WO1990009047A1 - Integrated optical semiconductor device and method of producing the same - Google Patents

Integrated optical semiconductor device and method of producing the same Download PDF

Info

Publication number
WO1990009047A1
WO1990009047A1 PCT/JP1990/000126 JP9000126W WO9009047A1 WO 1990009047 A1 WO1990009047 A1 WO 1990009047A1 JP 9000126 W JP9000126 W JP 9000126W WO 9009047 A1 WO9009047 A1 WO 9009047A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
active layer
semiconductor device
optical semiconductor
optical
Prior art date
Application number
PCT/JP1990/000126
Other languages
English (en)
French (fr)
Inventor
Haruhisa Soda
Hiroshi Ishikawa
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Publication of WO1990009047A1 publication Critical patent/WO1990009047A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1057Comprising an active region having a varying composition or cross-section in a specific direction varying composition along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to an integrated optical semiconductor device and a method of manufacturing the same, and more particularly, to integrate an optical semiconductor device by bonding end faces of active layers of a plurality of optical semiconductor devices on an optical waveguide layer.
  • the present invention relates to an integrated optical semiconductor device and a method for manufacturing the same.
  • optical semiconductor devices such as DFB lasers, photodetectors, and optical amplifiers has been promoted.
  • a DF ⁇ ⁇ ⁇ laser which is the light source of an optical communication system
  • the DF ⁇ ⁇ ⁇ laser This causes a phenomenon in which the number of carriers fluctuates and the oscillation wavelength fluctuates with time, a so-called capping phenomenon.
  • This chabing phenomenon if an optical fiber having chromatic dispersion is used, it may cause deterioration of optical transmission characteristics and cannot be used in optical communication exceeding 5 Gb / s, but the DFB laser and the optical modulator must be the same. If the laser beam emitted from the DF ⁇ laser is modulated by an optical modulator instead of directly integrating the DFB laser on a substrate, that is, if an external modulation method is adopted, this phenomenon occurs. Can be kept very small.
  • 1 and 3 show a conventional integrated optical semiconductor device in which a DF laser and an optical modulator are integrated on the same substrate.
  • the integrated optical semiconductor device shown in FIG. 1 has a folded grating 2, a waveguide 3, and an active layer formed on the left side of an n-I ⁇ P substrate 1.
  • a high resistance layer 8 is provided between the laser 10 and the optical modulator 1 i.
  • a cap layer 12 and an upper electrode 13 are provided on the upper surface, a lower electrode 14 is provided on the lower surface, and an antireflection film 15 is provided on the end face on the optical modulator side.
  • the integrated optical semiconductor device shown in FIG. 3 is described in Japanese Patent Application Laid-Open No. 64-28984, in which a diffraction grating 2 is provided on the left side of an n-InP substrate 1. After the optical waveguide layer 3 and the first buffer layer 100 are provided over the entire area of the laser, the active layer 4 and the second buffer layer 1 which are located on the diffraction grating 2 and constitute the DFB laser 10 are provided.
  • the cladding, the semiconductor layer 5, and the light absorbing layer 6 which is located on the right side of the n-InP substrate 1) and constitutes the optical modulator 11 (this is the 3 ⁇ 4 (area) of the DFB laser 10.
  • the P_InP layer 7 is also provided. The separation between the DFB laser 10 and the optical modulator 11 forms a groove between them, and a high level is formed there. This is achieved by embedding the resistance layer 8.
  • the first buffer layer 100 becomes an etching stop, so that it is etched down to the optical waveguide layer 3 thereunder. There is nothing
  • a cap layer 12 and an upper electrode 13 are provided on the upper surface, and a lower electrode 14 is provided on the lower surface.
  • the active layer 4 and the optical waveguide layer 3 in contact with the active layer 4 are composed of the same type of compound semiconductor. Wave layer 3 is also etched at the same time.
  • the etching rate of the active layer 4 is fast. Therefore, the active layer 3 is strongly etched by 2 to 3 m, so that when the light absorbing layer 6 is later grown, the crystal does not grow in the side-etched region, and a hole 102 is formed.
  • the active layer 3 is strongly etched by 2 to 3 m, so that when the light absorbing layer 6 is later grown, the crystal does not grow in the side-etched region, and a hole 102 is formed.
  • the optical coupling between the DFB laser 10 and the optical modulator 11 will be via the path of the active layer 4—optical waveguide layer 3— “optical absorption layer 6”.
  • the active layer 4 since the region where the power of the propagating light is the largest is in the central part of each layer, the active layer 4, the optical waveguide layer 3 and the light absorbing layer 6 have the light as shown by A, B, C, respectively. In the region where the light propagates most strongly, that is, in the configuration shown in Fig. 1 where the height at the center is different, a mismatch occurs in the light coupling, and good optical coupling cannot be realized.
  • the height of the central portion A of the active layer 4 is different from that of the central portion B of the light absorbing layer 6, so Will occur.
  • optical coupling between the DFB laser 10 and the optical modulator 11 is via the path of the active layer 4, the optical waveguide layer 3, and the optical absorption layer 6.
  • the center of each layer is different between A, B. and C between the active layer 4 and the optical waveguide layer 3 or between the optical waveguide layer 3 and the light absorption layer 6, the same applies. Mismatch occurs at the time, and good optical coupling cannot be realized.
  • the above-mentioned mismatch consists of a DFB laser and an optical modulator. This may occur not only between the optical semiconductor device but also other integrated optical semiconductor devices. Purpose of the Invention and Disclosure of the Invention
  • a first object of the present invention is to provide an optical semiconductor device in which an optical waveguide layer and an active layer are stacked and another optical semiconductor device integrated on the same substrate.
  • An object of the present invention is to provide an integrated optical semiconductor device capable of performing good optical coupling.
  • the second object is to form an optical semiconductor device having an optical waveguide layer and an active layer laminated thereon and another optical semiconductor device by integrating them on the same substrate.
  • An object of the present invention is to provide a manufacturing method capable of excellent optical coupling.
  • the present invention provides a semiconductor substrate having an optical waveguide layer on a surface layer
  • a first optical semiconductor device comprising a first active layer partially provided on the optical waveguide layer, wherein the first optical semiconductor device operates by optically coupling the optical waveguide layer and the first active layer;
  • a second active layer provided partially on the optical waveguide layer, having an end surface in contact with the end surface of the first active layer, and a bottom surface having the same plane as the first active layer; It is an object of the present invention to provide an integrated optical semiconductor device comprising a second optical semiconductor device.
  • a method for manufacturing an integrated optical semiconductor device comprising: It is. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 to FIG. 4 are diagrams for explaining the prior art of the present invention.
  • FIG. 5 and FIG. 6 are diagrams illustrating an embodiment of the basic configuration of the present invention.
  • FIGS. 7 and 8 are diagrams illustrating an embodiment in which the present invention is applied to integration of a DFB laser and an optical modulator.
  • FIGS. 9 to 13 are diagrams illustrating the manufacturing process. It is.
