WO1990009528A1 - Hydraulic circuit for working machines - Google Patents

Hydraulic circuit for working machines Download PDF

Info

Publication number
WO1990009528A1
WO1990009528A1 PCT/JP1990/000193 JP9000193W WO9009528A1 WO 1990009528 A1 WO1990009528 A1 WO 1990009528A1 JP 9000193 W JP9000193 W JP 9000193W WO 9009528 A1 WO9009528 A1 WO 9009528A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic circuit
circuit device
control
working machine
Prior art date
Application number
PCT/JP1990/000193
Other languages
English (en)
French (fr)
Inventor
Genroku Sugiyama
Toichi Hirata
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to EP90903218A priority Critical patent/EP0411151B1/en
Priority to DE69010419T priority patent/DE69010419T2/de
Priority to KR1019900701662A priority patent/KR920007650B1/ko
Publication of WO1990009528A1 publication Critical patent/WO1990009528A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/168Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load with an isolator valve (duplicating valve), i.e. at least one load sense [LS] pressure is derived from a work port load sense pressure but is not a work port pressure itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30555Inlet and outlet of the pressure compensating valve being connected to the directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5159Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/55Pressure control for limiting a pressure up to a maximum pressure, e.g. by using a pressure relief valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members

Definitions

  • the present invention relates to a hydraulic circuit device for a working machine such as a hydraulic shovel or a hydraulic crane, and more particularly to a hydraulic circuit device for a working machine having a pressure control means for maintaining a differential pressure across a flow control valve at a specified value.
  • a working machine such as a hydraulic shovel or a hydraulic crane
  • a hydraulic circuit device for a working machine having a pressure control means for maintaining a differential pressure across a flow control valve at a specified value.
  • a typical example is a hydraulic shovel. That is, the hydraulic shovel is composed of a lower traveling body for moving the hydraulic shovel, an upper revolving superstructure rotatably mounted on the lower traveling body, and a boom, an arm, and a kit. It consists of a remote mechanism. Various equipment such as a cab, a prime mover, and a hydraulic pump are mounted on the upper revolving superstructure, and a front mechanism is mounted.
  • the hydraulic circuit device used in this type of work machine controls the pump discharge amount so that the pump discharge pressure becomes higher than the load pressure of the hydraulic actuator by a certain value.
  • a load sensing system that discharges only a small flow rate from a hydraulic pump.
  • Japanese Unexamined Patent Publication No. 57-116658 discloses that a plurality of actuators are provided downstream of a flow control valve for controlling the flow of pressure oil supplied to the actuator.
  • a hydraulic circuit device has been proposed in which a pressure controller that operates in response to the maximum load pressure and maintains a differential pressure across the flow control valve at a specified value is arranged.
  • Japanese Patent Application Laid-Open No. Sho 60-117706 discloses a hydraulic circuit in which a pressure compensation valve is disposed upstream of a flow control valve to maintain a differential pressure across the flow control valve at a specified value.
  • the drive speed may be significantly reduced for work.
  • this includes the work of peeling the ground thinly, the work of leveling the ground, and the work of making slopes (hereinafter, these are collectively referred to as post-operation work).
  • post-operation work the work of the operation lever in the factory: The smaller the change in the supply flow rate to the factory (the flow rate through the flow control valve) with respect to the quantity, the smaller the work. It's clear that you can:
  • the change in the supply flow rate of the actuator relative to the operation amount of the operation lever is caused by the rotation of the prime mover that drives the hydraulic pump.
  • the control for maintaining the differential pressure across the flow control valve at a specified value is performed, so that the rotation speed of the original machine Even when the operating lever is lowered, the supply flow rate is determined according to the operation amount of the operation lever, and the rate of change of the supply flow rate relative to the operation amount of the operation lever does not change.
  • An object of the present invention is to provide a hydraulic circuit device of a working machine that can easily perform a fine operation even when a load sensing system is employed. Disclosure of the invention
  • the present invention provides a hydraulic oil supply, at least one hydraulic actuator driven by hydraulic oil from the hydraulic oil supply, and a hydraulic oil supply to the hydraulic oil supply.
  • a hydraulic circuit device for a work machine comprising a flow control valve for controlling the flow of pressurized oil and a pressure control means for maintaining a differential pressure across the flow control valve at a specified value, the load pressure of the actuator And a pressure equal to the load pressure or an intermediate pressure higher than the load pressure and lower than the supply pressure is selectively generated from the pressure oil and the supply pressure of the pressure oil supply source, and output as a control pressure.
  • the second means instructs selection of a pressure equal to the load pressure as the control pressure, and the first means narrows down and outputs the pressure as the control pressure according to this instruction.
  • This control pressure is led to the pressure control means via the communication means.
  • the pressure control means maintains the differential pressure across the flow control valve at the specified value, and normal flow control is performed.
  • selection of the intermediate pressure is instructed by the second means as the control pressure, and the first means selects and outputs the intermediate pressure as the control pressure in accordance with this instruction.
  • the control pressure is led to the pressure control means via the communication means.
  • the pressure control means makes the differential pressure across the flow control valve smaller than the specified value, and as a result, the change in the supply flow rate through the flow control valve with respect to the operation amount of the operation lever becomes small, and fine operation Can be easily implemented.
  • the first means includes a conduit through which the load pressure is guided at one end and the supply pressure at the other end, and a fixed throttle and a variable throttle installed in the pipeline.
  • the second means adjusts the angle of the variable aperture.
  • the communication means is connected to a portion of the conduit between a fixed throttle and a variable throttle.
  • the fixed throttle is installed on the side of the pipeline where the load pressure is led
  • the variable throttle is installed on the side where the supply pressure of the pipeline is led
  • the second means When selecting the load pressure, the variable throttle is closed and the intermediate pressure is selected.
  • the first means has a configuration in which a line through which the load pressure is guided to one end and the supply pressure is guided to the other end, and a fixed throttle and a variable pressure control valve installed in the tube.
  • the second means may be a means for adjusting a set value of the variable pressure control valve, and the communication means may be a part between a fixed throttle of the conduit and a variable pressure control valve. It is connected to the.
  • the variable pressure control valve is provided on the side of the pipeline where the load pressure is led, and the fixed throttle is located on the side where the supply pressure of the pipeline is led.
  • the second means sets the set value of the variable pressure control valve to zero when selecting the load pressure, and sets the set value of the variable pressure control valve to a value other than zero when selecting the intermediate pressure. Change to any value of.
  • the first means includes: means for detecting the load pressure; means for detecting the supply pressure; means for calculating the control pressure from the detected load pressure and supply pressure; and Controlled according to the control pressure And a means for generating the control pressure.
  • the second means is operated by an operation of an operator, and means for operating the first means;
  • the pressure oil supply source includes a hydraulic pump and a motor driving the hydraulic pump, and the second means is means for operating the first means in accordance with a rotation speed of the motor.
  • the first means is means for operating the first means in place of means for instructing a target rotation speed of the motor.
  • the second means may be configured to include means for detecting an actual rotation speed of the prime mover, and means for operating the first means in accordance with the detected actual rotation speed.
  • the second means includes information serving as a basis for the selection.
  • the means for outputting includes a means for calculating the control pressure, the means for taking in the information, and based on the information, calculates either the pressure equal to the load pressure or the intermediate pressure as the control pressure.
  • the pressure control means may be a pressure controller provided downstream of the flow control valve, or a pressure compensation valve installed upstream of the flow control valve.
  • FIG. 1 is a schematic diagram of a hydraulic circuit device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the operation amount of the operation lever and the change in the supply flow rate to the factory.
  • FIG. 3 is a schematic diagram of a hydraulic circuit device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic view of a main part of a hydraulic circuit device according to a third embodiment of the present invention.
  • FIG. 5 is a schematic view of a main part of a hydraulic circuit device according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a hydraulic circuit device according to a fifth embodiment of the present invention.
  • FIG. 7 is a diagram showing the detailed configuration of the regi-yure shown in FIG.
  • FIG. 8 is a flowchart showing a procedure for calculating a control pressure performed by the controller shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • reference numeral 1 denotes a variable displacement hydraulic pump
  • a hydraulic pump 1 has a displacement displacement mechanism 1a (hereinafter, represented by a swash plate), and a swash plate 1a is a legilleu.
  • the drive is controlled by the second timer.
  • the regulator 2 is composed of a hydraulic cylinder 2a that drives the swash plate 1a, a switching valve 2b that performs horsepower limiting control, and a control valve 2c that performs load sensing control. ing.
  • the hydraulic pump 1 is connected with a swing motor 3 for driving the upper swing structure of the hydraulic shovel and a boom cylinder 13 for driving the boom to constitute a hydraulic circuit device.
  • the drive of the swing motor 3 is controlled by a flow control valve 4.
  • the flow control valve 4 has a drive unit connected to the pilot pipelines 4p1 and 4p2, and when the operation lever 4a for turning is operated, the pilot according to the operation amount. Pressure is introduced into the drive via line 4pi or 4p2, and the variable throttle of the flow control valve 4 is set to an opening corresponding to the manipulated variable.
  • a pressure controller 5 Downstream of the variable throttle of the flow control valve 4, a pressure controller 5 for maintaining a differential pressure across the variable throttle at a specified value is disposed.
  • the pressure controller 5 has a piston 5a for adjusting the flow passage area and a spring 5b for lightly pressing the piston 5a in a direction to reduce the flow passage area.
  • the piston 5a receives the pressure of the pressure oil passing through the variable throttle of the flow control valve 4 It has a first pressure receiving surface 5a1 that acts and a second pressure receiving surface 5a2 that acts on a control pressure described later.
  • the area ratio between the first pressure receiving surface 5 al and the second pressure receiving surface 5 a2 is, for example, 1.
