WO1990009517A1 - Procede pour verifier l'etat de marche d'une sonde lambda - Google Patents

Procede pour verifier l'etat de marche d'une sonde lambda Download PDF

Info

Publication number
WO1990009517A1
WO1990009517A1 PCT/DE1990/000032 DE9000032W WO9009517A1 WO 1990009517 A1 WO1990009517 A1 WO 1990009517A1 DE 9000032 W DE9000032 W DE 9000032W WO 9009517 A1 WO9009517 A1 WO 9009517A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
probe
lean
lambda
operational readiness
Prior art date
Application number
PCT/DE1990/000032
Other languages
German (de)
English (en)
Inventor
Eberhard Schnaibel
Erich Schneider
Martin Stilling
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1019900702261A priority Critical patent/KR910700402A/ko
Publication of WO1990009517A1 publication Critical patent/WO1990009517A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/148Using a plurality of comparators

Definitions

  • the invention relates to methods for recognizing the operational readiness of a lambda probe. There may be a lack of readiness for operation due to numerous deficiencies, for example there may be short circuits or interruptions in the supply lines or the probe may not be sufficiently warm, which is particularly the case shortly after starting an internal combustion engine to which the probe is attached. 4th
  • the invention is based on the object of specifying a method for recognizing the operational readiness of a lambda probe which also works reliably when it is applied to a lambda probe which is used for lean regulation.
  • control oscillation frequency exceeds a minimum value when the control deviations move within a predetermined band. If this is the case, the result of the check indicates that the entire control loop is working properly. So the probe is also ready for operation.
  • the method according to claim 2 is based on the fact that the probe voltage is processed in two measuring channels with different amplifiers. A check is carried out in each channel to determine whether the measured value indicates a lean or non-lean mixture. The two determined mixture areas are compared. If there is no agreement, this is a sign that there is a probe error. While the methods according to claims 1 and 2 serve to determine the lack of operational readiness of a sufficiently warm lambda probe, the methods according to claims 3 and 4 serve to determine the lack of operational readiness due to the sensor not being operationally warm.
  • the probe voltage is compared with a voltage threshold value for lean and / or rich mixture and a ready signal is given when the detected probe voltage reaches one of the voltage threshold values.
  • This sub-method is known from DE 33 19 432 A1 (US 4,528,957). Additional icfo is used in the process according to Ansp. 3, however, checks whether a predetermined period of time has elapsed since the start. If this is the case, a pseudo-ready signal is output if the correct ready signal has not already been issued by fulfilling the aforementioned condition.
  • the probe is loaded with a resistance, the value of which is considerably lower than the internal resistance value of the cold probe, but considerably higher than the internal resistance value of the hot probe.
  • the measured voltage is compared with a switch-on threshold voltage and a readiness signal is output if the comparison result is positive. This ensures that readiness for operation is only recognized when the probe is so hot that it delivers measurement results that are sufficiently accurate even for lean control.
  • the method according to claim 5 can be used with particular advantage in connection with one of the methods according to claims 1-4, but can also be used by itself.
  • the probe internal voltage is not used directly as a probe voltage for control purposes, but rather a voltage is used which is applied to a Series connection of a load resistor is tapped with an adjustable counter voltage source, which series connection of the probe is connected in parallel.
  • the voltage of the counter voltage source is set in each case to a voltage which corresponds to the respective lambda sol value.
  • This procedure has the advantage that when a probe error occurs, the voltage of the counter-voltage source is used as the probe voltage. Since this assumes a value that corresponds to the respective lambda sol value, there is no control deviation, so that the manipulated value remains unchanged. Even without a method for recognizing the operational readiness of the probe, poor control results due to a probe that has become defective can thus be avoided. However, if a method for recognizing operational readiness is also used, additional measures can be taken with the result of this method.
  • FIG. 1 shows a schematic circuit diagram of a circuit for detecting the probe voltage in two measuring channels
  • FIG. 2 shows a flowchart for explaining a method for detecting errors in a lambda probe that is at operating temperature
  • FIG. 3 shows a flow chart for explaining a method for recognizing the operational readiness of an initially cold lambda probe
  • FIG. 4 shows a schematic circuit diagram of an arrangement with which the operational readiness of a lambda sensor can be recognized
  • FIG. 5 shows a schematic circuit diagram of an arrangement for measuring a probe voltage. Description of exemplary embodiments
  • the voltage U_S emitted by a lambda probe 10 is processed in two channels by the circuit according to FIG. 1.
  • a voltage ULM is tapped at its output, ie a voltage for lambda values for a lean mixture.
  • this amplifier would deliver voltages that would be far too high for further processing.
  • There is therefore a second amplifier 11.2 with a low gain factor in the example V 5.
  • a voltage UL1 is tapped at its output, ie a voltage for Lamb values for mixtures of Lambda approximately 1.
  • the second amplifier 11.2 is only directly connected to the probe by a line, which is why the voltage ULI measured by it has a mass offset Um . Since the order of magnitude of the probe voltage that is measured when the mixture is lean is moving, the probe voltage is guided to amplifier 11.1 in two poles. This difference in wiring allows Widersp before determine between measured voltages as t ste occur particularly in ground fault or short circuit.
  • the voltage ULM is in its upper evaluable range, while the voltage UL1 is still below a threshold value, from which it is used for regulation. If the voltage UL1 reaches its usable range, the voltage ULM has left its corresponding range, ahead set there is no probe error. If the voltage UL1 is above a threshold value and the voltage ULM is below a threshold value, these are contradictory results.