  • FIG. 14 is a diagram for explaining an embodiment in which the present invention is applied to integration of an optical amplifier and a light receiving device.
  • FIG. 15 is a diagram for explaining an embodiment in which the present invention is applied to integration of an optical amplifier and an optical filter. Detailed description of preferred embodiments
  • FIG. 5 is a diagram showing an embodiment of a basic configuration of the present invention.
  • an optical waveguide layer 3 is provided on a semiconductor substrate 1, a first active layer 103 constituting a first optical semiconductor device 105 is provided on the upper left side, and a second active layer 103 is provided on the upper right side.
  • the second active layers 104 constituting the optical semiconductor device 106 are provided with substantially the same thickness.
  • the first and second active layers are directly bonded at the end face 107.
  • a cladding layer 5 is provided on the first> second active layer.
  • the optical waveguide layer 3 extends over both the first optical semiconductor device 105 and the second optical semiconductor device 106, the first active The bottom surfaces of the layer 103 and the second active layer 104 are flush with each other, and therefore, as shown in FIG. 6, the center positions of the first and second active layers formed thereon. A and B are approximately equal.
  • FIG. 7 and 8 illustrate a second embodiment of the present invention.
  • the DFB laser 10 and the optical modulator 11 are integrated on the same substrate 1, and the ⁇ -In P substrate 1 has a left side.
  • the optical waveguide layer 3 and the etching stop layer 16 are provided on the entire upper surface of the substrate.
  • An active layer 4 (corresponding to the first active layer) for obtaining light emission and a cladding layer 5 are provided in a left region of the substrate 1 constituting the DF ⁇ laser 10.
  • the light absorbing layer 6 (active layer in the optical modulator: corresponding to the second active layer) and the ground layer 5 are provided on the right side area of the substrate 1 constituting the Has an antireflection film 15 formed thereon.
  • a high resistance layer 8 is buried between the DFB laser 10 and the optical modulator 11 to separate them.
  • a cap layer 12 and an upper electrode 13 are separately provided on the DF laser 10 and the optical modulator 11, respectively, and a common lower layer is provided on the substrate 1 side. Electrodes 14 are provided.
  • FIG. 8 shows a structure of the present embodiment from which the cleaning layer 12, the upper electrode 13, and the lower electrode 14 are removed. (The broken lines indicate the positions where the cap layers 12 and the upper electrode are formed.)
  • the high-resistance layer 8 is not only between the DF laser 10 and the optical modulator 11 but also in each device. Both sides of the device are embedded.
  • the DFB laser 10 is made to emit light at all times, and the laser light is modulated by a voltage applied to the optical modulator 11.
  • a n-InP substrate 1 provided with a diffraction grating 2 formed using a resist pattern subjected to interference exposure using a He-Cd laser, for example, by a liquid phase growth method
  • the etching stop layer 16 consisting of In P is 0.0 l ⁇ m
  • GaInAsP 1.55 m
  • the active layer 4 is 0.15 m
  • the p-InP force and the cladding layer 5 is ⁇ .
  • a mask 20 with a thickness of about 200 A which is made of S i 0 z and covers the left area to be a DFB laser with a length of about 300 / m, for example, I n P force et pitch ing solution consisting of HC
  • I n P force et pitch ing solution consisting of HC
  • H z S 0 4, H 2 0 2, consisting H.2 ⁇ The active layer 4 is selectively removed with an etching solution.
  • the active layer 4 is GaInAsP
  • the etching stop layer 16 is made of InP, the etching stop layer 16 is not etched due to a difference in material.
  • the active layer 4 is a very thin layer of about 0.15 m. Since the active layer 4 is a very thin layer, the etching time is short, and almost no side etching occurs.
  • the region of the DFB laser 10 and the optical modulator 11 is etched into a mesa shape, and then a high resistance layer 8 of InP with Fe doped thereon is formed. Grow.
  • the DFB laser 10 and the cap layer 12 on the optical modulator 11 are selectively etched, separated from each other corresponding to each optical semiconductor device, and then exposed by the etching.
  • a groove is formed in the gate layer 7. Subsequently, the groove is filled with a high-resistance layer 8 made of InP doped with Fe to electrically separate the DFB laser 30 from the optical modulator 31.
  • the distance between the cap layer 12 of the DFB laser 30 and the cap layer 12 of the optical modulator 31 is at least 10 ⁇ m, the high resistance layer 8 is embedded. At least + minutes of electrical separation is possible.
  • an upper electrode 13 and a lower electrode 14 are formed, and further, for example, an antireflection film 15 in which SIN is formed with a thickness of 1/4 of the wavelength of the signal light is applied to the optical modulator 11 side.
  • the force at which the junction between the DFB laser 10 and the optical modulator 11 is formed in a taper shape is inevitably formed when performing liquid phase growth. Since it is very small, it does not significantly affect the optical coupling matching.
  • the tapered region is eliminated.
  • FIG. 14 is a view for explaining another embodiment of the present invention.
  • the optical amplifier 30 and the PIN light receiving device 31 are integrated on the same substrate.
  • the basic structure is the same as that of the second embodiment.
  • the light absorbing layer 6 in the second embodiment is an I-type light absorbing layer 201, and the lower part of the light absorbing layer 201 has a snow-free 4 shift region in the center. Is formed.
  • the structure of this embodiment is manufactured by the same method as in the second embodiment.
  • the optical amplifier 30 has a length of 100 to 600 m, and the PIN light receiving device 31 has a length of 100 to 300 im. 1.5 5 An integrated optical semiconductor device operating in the ⁇ m band is obtained.
  • a positive voltage is applied to the optical amplifier 30 side, the substrate is grounded, the signal light incident on the optical amplifier 30 side is amplified, and a negative voltage is applied to the PIN light receiving device 31 side.
  • the optical signal applied from the optical amplifier 30 is converted into an electric signal.
  • a PINO 4 shift diffraction grating 200 is formed in the PIN light receiving device 31, and only light having a wavelength determined by the period is received, so that the light is emitted from the optical amplifier 30. Noise light is reduced.
  • FIG. 15 is a diagram for explaining another embodiment of the present invention.
  • the optical amplifier 40 and the optical filter 41 whose transmission light wavelength is variable are integrated on the same substrate.
  • the basic structure is the same as that of the second embodiment.
  • the light absorption layer 6 becomes the filter active layer 203, and the lower part thereof has a snow 4 shift region in the center.
  • Diffraction grating 202 is formed.
  • the structure of this embodiment is manufactured by the same method as in the second embodiment.
  • the length of the optical amplifier 40 is 100 to 600 ⁇ m.
  • the length of the optical filter 41 is in the range of 300 to 100 m.
  • an integrated optical semiconductor device operating in the 1.55 m band is obtained.
  • a positive voltage is applied to the optical amplifier 40, the substrate is grounded, and the light enters the optical amplifier 40.
  • the signal light is amplified and the optical filter 41 is amplified.
  • the refractive index is changed, and the light transmission wavelength determined by the structure of the lower ⁇ / A shift diffraction grating is varied.
  • the noise light in the optical amplifier 30 is also reduced.
  • the filter active layer 203 is a single layer. However, if the filter active layer 203 has a multi-quantum well structure (MQW), the filter characteristics are further improved. When the filter active layer 203 has the M structure, the optical filter has a negative voltage. Is applied to change the refractive index.
  • MQW multi-quantum well structure