  • the pressure oil that has passed through the pressure controller 5 returns to the flow control valve 4 again, and is supplied to the main circuit of the turning motor 3 according to the driving direction of the flow control valve 4 from here.
  • Relief valves 6 a and 6 b are provided in the main circuit of the swing motor 3 to regulate the maximum load pressure of the swing motor 3.
  • the drive of the boom cylinder 13 is controlled by the flow control valve 14.
  • the flow control valve 14 has a drive unit connected to the pilot line 14 PK 14 P2, and when the operating lever 14 a for the boom is operated, the pilot according to the operation amount
  • the pressure is introduced into the drive section via the line 14p1 or 14p2, and the variable throttle of the flow control valve 14 is set to the opening corresponding to the manipulated variable.
  • a pressure controller 15 Downstream of the variable throttle of the flow control valve 14, a pressure controller 15 for maintaining a differential pressure before and after the variable throttle at a specified value is arranged.
  • the configuration of the pressure controller 15 is the same as that of the pressure controller 5, and has a piston 15a and a spring 15b, and the piston 15a has a first pressure receiving surface 15al and It has a second pressure receiving surface 15a2.
  • the area ratio between the first and second pressure receiving surfaces 15 al and 15 a2 is, for example, one.
  • Detector pipes that guide the load pressure of the swing motor 3 and the boom cylinder 13 are provided on the outlet sides of the pressure controllers 5 and 15, respectively. Lines 7 and 17 are connected, and the higher one of the load pressures of these detection lines is selected by the shuttle valve 8 and output to the detection line 9. 10 is a tank.
  • flow control valve 4 and the pressure controller 5 and the flow control valve .14 and the pressure controller 15 can be integrally formed.
  • the load pressure of the detection pipe 9 is guided to one drive unit, and the discharge pressure of the hydraulic pump 1 is guided to the other drive unit. It operates by balancing the pressure and the biasing force of the spring 2d.
  • reference numeral 20 denotes a pressure generating section. 'This pressure generating section 2' 0 is connected to a pipe 2 in which the load pressure of the detection pipe 9 is guided to one end and the discharge pressure of the hydraulic pump 1 is guided to the other end. 0 a, a fixed throttle 20 b arranged on the side where the load pressure of this pipeline 20 c is led, and a variable throttle 20 c arranged on the side where the pump discharge pressure is led. are doing.
  • the variable aperture 20 c has an aperture opening adjustment member 20 e, and the position of the adjustment member 20 e can be adjusted by the operation lever 21. That is, the opening of the variable throttle 20 c is adjusted to a value corresponding to the operation amount by operating the operation lever 21.
  • a portion 20 d between the fixed throttle 20 b and the variable throttle 20 c of the pipeline 20 a is connected to the second pressure receiving surface 5 of the pressure controllers 5, 15 via the control pipeline 22. a 2, 1 5 a 2 Contact
  • the pressure generating section 20 selectively selects one of the pressure equal to the load pressure of the detection line 9 and the intermediate pressure between the load pressure and the pump discharge pressure according to the instruction of the operation lever 21. It is configured to generate the pressure and output it as the control pressure.
  • the turning motor 3 starts turning in one direction.
  • the inertia of the upper revolving superstructure is extremely large, most of the pressure oil to be supplied to the revolving motor 3 ; is discharged to the tank 10 via the relief valve 6a, and The load pressure appearing in the detection line 7 becomes the set pressure of the relief valve 6a.
  • This load pressure is introduced to one side of the control # 2c of the regulator 2 via the detection line 9, and attempts to increase the amount of tilt of the swash plate 1a.
  • the load pressure of the swing motor 3 is high, the increase in the amount of tilting of the swash plate 1a is suppressed by the switching valve 2 that performs the horsepower limiting control of the regulator 2 so that the hydraulic pressure is reduced.
  • the discharge flow rate of Pump 1 is also suppressed.
  • the swing motor 3 is gradually accelerated in this manner, the amount of oil relieved from the relief valve 6a also gradually decreases accordingly, and the swing motor 3 is rotated.
  • the load pressure decreases rapidly and becomes much lower than the set pressure of the relief valve 6a. Then, in accordance with such a low load pressure, the differential pressure between the discharge pressure of the hydraulic pump 1 and the load pressure is adjusted to the specified value determined by the spring 2d.
  • the discharge flow rate is controlled so as to keep the flow rate.
  • the independent drive of the boom cylinder 13 also operates according to this.
  • the differential pressure between the pump discharge pressure and the load pressure of the boom cylinder 13 on the low load pressure side becomes a value larger than the above specified value. Therefore, if no precautions are taken, the discharge flow from the hydraulic pump 1 is preferentially supplied to the low load pressure side boom cylinder 13 and the high load pressure side swing motor 3 The flow rate supplied to the motor is greatly restricted, and driving the swing motor 3 becomes difficult. In such a situation, the pressure controller 15 operates to maintain the differential pressure across the variable throttle of the flow control valve 14 at a specified value.
  • a pressure equal to the load pressure of the detection pipe 9, that is, a pressure equal to the load pressure of the swing motor 3 is generated in the pressure generating section 20, and this pressure is applied to the piston 15a of the pressure controller 15. Acts on the second pressure receiving surface 5a2 of the second. For this reason, the piston 15a is urged in a direction to reduce the flow path area, increasing the pressure downstream of the variable throttle of the flow control valve 14 and increasing the pressure of the variable throttle of the flow rate control valve 14.
  • the differential pressure between the front and rear is controlled so as to be equal to the differential pressure between the pump discharge pressure and the load pressure of the swing motor 3. As a result, the differential pressure across the variable throttle of the flow control valve 14 is maintained at the specified value.
  • the pressure controller 5 has the piston 5a almost fully opened as described for the single drive. Therefore, the differential pressure before and after the variable restrictors of the flow control valves 4 and 14 is maintained at the same specified value, and the pressure oil is supplied preferentially to the boom cylinder 13 which is a low load pressure, and the high load pressure is supplied. This makes it possible to prevent a situation in which the driving of the side swing motor 3 becomes difficult. As a result, the flow rate supplied to the swing motor 3 and the boom cylinder 13 can be controlled to a value corresponding to the operation amount of the operation levers 4a and 14a, and the speed ratio of these actuators 3 and 13 can be controlled. Is controlled according to the amount of operation of the operation lever, and smooth compound operation is possible.
  • the operator operates the operation lever 21 to open the variable throttle 20 c of the pressure generating section 20 to an opening corresponding to the operation amount of the operation lever 21.
  • an intermediate pressure between the load pressure of the detection pipe 9 and the pump discharge pressure is generated in the pipe section 20d as described above.
  • This intermediate pressure is output as a control pressure to the control line 22 and transmitted to the second pressure receiving surfaces 5a2 and 15a2 of the pressure controllers 5 and 15.
  • the opening of the variable throttle 20 c connected to the discharge pipe of the hydraulic pump 1 is adjusted by operating the operation lever 21 during the fine operation, and the load pressure and the pump pressure are adjusted. Since the increased pressure in the middle of the discharge pressure is applied to the pressure controllers 5 and 15 as the control pressure, the specified value of the differential pressure of the flow control valve becomes smaller, and the operation lever 14a , 1 4 The change in the supply flow of the pressurized oil to the boom cylinder 13 is reduced, and the fine operation can be easily performed.
  • the control pressure described above using the existing pressures of the load pressure and the pump discharge pressure is obtained. Since it is created, an efficient system can be constructed.
  • the operating lever 21 and the adjusting member 20 e of the variable throttle 20 c are mechanically linked, but instead of the operating lever 21, an operating member that generates a hydraulic signal or an electric signal is used.
  • an operating member that generates a hydraulic signal or an electric signal is used.
  • the same operation and effect can be obtained by operating the adjusting member 20 e of the variable diaphragm 2 O′c using the signal.
  • FIG. 1 A second embodiment of the present invention will be described with reference to FIG.
  • members equivalent to those shown in Fig. 1 are denoted by the same reference numerals.
  • the present embodiment employs different types of pressure control means to maintain the differential pressure across the flow control valve at a prescribed : value.
  • pressure compensating valves 5 A and 15 A are arranged on the It flow side of the flow control valves 4 and 14 in place of the pressure controllers 5 and 15 in the first embodiment.
  • Pressure compensator '5 A is the discharge pressure of the hydraulic pump 1 and the load pressure of the swing motor 3 in the drive unit on one side, that is, the flow control valve
  • the pressure on the outlet side of 4 is introduced, and the pressure on the inlet side of the flow control valve 4 and the control pressure created by the pressure generator 20 are introduced into the drive unit on the other side. Also, with the adoption of the pressure compensating valves 5 A and .15 A, the flow control valves 4 A and 14 A have a switching structure adapted to them.
  • the operation and operation of the pressure generating section 20 are the same as in the first embodiment. That is, during normal work, the variable aperture 20 c is kept closed. The pressure of the pipeline section 20 d of the pressure generating section 20 becomes equal to the load pressure of the detection pipe 9, and the drive section of the pressure relief valves 5 A and 15 A is subjected to this load pressure. An equal pressure acts as control pressure via line 22. At the time of fine operation, the operation lever 21 is operated to open the variable throttle 20c to an opening corresponding to the operation amount.
  • An intermediate pressure between the load pressure of the detection line 9 and the discharge pressure of the pump is generated in the pipeline section 20 d of the pressure generating section 20, and this intermediate pressure is generated in the drive section of the pressure compensation valves 5 A and 15 A.
  • the pressure acts as control pressure via line 22.
  • the pressure relief valves 5A and 15A in this embodiment set the pressure differential pressure of the conventional general pressure relief valve (the target value of the differential pressure across the flow control valve).
  • the pressure created by the pump discharge pressure and pressure generator 20 replaces the spring for A means for applying a pressure difference from the control pressure is provided.
  • the control pressure is equal to the load pressure
  • the pressure difference between the pump discharge pressure and the load pressure acts on the pressure compensating valve.
  • the pressure compensating valves 5 A and 15 A operate as the compensation differential ⁇ with the differential pressure controlled by the load sensing by the regulator 1 and the flow control valve 4 A, 15 A. Control the difference between the front and rear of 14 A to match the pressure difference.
  • the pressure compensating valves 5A and 15A operate by using the differential pressure between the pump discharge pressure and the intermediate pressure as the compensation differential pressure, thereby controlling the flow rate.
