WO1990007594A1 - Process for producing pitch-base carbon fiber - Google Patents

Process for producing pitch-base carbon fiber Download PDF

Info

Publication number
WO1990007594A1
WO1990007594A1 PCT/JP1987/000041 JP8700041W WO9007594A1 WO 1990007594 A1 WO1990007594 A1 WO 1990007594A1 JP 8700041 W JP8700041 W JP 8700041W WO 9007594 A1 WO9007594 A1 WO 9007594A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch
shear stress
carbon fiber
nozzle hole
production method
Prior art date
Application number
PCT/JP1987/000041
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Morita
Kazutoshi Haraguchi
Eiji Tanigawa
Original Assignee
Hiroaki Morita
Kazutoshi Haraguchi
Eiji Tanigawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroaki Morita, Kazutoshi Haraguchi, Eiji Tanigawa filed Critical Hiroaki Morita
Priority to US07/105,428 priority Critical patent/US4859381A/en
Publication of WO1990007594A1 publication Critical patent/WO1990007594A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues

Definitions

  • the present invention relates to a method for producing pitch-based carbon fiber.
  • Carbon fibers made from pitch-based materials can produce products with lower manufacturing costs and higher elastic modulus than carbon fibers made from organic synthetic fibers such as polyacrylonitrile as a precursor. It is expected that it can be a cheaper and higher-performance material because it is easier.
  • pitch-based carbon fibers have a tensile strength of about 20 O kg Z mm 2 or less, have poor quality stability, and cannot be said to be sufficiently satisfactory.
  • the molecular aggregation state of the fiber cross section (hereinafter referred to as a higher-order cross-sectional structure) varies depending on the spinning conditions. Basically, molecules form crystals in the concentric direction of the fiber (so-called onion type), or form crystals in the radial direction from the center of the fiber (radial type).
  • the occurrence of the above-mentioned defects and the formation of the higher-order structure of the cross section vary depending on the physical properties of the spinning pitch, but are most affected by the spinning conditions and fluctuate. Therefore, in order to improve the quality stability of carbon fiber, even if the physical properties of the spinning pitch are slightly different, it is possible to produce a carbon fiber with a constant high-order cross-sectional structure with almost no defects. It is necessary to establish spinning technology. In other words, it hardly generates defects such as cracks, cracks, and voids, and stably forms an onion-type structure, a Z-type structure, or a random-type structure, which is a high-order sectional structure effective for expressing high tensile strength. Technology is required.
  • the present invention relates to a method for producing pitch-based carbon fiber in which a pitch-based material is melt-spun, made infusible, and carbonized, and the molten pitch is formed into a circular, irregular or slit-type cavity before reaching a final nozzle hole.
  • the present invention relates to a method for producing pitch-based carbon fiber, wherein the fiber is spun through a nozzle hole.
  • a pitch-based graphite fiber can be produced by graphitization in the carbonization step. Therefore, in the present specification, carbonization includes graphitization, and carbon fiber is used as including graphite fiber.
  • the molten pitch-based material is passed through a circular, irregular or slit-type part of the cavities provided in front of the final nozzle hole, so that the shear stress applied to the final nozzle hole is 12 times or more.
  • the shear stress applied to the molten pitch-based material in a part of the cavity is less than 1/2 of the shear stress at the final nozzle. In some cases, the desired effect is not fully exhibited.
  • the present invention when shear stress is applied by a method other than the cavitation method, for example, through a gap between dense fillers, the desired effect cannot be obtained. Furthermore, when shear stress is applied to the molten pitch-based material at a part of the cavities and the spinning is immediately performed from the final nozzle hole without maintaining a state in which shear stress is not substantially applied, the present invention is also applicable. The effect of the invention is not exhibited.
  • the cross section of the part of the cavity used in the present invention may be circular, slit type (or rectangular type), or other irregular type (square, cross, Y-shaped, etc.). Is also good. . Kiyabira Li one cross-sectional area ⁇ beauty length also, as long as it is capable of adding the required shear stress is not particularly limited, usually the cross-sectional area 5 X 1 0 - 3 ⁇
  • the cross-sectional area is substantially the total cross-sectional area of the opening of a part of the cab.
  • the time required to maintain the molten pitch between the part of the cavity and the final nozzle hole without substantially applying shear stress to the molten pitch depends on the type and properties of the pitch used, the spinning temperature, and the pitch discharge per unit time.
  • the amount differs more shapes of some Kiyabirari and nozzle holes, but are not particularly limited, is usually time melting peak Tutsi of 1 0 3 to 1 0 5 times the time through a portion Kiyabira Li I like it.
  • the portion hereinafter referred to as the stress relaxation portion was hollowed out so that no shear stress works except for the outer wall of the pack and / or the nozzle introduction hole. Shall be.