  • a method step s1 is reached after starting the method using a mark A. In this it is checked whether the amplitude AMP_RAW of the control deviation remains below an amplitude threshold AMP_RAW_S and at the same time the frequency f of the control oscillation remains below a frequency threshold f_S. If this is the case, an error is displayed in step s2 and the system is switched from regulation to control.
  • step s1 If, on the other hand, the examination in step s1 is negative, an examination follows in a step s3, which was already explained above with reference to FIG. 1. It is namely checked whether the voltage UL1 remains above a lower stomach threshold M_SCHW-U, although the voltage ULM is less than a lean threshold M_SCHW. If this is the case, an error is not necessarily concluded, but it is additionally checked in a step s4 whether the voltage U remains below an upper lean threshold value M_SCHW-0 for more than the duration of a period Z1. This value is z. B. 100 mV, while the lower lean threshold M_SCHW-U is 60 mV. If the condition according to step s4 is also fulfilled, the final step s2 already explained follows. Otherwise, the process returns to mark A.
  • step s3 If the condition in step s3 is not met, the method proceeds to step s5.
  • An extremely lean mixture occurs in overrun mode. If overrun is in front of the probe but does not show an extremely lean mixture, this is a sign of an error. Accordingly, e an error if there is no coasting operation, but the probe still emits a signal for extremely lean mixture.
  • the examination for the first fault takes place in a step s6, which follows step s5 if overrun is present.
  • step s ⁇ it is examined whether the voltage ULM lies above the lean threshold value M_SCHW for more than a period of time Z2. If this is the case, the final step s2 discussed follows. If this is not the case, the process sequence starts again from the mark A.
  • step s7 The second error check, briefly explained in connection with step s5, is carried out in a step s7 which follows the step s5 if there is no overrun operation
  • step s7 it is examined whether the voltage ULM is below the lean threshold M_SCHW for more than a period Z3. If this is the case, step s4 already explained above follows. If this is not the case, the process starts again from mark A.
  • the periods Z1, Z2 and Z3 mentioned have a duration v of a few seconds, z. B. of two seconds.
  • step s1 it is pointed out that, instead of the amplitude of the control deviation, the total stroke of the control deviation can also be monitored and who can be checked whether it lies within a predetermined band should move the specified band, especially the probe voltage.
  • the frequency threshold value strongly depends on dead times, which in the respective application apply. Possible period duration threshold values therefore fluctuate within a wide millisecond range. In practice, however, it is easy to determine which is the minimum frequency at which the control method still works properly. The frequency threshold is set somewhat below this minimum frequency.
  • the method according to FIG. 3 serves not to switch to control if this is not yet permissible due to the probe temperature.
  • step n5 follows, in which a check is made to determine whether a period of time Z_S (T_M0T ) has expired. If this is not the case, ie if none of the conditions according to steps n1 and n5 is met, the method returns to the beginning, ie to step n-1. If, on the other hand, the condition according to step n5 is fulfilled, step n2 already explained follows with one of its subsequent steps.
  • the circuit has the lambda probe 10 with a load resistor 12 of the resistance value R_L connected in parallel.
  • the probe voltage U_S is tapped at this.
  • the lambda probe 10 is shown with its equivalent circuit diagram, which consists of a probe voltage source 13, with the internal voltage U_SE, and a probe internal resistor 14, with the internal resistance value R_SI. With the values mentioned, the probe voltage U_S results as follows:
  • This probe voltage is compared in a comparator 15 with a standby threshold voltage U_B, as is output by a reference voltage source 16. As soon as the probe voltage U_S exceeds the standby threshold voltage U, readiness for control is recognized.
  • the standby threshold voltage is set in such a way that control is only released when the probe is so hot that the probe voltage U_S does not change significantly with a constant lambda value if it is heated further.
  • the lambda probe 10 is also shown with its equivalent circuit diagram in the circuit of FIG. 5. Parallel to the probe there is now a series connection of a load resistor 12, with the resistance value R_L, and a counter voltage source 17, with the adjustable voltage U_G.
  • the probe voltage U_S tapped at the series circuit is determined as follows:
  • U_S U_G * + (U_SE - U_G) x R_L / (R_L + R_SI)
  • the probe voltage adjusts to the counter-voltage value U_G.
  • This value is set to a voltage that corresponds to the respective lambda solver. If the probe lines are interrupted, there is no longer any control deviation. In the case of a probe that is no longer operational due to the temperature being too low, there is only a slight control deviation. Accordingly, the control manipulated value no longer changes or only changes very slowly. This missing or, in the worst case, very slow change in the manipulated value means that there are no undesirably large changes in the control within the period of time that elapses between the occurrence of an error and its detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Un procédé pour contrôler l'état de marche d'une sonde lambda vérifie si la fréquence de l'oscillation de régulation dans un circuit de régulation renfermant la sonde lambda comme élément de mesure se situe au-dessous d'un seuil de fréquence lorsque les valeurs de l'écart de régulation varient simultanément dans une plage étroite prédéterminée. Si tel est le cas, une erreur existe dans le circuit de régulation, très probablement dans la sonde. Ce procédé convient également pour vérifier l'état de marche d'une sonde lambda servant à réguler la richesse du mélange.
PCT/DE1990/000032 1989-02-18 1990-01-20 Procede pour verifier l'etat de marche d'une sonde lambda WO1990009517A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900702261A KR910700402A (ko) 1989-02-18 1990-01-20 람다 프로브 동작 준비 검출 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3904986.8 1989-02-18
DE3904986A DE3904986A1 (de) 1989-02-18 1989-02-18 Verfahren zum erkennen der betriebsbereitschaft einer lambdasonde