  • the difference between the front and rear of the valves 4A and 14A is controlled to match the differential pressure.
  • the pressure compensating valves 5A and 15A have the same specified value that the pressure difference before and after the flow control valves 4A and 14A is almost equal to the pressure difference between the pump discharge pressure and the load pressure during normal operation.
  • the differential pressure across the flow control valves 4A and 14A is smaller than the specified value. ⁇ Keep the same specified value, and whether the arrangement position is upstream or downstream of the flow control valve. Although there is a difference in the pressure control, they perform substantially the same function as the pressure control 5, 15 of the first embodiment. Therefore, in the present embodiment, substantially the same operation and effect as those of the first embodiment can be obtained.
  • the differential pressure across the flow control valve 4 A and / or 14 A is maintained at a specified value that is approximately equal to the differential pressure between the pump discharge pressure and the load pressure.
  • the differential pressure between the front and rear is maintained at a specified value smaller than the value during normal operation. The change in the supply flow rate of the pressurized oil to the boom cylinder 13 is reduced, so that fine operation can be easily performed.
  • FIG. 1 A third embodiment of the present invention will be described with reference to FIG.
  • members equivalent to those shown in FIG. 1 are denoted by the same reference numerals.
  • the configuration of the pressure generating unit is changed.
  • the pressure generating section 23 of the present embodiment has a pipe 23 a in which the load pressure of the detection pipe 9 is led to one end and the discharge pressure of the hydraulic pump 1 is led to the other end.
  • a variable pressure regulating valve 23 b disposed on the side where the load pressure of the pipe 23 a is led, and a fixed throttle 2 disposed on the side of the pipe 23 a where the pump discharge pressure is led. 3c.
  • the pressure regulating valve 23 b has a spring e, and the strength of the spring 23 e can be adjusted by an operation lever 21. That is, the set value of the spring 23 e is adjusted to a value corresponding to the operation amount by operating the operation lever 21.
  • Pipeline 2 3 a The part 23 d between the pressure regulating valve 23 b and the fixed throttle 23 c is connected via a control line 22 to a second pressure receiving surface 5 of a pressure controller 5, 15 (see FIG. 1). a2, 1 5 Contact the room where a2 is located.
  • the pressure generating section 23 also has a pressure equal to the load pressure of the detection pipe 9 in accordance with the instruction of the operation lever 21 and the load pressure in the same manner as the pressure generating section 21 of the first embodiment.
  • One of the intermediate pressures between the pressure and the pump discharge pressure is selectively generated, and this is not output as the control pressure! ) Configuration. Therefore, the present embodiment is also used in the first embodiment. A similar effect can be obtained.
  • FIG. 1 A fourth embodiment of the present invention will be described with reference to FIG.
  • members equivalent to those shown in FIG. 1 are denoted by the same reference numerals.
  • This embodiment employs a configuration other than the operation lever as a means for operating the pressure generating unit.
  • reference numeral 25 denotes a prime mover for driving the hydraulic pump 1
  • the prime mover 25 has a governor lever 26 for adjusting the fuel injection amount.
  • the fuel injection amount of the prime mover 25 is operated by a fuel lever 27, and the fuel lever 27 is connected to a governor lever 26 via a rod 28.
  • the rod 28 is connected to the adjusting member 20 e of the variable throttle 20 c in the pressure generating section 20 via the rod 29 at an intermediate position.
  • the fuel lever 27 has a friction plate 30 at a pivot portion so that it can be held at a desired operated position.
  • setting the target rotation speed of the prime mover 25 high is usually during normal work because the work can be performed by increasing the drive speed of the hydraulic actuator.
  • Setting the target rotation speed in step 25 low is an indication of the intention to reduce the driving speed of the hydraulic actuator, so it is common during fine control work.
  • the differential pressure before and after the flow control valve is maintained at a specified value substantially equal to the differential pressure between the pump discharge pressure and the load pressure.
  • the value is maintained at a value smaller than the specified value during normal work, and during fine operation work, the change in the flow rate of hydraulic oil supplied to the hydraulic actuator with respect to the operation amount of the operation lever is reduced, and fine operation Work can be performed easily.
  • the opening of the variable throttle 20 c is adjusted in conjunction with the fuel lever 27, so that the adjustment of the variable throttle 20 c requires a special operation lever. It can be performed easily, the structure is further simplified, and the operability is improved.
  • the fuel lever 27 and the variable throttle 20 Although the adjusting member 20 e of c was mechanically linked, the operation of the fuel lever 27 was detected as a hydraulic signal or an electric signal, and the adjusting member 20 c of the variable throttle 20 c was detected by this signal. e may be operated.
  • FIGS. 1 and 5 A fifth embodiment of the present invention will be described with reference to FIGS.
  • the present embodiment employs electronic control for calculating the control pressure value by calculation.
  • a pressure sensor 31 for detecting the load pressure is connected to the detection line 9, and a pressure sensor 32 for detecting the pump discharge pressure is connected to the discharge line of the hydraulic pump 1. Then, each detected pressure is converted into an electric signal and the electric signal is output.
  • the swash plate 1a of the hydraulic pump 1 is provided with a position sensor 33 for detecting the amount of tilt, and the swash plate 1a is provided near the output shaft of the prime mover 25 that drives the hydraulic pump 1 so that the rotational speed of the prime mover can be reduced.
  • a rotation speed sensor 34 for detecting the rotation is provided, which converts the detected tilt amount and rotation speed into an electric signal and outputs the electric signal.
  • the regulator 2A is configured as an electric-hydraulic servo system, and an electromagnetic proportional valve 35 is connected to the discharge line of the hydraulic pump 1, and the output port of the electromagnetic proportional valve is controlled.
  • Line 22 is connected.
  • Sensor 3 1, 3 2, 3 3, 3 electrical signals from the 4 is input to the co-down chondroitinase La 3 6, a predetermined operation is performed in here, Regiyu rate 3 ⁇ 4 'data 2 A and respective control signals to the electromagnetic proportional valve 35 Is output.
  • '' Fig. 7 shows the configuration of Regille 1A.
  • reference numeral 40 denotes an actuator for driving the swash plate 1a of the hydraulic pump 1, and actuator 40 has two cylinder chambers having different pressure receiving areas.
  • the cylinder chamber 40a is connected to a pilot pump 43 which is a hydraulic pressure source, and the cylinder chamber 40b is connected to a pie mouth, a top pump 43 and a tank 10 respectively.
  • the control signal from the controller 36 is input to the solenoid valves 42 and 43.
  • a control signal is input to the solenoid valve 42, the solenoid valve 42 is opened, and pressure oil from the pilot pump 41 is supplied to the cylinder chambers 40a and 40b.
  • the piston 40c is supplied to both sides, and the piston 40c is driven leftward in the figure due to the pressure receiving area difference between the cylinder chambers 40a and 40b.
  • the amount of tilt of the swash plate 1a decreases, and the discharge flow rate of the hydraulic pump 1 decreases.
  • a control signal is input to the solenoid valve 43, the solenoid valve 43 is opened, and the cylinder chamber 40b is opened.
  • the tank 40 communicates with the tank 10 and the piston 40c is driven rightward in the figure.
  • the amount of tilt of the swash plate la increases, and the discharge flow rate of the hydraulic pump 1 increases.
  • the controller 36 calculates the differential pressure between the load pressure detected by the pressure sensors 31 and 32 and the pump discharge pressure, and holds the differential pressure at a predetermined value from this value.
  • the second target tilt amount for horsepower limitation control is calculated from the pump discharge pressure detected by the pressure sensor 32, and the smaller of these is calculated. It is selected as the tilt amount command value, and based on the magnitude of the tilt amount command value and the actual tilt amount of the swash plate 1a detected by the position sensor 33, the solenoid valves 4 2 and 4 3 are selected. The control signal is output to one of them.
  • the swash plate 1a is driven as described above, and the horsepower limit control of the hydraulic pump 1 and the load sensing control for maintaining the differential pressure between the pump discharge pressure and the load pressure at a specified value are performed. Will be implemented.
  • this control see, for example, Japanese Patent Application Laid-Open No. H11-132022.
  • the controller 36 determines the pressure based on the load pressure detected by the pressure sensors 31 and 32, the pump discharge pressure, and the rotation speed of the prime mover 25 detected by the rotation speed sensor 34.
  • the control pressure to be applied to the second pressure receiving surfaces 5a2, 15a2 of the pistons 5a, 15a of the controllers 5, 15 is calculated, and the electric signal corresponding to the control pressure is calculated by the electromagnetic proportionality.
  • To valve 3 5 Is output.
  • step S1 the load pressure, the pump discharge pressure, and the rotation speed of the prime mover 25 are read from the electric signals output from the pressure sensors 31 and 32 and the rotation speed sensor 34.
  • step S2 it is determined whether the rotation speed of the prime mover 25 is high. Normally, a value close to the maximum rotation speed of the prime mover 25 is used as a reference value for the determination. If it is determined that the rotation speed of the prime mover 25 is high, the process proceeds to step S3, and the load pressure is set as the control pressure.
  • step S4 the intermediate pressure corresponding to the rotation speed of the prime mover 25 is calculated from the load pressure and the pump discharge pressure, and the procedure proceeds to step S5.
  • the intermediate pressure is used as the control pressure.
  • the electromagnetic proportional valve 35 is driven based on the electric signal corresponding to the control pressure calculated in this manner, and generates the control pressure from the discharge pressure of the hydraulic pump 1, and supplies the control pressure to the control line 22. Output.
  • a pressure equal to the load pressure acts on the pressure controllers 5 and 15 as the control pressure, so that the flow control valve 4 and / or 14
  • the differential pressure before and after is maintained at a specified value almost equal to the differential pressure between the pump discharge pressure and the load pressure.
  • the intermediate pressure between the pump discharge pressure and the load pressure becomes the control pressure, so the differential pressure across the flow control valve 4 and / or 14 during normal work.
  • the value is maintained at a value smaller than the specified value, and the change in the supply flow rate of the hydraulic oil to the hydraulic actuator with respect to the operation amount of the operation lever is reduced, so that the fine operation work can be easily performed.
  • either a pressure equal to the load pressure or an intermediate pressure between the load pressure and the pump discharge pressure is selectively generated depending on whether the work is normal work or fine work.
  • This is used as the control pressure to act on the pressure control means for controlling the pressure difference between the front and rear of the flow control valve.
  • the control pressure is created using the existing pressures such as the load pressure and the pump discharge pressure, so that an efficient system can be constructed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Description

明 細 書 " 作業機械の油圧回路装置 技術分野
本発明は油圧シ ョ ベルや油圧ク レー ン等の作業機械 の油圧回路装置に係わり、 特に、 流量制御弁の前後差 圧を規定値に保持する圧力制御手段を備えた作業機械 の油圧回路装置に関する。 背景技術
作業機械には所期の作業を実施するのに必要な複数 の作業部材を備えたものがある。 その典型的な例と し て油圧シ ョベルが挙げられる。 すなわち、 油圧シ ョ べ ルは、 油圧シ ョベルを移動させるための下部走行体、 この下部走行体上に旋回可能に載置された上部旋回体、 およびブーム、 アーム、 ケ ッ ト よ り成るフ ロ ン ト機 構で構成されている。 上部旋回体には、 運転室、 原動 機、 油圧ポンプ等の種々の設備が装架され、 かつフ ロ ン ト機構が取付けられている。
と こ ろで、 この種の作業機械に用い られる油圧回路 装置には、 ポンプ吐出圧力が油圧ァク チユエ一夕の負 荷圧力よ り も一定値だけ高く なるよ う にポンプ吐出量 を制御する こ とによ り、 ァクチユエ一夕の駆動に必要 な流量だけを油圧ポンプから吐出させる ロー ドセ ンシ ングシステム と称される システムがある。
近年、 このロー ドセ ンシ ングシステムについて種々 の提案がなされている。 例えば、 特開昭 5 7 - 1 1 6 9 6 5号公報には、 ァクチユエ一夕に供給される圧油 . の流れを制御する流量制御弁の下流側に、 複数のァク チユエ一夕の最大負荷圧力に応答して作動し、 流量制 御弁の前後差圧を規定値に保持する圧力制御器を配置 した油圧回路装置が提案されている。 また、 特開昭 6 0 - 1 1 7 0 6号公報には、 流量制御弁の上流側にそ の前後差圧を規定値に保持する圧力捕償弁を配置した 油圧回路において、 圧力捕償弁にばねの代わり に、 ポ ンプ吐出圧力と最大負荷圧力とを対向して作用させる 手段を設け、 両者の差圧により上記規定値を設定する よ う にした油圧回路装置が提案されている。 このよ う に流量制御弁の前後差圧を制御する こ とによ り、 複合 駆動時に各流量制御弁の通過流量、 すなわち、 各ァク チユエ一夕への供給流量を操作レバーの操作量 (要求 流量) に応じた値に制御でき る と共に、 複数のァクチ ユエ一夕の速度比を適切に制御し、 円滑な複合操作を 可能と している。
しかしながら、 上述した従来の油圧回路装置には以 下のよ うな問題点がある。
一般に、 作業機械にあっては、 油圧ァクチユエ一夕 の駆動速度を大き く 低下させて作業を行う こ とがある。 例えば、 油圧シ ョベルでは、 地面を薄く 剥ぐ作業、 地 な ら し作業、 法面を作る作業等 (以下、 これらを後操 作作業と総称する) がこれに相当する。 このよ う に作 業を行な う場合、 ァク チユエ一夕 の操作レバ一の操作 : 量に対してァクチユエ一夕への供給流量 (流量制御弁 の通過流量) の変化が小さい方が作業を容易に行:なう こ とができ るのは明 らかである。
と こ ろで、 ロ ー ドセ ン シ ングシステムが使用されな い油圧回路装置における微操作作業においては、 操作 レバーの操作量に対するァクチユエータベの供給流量 の変化は、 油圧ポンプを駆動する原動機の回転数を低 下させる こ とによ り小さ く し、 これによ りオペレ一タ は容易に微操作作業を行なう こ とができた。 しかしな がら、 ロー ドセ ン シ ングシステムを使用する油压回路 装置においては、 上述したよう に流量制御弁の前後差 圧を規定値に保持する制御が行なわれるので、 原職機 ■ の回転数を低下させても、 操作レバーの操作量に応じ て供給流量が決定され、 操作レバーの操作量に対^る 供給流量の変化割合は変化せず、 このため、 操作レバ 一によるァクチユエ一夕の低速制御が困難とな り、' ひ いては微操作作業の実施が困難である という問題があ つた。 一方、 流量制御弁の前後差圧を規定値に保持する圧 力制御手段に外部からの制御信号を導入し、 当該規定 値を変更する もの と して米国特許第 4, 4 8 7 , 0 1 8号がある。 しかしながら、 この従来技術では当該制 御信号の作り方については何ら議論されていない。
本発明の目的は、 ロー ドセ ン シ ングシステムを採用 しても、 微操作作業を容易に実施する こ とができ る作 業機械の油圧回路装置を提供する こ とにある。 発明の開示
上記目的を達成するため、 本発明は、 圧油供給源と、 この圧油供給源からの圧油により駆動される少な く と も 1つの油圧ァクチユエ一夕 と、 このァクチユエ一夕 に供給される圧油の流れを制御する流量制御弁と、 こ の流量制御弁の前後差圧を規定値に保持する圧力制御 手段とを備えた作業機械の油圧回路装置において、 前 記ァクチユエ一夕の負荷圧力と前記圧油供給源の供給 圧力とから、 前記負荷圧力に等しい圧力と前記負荷圧 力より高く 前記供給圧力より も低い中間圧力の一方を 選択的に作り 出し、 これを制御圧力と して出力する第 1 の手段と、 前記第 1 の手段を操作し、 前記制御圧力 と して前記負荷圧力に等しい圧力か前記中間圧力のい ずれを選択するかを指示する第 2 の手段と、 前記制御 圧力を前記圧力制御手段に導く連絡手段とを有し、 前 記圧力制御手段は、 前記制御圧力が前記負荷圧力に等 しい圧力のと きには前記差圧の規定値を変化させず、 前記制御圧力が前記中間圧力のと きはその中間圧力 レベルに応じて前記差圧の規定値を減少させる こ とを 特徴とする作業機械の油圧回路装置を提供するもので ある 0
通常の作業時には、 第 2の手段で制御圧力と して負 荷圧力に等しい圧力の選択が指示され、 第 1 の手段は この指示により 当該圧力を制御圧力と して選狭して出 力し、 この制御圧力が連絡手段を介して圧力制御手段 に導かれる。 これによ り、 圧力制御手段は流量制御弁 の前後差圧を規定値に保持し、 通常の流量制御が行わ れる。 一方、 微操作作業時には、 第 2 の手段で制御圧 力と して中間圧力の選択が指示され、 第 1 の手段はこ の指示に したがい中間圧力を制御圧力と して選択 て 出力し、 この制御圧力が連絡手段を介して圧力制御手 段に導かれる。 これにより、 圧力制御手段は流量制御 弁の前後差圧を規定値より も小さ く し、 その結果、 操 作レバーの操作量に対する流量制御弁を通る供給流量 の変化が小さ く なり、 微操作作業を容易に実施する こ とが可能となる。
好ま し く は、 前記第 1 の手段は、 一端に前記負荷圧 力が導かれ、 他端に前記供給圧力が導かれる管路と、 前記管路に設置された固定絞り および可変絞り とを含 み、 前記第 2の手段は前記可変絞りの鲔度を調整す'る 手段であ り、 前記連絡手段は前記管路の固定絞り と可 変絞り の間の部分に接続されている。 こ こで、 好ま し く は、 前記固定絞り は前記管路の負荷圧力が導かれる 側に設置され、 前記可変絞り は前記管路の供給圧力が 導かれる側に設置され、 前記第 2の手段は、 前記負荷 圧力を選択する ときには前記可変絞りを閉じ、 前記中 間圧力を選択する。
前記第 1 の手段は、 一端に前記負荷圧力が導かれ、 他端に前記供給圧力が導かれる管路と、 前記管路に設 置された固定絞りおよび可変圧力制御弁とを含む構成 であってもよ く 、 この場合、 前記第 2の手段は前記可 変圧力制御弁の設定値を調整する手段であり、 前記連 絡手段は前記管路の固定絞り と可変圧力調整弁の間の 部分に接続されている。 こ こで、 好ま し く は、 前記可 変圧力制御弁は前記管路の負荷圧力が導かれる側に設 . 置され、 前記固定絞り は前記管路の供給圧力が導かれ る側に設置され、 前記第 2の手段は、 前記負荷圧力を 選択する ときには前記可変圧力制御弁の設定値を零と し、 前記中間圧力を選択する と きには前記可変圧力制 御弁の設定値を零以外の任意の値に変更する。
また、 前記第 1 の手段は、 前記負荷圧力を検出する 手段と、 前記供給圧力を検出する手段と、 前記検出さ れた負荷圧力および供給圧力から前記制御圧力を演算 する手段と、 前記演算された制御圧力に応じて制御さ れ、 前記制御圧力を発生する手段とを含む構成であつ てもよい。
また、 好ま し く は、 前記第 2の手段はオペレータの 操作によ り操作され、 前記第 1 の手段を操作する手段 ;
C、める o
前記圧油供給源は、 油圧ポンプと、 この油圧ポ ンプ を駆動する原動機とを含み、 前記第 2 の手段は、 前記 原動機の回転数に応じて前記第 1 の手段を操作する手 段であつてもよい。 こ こで、 好ま し く は、 前記第 の 手段は、 前記原動機の目標回転数を指示する手段に違 動して前記第 1 の手段を操作する手段である。 また、 前記第 2の手段は、 前記原動機の実回転数を検出する 手段と、 この検出された実回転数に応じて前記第 1 の 手段を操作する手段とを含む構成であってもよい。
また、 前記第 1 の手段が検出された負荷圧力および 供給圧力から前記制御圧力を演算する手段を含む場合 は、 好ま し く は、 前記第 2の手段は、 前記選択の棊礎 となる情報を出力する手段を含み、 前記制御圧力を演 算する手段は、 前記情報を取り込み、 これに基づいて 前記負荷圧力に等しい圧力か前記中間圧力のいずれか を該制御圧力と して演算する。
前記圧力制御手段は、 前記流量制御弁の下流側に設 置された圧力制御器であってもよい し、 前記流量制御 弁の上流側に設置された圧力捕償弁であってもよい。 図面の簡単な説明
第 1図は本発明の第 1の実施例による油圧回路装置 の概略図である。
第 2図は操作レバーの操作量に対するァクチユエ一 夕への供給流量の変化の関係を示す図である。
第 3図は本発明の第 2の実施例による油圧回路装置 の概略図である。
第 4図は本発明の第 3の実施例による油圧回路装置 の要部の概略図である。
第 5図は本発明の第 4の実施例による油圧回路装置 の要部の概略図である。
第 6図は本発明の第 5の実施例による油圧回路装置 の概略図である。
第 7図は第 6図に示すレギユ レ一夕の詳細構成を示 す図である。
第 8図は第 6図に示すコ ン ト ローラで行われる制御 圧力の演算手順を示すフローチヤ一 トである。 発明を実施するための最良の形態
以下、 本発明の好適実施例を作業機械と して油圧シ ョベルを例にと り、 図面を用いて説明する。
第 1 の実施例
まず、 本発明の第 1 の実施例を第 1図および第 2図 によ り説明する。
構成
第 1 図において、 1 は可変容量型の油圧ポンプで^ り、 油圧ポ ンプ 1 は押しのけ容積可変機構,. (以下、 斜 板で代表される) 1 aを有し、 斜板 1 a はレギユ レ二 夕 2 によ り駆動制御される。 レギユ レ一夕 2 は、 斜板 1 a を駆動する油圧シ リ ンダ 2 a、 馬力制限制御を行 う切換弁 2 b、 およびロー ドセ ン シ ング制御を行う制 御弁 2 c によって構成されている。