  • the spinning pitch used in the present invention can be obtained by subjecting a pitch-like substance to thermal polycondensation in an inert gas flow.
  • the pitch-like substance may be any of petroleum pitch, coal pitch and pyrolysis residue pitch from organic compounds, and has a softening point (measured by a softening point measuring device of METTLER, Switzerland). 8 0 to 3 2 5. C's are preferred.
  • coal-based pitch such as coal tar or coal tar pitch is used as a raw material
  • the method described in Japanese Patent Application Laid-Open No. 57-88016 is followed. By previously heat-treating the raw material pitch with an aromatic reducing solvent at 350 to 500, the spinnability can be further improved, but the spinning pitch should be spinnable. It is not particularly limited.
  • the cross-sectional area of the final nozzle hole used in the present invention is not particularly limited, but is usually about 5 ⁇ 10 3 to 10 1 ram 2 o
  • the pitch fiber obtained as described above is infusibilized in a conventional manner, for example, in an oxygen atmosphere at a temperature of about 300 to 340, and in the case of carbonization, nitrogen, carbon dioxide, 100 to 2000 in an atmosphere such as argon. C, 200 to 300 in argon for graphitization.
  • nitrogen, carbon dioxide 100 to 2000 in an atmosphere such as argon.
  • C 200 to 300 in argon for graphitization.
  • FIGS. 1 and 2 are schematic diagrams showing the higher-order sectional structure of a carbon fiber obtained by the method of the present invention.
  • FIGS. 3 to 5 show Examples 1 and 2.
  • FIGS. 6 and 7 are scanning electron micrographs showing the higher-order cross-sectional structure of the carbon fiber obtained in Comparative Examples 4 and 5, and FIGS. 6 and 7 show the higher-order cross-sectional structure of the carbon fiber obtained in Comparative Examples 4 and 5. It is a scanning electron micrograph showing the structure.
  • the cross-section higher-order structure of the carbon fiber obtained by the present invention has an onion-type structure in part or all (see FIGS. 1 and 2). If part of the structure is onion-type, the onion-type structure exists in the inner layer and the random-type structure (Fig. 1 (a)) or the radial-type structure (Fig. 1 (b) )) Exists.
  • is the pressure difference (dyneZ ci)
  • is the effective cavity or nozzle length (cm)
  • r is the cavity or nozzle radius (cm)
  • the finally obtained carbon fiber hardly has micro defects such as cracks, voids and the like inside.
  • Softening point '1 1 0. C, quinoline-insoluble content 0.18%, benzene-insoluble content 35%, a mixed solution of 1 part by weight of coal tar pitch and 2 parts by weight of hydrogenated heavy anthracene oil in an autoclave 4 3 After heating with stirring at 0 ° C for 60 minutes, the mixture was heated with a pressurized filter and then heated under reduced pressure at 300 to remove hydrogenated heavy lanthanum oil to obtain reduced pitch. .
  • Table 1 shows the properties of the two types of hot polycondensation pitches obtained by selecting the reaction time and temperature as Xo. 1-2.
  • -Reference Example 2- The same coal tar pitch as in Reference Example 1 was subjected to a thermal polycondensation reaction in the same manner as in Reference Example 1 without undergoing heat treatment under mixing with hydrogenated heavy vanthracene oil.
  • Table 1 shows the properties of the resulting hot polycondensation pitch as No. 3.
  • the softening point is a softening point measuring device manufactured by METTLER SWITZERLAND.
  • the pitch fibers thus obtained are in air at 300. C for 30 minutes, then heat up to 1200 in N 2 gas atmosphere. 0 Heated to obtain carbon fiber.
  • Table 2 shows the average time (hr) during which a pitch fiber having a diameter of 10 m can be continuously spun without causing yarn breakage, and the higher-order sectional structure and defect content of the carbon fiber obtained above.
  • Table 4 shows the higher-order cross-sectional structure and defect content of the obtained carbon fiber, and the average time (hr) for continuously spinning a pitch fiber having a diameter of 10 m without causing thread breakage.
  • Example 1 Using the same spinning device as in Example 1 except that the size of the capillaries was 0.3 in diameter and 0.6 ram in length (100 pieces), the thermal weight obtained in Reference Example 1 was used. Condensed pitch No. 1 was spun. In this spinning process, the pitch was subjected to a shear stress of about 30% of the shear stress applied to the final nozzle hole in a part of the cavity. The obtained pitch fibers were infusibilized and carbonized under the same conditions as in Example 1 to obtain carbon fibers.
  • Table 4 shows the sectional higher-order structure and defect content of the carbon fiber.
  • the cross section of the carbon fiber obtained in this comparative example shows the higher-order structure.
  • Fig. 6 shows a ⁇ -type electron micrograph (approximately 2800 times) of Comparative Example 5
  • the obtained pitch fiber was subjected to infusibilization and carbonization under the same conditions as in Examples 1 to 3 to obtain a carbon fiber.
  • Table 4 shows the sectional higher-order structure and the defect content of the carbon fiber, and a scanning electron micrograph (approximately 400 ⁇ magnification) showing the sectional higher-order structure of the carbon fiber obtained in this comparative example. ) Is shown in Fig. 7.
  • Example 1 shown in Table 2 and Comparative Example 5 are shown in Table 4.
  • the higher-order cross-sectional structure is a radial type and contains defects. The rate is also high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