Publications (1)

Publication Number Publication Date
WO1990009517A1 true WO1990009517A1 (fr) 1990-08-23

Family

ID=6374397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1990/000032 WO1990009517A1 (fr) 1989-02-18 1990-01-20 Procede pour verifier l'etat de marche d'une sonde lambda

Country Status (3)

Country Link
KR (1) KR910700402A (fr)
DE (1) DE3904986A1 (fr)
WO (1) WO1990009517A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603543A1 (fr) * 1992-12-22 1994-06-29 Robert Bosch Gmbh Méthode et dispositif de surveillance d'un dispositif de commande dans un moteur à combustion
FR2737920A1 (fr) * 1995-08-17 1997-02-21 Siemens Ag Procede de diagnostic pour un detecteur de gaz d'echappement
WO2000000728A1 (fr) * 1998-06-29 2000-01-06 Siemens Aktiengesellschaft Procede de controle du comportement dynamique d'un capteur de mesure monte dans le circuit d'echappement d'un moteur a combustion interne

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113316C2 (de) * 1991-04-24 2003-09-11 Bosch Gmbh Robert Anschlußschaltung für eine Lambdasonde und Prüfverfahren für eine solche Schaltung
US5325711A (en) * 1993-07-06 1994-07-05 Ford Motor Company Air-fuel modulation for oxygen sensor monitoring
DE19900740A1 (de) * 1999-01-12 2000-07-13 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2307968A1 (fr) * 1975-04-18 1976-11-12 Bosch Gmbh Robert Procede et dispositif pour determiner la duree d'impulsions d'injection de carburant
FR2342405A1 (fr) * 1976-02-28 1977-09-23 Bosch Gmbh Robert Procede et installation pour surveiller si une sonde de mesure d'oxygene est prete a fonctionner
DE2815109A1 (de) * 1977-04-08 1978-11-30 Nissan Motor Ueberwachungsvorrichtung fuer regeleinrichtungen mit geschlossener regelschleife fuer das luft/brennstoff-verhaeltnis von brennkraftmaschinen
EP0042914A2 (fr) * 1980-06-28 1982-01-06 Robert Bosch Gmbh Dispositif de régulation du rapport air/carburant pour moteurs à combustion interne
EP0047968A1 (fr) * 1980-09-12 1982-03-24 Hitachi, Ltd. Système de commande pour moteur à combustion interne
EP0081759A2 (fr) * 1981-12-11 1983-06-22 Robert Bosch Gmbh Dispositif de régulation du rapport air-carburant dans les moteurs à combustion interne