Description

明 細 書
発明の名称
集積化光半導体装置およびその製造方法 技術分野
本発明は、 集積化光半導体装置及びその製造方法に 関する ものであり、 詳し く は、 光導波層上で、 複数の 光半導体装置の活性層の端面どう しを接合して集積化 を図った集積化光半導体装置及びその製造方法に関す る ものである。 技術の背景
これまで、 光通信あるいは光情報処理を目的とした
、 D F B レーザ, 光検知器, 光増幅 ϋなどの光半導体 装置の開発が進められてきた。
しかしながら、 従来の単体の光半導体装置で実現で きる性能はすでに限界に達しつつあり、 幾つかの光半 導体装置を同一の基板上に集積化することで、 より高 度の性能を実現するこ とが必要になっている。
例えば、 光通信システムの光源である D F Β レーザ を例にとる と、 D F B レーザ単体を用い、 これを注入 電流によつて直接的に変調した場合には、 その変調に ともなって、 D F Β レーザ内部のキヤ リ ャ数が変動し て発振波長が時間的に変動する現象、 いわゆるチヤ一 ピング現象が生じてしまう。 このチヤ一ビング現象は 、 波長分散を有する光ファ イバを使用すると、 光伝送 特性を劣化させる要因になり、 5 G bノ s を越えるよ うな光通信では使用出来ないが、 D F B レーザと光変 調器とを同一の基板上に集積化し、 D F B レーザを直 接変調するのではなく、 D F Β レーザから岀射したレ 一ザ光を光変調器で変調する構成、 つまり、 外部変調 方式を採用すれば、 このチヤーピング現象が極めて小 さ く抑えることが可能である。
しかしながら、 このような集積化を行つた光半導体 装置では、 集積化された各光半導体装置間の光結合を 如何に効率良く行うかが、 装置の特性向上に大き く影 響する。 .
第 1図および第 3図は、 D F Β ·レーザと光変調器と を同一基板上に集積化した従来の集積化光半導体装置 を示している。
第 1図の集積化光半導体装置は、 n— I η P基板 1 上の左側に形成された面折格子 2 , 導波餍 3、 活性層
4及びクラ ッ ド層 5力、らなる D F Β レーザ 1 0 と、 上 記 η— I η ρ基板 1 の右側に形成された吸収層 6及び Ρ — Ι η Ρ層 7からなる光変調器 1 1 とを備え、 D F
Β レーザ 1 0 と光変調器 1 i との間には、 高抵抗層 8 が設けられている。
また、 上面にはキヤ ップ層 1 2 び上部電極 1 3、 下面には下部電極 1 4が設けられており、 さらに光変 調器側の端面には反射防止膜 1 5が設けられている。 第 3図の集積化光半導体装置は、 特開昭 64 - 28984号 に記載されたものであり、 n — I n P基板 1 の左側に 回折格子 2 が設けられ、 その I n P基板 1 上の全域に 渡って光導波層 3、 第 1 ノ ッファ層 1 0 0 を設けた後 、 回折格子 2上に位置して D F B レーザ 1 0 を構成す る活性層 4、 第 2 バッ フ ァ層 1 0 1 、 ク ラ 、ソ ド層 5お よび、 n — I n P基板 1 の右側に位置して光変調器 1 1 を構成する光吸収層 6 (これは、 D F B レーザ 1 0 の ¾ (域にも延在している) 、 P _ I n P層 7 が設けら れている。 D F B レーザ 1 0 と光変調器 1 1 との分離 は、 両者の間に溝を形成し、 そこに高抵抗層 8 を埋め 込むことで実現している。 溝を形成する際、 第 1 バッ フ ァ層 1 0 0 がエ ッ チングス ト ツバになるため、 その 下部の光導波層 3 までエ ッチングされるこ とは無い。
また、 上面にはキ ヤ ップ層 1 2及び上部電極 1 3 、 下面には下部電極 1 4が設けられている。
以上の様に、 光半導体装置を同一基板上に形成する 方法は種 検討されていたが、 いずれも、 両光半導体 装置間の光結合が良好に行えないという問題を有して いる。
先ず、 第 1 図の集積化光半導体装置では、 活性層 4 とこれに接している光導波層 3 とが同じ系の化合物半 導体で構成されるため、 活性層 4 をエ ッチングする際 に光導波層 3 も同時にエ ッチングされてしま う。
その際、 活性層 4 のエ ッチ ングレー トが早いこ とか ら、 活性層 3力く 2〜 3 mもサイ ドエッチングされて しまい、 したがって、 後に光吸収層 6 を成長すると、 サイ ドエ ッチングされた領域に結晶が成長せず、 穴 1 0 2が形成されてしまう。
穴 1 0 2が形成されると、 D F B レーザ 1 0 と光変 調器 1 1 との間の光結合は、 活性層 4 —光導波層 3 -" 光吸収層 6 の経路を介することになるが、 最も伝播す る光のパワーが大きい領域は、 各層の中央部分で有る ため、 活性層 4、 光導波層 3 および光吸収層 6で、 各 々 A, B , C , で示す如く、 光が最も強く伝播する領 域、 即ち、 中央の高さが異なる第 1図の構成では、 光 の結合にミスマッチが生じてしまい、 良好な光結合を 実現できない。
また、 穴 1 0 2が形成されない場合であつても、 第 2図に示すとおり、 活性層 4 の中央部分 Aと光吸収層 6 の中央部分 Bでは、 その高さが異なるため、 やはり ミ スマッチが生じてしまう。
一方、 第 3図の様な構成では、 D F B レーザ 1 0 と 光変調器 1 1 との光結合は、 活性層 4 一光導波層 3 — 光吸収層 6 の経路を介することになるが、 この場合で あっても、 活性層 4 と光導波層 3 , 或いは、 光導波層 3 と光吸収層 6 との間で、 各々の層の中心が A, B., Cの様に異なるため、 同様にミ スマ ッ チが生じて良好 な光結合を実現できない。
上述の如き ミ スマ ッ チは、 D F B レーザと光変調器 との間のみではな く 、 その他の集積化光半導体装置で あっても同様に生じる場合がある。 発明の目的と発明の開示
本発明の第 1 の目的は、 光導波層と活性層が積層さ れた光半導体装置と、 他の光半導体装置とを同一基板 上に集積化した場合に、 各光半導体装置の活性層間を 良好に光結合できる集積化光半導体装置を提供する こ とにある。
また、 第 2 の目的は、 光導波層と活性層が積層され た光半導体装置と、 他の光半導体装置とを同一基板上 に集積化して形成する場合に、 各光半導体装置の活性 層間を良好に光結合できる製造方法を提供するこ とに ある。
第 1 の目的を達成するために、 本発明では、 表層に光導波層を備える半導体基板と、
前記光導波層上に部分的に設けられた第 1 の活性層 を備え、 前記光導波層と第 1 の活性層とが光結合して 動作する第 1 の光半導体装置と、
前記光導波層上に部分的に設けられると共に、 端面 が前記第 1 の活性層の端面と接し、 且つ底面が前記第 1 の活性層と同一の平面を有する第 2 の活性層を有す る第 2 の光半導体装置とを備えることを特徴とする集 積化光半導体装置を提供する ものである。
また、 第 2 の目的を達成するために、 本発明では、 半導体基板上に光導波層を形成する工程と、 前記光導波層上にェッチングス ト ップ層を形成する 工程と、
前記ェ ツチングス ト ップ層上にこれとは異なる物質 よりなる第 1 の活性層を形成する工程と、
前記第 1 の活性層を選択的にエ ッチングし、 前記ェ ツ チングス ト ップ層を表出する工程と、
前記第 1 の活性層の選択的にエ ッチングされて袠出 した面に接して第 2 の活性層を形成する工程とを含む ことを特徴とする集積化光半導体装置の製造方法を提 供する ものである。 図面の簡単な説明
第 1図〜第 4図は、 本発明の従来技術を説明する図 である。
第 5図, 第 6図は本発明の基本的構成の実施例を説 明する図である。
第 7図, 第 8図は本発明を D F B レーザと光変調器 の集積化に適用した実施例を説明する図であり、 また 、 第 9図〜第 1 3図はその製造工程を説明する図であ る。
第 1 4図は本発明を光増幅器と受光装置の集積化に 適用した実施例を説明する図である。
第 1 5図は本発明を光増幅器と光フ ィルタの集積化 に適用した実施例を説明する図である。 好ま しい実施例の詳細な説明
〔実施例 1 〕
第 5図は本発明の基本的な構成の実施例を示す図で ある。
本実施例では、 半導体基板 1 上に光導波層 3 が設け られ、 その左側上部に第 1 の光半導体装置 1 0 5 を構 成する第 1 の活性層 1 0 3 , 右側上部に第 2 の光半導 体装置 1 0 6 を構成する第 2 の活性層 1 0 4が各々実 質的に同一の厚さで設けられている。 第 1 , 第 2 の活 性層は、 端面 1 0 7 で直接結合されている。
第 1 > 第 2 の活性層上には、 ク ラ ッ ド層 5 が設けら れている。
本実施例の構成によれば、 第 1 の光半導体装置 1 0 5および第 2 の光半導体装置 1 0 6 の両方に渡って光 導波層 3 が延在しているため、 第 1 の活性層 1 0 3 と 第 2 の活性層 1 0 4 の底面は同一平面となり、 したが つて、 第 6図にしめされるとおり、 その上部に形成さ れる第 1 , 第 2 の活性層の中心位置 A , B は略等し く なる。
したがって、 光が最も強く 伝播する領域同士が直接 接続される こ とから、 両活性層間の光結合の ミ スマ ツ チが解消されて効率の良い光結合を行う こ とが可能で ある。
〔実施例 2 〕
第 7図および第 8図は本発明の第 2 の実施例を説明 する図である。
第 7図に示されるように、 本実施例では D F B レ一 ザ 1 0 と光変調器 1 1 どを同一の基板 1上に集積化し たものであり、 η— I n P基板 1 上の左側に回折格子 2が設けられており、 基板上部全面に光導波層 3及び エッチングス ト ップ層 1 6が設けられている。
そして、 D F Β レーザ 1 0 を構成する基板 1 の左側 領域には、 発光を得るための活性層 4 (第 1 の活性層 に対応) 、 クラ ッ ド層 5が設けられ、 光変調器 1 1 を 構成する基板 1 の右側領域には、 光吸収層 6 (光変調 器に於ける活性層 : 第 2 の活性層に対応) 、 ク ラ 'ン ド 層 5が設けられており、 その端面には反射防止膜 1 5 が形成されている。 D F B レーザ 1 0 と光変調器 1 1 との間には高抵抗層 8が埋め込まれており、 者を分 離している。
また、 D F Β レーザ 1 0 , 光変調器 1 1上には、 互 いに分離してキヤ ッ プ層 1 2、 上部電極 1 3が各々設 けられ、 また、 基板 1側には共通の下部電極 1 4が設 けられている。
第 8図は、 本実施例において.、 キ ヤ 'ンブ層 1 2、 上 部電極 1 3、 下部電極 1 4を除去した構造を示してい る。 (破線は、 キャ ップ層 1 2および上部電極の形成 位置である)
第 8図からも明らかなとおり、 高抵抗層 8 は D F Β レーザ 1 0 と光変調器 1 1 との間だけでな く、 各の装 置の両側をも埋め込んでいる。
本実施例では、 D F B レーザ 1 0を常時発光させて おき、 その レーザ光を光変調器 1 1 に印加する電圧に よつて変調する ものである。
以下、 第 9図〜第 1 3図を参照して本実施例を更に 詳細に説明する。
第 9図参照
例えば、 H e — C d レーザを使用して干渉露光を行 つた レジス トパター ンを使用 して形成した回折格子 2 を設けた n— I n P基板 1上に、 例えば液相成長法に よって、 G a l n A s P (波長ス = 1. 1 m) か らなる光導波層 3を 0. 1 5 i/ m、 I n Pからなるェ ツチ ングス ト ップ層 1 6を 0. 0 l 〃 m、 G a I n A s P (波長ス PL = 1. 5 5 m ) からなる活性層 4を 0. 1 5 m、 p — I n P力、らなるク ラ ッ ド層 5を ϋ . 5 mで順次成長する。
第 1 0図参照
例えば S i 0 z からなり、 D F B レーザとなる左側 の領域を約 3 0 0 / mの長さで覆う マスク 2 0を約 2 0 0 0 Aの厚さで選択的に形成した後、 例えば、 H C からなるエ ッチ ング液で I n P力、らなる ク ラ ッ ド層 5を選択的に除去した後、 つづいて、 HzS 04, H 202, H.2◦からなるエ ッ チ ング液で活性層 4を 選択的に除去する。
この際、 活性層 4が G a I n A s Pであり、 エ ッ チ ングス ト ップ層 1 6が I n Pであることから、 物質の 違いによって、 エ ッチングス ト ップ層 1 6がエ ツチン グされることはない。
また、 活性層 4は上記の様に 0. 1 5 m程度の.非 常に薄い層であるため、 エッチング時間が短く てすみ 、 サイ ドエ ッチングも殆ど生じない。
第 1 1図参照 .
前記マスク 2 0を利用し、 活性層 4 とク ラ ッ ド層 5 がエ ッチング除去された部分に G a I n A s P (波長 p L = 1. 4 m) からなる光吸収層 6、 および p — I n Pからなる光変調器 1 1のク ラ ッ ド層 7をそれぞ れ選択的に液栢成長する。
第 8図および第 1 2図参照
マスク 2 0を除去した後、 D F Bレーザ 1 0および 光変調器 1 1 の領域をメ サ型にエ ッチングし、 次いで 、 そこに F eがド一プされた I n Pよりなる高抵抗層 8を成長する。
続いて、 表面に G a l n A s P (波長ス FL= 1. 3 m ) からなるキヤ ップ層 1 2を 2 0 0 0 Aの厚さで 形成する。
第 1 3図参照
D F B レーザ 1 0 と光変調器 1 1上の'キャ ップ層 1 2を選択的にェ ッチングし、 各光半導体装置間に対応 して互いに離隔した後、 そのエ ッチングによって露出 したク ラ ッ ド層 7に溝を形成する。 続いて、 上記溝を F eが ドープされた I n Pよりな る高抵抗層 8 によって埋め込み、 D F B レーザ 3 0 と 光変調器 3 1 との間を電気的に分離する。
ただし、 D F B レーザ 3 0 のキ ャ ッ プ層 1 2 と光変 調器 3 1 のキ ャ ッ プ層 1 2 との間を 1 0 μ m以上離隔 するならば、 上記高抵抗層 8 を埋め込まな く ても+分 に電気的分離が可能である。
この後は、 上部電極 1 3、 下部電極 1 4 を形成し、 更に例えば、 S i Nを信号光の波長の 1 / 4 の厚さで 形成した反射防止膜 1 5 を光変調器 1 1 側の端面に被 着する こ とで、 第 7図に示すよう な本実施例の構造を 得る。 本実施例では、 D F B レーザ 1 0 の共振器長さ を 3 0 0 / m、 発振波長を し 5 7 mとし、 光変調 器 1 1 の長さを 2 0 0 μ m, 光吸収層 6 の P L ピーク 波長を 1 . 4 0 / mと している。
本実施例では、 D F B レーザ 1 0 と光変調器 1 1 と の接合部がテ一パ状に形成されている力 これは、 液 相成長を行う場合に不可避的に形成される ものであり、 微小であるため、 光結合のマ ッチングには大き く影響 する こ とは無い。
しかも光吸収層 6 を M O C V D法などで気相成長す れば、 上記テーパ状の領域は解消される。
また、 上記光吸収層 6 を多量子井戸構造 ( M QW ) で構成すれば、 光変調器 1 1 の変調特性が更に向上す る。 〔実施例 3 )
更に、 第 1 4図は本発明の他の実施例を説明する図 である。
本実施例では、 光増幅器 3 0 と P I N受光装置 3 1 とを同一基板上に集積化している。
基本的な構造ば、 上記実施例 2 と同じであり、 実施 例 2 に於ける光吸収層 6が I型の光吸収層 2 0 1 とな り、 その下部には中央にスノ 4 シフ ト領域を有する回 折格子 2 0 0が形成されている。
本実施例の構造は、 前記実施例 2 と同様な手法で製 造される。
本実施例では光導波層 3が I n G a A s P (波長 λ P L = 1. l ^ m) で厚みが 0 . 1〜 0 2 m、 エツ チングス ト ップ層 1 6が I n Pで厚みが 0 . 0 1〜 0 . 0 2 m、 光増幅器の活性層 4力 I n G a A s P ( 波長 / l PL= l . 5 6〜: L . 6 0 m ) で厚みが 0 . 1 〜 0 . 2 〃 m、 I型の光吸収層 2 0 1が I型の I n G a A s (波長え FL= 1 . 6 7 m ) で厚みが 0 . 1〜 0 . 2 m、 ク ラ ッ ド層 5が P型の I n Pで厚みが 0 . 5 m、 キャ ップ層 1 2 が I n G a A s P (波長ス P L= 1 . 3 m ) で厚みが 0 . 2 で各々形成され ている。
また、 光増幅器 3 0 の長さは 1 0 0〜 6 0 0 m、 P I N受光装置 3 1 の長さは 1 0 0〜 3 0 0 i mの範 囲で形成されており、 以上の構成によって、 1 . 5 5 μ m帯域で動作する集積化光半導体装置が得られる。 本実施例の構造では、 光増幅器 3 0側に正電圧を印 加し、 基板をアースとし、 光増幅器 3 0側に入射した 信号光を増幅し、 且つ P I N受光装置 3 1側に負電圧 を印加し、 光増幅器 3 0 から入射した光信号を電気信 号に変換している。
この際、 P I N受光装置 3 1 にはスノ 4 シフ ト回折 格子 2 0 0が形成されており、 その周期で決まる波長 の光だけが受光される こ とになるため、 光増幅器 3 0 から出射されるノ ィ ズ光が減少される。
〔実施例 4 〕
'更に、 第 1 5図は本発明の他の実施例を説明する図 である。
本実施例でば、 光増幅器 4 0 と透過光波長が可変可 能である光フ ィ ルタ 4 1 とを同一基板上に集積化して いる。
基本的な構造は、 上記実施例 2 と同じであり、 実施 例 2 に於ける光吸収層 6 がフ ィ ルタ活性層 2 0 3 とな り、 その下部には中央に スノ 4 シフ ト領域を有する回 折格子 2 0 2が形成されている。
本実施例の構造は、 前記実施例 2 と同様な手法で製 造される。
本実施例では光導波層 3 が I n G a A s P (波長 λ P L = 1 . 1 m ) で厚みが 0 . 1 〜 0 . 2 m、 エ ツ チングス ト ップ層 1 6 力く I n Pで厚みが 0 . 0 1 〜 0 . 0 2 m、 光増幅器の活性層 4力 I n G a A s P ( 波長ス FL= 1 . 5 6〜 1 . 6 0 m ) で厚みが 0 . 1 〜 0 . 2 m フ ィ ルタ活性層 ·2 0 3が η型の I n G a A s P (波長 / l PL= l . 3 / m ) で厚みが 0 . 1 〜 0 . 2 μ m、 クラ ッ ド層 5が P型の I n Pで厚みが 0 , 5 m、 キャ ップ層 1 2 が I n G a A s P (波長ス P L= 1 . 3 i m ) で厚みが 0 . 2 mで各々形成され ている。 .
また、 光増幅器 4 0 の長さは 1 0 0〜 6 0 0 μ m. 光フ ィ ルタ 4 1 の長さは 3 0 0〜 1 0 0 0 mの範囲 で形成されており、 以上の構成によって、 1 . 5 5 m帯域で動作する集積化光半導体装置が得られる。 本実施例の構造では、 光増幅器 4 0側に正電圧を印 加し、 基板をアース とし、 光増幅器 4 0側に入射した .信号光を増幅し、 且つ光フ ィ ルタ 4 1 側に正電圧を印 加して電流を注入することで屈折率を変化し、 下部の λ / A シフ ト回折格子の構造で決定される光透過波長 を可変している。
また、 光フ ィルタ 4 1における / 4 シフ ト HI折格 子 2 0 0 は、 その周期で決まる波長の光を選択するた め、 光増幅器 3 0 におけるノ ィ ズ光も減少される。
また、 本実施例ではフ ィルタ活性層 2 0 3が単層で あるが、 これを多量子井戸構造 ( M QW ) とすれば、 さらにフ ィ ルタ特性が向上する。 フ ィルタ活性層 2 0 3を M 構造とする場合は、 光フ ィ ルタには負電^ を印加して屈折率を変化する。
以上、 説明した実施例では、 2 つの光半導体装置を 集積化した場合についてのみ説明したが、 本発明はこ れに限定される ものではな く、 3 つ以上の光半導体装 置を集積化する場合であっても適用可能なこ とは当然 である。 また、 使用される半導体材料、 寸法なども上 記実施例に限定される ものではない。

Claims

請 求 の 範 囲
(1)表層に光導波層を備える半導体基板と、
前記光導波層上に部分的に設けられた第 1 の活性層 を備え、 前記光導波層と第 1 の活性層とが光結合して 動作する第 1 の光半導体装置と、
端面が前記第 1 の活性層の端面と接して光結合し、 且つ前記光導波層上の前記第 1 の活性層と同一の平面
1
上にする形成された第 2 の活 6 性層を有する第 2 の光半 導体装置とを備えることを特徴とする集積化光半導体
(2)前記第 1 の活性層と第 2 の活性層とは、 その膜厚が 実質的に同一であることを特徴とする請求項 (1)記載の 集積化光半導体装置。
(3)前記第 1 の活性層の下部の前記半導体基板表層には 、 回折格子が設けられてなることを特徴とする請求項 (1)記載の集積化光半導体装置。
(4)前記第 1 の活性層がレーザ発振を行う レーザ活性層 であり、 前記第 2の活性層は、 入力電圧によって吸収 、 透過を制御する光吸収層であることを特徴とする請 求項 (3)記載の集積化光半導体装置。
)前記光吸収層が多量子井戸搆造である ことを特徴と する請求項 (4)記載の集積化光半導体装置。
(6)前記第 1 の活性層が入射光を検知して電気信号に変 換する光吸収層であり、 前記第 2の活性層は、 入射光 を増幅する増幅器活性層であることを特徵とする請求 項 (3)記載の集積化光半導体装置。
(7)前記回折格子は、 内部に A / 4 シフ ト領域を有して なる ことを特徴とする請求項 (6)記載の集積化光半導体
(8)前記第 1 の活性層が外部からの入力によって屈折率 を変化するフ ィ ルタ活性層であり、 前記第 2 の活性層 は、 入射光を増幅する増幅器活性層である ことを特徴 とする請求項 (3)記載の集積化光半導体装置。
(9)前記フ ィ ルタ活性層は多量子井戸構造を有しており 、 入力電圧によって屈折率を変化する ことを特徴とす る請求項 (8)記載の集積化光半導体装置。
(10)前記回折格子は、 内部に スノ 4 シフ ト領域を有して なることを特徴とする請求項 (8)記載の集積化光半導体
(U)半導体基板上に光導波層を形成する工程と、
前記光導波層上にェ ツチングス ト ップ層を形成する 工程と、
前記エ ッチングス ト ップ層上にこれとは異なる物質 よりなる第 1 の活性層を形成する工程と、
前記第 1 の活性層を選択的にエ ッ チングし、 前記ェ ツチングス ト ップ層を表出する工程と、
前記第 1 の活性層の選択的にエ ッチングされて表出 した面に接して第 2 の活性層を形成する工程とを舍む ことを特徴とする集積化光半導体装置の製造方法。
(12)前記第 1 の活性層と第 2 の活性層とは、 その膜厚が 実質的に同一に形成されることを特徴とする請求項 (11) 記載の集積化光半導体装置。
(13)前記半導体基板の表層の前記第 1 の活性層が選択的 にェッチ ングされて残留する領域に回折格子を形成す る工程を舍むことを特徴とする請求項 αι)記載の集積化 光半導体装置の製造方法。 ,
(14)前記回折格子が、 λノ 4 シフ ト領域を有しているこ とを特徵とする請求項 (13)記載の集積化光半導体装置の 製造方法。
PCT/JP1990/000126 1989-02-02 1990-02-01 Integrated optical semiconductor device and method of producing the same WO1990009047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2267489 1989-02-02
JP1/22674 1989-02-02

Publications (1)

Publication Number Publication Date
WO1990009047A1 true WO1990009047A1 (en) 1990-08-09

Family

ID=12089405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000126 WO1990009047A1 (en) 1989-02-02 1990-02-01 Integrated optical semiconductor device and method of producing the same

Country Status (2)

Country Link
EP (1) EP0411145A4 (ja)
WO (1) WO1990009047A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065975A (ja) * 1992-06-22 1994-01-14 Matsushita Electric Ind Co Ltd 半導体レーザ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0568704B1 (en) * 1991-11-22 1998-04-01 The Furukawa Electric Co., Ltd. Semiconductor optical part and process for manufacturing the same
EP0602725B1 (en) * 1992-12-16 1997-12-17 Koninklijke Philips Electronics N.V. Method of manufacturing an optoelectronic semiconductor device
DE69315811T2 (de) * 1992-12-16 1998-06-10 Koninkl Philips Electronics Nv Verfahren zur Herstellung einer optoelektrischen Halbleitervorrichtung
US5418183A (en) * 1994-09-19 1995-05-23 At&T Corp. Method for a reflective digitally tunable laser
JP3755090B2 (ja) * 1995-06-14 2006-03-15 三菱電機株式会社 半導体装置の製造方法,及び半導体装置
EP3416252A1 (en) * 2017-06-13 2018-12-19 Nokia Solutions and Networks Oy One step sibh for integrated circuits

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159287A (ja) * 1974-06-12 1975-12-23
JPS59119783A (ja) * 1982-12-25 1984-07-11 Nippon Telegr & Teleph Corp <Ntt> 半導体発光装置
JPS59125660A (ja) * 1983-01-06 1984-07-20 Nec Corp モニタ集積型半導体発光素子
JPS645088A (en) * 1987-06-29 1989-01-10 Toshiba Corp Semiconductor laser device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3580738D1 (de) * 1984-10-03 1991-01-10 Siemens Ag Verfahren zur integrierten herstellung eines dfb-lasers mit angekoppeltem streifenwellenleiter auf einem substrat.
JPH0645088A (ja) * 1992-07-24 1994-02-18 Matsushita Electric Works Ltd 放電灯点灯装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159287A (ja) * 1974-06-12 1975-12-23
JPS59119783A (ja) * 1982-12-25 1984-07-11 Nippon Telegr & Teleph Corp <Ntt> 半導体発光装置
JPS59125660A (ja) * 1983-01-06 1984-07-20 Nec Corp モニタ集積型半導体発光素子
JPS645088A (en) * 1987-06-29 1989-01-10 Toshiba Corp Semiconductor laser device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0411145A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065975A (ja) * 1992-06-22 1994-01-14 Matsushita Electric Ind Co Ltd 半導体レーザ

Also Published As

Publication number Publication date
EP0411145A1 (en) 1991-02-06
EP0411145A4 (en) 1991-07-24

Similar Documents

Publication Publication Date Title
US5801872A (en) Semiconductor optical modulation device
US6281030B1 (en) Fabrication of semiconductor Mach-Zehnder modulator
US5825047A (en) Optical semiconductor device
JPH0636457B2 (ja) 半導体レ−ザを組み込むモノリシツク集積光学デバイスの製造方法およびこの方法によつて得られたデバイス
US5103455A (en) Monolithically integrated semiconductor optical preamplifier
JPH07183623A (ja) モノリシックに集積したレーザと電子吸収変調器光源とその製造方法
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
US4811352A (en) Semiconductor integrated light emitting device
JP2001091913A (ja) 変調器と変調器付き半導体レーザ装置並びにその製造方法
EP0729208B1 (en) Semiconductor light source having a spectrally broad, high power optical output
US5914977A (en) Semiconductor laser having a high-reflectivity reflector on the laser facets thereof, an optical integrated device provided with the semiconductor laser, and a manufacturing method therefor
WO1990009047A1 (en) Integrated optical semiconductor device and method of producing the same
JPH10303497A (ja) リング共振器型面発光半導体レーザ及びその製造法
US6714571B2 (en) Ridge type semiconductor laser of distributed feedback
CA1249362A (en) Low noise injection laser structure
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
JPH03263388A (ja) 光半導体素子及びその製造方法
US20030174393A1 (en) Optical function element and device
JPH05251812A (ja) 量子井戸構造光変調器付き分布帰還型半導体レーザおよびその製造方法
CN113812049A (zh) 一种用于光子集成电路的分布式反馈激光器装置及其改进和制造方法
JPH0563179A (ja) 光集積回路及びその製造方法
JPH11330624A (ja) 半導体装置
JPH10163568A (ja) 変調器集積半導体レーザ
JP2001148542A (ja) 光半導体装置及びその製造方法並びに光通信装置
JP4961732B2 (ja) 光変調器集積光源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1990902703

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1990902703

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990902703

Country of ref document: EP