A process for producing pitch-base carbon fiber by melt-spinning, making infusible, and carbonizing a pitch material, which comprises passing molten pitch through a circular, odd-shaped or slit-type capillary section before a final nozzle to thereby apply a shearing stress of 1/2 or more of that to be applied in the final nozzle, temporarily keeping the molten pitch in a shearing stress-free state, and spinning through the nozzle pore.

Description

明 細 書  Specification
ピッチ系炭素繊維の製造方法  Method for producing pitch-based carbon fiber
'技 術 分 野 .  'Technical field .
本発明は、 ピッチ系炭素繊維の製造方法に関する  The present invention relates to a method for producing pitch-based carbon fiber.
背 景 技 術  Background technology
ピッチ系材料を原料とする炭素繊維は、 ポリアク リ ロニ ト リル等の有機合成繊維をプリ カーサ一とする炭素繊維に 比して、 主に製造コス トが低い、 高弾性率の製品が得られ やすい等の理由により、 より安価で高性能の素材となり得 る ものと期待されている。 しかしながら、 市販されている ピッチ系炭素繊維は、 引張り強度が 2 0 O kg Z mm 2 程度以 下であり、 又品質安定性に劣り、 充分満足すべきものとは 言い難い。 Carbon fibers made from pitch-based materials can produce products with lower manufacturing costs and higher elastic modulus than carbon fibers made from organic synthetic fibers such as polyacrylonitrile as a precursor. It is expected that it can be a cheaper and higher-performance material because it is easier. However, commercially available pitch-based carbon fibers have a tensile strength of about 20 O kg Z mm 2 or less, have poor quality stability, and cannot be said to be sufficiently satisfactory.
一般に、 ピッチ系炭素繊維においては、 繊維断面の分子 凝集状態 (以下断面高次構造という) が、 紡糸条件によつ て種々異なっている。 即ち、 基本的には、 分子が繊維の同 心円方向に結晶を構成したり (いわゆるオニオン型) 、 繊 維の中心から放射状方向に結晶を構成したり (ラジアル型) Generally, in the pitch-based carbon fiber, the molecular aggregation state of the fiber cross section (hereinafter referred to as a higher-order cross-sectional structure) varies depending on the spinning conditions. Basically, molecules form crystals in the concentric direction of the fiber (so-called onion type), or form crystals in the radial direction from the center of the fiber (radial type).
、 或いは方向性を示すことなく 任意の方向に分布したりす る (ランダム型) 形態に大別されるが、 実際の繊維におい ては、 これ等が混在したものも存在する。 更に、 たて割れ、 クラック、 ボイ ド等の欠陥が繊維の一部又は全体に存在す る場合もあり、 欠陥の有無を含めれば、 ピッチ系炭素鐵維 の断面高次構造の形態は、 複雑多岐にわたる。 そして、 こ の様な各種の欠陥及び断面高次構造の存在が、 ピッチ系炭 素繊維の品質安定性を低下させる主な原因の一つとなって いる。 Or, they are distributed in any direction without showing the directionality (random type), but in actual fibers, there are some that mix these. Furthermore, defects such as cracks, cracks, voids, etc. are present in part or all of the fiber. In some cases, including the presence or absence of defects, the morphology of the cross-sectional higher-order structure of pitch-based carbon steel is complex and diverse. The existence of such various defects and the higher-order structure of the cross section is one of the main causes for deteriorating the quality stability of the pitch-based carbon fiber.
上記の如き欠陥の発生及び断面高次構造の形成は、 紡糸 用ピッチの物性によっても変化するが、 紡糸条件によって 最も大きく影響を受け、 変動する。 従って、 炭素繊維の品 質安定性を高める為には、 紡糸用ピッチの物性が若干ばら ついたとしても、 常に欠陥がほとんど無く、 一定の断面高 次構造を備えた炭素織維を製造し得る紡糸技術を確立する 必要がある。 即ち、 たて割れ、 クラック、 ボイ ド等の欠陥 をほとんど発生させず、 且つ高引張強度を発現するに有効 な高次断面構造であるォニォン型及び Z又はランダム型構 造を安定して形成させる技術が必要である。  The occurrence of the above-mentioned defects and the formation of the higher-order structure of the cross section vary depending on the physical properties of the spinning pitch, but are most affected by the spinning conditions and fluctuate. Therefore, in order to improve the quality stability of carbon fiber, even if the physical properties of the spinning pitch are slightly different, it is possible to produce a carbon fiber with a constant high-order cross-sectional structure with almost no defects. It is necessary to establish spinning technology. In other words, it hardly generates defects such as cracks, cracks, and voids, and stably forms an onion-type structure, a Z-type structure, or a random-type structure, which is a high-order sectional structure effective for expressing high tensile strength. Technology is required.
発 明 の 開 示  Disclosure of the invention
本発明者は、 上記の如き技術の現状に鑑みて鋭意研究を 重ねた結果、 ピッチ系材料の溶融紡糸時に、 最終ノズル孔 にいたる前に溶融ピッチ系材料をして特定形状のキヤビラ リー部を通過させることにより一定値以上の剪断応力を加 え、 次いで溶融ピッチを実質的に剪断応力を加えない状態 に一旦保持した後、 ノズル孔を通過させて紡糸を行なう場 合には、 従来技術の問題点を実質的に解消若しく は大巾に 軽減し得ることを見出した。 即ち、 本発明は、 ピッチ系材 料を溶融紡糸し、 不融化し、 炭化する ピッチ系炭素繊維の 製造方法において、 最終ノズル孔にいたる前に溶融ピッチ を円形、 異形又はスリ ッ ト型のキヤビラ リ一部を通過させ ることにより最終ノズル孔でうける剪断応力の 1ノ 2倍以 上の剪断応力を加えた後、 該溶融ピッチを一旦剪断応力を 実質的に加えない状態に保持し、 次いでノズル孔を通過さ せて紡糸することを特徴とする ピッチ系炭素繊維の製造方 法に係る。 The inventor of the present invention has conducted intensive studies in view of the state of the art as described above. When passing through the nozzle, a shear stress of a certain value or more is applied, and then the molten pitch is temporarily kept in a state where substantially no shear stress is applied. In this case, it has been found that the problems of the prior art can be substantially eliminated or greatly reduced. That is, the present invention relates to a method for producing pitch-based carbon fiber in which a pitch-based material is melt-spun, made infusible, and carbonized, and the molten pitch is formed into a circular, irregular or slit-type cavity before reaching a final nozzle hole. After applying a shear stress of not less than 1 to 2 times the shear stress applied to the final nozzle hole by passing a part of the molten pitch, the molten pitch is temporarily held in a state where shear stress is not substantially applied, and then The present invention relates to a method for producing pitch-based carbon fiber, wherein the fiber is spun through a nozzle hole.