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2307968A1 (fr) * 1975-04-18 1976-11-12 Bosch Gmbh Robert Procede et dispositif pour determiner la duree d'impulsions d'injection de carburant
FR2342405A1 (fr) * 1976-02-28 1977-09-23 Bosch Gmbh Robert Procede et installation pour surveiller si une sonde de mesure d'oxygene est prete a fonctionner
DE2815109A1 (de) * 1977-04-08 1978-11-30 Nissan Motor Ueberwachungsvorrichtung fuer regeleinrichtungen mit geschlossener regelschleife fuer das luft/brennstoff-verhaeltnis von brennkraftmaschinen
EP0042914A2 (fr) * 1980-06-28 1982-01-06 Robert Bosch Gmbh Dispositif de régulation du rapport air/carburant pour moteurs à combustion interne
EP0047968A1 (fr) * 1980-09-12 1982-03-24 Hitachi, Ltd. Système de commande pour moteur à combustion interne
EP0081759A2 (fr) * 1981-12-11 1983-06-22 Robert Bosch Gmbh Dispositif de régulation du rapport air-carburant dans les moteurs à combustion interne

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603543A1 (fr) * 1992-12-22 1994-06-29 Robert Bosch Gmbh Méthode et dispositif de surveillance d'un dispositif de commande dans un moteur à combustion
FR2737920A1 (fr) * 1995-08-17 1997-02-21 Siemens Ag Procede de diagnostic pour un detecteur de gaz d'echappement
US5747668A (en) * 1995-08-17 1998-05-05 Siemens Aktiengesellschaft Diagnostic process for an exhaust gas sensor
WO2000000728A1 (fr) * 1998-06-29 2000-01-06 Siemens Aktiengesellschaft Procede de controle du comportement dynamique d'un capteur de mesure monte dans le circuit d'echappement d'un moteur a combustion interne

Also Published As

Publication number Publication date
KR910700402A (ko) 1991-03-15
DE3904986A1 (de) 1990-08-23

Similar Documents

Publication Publication Date Title
EP0403615B1 (fr) Procede et dispositif permettant de detecter la defectuosite d'une sonde lambda
DE4344961B4 (de) Auswertevorrichtung für das Signal einer Sauerstoffsonde
DE4113316C2 (de) Anschlußschaltung für eine Lambdasonde und Prüfverfahren für eine solche Schaltung
DE102012211687A1 (de) Verfahren und Steuereinheit zur Erkennung eines Spannungsoffsets einer Spannungs-Lambda-Kennlinie
DE19636226A1 (de) Lambdasondeninnenwiderstandsbestimmung
DE102008001569A1 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
WO2013092018A1 (fr) Procédé de surveillance d'une sonde lambda large bande
CH694996A5 (de) Verfahren zu Ueberpruefen eines elektromagnetischen Durchflussmessers und elektromagnetische Durchflussmesseranordnung.
EP1616174B1 (fr) Procede permettant de faire fonctionner un detecteur de gaz
DE102016207516B4 (de) Verfahren zur Alterungsbestimmung einer zur Ermittlung einer Gaskonzentration eines Gasgemischs ausgebildeten Sonde einer Brennkraftmaschine
DE3024607A1 (de) Einrichtung zur regelung des kraftstoff/luftverhaeltnisses bei brennkraftmaschinen
WO1990004778A1 (fr) Procede et dispositif pour determiner la resistance interieure de sondes lambda et reguler un chauffage au moyen de la resistance interieure
WO1990009517A1 (fr) Procede pour verifier l'etat de marche d'une sonde lambda
DE10209870A1 (de) Verfahren zum Erkennen einer Leckage im Einlasskanal eines Verbrennungsmotors und zur Durchführung des Verfahrens eingerichteter Verbrennungsmotor
DE102019002274A1 (de) Gassensor und verfahren zum steuern eines gassensors
DE19625899C2 (de) Verfahren zum Betreiben einer Sauerstoffsonde
DE69736091T2 (de) Gassensor und Gaskonzentrationsüberwachungsvorrichtung
DE102008043124A1 (de) Verfahren zur Diagnose einer in einem Abgaskanal eines Verbrennungsmotors angeordneten Lambdasonde und Vorrichtung zur Durchführung des Verfahrens
EP0757168A2 (fr) Méthode et dispositif pour la commande d'un moteur à combustion interne
EP1352255A1 (fr) Dispositif de determination de la resistance interieure d'une sonde a oxygene lineaire (sonde lambda)
DE4137626A1 (de) Anschlussschaltung fuer eine sauerstoffsonde und pruefverfahren fuer richtigen sondenanschluss
WO2006067054A1 (fr) Procede et dispositif de regulation d'une sonde de mesure de gaz
DE102004009024A1 (de) Steuervorrichtung für einen Verbrennungsmotor
EP0707685B1 (fr) Procede d'adaptation, aux variables en cours de l'air exterieur, des valeurs d'air d'un diagramme caracteristique de substitution utilise lorsqu'il se produit des pulsations de l'air dans la tubulure d'admission d'un moteur a combustion interne pour commander la formation du melange
EP0552173B1 (fr) Procede de determination du debit d'un fluide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE