vom resistiven Typ mit bandförmiger Hoch-Tc-Supraleiterbahn
DE102010040272B4 (de) * 2010-09-06 2018-04-19 Siemens Aktiengesellschaft Hochtemperatur-Supraleiter (HTS)-Spule

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459713A (en) * 1987-08-28 1989-03-07 Matsushita Electric Ind Co Ltd Superconductor wire
JPS6459728A (en) * 1987-08-28 1989-03-07 Matsushita Electric Ind Co Ltd Manufacture of superconducting wire
JPS6459714A (en) * 1987-08-28 1989-03-07 Matsushita Electric Ind Co Ltd Superconductive wire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274017A (ja) * 1987-04-30 1988-11-11 Tdk Corp 超電導線材
JPS6452327A (en) * 1987-08-22 1989-02-28 Sumitomo Electric Industries Superconductive material
US4994435A (en) * 1987-10-16 1991-02-19 The Furukawa Electric Co., Ltd. Laminated layers of a substrate, noble metal, and interlayer underneath an oxide superconductor
DE3829227A1 (de) * 1988-08-29 1990-03-01 Kabelmetal Electro Gmbh Supraleitendes langgestrecktes gut aus einem beschichteten gewellten metallrohr

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459713A (en) * 1987-08-28 1989-03-07 Matsushita Electric Ind Co Ltd Superconductor wire
JPS6459728A (en) * 1987-08-28 1989-03-07 Matsushita Electric Ind Co Ltd Manufacture of superconducting wire
JPS6459714A (en) * 1987-08-28 1989-03-07 Matsushita Electric Ind Co Ltd Superconductive wire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0417329A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050826A1 (fr) * 2001-12-10 2003-06-19 Mitsubishi Denki Kabushiki Kaisha Materiau de base metallique pour film epais supraconducteur renfermant un oxyde et procede de preparation associe

Also Published As

Publication number Publication date
DE69015524D1 (de) 1995-02-09
CA2030559C (en) 1995-01-31
DE69015524T2 (de) 1995-08-10
EP0417329A4 (en) 1992-04-29
EP0417329B1 (en) 1994-12-28
CA2030559A1 (en) 1990-10-01
EP0417329A1 (en) 1991-03-20

Similar Documents

Publication Publication Date Title
EP0423354B2 (en) Oxide superconductor wire, method of producing the same and article produced therefrom
US6603379B1 (en) Superconducing wind-and-react-coils and methods of manufacture
US7737086B2 (en) Method for producing a superconductive electrical conductor
US5093311A (en) Oxide superconductor cable and method of producing the same
WO1990012409A1 (fr) Procede de traitement d&#39;un fil a supraconducteur d&#39;oxide et objet ainsi realise
JP2986107B2 (ja) 酸化物超電導線の製造方法および酸化物超電導線を用いた製品の製造方法
EP0445832B1 (en) Method of producing superconducting ceramic wire having protective metal coating thereon
EP0970483B1 (en) Coating of a superconductor
US5254529A (en) Superconducting fibers made with yttrium and yttrium oxide interlayers and barium cuprate cover layers
JP2585366B2 (ja) 酸化物超電導線材
JP3248190B2 (ja) 酸化物超電導線材、その製造方法およびその取扱方法
JPH0524806A (ja) 酸化物超電導体
JPH08106822A (ja) 超伝導線
JPS63241826A (ja) 超電導線の製造方法
JP2004200098A (ja) 酸化物超電導線材の製造方法
JPH01115009A (ja) 酸化物超電導成形体及びその製造方法
JPH01144524A (ja) セラミックス系超電導線の製造方法
JPS63318017A (ja) 電気伝導線材
JP2011049160A (ja) 被覆導体
JPH03158203A (ja) セラミックス超電導導体の製造方法
JPH01144523A (ja) セラミックス系超電導線の製造方法
JPH04329217A (ja) 酸化物超電導線材およびその製造方法
JPS62106607A (ja) 化合物系超電導コイル
JPH02170309A (ja) B1型の超電導層を備えた超電導導体
JPH05198424A (ja) 超電導コイルおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

ENP Entry into the national phase

Ref document number: 2030558

Country of ref document: CA

Ref country code: CA

Ref document number: 2030558

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2030559

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1990905662

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990905662

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990905662

Country of ref document: EP