油圧ポ ンプ 1 には油圧シ ョベルの上部'旋回体を駆動 する旋回モータ 3 およびブームを駆動するブームシ リ ンダ 1 3が接続され、 油圧回路装置を構成している。 旋回モータ 3の駆動は流量制御弁 4 によ り制御され る。 流量制御弁 4 はパイ ロ ッ ト管路 4 p 1、 4 p 2に接続 した駆動部を有し、 旋回用の操作レバー 4 a が操作さ れたと きその操作量に応じたパイ ロ ッ ト圧が管路 4 p i または 4 p 2を介して駆動部に導入され、 流量制御弁 4 の可変絞りが操作量に対応した開度に設定される。
流量制御弁 4の可変絞りの下流側にはその前後差圧 を規定値に保持する圧力制御器 5が配置されている。 この圧力制御器 5 は流路面積を調整する ビス ト ン 5 a および流路面積を小さ く する方向に ピス ト ン 5 aを軽 く 押圧するばね 5 bを有している。 また、 ピス ト ン 5 a は流量制御弁 4の可変絞りを通過した圧油の圧力が 作用する第 1の受圧面 5 a 1および後述の制御圧力が作 用する第 2の受圧面 5 a2を有している。 第 1の受圧面 5 alと第 2の受圧面 5 a2の面積比は、 例えば 1である。 圧力制御器 5を通過した圧油は再び流量制御弁 4に戻 り、 こ こから流量制御弁 4の駆動方向に応じて旋回モ 一夕 3の主回路に供給される。 旋回モータ 3の主回路 には リ リ ーフ弁 6 a , 6 bが設けられ、 旋回モ一夕 3 の最高負荷圧力を規定している。
—方、 ブームシ リ ンダ 1 3の駆動は流量制御弁 1 4 によ り制御される。 流量制御弁 1 4はパイ ロ ッ ト管路 1 4 PK 1 4 P2に接続した駆動部を有し、 ブーム用の 操作レバー 1 4 aが操作されたと きその操作量に応じ たパイ ロ ッ ト圧が管路 1 4 p 1または 1 4 p 2を介して駆 動部に導入され、 流量制御弁 1 4の可変絞りが操作量 に対応した開度に設定される。 流量制御弁 1 4の可変 絞り の下流側にはその前後差圧を規定値に保持する圧 力制御器 1 5が配置されている。 この圧力制御器 1 5 の構成は圧力制御器 5 と同じであ り、 ピス ト ン 1 5 a およびばね 1 5 bを有し、 ピス ト ン 1 5 aは第 1の受 圧面 1 5 alおよび第 2の受圧面 1 5 a2を有している。 第 1および第 2の受圧面 1 5 al, 1 5 a2の面積比も、 例えば 1である。
圧力制御器 5 , 1 5の出側にはそれぞれ旋回モータ 3およびブームシリ ンダ 1 3の負荷圧力を導く検出管 路 7, 1 7が接続され、 これら検出管路の負荷圧力の うちの高い方の負荷圧力がシャ トル弁 8 によ り選択さ れ、 検出管路 9 に出力される。 1 0 はタ ンク である。
なお、 流量制御弁 4 と圧力制御器 5、 流量制御弁 .1 4 と圧力制御器 1 5 はそれぞれ一体構成とする こ ども できる。
また、 上述したレギユ レ一夕 2の制御弁 2 c は一方 の駆動部に検出管路 9 の負荷圧力が導かれ、 他方の躯 動部に油圧ポンプ 1 の吐出圧力が導かれ、 両者の差圧 とばね 2 dの付勢力とのバラ ンスによ り ¾作する構成 となっている。
また、 2 0 は圧力発生部であ り、 'この圧力発生部 2' 0 は、 一端に検出管路 9 の負荷圧力が導かれ、 他端に 油圧ポンプ 1 の吐出圧力が導かれる管路 2 0 a と、 こ の管路 2 0 cの負荷圧力が導かれる側に配置された固 定絞り 2 0 b と、 ポンプ吐出圧力が導かれる側に配 ί された可変絞り 2 0 c とを有している。 可変絞り 2 0 c は絞り開度の調整部材 2 0 e を有し、 調整部材 2 0 e の位置は操作レバー 2 1 によ り調整可能とな つ てい' る。 すなわち、 可変絞り 2 0 c の開度は操作レバー 2 1 の操作によ りその操作量に応じた値に調整される。 また、 管路 2 0 a の固定絞り 2 0 b と可変絞り 2 0 c の間の部分 2 0 dは、 制御管路 2 2を介して圧力制御 器 5 , 1 5の第 2の受圧面 5 a 2 , 1 5 a 2が位置する窒 に連絡している。
この構成によ り、 操作レバー 2 1が可変絞り 2 0 c を閉じる位置にある と きには、 管路 2 0 a の部分 2 0 dの圧力は検出管路 9 における負荷圧力に等しい圧力 となる。 操作レバー 2 1 の操作により可変絞り 2 0 c が任意の開度に開けられる と、 可変絞り 2 0 c→管路 部分 2 0 d→固定絞り 2 0 b—検出管路 9→シャ トル 弁 8→検出管路 7 または 1 7→圧力制御器 5 または 1 6の出側への微量な圧油の流れが生じ、 管路部分 2 0 dには可変絞り 2 0 の開度に応じた負荷圧力とポ ンプ 吐出圧力との中間圧力が発生する。 管路部分 2 0 の この圧力は制御圧力と して制御管路 2 2 に出力され、 圧力制御器 5 , 1 5 の第 2の受圧面 5 a 2, 1 5 a 2に作 用する。
このよう に圧力発生部 2 0 は、 操作レバー 2 1 の指 示に応じて、 検出管路 9の負荷圧力に等しい圧力と、 その負荷圧力とポンプ吐出圧力との中間圧力の一方を 選択的に作り 出し、 これを制御圧力と して出力する構 成になっている。
動作
次に、 以上のよう に構成した本実施例の動作を説明 する。
通常作業時においては、 ォペレ一夕は操作レバー 2 1 の操作により圧力発生部 2 0の可変絞り 2 0 c を閉 じてお く 。
そ して、 この通常作業時において、 油圧シ ョ ベルの 上部旋回体を旋回させる場合には、 オペレータは操作 レバー 4 a を操作する。 これに応じてパイ ロ ッ ト管路 4 p i , 4 p 2の一方、 例えばパイ ロ ッ ト管路 4 p 1に油圧 , が生じ、 流量制御弁 4 は操作レバ一 4 a の操 »に じた開度で図示左側の位置に切換えられる。 このため、 油圧ポンプ 1 の圧油は流量制御弁 4の可変絞りを経て、 圧力制御器 5 の ビス ト ン 5 a の第 1 の受圧面 5 a lを押 圧し、 ピス ト ン 5 a を押上げて圧力制御器 5 を通り、 再度流量制御弁 4を経た後、 旋回モータ 3 の図示左側 の主管路から旋回モータ 3 に供給される。 これによ り 旋回モータ 3 は一方向に旋回し始める。 この場合,、 上 部旋回体の慣性は極めて大きいので、 旋回モー夕 3;に 供給されるべき圧油のほとんどは リ リ ーフ弁 6 a を介 してタ ンク 1 0 に排出され、 かつ検出管路 7 に現れる 負荷圧力はリ リ ーフ弁 6 a の設定圧力となる。 こ ® 荷圧力は検出管路 9 を介してレギユ レ一夕 2 の制御 # 2 c の一方の側に導入されて、 斜板 1 a の傾転量を増 大させよ う とする。 しかし、 旋回モータ 3 の負荷圧力 が高圧であるので、 レギユ レ一夕 2 の馬力制限制御を 行う切換弁 2 によ り、 斜板 1 a の傾転量の増大は抑 制され、 したがって、 油圧ポンプ 1 の吐出流量も抑制 される。 このよ う にして旋回モータ 3が徐々 に加速されてゆ く と、 リ リ ーフ弁 6 a から リ リ ーフされる油量も これ に応じて徐々に減少してゆき、 旋回モータ 3が流量制 御弁 4の開度に応じた回転速度近辺に到達した後は、 その負荷圧力は急速に減少してリ リ ーフ弁 6 aの設定 圧よ り遥かに低い値となる。 そ して、 レギユ レ一夕 2 の制御弁 2 0 c はこのよ うな低い値の負荷圧力に応じ て、 油圧ポンプ 1の吐出圧力とその負荷圧力との差圧 がばね 2 dの定める規定値に保持されるよう に吐出流 量を制御する。
今、 上記の状態において、 外部負荷がかかる等の理 由により負荷圧力が上昇する と、 ポンプ吐出圧力と負 荷圧力との差圧が小さ く なる。 このと き、 この上昇し た負荷圧力はレギユ レ一夕 2の制御弁 2 c に導入され、 これによ り油圧シ リ ンダ 2 a は油圧ポンプ 1 の吐出流 量を增加させるよう に駆動され、 このため流量制御弁 4の上流側圧力は増加し、 その差圧はばね 2 dの定め る規定値に戻る。 すなわち、 負荷圧力が上昇しても、 ポンプ吐出圧力と負荷圧力との差圧は規定値に保持さ れ、 旋回モータ 3 には負荷圧力の増加にも係わらず、 操作レバー 4 aの操作量に応じた流量が供給される。 負荷圧力が減少した塲合の動作は上記動作と逆になり、 同様に操作レ 'バー 4 aの操作量に応じた流量が供給さ れる こ とになる。 一方、 以上の旋回モータ 3の単独駆動にあって、 圧 力発生部 2 0 においては可変絞り 2 0 cが閉じ られて いるので、 管路部分 2 0 d には検出管路 9 の負荷圧力 に等しい圧力、 すなわち、 旋回モータ 3 の負荷庄カ" 等しい圧力が発生しており、 この圧力が圧力制御器 5 の ビス ト ン 5 a の第 2 の受圧面 5 a 2に作用 している。 このため、 ビス ト ン 5 a は流量制御弁 4 の ¾変絞り を 通過した圧油によ り押され、 ほぼ全開状態に保持され る。 また、 負荷圧力の変動に際しても実質的にその全 開状態が継続される。 すなわち、 圧力制御器 5 は旋回 モータ 3の単独駆動にあっては働かない。
ブームシ リ ンダ 1 3の単独駆動もこれに準じた動作 となる。
次に、 旋回モータ 3 とブームシ リ ンダ 1 3を同時に 駆動させる複合操作の場合の動作を説明する。 操作レ ノ 一 4 a, 1 4 aを同時に操作する と、 それらの操作 量に応じた開度で流量制御弁 4、 1 4が開き、 旋回 一夕 3 およびブームシ リ ンダ 1 3 に圧油が供給され、' これによ り旋回モータ 3 およびブームシ リ ンダ 1 3が 同時に駆動される。 旋回モータ 3 およびブームシ リ ン ダ 1 3の負荷圧力のうちの高い方の負荷圧力、 例えば 旋回モータ 3の負荷圧力はシャ トル弁 8 によ り選択さ れ、 検出管路 9 に出力される。 この負荷圧力はレギ レータ 2 の制御弁 2 c の一方の側に導入され、 その'負 荷圧力とポンプ吐出圧力との差圧が同様に規定値に保 持されるよ う油圧ポンプ 1 の吐出流量が制御される。
—方、 このよ う に制御される結果、 ポンプ吐出圧力 と低負荷圧力側であるブームシリ ンダ 1 3 の負荷圧力 との差圧は上記規定値より大きな値になる。 したがつ て、 何等の手当てをも講じなければ、 油圧ポ ンプ 1 か らの吐出流量はこの低負荷圧力側のブームシ リ ンダ 1 3 に優先的に供給され、 高負荷圧力側の旋回モータ 3 に供給される流量が著し く 制限され、 旋回モータ 3 の 駆動が困難になる。 このよ うな状況に対し、 圧力制御 器 1 5が動作し、 流量制御弁 1 4の可変絞り の前後差 圧を規定値に保持する。
すなわち、 圧力発生部 2 0 には検出管路 9 の負荷圧 力、 すなわち、 旋回モータ 3の負荷圧力に等しい圧力 が発生しており、 この圧力が圧力制御器 1 5 の ピス ト ン 1 5 a の第 2の受圧面 5 a 2 に作用 している。 この ため、 ピス ト ン 1 5 a は流路面積を絞る方向に付勢さ れ、 流量制御弁 1 4の可変絞りの下流側の圧力を上昇 させ、 流.量制御弁 1 4の可変絞りの前後差圧をポ ンプ 吐出圧力と旋回モータ 3の負荷圧力との差圧に等し く なるよう に制御する。 これにより、 流量制御弁 1 4の 可変絞り の前後差圧は規定値に保持される。 なお、 圧 力制御器 5 は単独駆動で説明したように ビス ト ン 5 a がほぼ全開状態にある。 したがって、 流量制御弁 4, 1 4の可変絞りの前後 差圧が共に同じ規定値に保持され、 低負荷圧力翻であ るブームシ リ ンダ 1 3 に優先的に圧油が供給され、 高 負荷圧力側の旋回モータ 3 の駆動が困難になる事態を 防止でき る。 その結果、 旋回モータ 3 およびブーム シ リ ンダ 1 3への供給流量を操作レバー 4 a , 1 4 a の 操作量に応じた値に制御できる と共に、 これらァグチ ユエ一夕 3 , 1 3の速度比を操作レバ一の操作量に応 じて制御し、 円滑な複合操作が可能となる。
これに対して、 微操作作業においては、 オペレータ は操作レバー 2 1 を操作し、 圧力発生部 2 0 の可変絞 り 2 0 c を操作レバー 2 1 の操作量に応じた開度に開 ける。 これによ り、 管路部分 2 0 dには前述したよ う に検出管路 9 の負荷圧力とポンプ吐出圧力との中間圧 力が発生する。 この中間圧力は制御圧力と して制御管 路 2 2 に出力され、 圧力制御器 5 , 1 5の第 2の受圧 面 5 a 2, 1 5 a 2に伝達される。 このため、 例えばブー ム シ リ ンダ 1 3 の単独駆動にあっては、 圧力制御器 1 5の ビス ト ン 1 5 a は流路面積を絞る方向に付勢され、 その結果、 流量制御弁 1 4の可変絞りの下流側の圧力 は上昇し、 流量制御弁 1 4 の可変絞り の前後差圧は前 述した通常作業時における規定値より も小さ く なる。 そして、 この小さ く なつた差圧が一定になるよ うな制 御が行なわれる。 換言すれば、 可変絞り 2 0 c をある 開度に開ける こ とにより、 流量制御弁 1 4の可変絞り の前後差圧の規定値が小さな値に変更されたこ と とな る O
このよ う に差圧が低下する こ とによ り、 差圧が従来 通り の規定値に保持された場合には操作レバーの操作 量に対するァクチユエ一夕への供給流量の変化が第 2 図に実線で示すようであっ たものが、 同図で破線で示 すよ う に操作レバーの操作量に対するァクチユエ一夕 への供給流量の変化が小さ く な り、 このため、 操作レ ノ ー 1 4 aの操作量が同一であっても、 ブームシ リ ン ダ 1 3 に供給される圧油の供給量は通常作業時におけ る供給量よ り小さ く なり、 微操作作業を容易に実施す る こ とが可能となる。
なお、 旋回モータ 3の単独駆動および旋回モー夕 3 とブームシ リ ンダ 1 3の複合駆動時の動作も上記動作 に準じる。
効果
このよ う に、 本実施例では、 微操作作業時に操作レ バー 2 1 の操作により油圧ポンプ 1 の吐出管路に接続 された可変絞り 2 0 cの開度を調整し、 負荷圧力とポ ンプ吐出圧力との中間の増大した圧力を制御圧力と し て圧力制御器 5, 1 5 に作用させるよう にしたので、 流量制御弁の差圧の規定値が小さ く なつて、 操作レバ 一 4 a , 1 4 aの操作量に対する旋回モータ 3および ブームシ リ ンダ 1 3への圧油の供給流畺の変化が ]、き く な り、 微操作作業を容易に実施する こ とが可能とな る o
また、 本実施例によれば、 圧力発生部 2 0 および操 作レバー 2 1 という比較的簡単な構成を付加する こ と で、 負荷圧力およびポンプ吐出圧力という既存の圧力 を用いて上述した制御圧力を作成するので、 効率的な システムの構築が可能となる。
なお、 本実施例では操作レバー 2 1 と可変絞り 2 0 c の調整部材 2 0 e とを機械的に連動させたが、 操作 レバ一 2 1 の代わり に油圧信号または電気信号を発生 する操作部材を設け、 その信号によ り可変絞り 2 O 'c の調整部材 2 0 e を操作するよ う にしても、 同様の作 用効果を得る こ とができる。 第 2の実施例
本発明の第 2 の実施例を第 3図によ り説明する。 闵 中、 第 1 図に示す部材と同等の部材には同じ符号を している。 本実施例は、 流量制御弁の前後差圧を規定 : 値に保持するのに異なるタイ プの圧力制御手段を採用 したものである。
第 3図において、 第 1 の実施例における圧力制御器 5、 1 5 に代えて流量制御弁 4、 1 4の It流側に圧力 補償弁 5 A , 1 5 Aが配置されている。 圧力補償弁' 5 Aは、 一方の側の駆動部に油圧ポンプ 1 の吐出圧力お よび旋回モータ 3 の負荷圧力、 すなわち、 流量制御弁
4の出側の圧力を導入し、 他方の側の駆動部に流量制 御弁 4の入側の圧力および圧力発生部 2 0で作り 出さ れた制御圧力を導入している。 また、 圧力補償弁 5 A, . 1 5 Aの採用に伴って、 流量制御弁 4 A , 1 4 A もそ れに適合した切換構造となっている。
次に、 本実施例の動作を説明する。 圧力発生部 2 0 の操作および作用は第 1 の実施例と同じである。 すな わち、 通常作業時は可変絞り 2 0 c は閉じておく 。 圧 力発生部 2 0の管路部分 2 0 dの圧力は検出管路 9の 負荷圧力と等し く な り、 圧力捕償弁 5 A, 1 5 Aの駆 動部にはこの負荷圧力に等しい圧力が管路 2 2 を介し て制御圧力と して作用 している。 微操作作業時には操 作レバー 2 1を操作して、 可変絞り 2 0 cをその操作 量に応じた開度に開ける。 圧力発生部 2 0 の管路部分 2 0 dには検出管路 9 の負荷圧力とポンプ吐出圧力と の中間圧力が発生し、 圧力捕償弁 5 A , 1 5 Aの駆動 部にはこの中間圧力が管路 2 2を介して制御圧力と し て作用 している。
と ころで、 本実施例における圧力捕償弁 5 A, 1 5 Aは、 従来の一般的な圧力捕償弁の捕償差圧 (流量制 御弁の前後差圧の目標値) を設定するためのばねに代 え、 ポンプ吐出圧力と圧力発生部 2 0で作り 出した制 御圧力との差圧を作用させる手段を設けたものであ ' 、 制御圧力が負荷圧力に等しいときには圧力補償弁にポ ンプ吐出圧力と負荷圧力との差圧が作用 し、 特開昭 6 0 - 1 1 7 0 6号に記載の構成と伺じになる。 すなお ち、 圧力補償弁 5 A, 1 5 Aは、 レギユ レ一夕 2によ り ロー ドセ ン シ ング制御された上記差圧を補償差 ¾と して動作し、 流量制御弁 4 A, 1 4 Aの前後差汪を当 該差圧に一致するよ う制御する。 一方、 制御圧力が中 間圧力である と きには、 圧力補償弁 5 A , 1 5 Aは'ポ ンプ吐出圧力とその中間圧力との差圧を補償差圧と し て動作し、 流量制御弁 4 A, 1 4 Aの前後差庄を当該 差圧に一致するよう制御する。
換言すれば、 圧力捕償弁 5 A, 1 5 Aは、 通常作業 時には流量制御弁 4 A, 1 4 Aの前後差圧をそれぞれ ポンプ吐出圧力と負荷圧力との差圧にほぼ等しい同じ 規定値に保持し、 微操作作業時には流量制御弁 4 A, 1 4 Aの前後差圧を当該規定値よ り小さ ΛΛ同じ規定値 に保持し、 その配置位置が流量制御弁の上流側か下流 側かの違いはある ものの、 第 1の実施例の圧力制御 5 , 1 5 と実質的に同じ機能を果たす。 ' したがって、 本実施例においても第 1の実施例と実 質的に同じ作用効果が得られる。 すなわち、 例えば旋 回モータ 3の単独駆動、 ブーム シ リ ンダ 1 3の単独駆 動、 旋回モータ 3 とブームシ リ ンダ 1 3の複合駆動の いずれの場合も、 通常作業時では、 流量制御弁 4 Aお よび/または 1 4 Aの前後差圧はポンプ吐出圧力と負 荷圧力との差圧にほぼ等しい規定値に保持され、 微操 作作業時には、 当該前後差圧が通常作業時における規 定値よ り も小さい規定値に保持され、 しかして微操作 作業時には、 操作レバー 4 a, 1 4 aの操作量に対す る旋回モー夕 3およびブームシ リ ンダ 1 3への圧油の 供給流量の変化を小さ く し、 微操作作業を容易に行う こ とが可能となる。
第 3の実施例
本発明の第 3の実施例を第 4図によ り説明する。 図 中、 第 1 図に示す部材と同等の部材には同じ符号を付 している。 本実施例は圧力発生部の構成を変更したも のである。
第 4図において、 本実施例の圧力発生部 2 3 は、 一 端に検出管路 9 の負荷圧力が導かれ、 他端に油圧ボ ン プ 1 の吐出圧力が導かれる管路 2 3 a と、 この管路 2 3 aの負荷圧力が導かれる側に配置された可変式の圧 力調整弁 2 3 b と、 管路 2 3 a のポンプ吐出圧力が導 かれる側に配置された固定絞り 2 3 c とを有している。 圧力調整弁 2 3 b はばね e を有し、 ばね 2 3 e の強さ は操作レバー 2 1 によ り調整可能となっている。 すな わち、 ばね 2 3 eの設定値は操作レバー 2 1 の操作に よりその操作量に応じた値に調整される。 管路 2 3 a の圧力調整弁 2 3 b と固定絞り 2 3 c の間の部分 2 3 d は、 制御管路 2 2 を介して圧力制御器 5, 1 5 (第 1 図参照) の第 2の受圧面 5 a2, 1 5 a2が位置する室 に連絡している。
操作レバー 2 1がばね 2 3 e の設定値を零にする位 置にある と きには、 固定絞り 2 3 c→管路部分 2 3 d —圧力調整弁 2 3 b→検出管路 9、 さ らには第 1 図に 示すシャ トル弁 8→検出管路 7 または 1 7—圧力制御 器 5 または 1 6 の出側への微量な圧油の流れが生じ、 この と き圧力調整弁 2 3 bがほぼ全開となる位置でバ ラ ンス し、 管路 2 3 a の部分 2 3 dの圧力は検出管路 9 における負荷圧力に等しい圧力となる。 操作レバー 2 1 の操作によ り圧力調整弁 2 3 bのばね 2 3 e の設 定値が零以外の任意の値に変更される と、 同様な微量 な圧油の流れにより管路部分 2 3 dには圧力調整弁 3 bの設定値に応じた負荷圧力とポンプ吐出圧力とめ 中間圧力が発生する。 管路部分 2 3 の この圧力は制 御圧力と して制御管路 2 2 に出力される。
このよ う に圧力発生部 2 3 も、 第 1 の実施例の圧力 発生部 2 1 と同様に、 操作レバー 2 1 の指示に応じて 検出管路 9の負荷圧力に等しい圧力と、 その負荷圧力 とポンプ吐出圧力との中間圧力の一方を選択的に作り 出し、 これを制御圧力と して出力ず!)構成となって ¼ る。 したがって、 本実施例によっても第 1 の実施例 同様の作用効果が得られる。
第 4の実施例
本発明の第 4の実施例を第 5図によ り説明する。 図 中、 第 1 図に示す部材と同等の部材には同じ符号を付 している。 本実施例は圧力発生部を操作する手段と し て操作レバー以外の構成を採用している。
第 5図において、 2 5 は油圧ポンプ 1 を駆動する原 動機であり、 原動機 2 5 は燃料噴射量を調整するガバ ナレバー 2 6を有している。 この原動機 2 5 の燃料噴 射量は燃料レバー 2 7 によ り操作され、 燃料レバー 2 7 はロ ッ ド 2 8を介してガバナレバー 2 6 に連結され ている。 また、 ロ ッ ド 2 8 はその中間位置で圧力発生 部 2 0 における可変絞り 2 0 c の調整部材 2 0 e に口 ッ ド 2 9を介して連結されている。 燃料レバー 2 7 は 枢動部に摩擦板 3 0を有し、 操作された所望の位置で 保持できるよう になつている。
燃料レバー 2 7が原動機 2 5の目標回転数を高く す る位置に操作される と、 これに伴い調整部材 2 0 e も 操作されて可変絞り 2 0 c を閉状態と し、 その結果、 制御管路 2 2 には検出管路 9 における負荷圧力に等し い制御圧力が出力される。 また、 燃料レバー 2 7が原 動機 2 5の目標回転数を低下させる位置に操作される と、 これに伴い調整部材 2 0 e も操作されて、 可変絞 り 2 0 c の絞り開度を燃料レバー 2 7の操作量に応じ た任意の開度に開ける。 これによ り、 管路部分 2 Q d には可変絞り 2 0の開度に応じた負荷圧力とポンプ ¾ 出圧力との中間圧力が発生し、 この中間圧力が制御圧 力と して制御管路 2 2 に出力される。
と ころで、 原動機 2 5の目標回転数を高く 設定する のは、 油圧ァクチユエ一夕の駆動'速度を大き く して作 業が行えるので、 通常作業時であるのが一般的であり、 原動機 2 5 の目標回転数を低く 設定するのは、 油圧ァ クチユエ一夕の駆動速度を小さ く する こ との意思表示 であるので、 微操作作業時であるのが一般的である。
したがって、 本実施例によっても、 通常作業時には、 流量制御弁の前後差圧はポンプ吐出圧力と負荷圧力と の差圧にほぼ等しい規定値に保持され、 徼操作作業時 には、 当該差圧が通常作業時における規定値よ り'も小 さい値に保持され、 しかして微操作作業時には、 操作 レバーの操作量に対する油圧ァクチユエ一夕への圧油 の供給流量の変化を小さ く し、 微操作作業を容易に行 う こ とが可能となる。
しかも、 本実施例によれば、 燃料レバー 2 7 に連動 して可変絞り 2 0 c の開度を調整するよ う に したので、 可変絞り 2 0 c の調整が特別な操作レバーを設置する こ とな く 行え、 構造がさ らに簡素化される と共に、 操 作性が向上する。
なお、 本実施例では燃料レバー 2 7 と可変絞り 2 0 c の調整部材 2 0 e とを機械的に連動させたが、 燃料 レバー 2 7 の操作を油圧信号または電気信号と して検 出し、 この信号によ り可変絞り 2 0 c の調整部材 2 0 e を操作するよう に してもよい。
第 5の実施例
本発明の第 5 の実施例を第 6 図〜第 8図によ り説明 する。 図中、 第 1図および第 5図に示す部材と同等の 部材には同じ符号を付している。 本実施例は、 制御圧 力の値を演算により求める電子制御を採用 したもので ある。
第 6図において、 検出管路 9 にはその負荷圧力を検 出する圧力センサ 3 1が接続され、 油圧ポンプ 1 の吐 出管路にはポンプ吐出圧力を検出する圧力セ ンサ 3 2 が接続され、 それぞれ検出した圧力を電気信号に変換 し、 その電気信号を出力する。 また、 油圧ポンプ 1 の 斜板 1 a にはその傾転量を検出するための位置セ ンサ 3 3が設け られ、 油圧ポンプ 1 を駆動する原動機 2 5 の出力軸に近接して原動機の回転数を検出する回転数 センサ 3 4が設けられ、 それぞれ検出した傾転量およ び回転数を電気信号に変換し、 その電気信号を出力す る。 一方、 レギユ レ一夕 2 Aは電気一油圧サーポ式に 構成されており、 かつ油圧ポンプ 1 の吐出管路には電 磁比例弁 3 5が接続され、 電磁比例弁の出力ポー トに は制御管路 2 2が接続されている。 センサー 3 1 , 3 2 , 3 3 , 3 4 からの電気信号はコ ン ドロ一ラ 3 6 に 入力され、 こ こで所定の演算が行われ、 レギユ レー¾'タ 2 Aおよび電磁比例弁 3 5 にそれぞれ制御信号を出力 する。 ' ' 第 7図に レギユ レ一夕 2 Aの構成を示す。 第 7図 Ίこ おいて、 4 0 は油圧ポンプ 1 の斜板 1 a を駆動す ^ ¾ めのァクチユエ一夕であ り、 ァクチユエ一夕 4 0 は受 圧面積の異なる 2つのシ リ ンダ室 4 0 a , 4 0 b と,、 このシ リ ンダ室 4 0 a , 4 0 b内を往復動し、 斜板 1 a の傾転量を調整する ビス ト ン 4 0 c とを有している。 シ リ ンダ室 4 0 a は油圧源であるパイ ロ ッ ト ポンプ 4 3 に連絡され、 かつシ リ ンダ室 4 0 b はパイ 口 , ト ポ ンプ 4 3 と タ ンク 1 0 にそれぞれノ ーマルク ロ一
第 1 および第 2の電磁弁 4 2 , 4 3を介して連絡され ている。
コ ン ト ローラ 3 6 からの制御信号はこの電磁弁 4 2 , 4 3 に入力される。 電磁弁 4 2 に制御信号が入力さ''れ る と、 この電磁弁 4 2が開とな り、 パイ ロ ッ トポンプ 4 1 からの圧油がシ リ ンダ室 4 0 a , 4 0 bの双方に 供給され、 シ リ ンダ室 4 0 a , 4 0 bの受圧面積差に よ り ピス ト ン 4 0 c は図示左方に駆動される。 これに よ り斜板 1 aの傾転量が減少し、 油圧ポンプ 1 の吐出 流量が減少する。 電磁弁 4 3 に制御信号が入力される . と、 この電磁弁 4 3が開となり、 シ リ ンダ室 4 0 bが タ ンク 1 0 に連通し、 ピス ト ン 4 0 c は図示右方に駆 動される。 これによ り斜板 l a の傾転量が増加し、 油 圧ポンプ 1 の吐出流量が増加する。
コ ン ト ローラ 3 6 は、 圧力セ ンサ 3 1, 3 2で検出 された負荷圧力とポンプ吐出圧力とから両者の差圧を 演算し、 この値から当該差圧を予め設定した規定値に 保持する第 1の目標傾転量を演算する と共に、 圧力セ ンサ 3 2で検出されたポンプ吐出圧力から馬力制限制 御のための第 2 の目標傾転量を演算し、 これらの小さ い方を傾転量指令値と して選択し、 この傾転量指令値 と位置セ ンサ 3 3で検出された斜板 1 a の実際の傾転 量との大小に基づき電磁弁 4 2 , 4 3 のいずれか一方 に制御信号を出力する。 これによ り、 上述したよ う に 斜板 1 aが駆動され、 油圧ポ ンプ 1 の馬力制限制御と ポンプ吐出圧力と負荷圧力との差圧を規定値に保持す るロー ドセ ンシング制御が実施される。 なお、 この制 御の詳細は例えば特開平 1 一 3 1 2 2 0 2号公報を参 照の こ と。
また、 コ ン ト ローラ 3 6 は、 圧力セ ンサ 3 1, 3 2 で検出された負荷圧力とポンプ吐出圧力と回転数セ ン サ 3 4で検出された原動機 2 5 の回転数とから、 圧力 制御器 5, 1 5 のピス ト ン 5 a , 1 5 a の第 2の受圧 面 5 a2, 1 5 a2に作用されるべき制御圧力を演算し、 この制御圧力に相当する電気信号が電磁比例弁 3 5 に 出力される。
コ ン ト ローラ 3 6で行われる この制御圧力の演算手 順を第 8 図にフ ローチャ ー トで示す。 まず、 手順 S 1 で、 圧力セ ンサ 3 1 , 3 2 および回転数センサ 3 4が 出力する電気信号により負荷圧力、 ポンプ吐出圧力お よび原動機 2 5 の回転数を読み込む。 次いで、 手順 S 2で原動機 2 5 の回転数が高いかどうかを判定する。 通常、 その判定の基準値と しては、 原動機 2 5の最高. 回転数に近い値を用いる。 原動機 2 5 の回転数が高い と判定される と手順 S 3 に進み、 負荷圧力を制御圧力 とする。 一方、 原動機 2 5の回転数が高く ないと判定 される と手順 S 4 に進み、 負荷圧力とポンプ吐出圧力 とから原動機 2 5の回転数に応じたそれらの中間圧力 を演算し、 手順 S 5 において、 その中間圧力を制御圧 力とする。
電磁比例弁 3 5 は、 このよう に して演算された制御 圧力に相当する電気信号に基づき駆動され、 油圧ボン プ 1 の吐出圧力から当該制御圧力を作り 出し、 これを 制御管路 2 2 に出力する。
したがって、 原動機 2 5の回転数が高い通常作業時 には、 負荷圧力に等しい圧力が制御圧力と して圧力制 御器 5, 1 5 に作用するので、 流量制御弁 4および/ または 1 4の前後差圧はポンプ吐出圧力と負荷圧力と の差圧にほぼ等しい規定値に保持されるのに対して、 原動機 2 5の回転数の低い微操作作業時には、 ポンプ 吐出圧力と負荷圧力との中間圧力が制御圧力となるの で、 流量制御弁 4および/または 1 4の前後差圧が通 常作業時における規定値より も小さい値に保持され、 操作レバーの操作量に対する油圧ァクチユエ一夕への 圧油の供給流量の変化を小さ く して、 微操作作業を容 易に行う こ とが可能となる。
したがって、 本実施例によっても、 第 1の実施例と 同様の効果を奏する と共に、 制御圧力の選択が自動的 に行われるので、 第 4の実施例と同様に構成が一層簡 素化され、 かつ操作性が向上する。
なお、 上記各実施例の説明では、 油圧シ ョベルの油 圧回路装置を例示して説明したが、 これに限る こ とは な く 、 他の作業機械の油圧回路装置にも適用可能であ るのは明らかである。 産業上の利用可能性
以上述べたように、 本発明によれば、 通常作業時か 微操作作業時かに応じて負荷圧力に等しい圧力か負荷 圧力とポンプ吐出圧力との中間圧力のいずれかを選択 的に作り 出し、 これを制御圧力と して流量制御弁の前 後差圧を制御する圧力制御手段に作用させるよう に し たので、 微操作作業時には流量制御弁の前後差圧が小 さ く なつて、 操作レバーの操作量に対する供給流量の 変化が減少し、 これによ り ロー ドセ ン シ ングシステム を採用 していても微操作作業を容易に実施する こ とが でき る。 また、 比較的簡単な構成を付加する こ とで、 負荷圧力およびポンプ吐出圧力という既存の圧力を用 いて制御圧力を作成するので、 効率的なシステムの構 築が可能となる。

Claims

請求の範囲
1. 圧油供給源(1) と、 この圧油供給源からの圧油 によ り駆動される少な く と も 1つの油圧ァクチユエ一 タ (3または 13) と、 このァクチユエ一夕に供給される 圧油の流れを制御する流量制御弁 U;4A または 14;14A ) と、 この流量制御弁の前後差圧を規定値に保持する 圧力制御手段(5;5A または 15;15A) とを備えた作業機 械の油圧回路装置において、
前記ァクチユエ一夕 (3または 13) の負荷圧力と前記 圧油供給源(1) の供給圧力とから、 前記負荷圧力に等 しい圧力と前記負荷圧力よ り高く 前記供給圧力よ り も 低い中間圧力の一方を選択的に作り 出し、 これを制御 圧力と して出力する第 1の手段(20;23;35, 36) と、 前記第 1の手段を操作し、 前記制御圧力と して前記 負荷圧力に等しい圧力か前記中間圧力かのいずれを選 択するかを指示する第 2の手段(21;27:29;34, 36)と、 前記制御圧力を前記圧力制御手段(5;5A または 15;1 5A) に導く 連絡手段 (22)とを有し、
前記圧力制御手段は、 前記制御圧力が前記負荷圧力 に等しい圧力のと きには前記差圧を前記規定値に保持 し、 前記制御圧力が前記中間圧力のときは前記差圧を 前記規定値より小さ く する こ とを特徴とする作業機械 の油圧回路装置。 '-09528 PCT/JP90/00193
3 3
2. 請求の範囲第 1項記載の作業機械の油圧回路装 置において、 前記第 1の手段(20)は、 一端に前記負荷 圧力が導かれ、 他端に前記供給圧力が導かれる管路 (2 Oa) と、 前記管路に設置された固定絞り (20b) および 可変絞り (2Dc) とを含み、 前記第 2の手段は前記可変 絞りの開度を調整する手段(21;Π, 29)であり、 前記 ¾ 絡手段 (22)は前記管路の固定絞り と可変絞り の間の部 分(2 ) に接続されている こ とを特徴とする作業機械 の油圧回路装置。
3. 請求の範囲第 2項記載の作業機械の油圧回路装 置において、 前記固定絞り (20 b) は前記管路 (2'G a) の 負荷圧力が導かれる側に設置され、 前記可変絞り (20c ) は前記管路の供給圧力が導かれる側に設置され、 前 記第 2の手段(21 ;27, 29)は、 前記負荷圧力を選択する ときには前記可変絞りを閉じ、 前記中間圧力を選択す
• る ときには前記可変絞りを任意の開度に開ける こ とを
特徴とする作業機械の油圧回路装置。
4. 請求の範囲第 1項記載の作業機械の油圧 ϋ路装 置において、 前記第 1の手段(23)は、 一端に前記負荷 圧力が導かれ、 他端に前記供給圧力が導かれる管路 (2 3a) と、 前記管路に設置された固定絞り (23c) および 可変圧力制御弁 とを含み、 前記第 2の手段は前 記可変圧力制御弁の設定値を調整する手段 (21)であり、 前記連絡手段(22)は前記管路の固定絞り と可変圧力調 整弁の間の部分(23d) に接続されている こ とを特徴と する作業機械の油圧回路装置。
5. 請求の範囲第 4項記載の作業機械の油圧回路装 置において、 前記可変圧力制御弁 (2 ) は前記管路(2 3a) の負荷圧力が導かれる側に設置され、 前記固定絞 り (23c) は前記管路の供給圧力が導かれる側に設置さ れ、 前記第 2の手段(21)は、 前記負荷圧力を選択する ときには前記可変圧力制御弁の設定値を零と し、 前記 中間圧力を選択する と きには前記可変圧力制御弁の設 定値を零以外の任意の値に変更する こ とを特徵とする 作業機械の油圧回路装置。
6. 請求の範囲第 1項記載の作業機械の油圧回路装 置において、 前記第 1の手段は、 前記負荷圧力を検出 する手段 (31)と、 前記供給圧力を検出する手段(32)と、 前記検出された負荷圧力および供給圧力から前記制御 圧力を演算する手段(36)と、 前記演算された制御圧力 に応じて制御され、 前記制御圧力を発生する手段(35) とを含むこ とを特徵とする作業機械の油圧回路装置。
7. 請求の範囲第 1項記載の作業機械の油圧回路装 置において、 前記第 2の手段はオペレータの操作によ り操作され、 前記第 1の手段(20, Π) を操作する手段 (21)である こ とを特徴とする作業機械の油圧回路装置。
8. 請求の範囲第 1項記載の作業機械の油圧回路装 置において、 前記圧油供給源は、 油圧ポンプ(1) と、 28 Ρ€ ΑΡΡί®/0σϊ93
3 5
この油圧ポンプを駆動する原動機 (25)とを含み、 前 第 2の手段は、 前記原動機の回転数に応じて前記第 i の手段(20 ;35, 36 )を操作する手段 (27, 29 ;34, 36) であ る こ とを特徴とする作業機械の油圧回路装置。 ' :,
9. 請求の範囲第 8項記載の作業機械の油圧回路装 置において、 前記第 2の手段は、 前記原動機(2-5)の目 標回転数を指示する手段(27)に連動して前記第 1の手 段 (20)を操作する手段 (29)である こ とを特徵とずる作 業機械の油圧回路装置。
1 0. 請求の範囲第 8項記載の作業機械の油圧回路 4 装置において、 前記第 2の手段は、 前記原動機(25)の 実回転数を検出する手段 (34)と、 この検出された実,回, 転数に応じて前記第 1の手段(35, 36) を操作する手段
(36)とを含むこ とを特徵とする作業機械の油圧回路装 ηί: ο
1 1. 請求の範囲第 6項記載の作業機械の油圧回路 装置において、 前記第 2の手段は前記選択の基礎とな る情報を出力する手段(34)を含み、 前記制御圧力を演 算する手段(36)は前記情報を取り込み、 これに基づい て前記負荷圧力に等しい圧力か前記中間圧力のいず,れ かを該制御圧力と して演算する こ とを特徵とする作業 機械の油圧回路装置。
1 2. 請求の範囲第 1項記載の作業機械の油圧回路 装置において、 前記圧力制御手段は、 前記流量制御弁 (4または 14) の下流側に設置された圧力制御器(5また は 15) である こ とを特徴とする作業機械の油圧回路装 置。
1 3 . 請求の範囲第 1項記載の作業機械の油圧回路 装置において、 前記圧力制御手段は、 前記流量制御弁 (4A または 14A)の下流側に設置された圧力捕償弁 (5A または 15 A)である こ とを特徵とする作業機械の油圧回 路装置。
PCT/JP1990/000193 1989-02-20 1990-02-19 Hydraulic circuit for working machines WO1990009528A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP90903218A EP0411151B1 (en) 1989-02-20 1990-02-19 Hydraulic circuit for working machines
DE69010419T DE69010419T2 (de) 1989-02-20 1990-02-19 Hydraulische schaltung für maschinen.
KR1019900701662A KR920007650B1 (ko) 1989-02-20 1990-02-19 작업기계의 유압회로장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1/38325 1989-02-20
JP3832589 1989-02-20

Publications (1)

Publication Number Publication Date
WO1990009528A1 true WO1990009528A1 (en) 1990-08-23

Family

ID=12522133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000193 WO1990009528A1 (en) 1989-02-20 1990-02-19 Hydraulic circuit for working machines

Country Status (5)

Country Link
US (1) US5101629A (ja)
EP (1) EP0411151B1 (ja)
KR (1) KR920007650B1 (ja)
DE (1) DE69010419T2 (ja)
WO (1) WO1990009528A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491050B1 (en) * 1990-07-05 1995-04-26 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system and valve device
JPH0473403A (ja) * 1990-07-11 1992-03-09 Nabco Ltd 油圧回路
DE4241848C2 (de) * 1992-12-11 1994-12-22 Danfoss As Gesteuertes Proportionalventil
US5538149A (en) * 1993-08-09 1996-07-23 Altec Industries, Inc. Control systems for the lifting moment of vehicle mounted booms
JP3477687B2 (ja) * 1993-11-08 2003-12-10 日立建機株式会社 流量制御装置
ATE181755T1 (de) * 1995-03-24 1999-07-15 Orenstein & Koppel Ag Einrichtung zur lastdruckunabhängigen durchflussverteilung bei einem steuerschieber für mobile bau- und arbeitsmaschinen
JPH08338405A (ja) * 1995-04-12 1996-12-24 Komatsu Ltd 可変容量型油圧ポンプの容量制御装置
JP3646812B2 (ja) * 1995-05-02 2005-05-11 株式会社小松製作所 移動式破砕機の制御回路
US6318079B1 (en) * 2000-08-08 2001-11-20 Husco International, Inc. Hydraulic control valve system with pressure compensated flow control
DE10120996A1 (de) * 2001-04-28 2002-10-31 Bosch Gmbh Robert Hydraulische Steuereinrichtung
GB2436856A (en) * 2006-04-07 2007-10-10 Agco Gmbh Pressure control for system with primary and secondary consumers
US20130189062A1 (en) * 2012-01-23 2013-07-25 Paul Bark Hydraulic pump control system for lift gate applications
US20150167276A1 (en) * 2013-12-13 2015-06-18 Cnh America Llc Power beyond valve assembly for an agricultural implement
GB2530707A (en) 2014-06-13 2016-04-06 Jc Bamford Excavators Ltd A material handling machine
JP6803194B2 (ja) * 2016-10-25 2020-12-23 川崎重工業株式会社 建設機械の油圧駆動システム
DE102016122392A1 (de) * 2016-11-21 2018-05-24 Schwing Gmbh Dickstoffpumpe mit einstellbarer Begrenzung des Förderdrucks
IT201700107028A1 (it) * 2017-09-25 2019-03-25 Tesmec Spa Apparecchiatura idraulica per la tesatura di conduttori per elettrodotti

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197603A (ja) * 1983-04-13 1984-11-09 リンデ・アクチエンゲゼルシヤフト ハイドロスタテイツクな駆動系

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020867A (en) * 1974-08-26 1977-05-03 Nisshin Sangyo Kabushiki Kaisha Multiple pressure compensated flow control valve device of parallel connection used with fixed displacement pump
US3992883A (en) * 1975-10-01 1976-11-23 Lucas Industries Limited Fan drive systems
DE3044144A1 (de) * 1980-11-24 1982-09-09 Linde Ag, 6200 Wiesbaden Hydrostatisches antriebssystem mit einer einstellbaren pumpe und mehreren verbrauchern
US4487018A (en) * 1982-03-11 1984-12-11 Caterpillar Tractor Co. Compensated fluid flow control
IT1157048B (it) * 1982-06-14 1987-02-11 Fiat Allis Europ Circuito idraulico per l'alimentazione di fluido in pressione ad una pluralita di camere utilizzatrici provvisto di mezzi selezionatori per l'alimentazione prioritaria di una o piu delle suddette camere utilizzatrici
WO1984002958A1 (en) * 1983-01-24 1984-08-02 Caterpillar Tractor Co Signal valve for pressure compensated system
DE3321483A1 (de) * 1983-06-14 1984-12-20 Linde Ag, 6200 Wiesbaden Hydraulische einrichtung mit einer pumpe und mindestens zwei von dieser beaufschlagten verbrauchern hydraulischer energie
DE3716200C2 (de) * 1987-05-14 1997-08-28 Linde Ag Steuer- und Regeleinrichtung für ein hydrostatisches Antriebsaggregat und Verfahren zum Betreiben eines solchen
JP2582266B2 (ja) * 1987-09-29 1997-02-19 新キヤタピラー三菱株式会社 流体圧制御システム
IN171213B (ja) * 1988-01-27 1992-08-15 Hitachi Construction Machinery
US5048293A (en) * 1988-12-29 1991-09-17 Hitachi Construction Machinery Co., Ltd. Pump controlling apparatus for construction machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197603A (ja) * 1983-04-13 1984-11-09 リンデ・アクチエンゲゼルシヤフト ハイドロスタテイツクな駆動系

Also Published As

Publication number Publication date
EP0411151A1 (en) 1991-02-06
DE69010419T2 (de) 1994-11-03
KR910700414A (ko) 1991-03-15
US5101629A (en) 1992-04-07
EP0411151B1 (en) 1994-07-06
DE69010419D1 (de) 1994-08-11
KR920007650B1 (ko) 1992-09-14
EP0411151A4 (en) 1992-03-11

Similar Documents

Publication Publication Date Title
WO1990009528A1 (en) Hydraulic circuit for working machines
US7252030B2 (en) Hydraulic control circuit and method thereof
JP3865590B2 (ja) 建設機械の油圧回路
JP3756814B2 (ja) ポンプ容量制御装置及び弁装置
US5537819A (en) Hydraulic device for working machine
KR101069477B1 (ko) 건설 기계의 펌프 제어 장치
JP3697136B2 (ja) ポンプ制御方法およびポンプ制御装置
WO1993018308A1 (en) Hydraulically driving system
WO1992018711A1 (en) Hydraulic driving system in construction machine
GB2291987A (en) Controller for hydraulic drive machine
WO2001051820A1 (fr) Engin a commande hydraulique
US5839279A (en) Hydraulic actuator operation controller
JPH02107802A (ja) 油圧駆動装置
KR100480949B1 (ko) 유압 구동 장치
JP2651079B2 (ja) 油圧建設機械
JP2721384B2 (ja) 作業機械の油圧回路
JPH07197907A (ja) 油圧建設機械
JPH068641B2 (ja) 油圧回路
JP2018025137A (ja) 作業機械の油圧制御装置
JP2846949B2 (ja) 作業機械の油圧回路装置
JPH037030B2 (ja)
JPH04351304A (ja) 油圧駆動装置
JP3018788B2 (ja) 油圧ポンプの制御回路
JP2786941B2 (ja) 作業機械の油圧駆動装置
JP3175992B2 (ja) 油圧駆動機械の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1990903218

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1990903218

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990903218

Country of ref document: EP