本発明によると、 上記炭化工程で黒鉛化すればピッチ系 黒鉛織維を製造することもできる。 従って、 本願明細書に おいて、 炭化は黒鉛化を含み、 炭素繊維とは黒鉛繊維をも 含むものとして用いる。  According to the present invention, a pitch-based graphite fiber can be produced by graphitization in the carbonization step. Therefore, in the present specification, carbonization includes graphitization, and carbon fiber is used as including graphite fiber.
本発明においては、 溶融ピッチ系材料を最終ノズル孔の 前に設けた円形、 異形又はスリ ッ ト型のキヤビラ リ一部を 通過させること.により最終ノズル孔でうける剪断応力の 1 2倍以上、 好ま しく は 1 2〜 1 0倍の剪断応力を加え た後、 これを一旦剪断応力を実質的に加えない状態に保持 し、 次いで最終ノズル孔を通過させて紡糸することを必須 とする。 キヤビラ リ一部において溶融ピッチ系材料が受け る剪断応力が、 最終ノズル部での剪断応力の 1 / 2未満で ある場合には、 所望の効果が充分に発揮されない。 また、 キヤビラ リ一方式以外の方法で、 例えば、 緻密な充填材の 間隙を通して剪断応力を加える場合にも、 所望の効果は得 られない。 更に、 キヤビラ リ一部で溶融ピッチ系材料に剪 断応力を加えた後、 剪断応力を実質的に加えない状態に保 持することなく、 直ちに最終ノズル孔から紡糸を行なう場 合にも、 本発明の効果は:発揮されない。 本発明で使用する キヤビラ リ一部の断面の形状は、 円形、 スリ ッ ト型 (或い 長方型) 、 又はその他の異型 (正方形、 十字形、 Y字形そ の他) のいずれであっても良い。 キヤビラ リ一の断面積及 び長さも、 必要な剪断応力を付加し得るものであれば良く . 特に限定はされないが、 通常断面積 5 X 1 0 -3In the present invention, the molten pitch-based material is passed through a circular, irregular or slit-type part of the cavities provided in front of the final nozzle hole, so that the shear stress applied to the final nozzle hole is 12 times or more. Preferably, after applying a shear stress of 12 to 10 times, it is necessary to temporarily hold the shear stress in a state where the shear stress is not substantially applied, and then to spin through the final nozzle hole. The shear stress applied to the molten pitch-based material in a part of the cavity is less than 1/2 of the shear stress at the final nozzle. In some cases, the desired effect is not fully exhibited. Also, when a shear stress is applied by a method other than the cavitation method, for example, through a gap between dense fillers, the desired effect cannot be obtained. Furthermore, when shear stress is applied to the molten pitch-based material at a part of the cavities and the spinning is immediately performed from the final nozzle hole without maintaining a state in which shear stress is not substantially applied, the present invention is also applicable. The effect of the invention is not exhibited. The cross section of the part of the cavity used in the present invention may be circular, slit type (or rectangular type), or other irregular type (square, cross, Y-shaped, etc.). Is also good. . Kiyabira Li one cross-sectional area及beauty length also, as long as it is capable of adding the required shear stress is not particularly limited, usually the cross-sectional area 5 X 1 0 - 3 ~
5 X 1 ◦ ram 2 程度、 長さ 0 . 1〜 3 . O ram程度である。 尚、 かかる断面積は実質的にキヤビラ リ一部の開口部の総 断面積である。 Approximately 5 X 1 ram 2 and length of about 0.1 to 3.0 O ram. The cross-sectional area is substantially the total cross-sectional area of the opening of a part of the cab.
キヤビラ リ一部と最終ノズル孔との間で溶融ピッチに実 質的に剪断応力を加えない状態でこれを保持する時間は、 使用するピッチの種類及び性質、 紡糸温度、 単位時間当り のピッチ吐出量、 キヤビラリ一部及びノズル孔の形状等に より異なり、 特に制限されるものではないが、 通常溶融ピ ツチがキヤビラ リ一部を通過する時間の 1 0 3 〜 1 0 5 倍 程度の時間が好ま しい。 キヤビラ リ一部と最終ノズル孔と の間で溶融ピッチに剪断応力を加えない為には、 当該部分 (以下応力緩和部という) をパック外壁及び も しく はノ ズルの導入孔を除けば何ら剪断応力が働かない様に空洞化 したものとする。 The time required to maintain the molten pitch between the part of the cavity and the final nozzle hole without substantially applying shear stress to the molten pitch depends on the type and properties of the pitch used, the spinning temperature, and the pitch discharge per unit time. the amount differs more shapes of some Kiyabirari and nozzle holes, but are not particularly limited, is usually time melting peak Tutsi of 1 0 3 to 1 0 5 times the time through a portion Kiyabira Li I like it. Part of the cavity and the final nozzle hole In order not to apply shear stress to the molten pitch during the period, the portion (hereinafter referred to as the stress relaxation portion) was hollowed out so that no shear stress works except for the outer wall of the pack and / or the nozzle introduction hole. Shall be.
本発明で使用する紡糸用ピッチは、 ピッチ状物質を不活 性ガス流通下に熱重縮合させることにより得られる。 ピッ チ状物質と しては、 石油系ピッチ、 石炭系ピッチ及び有機 化合物からの熱分解残渣ピッチのいずれであっても良く 、 軟化点 (スイス国メ トラー社の軟化点測定装置で測定) 2 8 0〜 3 2 5。Cのものが好ま しい。 特にコールタールや コールタールピッチの様な石炭系ピッチを原料とする場合 には、 熱重縮合に先立って、 特開昭 5 7— 8 8 0 1 6号公 報に記'載の方法に従って、 予め原料ピッチを芳香族還元性 溶剤により 3 5 0〜 5 0 0でで熱処理しておく ことにより、 紡糸性をより一層改善することができるが、 紡糸用ピッチ と しては、 紡糸可能であれば特に限定されない。  The spinning pitch used in the present invention can be obtained by subjecting a pitch-like substance to thermal polycondensation in an inert gas flow. The pitch-like substance may be any of petroleum pitch, coal pitch and pyrolysis residue pitch from organic compounds, and has a softening point (measured by a softening point measuring device of METTLER, Switzerland). 8 0 to 3 2 5. C's are preferred. In particular, when coal-based pitch such as coal tar or coal tar pitch is used as a raw material, prior to the thermal polycondensation, the method described in Japanese Patent Application Laid-Open No. 57-88016 is followed. By previously heat-treating the raw material pitch with an aromatic reducing solvent at 350 to 500, the spinnability can be further improved, but the spinning pitch should be spinnable. It is not particularly limited.
本発明において使用する最終ノズル孔の断面積について は特に制限はないが、 通常 5 X 1 0 ·3〜 1 0 _1 ram 2 程度で ある o The cross-sectional area of the final nozzle hole used in the present invention is not particularly limited, but is usually about 5 × 10 3 to 10 1 ram 2 o
本発明においては、 上記の様にして得られたピッチ繊維 を常法に従って、 例えば酸素雰囲気中 3 0 0〜 3 4 0 程 度で不融化した後、 炭素化の場合は、 窒素、 二酸化炭素、 アルゴン等の雰囲気中で 1 0 0 0〜 2 0 0 0。C、 黒鉛化の 場合はアルゴン中で 2 0 0 0〜 3 0 0 0。C程度で加熱する ことにより楕円形断面を有する炭素繊維を得る。 図面の簡単な説 ¾ 第 1図及び第 2図は、 本発明方法により得られる炭素織 維の断面高次構造を示す模式図、 第: 3図乃至第 5図は、 実 施例 1、 2及び 3で得られた炭素繊維の断面高次構造を示 す走査型電子顕微鏡写真であり、 第 6図及び第 7図は、 比 較例 4及び 5で得られた炭素鐵維の断面高次構造を示す走 査型電子顕微鏡写真である。 本発明により得られる炭素織維の断面高次構造は、 その —部もしく は全部がオニオン型構造を呈する (第 1図及び 第 2図参照) 。 一部がオニオン型構造である場合には、 内 層部にオニオン型構造が存在して、 外層部にラ ンダム型構 造 (第 1図(a) ) 又はラジアル型構造 (第 1図(b) ) が存 在する。 なお、 剪断応力測定は、 キヤビラリ一又はノズルの中を 溶融ピッチが通過する場合、 壁面での有効剪断応力 w = dyne/ ciff を In the present invention, the pitch fiber obtained as described above is infusibilized in a conventional manner, for example, in an oxygen atmosphere at a temperature of about 300 to 340, and in the case of carbonization, nitrogen, carbon dioxide, 100 to 2000 in an atmosphere such as argon. C, 200 to 300 in argon for graphitization. By heating at about C, carbon fibers having an elliptical cross section are obtained. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are schematic diagrams showing the higher-order sectional structure of a carbon fiber obtained by the method of the present invention. FIGS. 3 to 5 show Examples 1 and 2. 6 and 7 are scanning electron micrographs showing the higher-order cross-sectional structure of the carbon fiber obtained in Comparative Examples 4 and 5, and FIGS. 6 and 7 show the higher-order cross-sectional structure of the carbon fiber obtained in Comparative Examples 4 and 5. It is a scanning electron micrograph showing the structure. The cross-section higher-order structure of the carbon fiber obtained by the present invention has an onion-type structure in part or all (see FIGS. 1 and 2). If part of the structure is onion-type, the onion-type structure exists in the inner layer and the random-type structure (Fig. 1 (a)) or the radial-type structure (Fig. 1 (b) )) Exists. The shear stress was measured using the effective shear stress w = dyne / ciff on the wall when the molten pitch passes through the cavity or nozzle.
P r  P r
w 2 δ  w 2 δ
こ こで Ρは圧力差 (dyneZ ci ) β は有効キヤビラ リ一又はノズル長さ (cm ) r はキヤビラ リ一又はノズル半径 (cm ) Where Ρ is the pressure difference (dyneZ ci) β is the effective cavity or nozzle length (cm) r is the cavity or nozzle radius (cm)
と して行なった。 It was done.
発 明 の 効 果  The invention's effect
本発明によれば以下の如き効果が奏される。  According to the present invention, the following effects can be obtained.
( i ) 最終的に.得られる炭素繊維は、 その内部にたて割れ クラック、 ボイ ド等の ミ クロ的欠陥をほとんど有しな い。  (i) The finally obtained carbon fiber hardly has micro defects such as cracks, voids and the like inside.
( ίί ) 品質安定性に優れているので、 原料たる ピッチ系材 料の物性が若干変動したと しても、 繊維断面の少なく とも一部がォニォン型である安定した断面高次構造を 有する炭素繊維が得られる。  (ii) Because of its excellent quality stability, even if the physical properties of the pitch-based material slightly fluctuate, carbon with a stable higher-order structure in which at least a part of the fiber cross-section is of an onion type Fiber is obtained.
( ίϋ ) 上記 ( i ) 及び ( ii ) の結果と して、 炭素鐡維の引 張り強度が犬巾に向上する。  (ii) As a result of the above (i) and (ii), the tensile strength of carbon steel fiber is improved to dog width.
( iv ) 更に、 多ホールノズルを使用する紡糸時の糸切れ頻 度が低く なり、 安定した連続紡糸が可能となる。 (iv) Furthermore, the frequency of yarn breakage during spinning using a multi-hole nozzle is reduced, and stable continuous spinning becomes possible.
( vi ) 炭素繊維の内部をオニオン構造と したまま表面をォ 二オン、 ランダム、 ラジアルと変えることができるの で、 安定した炭素織維の力学物性を保持したまま、 樹 脂複合体及び炭素複合体において樹脂及び炭素と良好 な接着性を持つ各種表面分子配列を選択することが出 来る。  (vi) Since the surface of the carbon fiber can be changed to onion, random, or radial while keeping the inside of the carbon fiber as an onion structure, resin composites and carbon composites can be obtained while maintaining the stable mechanical properties of carbon fiber. It is possible to select various surface molecular arrangements that have good adhesion to resin and carbon in the body.
実 施 例 以下に参考例及び比較例と共に実施例を示し、 本発明の 特徵とするところをより一層明らかにする。 Example Examples are shown below together with Reference Examples and Comparative Examples to further clarify the features of the present invention.
参考例 1 Reference example 1
軟化点' 1 1 0。C、 キノ リ ン不溶分 0 . 1 8 %、 ベンゼン 不溶分 3 5 %のコールタールピッチ 1重量部と水素化重ァ ン トラセン油 2重量部との混合溶液をォー トク レーブ中で 4 3 0 °Cで 6 0分間攪拌下加熱した後、 加圧式フィルター で熱時泸過し、 更に減圧下 3 0 0でで水素化重ァン トラ ン セン油を除去して、 還元ピッチを得た。  Softening point '1 1 0. C, quinoline-insoluble content 0.18%, benzene-insoluble content 35%, a mixed solution of 1 part by weight of coal tar pitch and 2 parts by weight of hydrogenated heavy anthracene oil in an autoclave 4 3 After heating with stirring at 0 ° C for 60 minutes, the mixture was heated with a pressurized filter and then heated under reduced pressure at 300 to remove hydrogenated heavy lanthanum oil to obtain reduced pitch. .
ガス導入管、 熱電対、 攪拌機及び留出分除去管を備えた 反応器に上記で得られた還元ピッチ 5 O kgを入れ、 攪拌下 窒素ガスを導入しつつ 4 1 0〜4 8 0 で低分子量成分の 除去及び熱重縮合を行なった。 反応時間及び温度の選択に より得られた 2種の熱重縮合ピッチの性状を第 1表に Xo. 1 〜 2と して示す。 - 参考例 2 - 水素化重ァン トラセン油との混合下における加熱処理を 経ることなく、 参考例 1と同様のコールタールピッチを参 考例 1 と同様にして熱重縮合反応に供した。 得られた熱重 縮合ピッチの性状を No. 3として第 1表に示す。 Into a reactor equipped with a gas inlet tube, a thermocouple, a stirrer and a distillate removing tube, put the reduced pitch 5 O kg obtained above into a reactor, and reduce the pressure to 410 to 480 while introducing nitrogen gas under stirring. Removal of molecular weight components and thermal polycondensation were performed. Table 1 shows the properties of the two types of hot polycondensation pitches obtained by selecting the reaction time and temperature as Xo. 1-2. -Reference Example 2-The same coal tar pitch as in Reference Example 1 was subjected to a thermal polycondensation reaction in the same manner as in Reference Example 1 without undergoing heat treatment under mixing with hydrogenated heavy vanthracene oil. Table 1 shows the properties of the resulting hot polycondensation pitch as No. 3.
熱重縮合 Q I B I 軟 化 点 ピッチ No. (重量 % ) (重量 % ) (°C) Thermal polycondensation Q I B I Softening point Pitch No. (% by weight) (% by weight) (° C)
1 3 5 9 5 3 1 8  1 3 5 9 5 3 1 8
2 2 2 9 3 3 1 3  2 2 2 9 3 3 1 3
3 4 0 9 2 3 1 5 注 : 軟化点は、 スイス メ トラー社製軟化点測定装置  3 4 0 9 2 3 1 5 Note: The softening point is a softening point measuring device manufactured by METTLER SWITZERLAND.
により測定した。 実施例:!〜 3  Was measured by Example:! ~ 3
直径 0. 1 5 ram、 長さ 0. 4 mmの細管 1 0 0本からなる キヤビラ リ一部 (総断面積 1. 7 7 mm2 ) 、 容積約 1 5 ctn3 の応力緩和部及び直径 0. 2 、 長さ ◦. 4ramのノズル (ノズル孔数 1 0 0個) を備えた紡糸装置を使用して、 参 考例 1及び 2で得た熱重縮合ピツチ No.1〜 3を紡糸した。 この紡糸過程において、 ピッチはキヤビラ リ一部において 最終ノズル孔かうける剪断応力の約 2 5 0 %の剪断応力を 加えられ、 次いで応力緩和で剪断応力を受けない状態にお かれ、 最終ノ ズル孔で再び剪断応力を加えられた。 0.15 ram diameter, 0.4 mm length of thin tubing 100 pieces (total cross-sectional area 1.77 mm 2 ) consisting of 100 tubing, stress relief part with a volume of about 15 ctn 3 and diameter 0 2.2 Using a spinning device equipped with a 4 ram length nozzle (100 nozzle holes), the hot polycondensation pitches Nos. 1 to 3 obtained in Reference Examples 1 and 2 were spun. . In the spinning process, the pitch is subjected to a shear stress of about 250% of the shear stress applied to the final nozzle hole in a part of the cavity, and then is subjected to stress relaxation to receive no shear stress. Again gave shear stress.
かく して得たピッチ繊維を空気中 3 0 0。Cで 3 0分間不 融化処理し、 次いで N2 ガス雰囲気中で 1 2 0 0 まで加 0 熱して炭素繊維を得た。 The pitch fibers thus obtained are in air at 300. C for 30 minutes, then heat up to 1200 in N 2 gas atmosphere. 0 Heated to obtain carbon fiber.
第 2表に直径 1 0 mのピツチ繊維を糸切れを生ずるこ となく連続して紡糸し得る平均時間 (h r ) 、 上記で得た 炭素繊維の断面高次耩造及び欠陥含有率を示す。 第 2 表  Table 2 shows the average time (hr) during which a pitch fiber having a diameter of 10 m can be continuously spun without causing yarn breakage, and the higher-order sectional structure and defect content of the carbon fiber obtained above. Table 2
Figure imgf000012_0001
Figure imgf000012_0001
又、 実施例 1、 2及び 3で得られた炭素繊維の断面高次 構造を示す走査型電子顕微鏡写真をそれぞれ第 3図 (約 2 6 0 0倍) 、 第 4図 (約 8 0 0 0倍) 及び第 5図 Scanning electron micrographs showing the higher-order cross-sectional structures of the carbon fibers obtained in Examples 1, 2 and 3 are shown in FIG. 3 (approximately 260,000 times) and FIG. Times) and Fig. 5
(約 1 7 0 0倍) として示す。  (Approximately 1700 times).
実施例 4〜 6 Examples 4 to 6
第 3表に示す形状、 本数、 総断面積及び剪断応力のキヤ ビラ リ一部、 容積約 18 の応力緩和部及び直径 0. 2關 長さ 0. 4龍のノズル (ノズル孔数 1 00個) を備えた紡 糸装置を使用して、 参考例 1で得た熱重縮合ピッチ ι 1を 紡糸し、 得られたピッチ繊維を実施例 1〜3と同様にして 不融化及び炭化処理して炭素繊維を得た。 The shape, number, total cross-sectional area and shear stress key shown in Table 3 Using a spinning device equipped with a part of a billet, a stress relaxation section with a volume of about 18 and a diameter of 0.2, a length of 0.4 dragon nozzle (100 nozzle holes), obtained in Reference Example 1. The resulting hot polycondensation pitch ι1 was spun, and the obtained pitch fibers were infusibilized and carbonized in the same manner as in Examples 1-3 to obtain carbon fibers.
得られた炭素繊維の断面高次構造及び欠陥含有率を第 3 に ¾ す。 Third, the sectional higher-order structure and defect content of the obtained carbon fiber are described below.
3 キ ヤ ビ ラ リ 一 部 3 Key villa
欠陥含有 施 形 状 本数 総断而 ¾ 剪断応力の割合. 断而高次構造  Defect-containing shape Number of gross meta 断 ratio of shear stress.
例 (mm2 ) (%、 対ノズル部) 率 (%) 長咖.25ram 内屑オニオン型 Example (mm 2 ) (%, Nozzle part) Ratio (%) Long 咖 .25ram Internal waste onion type
4 楕 円 50 1. 28 約 400% 0 短蚰 0.13mm 外朥ランダム型 内!)オニオン型  4 Ellipse 50 1.28 Approx. 400% 0 Short chain 0.13mm Outside 朥 random type Inside! ) Onion type
5 正三 ¾形 (一辺 0.2議) 70 1. 21 約 450% 4 外履ラジアル型 幅 0.3mm 内^オニオン型  5 Shozo ¾ type (0.2 sides per side) 70 1.21 Approx. 450% 4 Outerwear radial type 0.3mm width inside ^ onion type
6 スリッ ト 30 0. 9 約 600 % 2 r¾さ, 0.1mm 外照ラジアル型 6 slit 30 0.9 About 600% 2 r length, 0.1 mm external radiating type
異型断面のキヤビラ リ一部を有する紡糸装置を使用する 場合にも、 欠陥がほとんど無く 、 内層オニオン型の断面高 次構造を有する炭素繊維が得られることが明らかである。 比較例 1 〜 3 · It is clear that even when a spinning device having a part of the cabillary having an irregular cross section is used, a carbon fiber having an inner-layer onion type higher-order cross-sectional structure with few defects can be obtained. Comparative Examples 1 to 3
直径 0 . 2 ram、 長さ 0 , 4 mmのノズル (ノズル孔数  Nozzle with 0.2 ram diameter and 0.4 mm length
1 0 0個) を備えた紡糸装置を使用して、 参考例 1及び 2 で得た熱重縮合ピッチ Ν ΐ 〜 3を紡糸した後、 実施例 1 〜 3と同一条件下に不融化及び炭化処理を行なって炭素繊維 を得た。  After spinning the thermal polycondensation pitches で 3 3 obtained in Reference Examples 1 and 2 using a spinning apparatus equipped with The treatment was performed to obtain carbon fibers.
得られた炭素繊維の断面高次構造及び欠陥含有率、 並び に直径 1 0 mのピッチ繊維を糸切れを生ずることなく連 続して紡糸し得る平均時間 ( h r ) を第 4表に示す。  Table 4 shows the higher-order cross-sectional structure and defect content of the obtained carbon fiber, and the average time (hr) for continuously spinning a pitch fiber having a diameter of 10 m without causing thread breakage.
比較例 4 Comparative Example 4
キヤビラ リ一部の大きさが直径 0 . 3 翻、 長さ 0 , 6 ram (本数 1 0 0本) である以外は実施例 1 と同じ紡糸装置を 用いて、 参考例 1で得た熱重縮合ピッチ No, 1を紡糸した。 この紡糸過程では、 ピッチはキヤビラ リ一部において最終 ノズル孔でうける剪断応力の約 3 0 %の剪断応力を加えら れた。 得られたピッチ繊維を実施例 1 と同一条件下に不融 化及び炭化処理を行なって炭素繊維を得た。  Using the same spinning device as in Example 1 except that the size of the capillaries was 0.3 in diameter and 0.6 ram in length (100 pieces), the thermal weight obtained in Reference Example 1 was used. Condensed pitch No. 1 was spun. In this spinning process, the pitch was subjected to a shear stress of about 30% of the shear stress applied to the final nozzle hole in a part of the cavity. The obtained pitch fibers were infusibilized and carbonized under the same conditions as in Example 1 to obtain carbon fibers.
炭素繊維の断面高次構造及び欠陥含有率を第 4表に示す。 又本比較例で得られた炭素繊維の断面高次構造を示す走 查型電子顕微鏡写真 (約 2 8 0 0倍) を第 6図として示す , 比較例 5 Table 4 shows the sectional higher-order structure and defect content of the carbon fiber. The cross section of the carbon fiber obtained in this comparative example shows the higher-order structure. Fig. 6 shows a 查 -type electron micrograph (approximately 2800 times) of Comparative Example 5
直径 0 . 1 5 11101、 長さ 0 . 4 ramの細管 1 0 0本からなる キヤビラ リ一部と直径 0 . 2删、 長さ 0 . 4翻のノズル部 (ノズル孔数 1 0 0個) とが実質的に直結されている紡糸 装置を使用して、 参考例 1で得た熱重縮合ピッチ Να 1を紡 糸した。 この紡糸過程においては、 ピッチは、 キヤビラ リ 一部において最終ノズル孔でうける剪断応力の約 2 5 0 の剪断応力を加えられ、 次いで直ちに最終ノズル孔で剪断 応力を力 []えられた。  Part of a cabillary consisting of 100 tubules with a diameter of 0.15 11101 and a length of 0.4 ram, and a nozzle section with a diameter of 0.2 mm and a length of 0.4 (number of nozzle holes: 100) Using the spinning apparatus in which the heat polycondensation pitch was substantially directly connected, the hot polycondensation pitch Να1 obtained in Reference Example 1 was spun. During this spinning process, the pitch was subjected to a shear stress of about 250 in the portion of the cavity, which was the shear stress received at the final nozzle hole, and then immediately applied the shear stress at the final nozzle hole.
得られたピッチ鐵維を実施例 1〜 3と同一条件下に不融 化及び炭化処理に供して炭素織維を得た。  The obtained pitch fiber was subjected to infusibilization and carbonization under the same conditions as in Examples 1 to 3 to obtain a carbon fiber.
炭素織維の断面高次構造及び欠陥含有率を第 4表に示す, 又、 本比較例で得られた炭素織維の断面高次構造を示す 走査型電子顕微鏡写真 (約 4 0 0 0倍) を第 7図として示 す。 Table 4 shows the sectional higher-order structure and the defect content of the carbon fiber, and a scanning electron micrograph (approximately 400 × magnification) showing the sectional higher-order structure of the carbon fiber obtained in this comparative example. ) Is shown in Fig. 7.
第 4 the 4th
Figure imgf000017_0001
第 2表に示す実施例 1 〜 3の結果と第 4表に示す比較例 1 〜 3の結果との対比から明らかな如く 、 キヤビラ リ一部 と応力緩和部とを有しない紡糸裟置を使用する場合には、 原料ピッチが同一であっても、 連続紡糸性に劣り、 断面高 次構造はラジアル型で且つ欠陥含有率が高い。
Figure imgf000017_0001
As is evident from the comparison between the results of Examples 1 to 3 shown in Table 2 and the results of Comparative Examples 1 to 3 shown in Table 4, a spinning layer having no part of the capillaries and the stress relaxation portion was used. In this case, even if the raw material pitch is the same, the continuous spinnability is inferior, and the sectional high-order structure is radial and has a high defect content.
第 2表に示す実施例 1の結果と、 第 4表に示す比較例 4 の結果との対比から明らかな如く、 キヤビラ リ一部にて、 最終ノズル孔でうける 1 Z 2以下の剪断応力を加えた場合 には、 たて割れ、 クラック等の欠陥含有率が高い。  As is evident from the comparison between the results of Example 1 shown in Table 2 and the results of Comparative Example 4 shown in Table 4, the shear stress of 1 Z 2 or less received by the final nozzle hole is partially When added, the content of defects such as cracks and cracks is high.
更に、 第 2表に示す実施例 1の結果と第 4表に比較例 5 の結果との対比から明らかな如く、 キヤビラ リ一部と最終 ノズル部との間に応力緩和部を有しない紡糸装置を使用す る場合にも、 断面高次構造はラジアル型であり、 欠陥含有 率も高い。 Further, the results of Example 1 shown in Table 2 and Comparative Example 5 are shown in Table 4. As is evident from the comparison with the results of the above, even when using a spinning device that does not have a stress relaxation part between the part of the capillary and the final nozzle, the higher-order cross-sectional structure is a radial type and contains defects. The rate is also high.

Claims

請 求 の 範 囲 The scope of the claims
1. ピッチ系材料を溶融紡糸し、 不融化し、 炭化するピッ チ系炭素繊維の製造方法において、 最終ノズル孔にいた る前に溶融ピッチを円形、 異形又は'スリ ッ ト型のキヤピ ラ リー部を通過させることにより最終ノズル孔で受ける 剪断応力の 1ノ 2倍以上の剪断応力を加えた後、 該溶融 ピッチを一旦剪断応力を実質的に加えない状態に保持し. 次いでノズル孔を通過させて紡糸することを特徴とする ピッチ系炭素繊維の製造方法。  1. In the method of manufacturing pitch-based carbon fiber, which melts, spins, infuses, and carbonizes pitch-based material, the molten pitch is circular, irregular, or 'slit-type' capillary before reaching the final nozzle hole. After applying a shear stress of 1 to 2 times or more of the shear stress received in the final nozzle hole by passing through the portion, the molten pitch is once kept in a state where shear stress is not substantially applied. A method for producing pitch-based carbon fiber, comprising:
2. キヤビラ リ一部の長さが 0. 1〜 3. 0翻であること を特徴とする請求の範囲第 1項に記載の製造方法。 2. The manufacturing method according to claim 1, wherein the length of a part of the capillaries is 0.1 to 3.0.
3. キヤビラ リ一部の断面積が 5 X 1 0 -33. sectional area of Kiyabira Li part 5 X 1 0 - 3 ~
5 X 1 0—12 であることを特徴とする請求の範囲第 1 項に記載の製造方法。 5. The production method according to claim 1, wherein 5 X 10-1 腳2 .
4. キヤビラ リ一部での剪断応力が最終ノズル孔での剪断 応力の 1 Z2〜 1 0倍であることを特徵とする請求の範 囲第 1項に記載の製造方法。 4. The production method according to claim 1, wherein the shear stress at a part of the cavity is 1Z2 to 10 times the shear stress at the final nozzle hole.
5. 溶融ピッチの軟化点が 280〜 325てであることを 特徵とする請求の範囲第 1項に記載の製造方法。 5. The production method according to claim 1, wherein the softening point of the molten pitch is 280 to 325.
6. ピッチ系材料を溶融紡糸し、 不融化し、 黒鉛化する ピ ツチ系炭素繊維の製造方法において、 最終ノズル孔にい たる前に溶融ピッチを円形、 異形又はスリ ッ ト型のキヤ ビラリ一部を通過させることにより最終ノズル孔で受け る剪断応力の 1 Z 2倍以上の剪断応力を加えた後、 該溶 融ピッチを一旦剪断応力を実質的に加えない状態に保持 し、 次いでノズル孔を ¾過させて紡糸することを特徴と するピッチ系黒鉛繊維の製造方法。 6. In the method of manufacturing pitch-based carbon fiber, which melts and spins pitch-based material, renders it infusible, and graphitizes, melts the pitch before making it to the final nozzle hole. After applying a shear stress of 1 Z 2 times or more of the shear stress received in the final nozzle hole by passing a part of the billet, the molten pitch is once held in a state where shear stress is not substantially applied, and then A method for producing pitch-based graphite fiber, comprising spinning through a nozzle hole.
7. キヤビラリ一部の長さが 0. 1〜3. Oimnであること を特徴とする請求の範囲第 6項に記載の製造方法。  7. The production method according to claim 6, wherein a part of the length of the capillaries is 0.1 to 3. Oimn.
8. キヤビラ リ一部の断面積が 5 X 10 _38. The cross-sectional area of a part of the capillaries is 5 X 10 _ 3 ~
5 X 10 _1 mm2 であることを特徴とする請求の範囲第 6 項に記載の製造方法。 7. The method according to claim 6, wherein the size is 5 × 10 −1 mm 2 .
9. キヤビラリ一部での剪断応力が最終ノズル孔での剪断 応力の 1Z2〜10倍であることを特徵とする請求の範 囲第 6項に記載の製造方法。  9. The production method according to claim 6, wherein the shear stress at a part of the capillaries is 1Z2 to 10 times the shear stress at the final nozzle hole.
10. 溶融ピッチの軟化点が 280〜 325。Cであることを 特徵とする請求の範囲第 6項に記載の製造方法。  10. Melting pitch softening point is 280-325. 7. The production method according to claim 6, wherein the production method is C.
11. 請求の範囲第 1項に記載の方法で製造された炭素織維。 11. A carbon fiber produced by the method according to claim 1.
12. 請求の範囲第 6項に記載の方法で製造された黒鉛鐵維。 12. Graphite steel produced by the method according to claim 6.
PCT/JP1987/000041 1986-01-22 1987-01-22 Process for producing pitch-base carbon fiber WO1990007594A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/105,428 US4859381A (en) 1986-01-22 1987-01-22 Process for preparing pitch-type carbon fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61/12848 1986-01-22
JP1284886A JPS62170527A (en) 1986-01-22 1986-01-22 Production of pitch-based carbon fiber

Publications (1)

Publication Number Publication Date
WO1990007594A1 true WO1990007594A1 (en) 1990-07-12

Family

ID=11816814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000041 WO1990007594A1 (en) 1986-01-22 1987-01-22 Process for producing pitch-base carbon fiber

Country Status (2)

Country Link
JP (1) JPS62170527A (en)
WO (1) WO1990007594A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100194094A1 (en) 2007-09-03 2010-08-05 Susumu Kiuchi Anti-counterfeit printed matter
US8985634B2 (en) 2008-09-16 2015-03-24 National Printing Bureau, Incorporated Administrative Agency Anti-counterfeit printed matter, method of manufacturing the same, and recording medium storing halftone dot data creation software
US8876167B2 (en) 2008-10-03 2014-11-04 National Printing Bureau, Incorporated Administrative Agency Anti-counterfeit printed matter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168127A (en) * 1983-03-15 1984-09-21 Toray Ind Inc Production of carbon fiber
JPS60194120A (en) * 1984-03-08 1985-10-02 Mitsubishi Chem Ind Ltd Production of pitch fiber
JPS60239520A (en) * 1984-05-11 1985-11-28 Mitsubishi Chem Ind Ltd Carbon fiber
JPS60252723A (en) * 1984-05-30 1985-12-13 Mitsubishi Chem Ind Ltd Production of pitch based carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168127A (en) * 1983-03-15 1984-09-21 Toray Ind Inc Production of carbon fiber
JPS60194120A (en) * 1984-03-08 1985-10-02 Mitsubishi Chem Ind Ltd Production of pitch fiber
JPS60239520A (en) * 1984-05-11 1985-11-28 Mitsubishi Chem Ind Ltd Carbon fiber
JPS60252723A (en) * 1984-05-30 1985-12-13 Mitsubishi Chem Ind Ltd Production of pitch based carbon fiber

Also Published As

Publication number Publication date
JPH0413450B2 (en) 1992-03-09
JPS62170527A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
US4115527A (en) Production of carbon fibers having high anisotropy
US4746470A (en) Process for the preparation of carbon fibers having structure reflected in cross sectional view thereof as random mosaic
WO1984003722A1 (en) Process for producing carbon fibers
EP0840813B1 (en) Spinning carbon fibers from solvated pitches
US4460557A (en) Starting pitches for carbon fibers
EP0402107A2 (en) Method for the preparation of carbon fibers
WO1990007594A1 (en) Process for producing pitch-base carbon fiber
JPH0637725B2 (en) Carbon fiber manufacturing method
JPH0660451B2 (en) Method for producing pitch-based graphite fiber
JPH10298829A (en) Production of pitch-based carbon fiber
US4356158A (en) Process for producing carbon fibers
US4859381A (en) Process for preparing pitch-type carbon fibers
US4859382A (en) Process for preparing carbon fibers elliptical in section
JP2849156B2 (en) Method for producing hollow carbon fiber
JPS6175821A (en) Production of pitch carbon fiber
JPS60104528A (en) Preparation of carbon fiber
JPH0545685B2 (en)
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
WO1990007593A1 (en) Process for producing carbon fiber having oval cross-section
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS60259631A (en) Production of pitch carbon fiber
JP4601875B2 (en) Carbon fiber manufacturing method
JPS59164386A (en) Preparation of precursor pitch for carbon fiber
Naslain carbon Fibers from Pan and Pitch
JP3164704B2 (en) Method for producing pitch-based high compressive strength carbon fiber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US