WO1990007472A1 - Lightweight molding and production thereof - Google Patents

Lightweight molding and production thereof Download PDF

Info

Publication number
WO1990007472A1
WO1990007472A1 PCT/JP1989/001337 JP8901337W WO9007472A1 WO 1990007472 A1 WO1990007472 A1 WO 1990007472A1 JP 8901337 W JP8901337 W JP 8901337W WO 9007472 A1 WO9007472 A1 WO 9007472A1
Authority
WO
WIPO (PCT)
Prior art keywords
lightweight
glass
weight
powder
slag
Prior art date
Application number
PCT/JP1989/001337
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Sato
Masakazu Hara
Hisaya Kamura
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to KR1019900701913A priority Critical patent/KR910700208A/ko
Priority to GB9018906A priority patent/GB2236526B/en
Priority to DE19893991544 priority patent/DE3991544T1/de
Publication of WO1990007472A1 publication Critical patent/WO1990007472A1/ja
Priority to FI904231A priority patent/FI904231A0/fi
Priority to SE9002740A priority patent/SE9002740D0/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a lightweight molded article used for a building material, a heat insulating material furniture, a backing material, and the like, and a method for producing the same.
  • Molded products containing a calcium silicate compound as a main component are called artificial wood or the like and are widely used as building materials.
  • water is added to the raw material of calcareous material and calcareous material to form a mixed slurry, and the mixture is first reacted and gelled in about 90 minutes. This is put into an autoclave and reacted at 190-250'C for several hours to synthesize zonotrite. Glass fibers, surfactants, polymer admixtures, etc. are added as needed to improve the toughness of this zonotrite slurry, and mixed with stirring, then placed in a mold. Pressure dehydration molding and drying at about 120 ° C to obtain a molded body (Cement Concrete, No.469: Mar. 1986, p37-43).
  • Zono DOO La wells is Ri one der silicate mosquito Resid c arm hydrate, CaO / S i 0 2 molar ratio Ru approximately 1 der.
  • the crystal structure is characterized by having a fibrous form whose length extends in the b-axis.
  • the BET specific surface area of zonotrite particles is about 25 to 30 rrf / g.
  • JP-A-52-15516 discloses powdery silica raw material and calcareous raw material. By mixing in water and reacting by heating, calcium silicate is reduced. A method is disclosed in which an aqueous slurry is obtained, and a polymer emulsion is added to the slurry to adsorb the polymer to calcium silicate.
  • Japanese Patent Publication No. 54-160428 calcium hydroxide, polymer emulsion, and calcium carbonate obtained by hydrothermal synthesis reaction of calcareous material and caustic material are used.
  • Japanese Patent Publication No. 60-246251 discloses a poly (styrene-butadiene) containing a calboxic acid obtained by a hydrothermal synthesis reaction between a calcareous material and a caustic material, and having a ruboxyl group added thereto.
  • a method is disclosed in which a copolymer latex and a cationic type (molecular coagulant) are added to form an aqueous slurry, which is molded and dried to form a molded product.
  • 63-85038 discloses that a mixture of a lime raw material and a kaic acid raw material is mixed into slurry by adding water, and the mixture is heated in an autoclave with stirring. There is disclosed a method for producing a calcium acid crystal slurry, adding a synthetic pulp or a thermally deformed product thereof to the slurry, dehydrating, molding and drying to obtain a molded product.
  • Japanese Patent Application Laid-Open No. 63-201050 discloses that a limestone raw material powder and a silicate raw material powder are mixed, water is added thereto, and a ripening reaction is carried out.
  • Japanese Patent Application Laid-Open No. 63-260847 discloses a polystyrene having a carboxyl group in a calcium silicate hydrate obtained by a hydrothermal synthesis reaction of a calcareous raw material and a silica raw material.
  • a method is disclosed in which a water-based slurry is added by adding a styrene-butadiene copolymer latex, which is molded and dried to form a molded product, and the molded product is reinforced with a fibrous network.
  • the conventional calcium silicate-based compacts are calcareous.
  • the raw material and the caustic raw material are heated under a saturated steam pressure of 190 to 250 ° C for several hours to cause a hydrothermal synthesis reaction to produce calcium silicate such as zonotrite.
  • the raw materials not only used high-purity calcareous and caustic raw materials, but also consumed a large amount of energy.
  • the bending strength of the conventional calcium silicate based compact is about 80 to: L20 kgf / cm 2 , and improvement of the bending strength has been desired.
  • it is desired to improve zonotrite which has a small amount of water of crystallization per unit weight and has high heat resistance but lacks self-digestibility to release water of crystallization.
  • the present invention provides a lightweight molded article that solves the above-mentioned problems and a method for producing the same, and includes a surface modified slag (a glass dissolution reaction ⁇ a modification by a hydration reaction; In addition, it means a slag consisting of two types of reforming, namely, reforming by heating and dehydration).
  • the main material is a polymer admixture, reinforcing fiber, coagulant, lightweight aggregate, thickener, dispersant, pigment, synthetic pulp, acicular or fibrous calcium silicate. It is characterized by the further use of rubber hydrates and hydraulic stones.
  • the surface modification slag by the glass dissolution reaction and hydration reaction dissolves the glass by treating the glassy blast furnace slag powder with an aqueous alkaline solution. A reaction and a hydration reaction were generated, and the surface was modified accordingly.
  • the shape is different from that of zonotrite, and it is spherical or a cluster of spheres.
  • the main hydration product is tobermorite or a similar mineral.
  • the raw material glassy blast furnace slag may be any of a granulated slag and an air-blasted slag. Fine particles are preferred, for example, with a specific surface area of more than 4000 cil / g, especially about 8000 to 14000 oi / g The one of the above is appropriate.
  • the aqueous alkaline solution is preferably a caustic alkaline solution such as caustic soda or caustic, and has a concentration of 0.5 N or more, particularly preferably above. Practically, caustic soda is easy to use. Also, combinations of alkalis are effective. It is also effective to combine sodium carbonate with an appropriate amount of caustic soda.
  • the processing time varies depending on the processing temperature, etc., but is 30 minutes or more, and is usually about 1 hour to 10 o'clock.
  • the treatment temperature is preferably higher to promote the reaction, and is practically about 90 ° C. It is also possible to use more than 100 hydrothermal reactions.
  • a glass dissolution reaction and a hydrate formation reaction occur on the surface of the glass-furnace slag particles.
  • the slag surface becomes porous and the BET specific surface area is about 20 to: Onf / g, preferably above 40 nf / g E, and more preferably above 90 nf / g. Become.
  • These surface-modified slag particles can be identified by observing them with an electron microscope.
  • Fig. 12 shows a scanning electron micrograph of the surface modified slag
  • FIG. 13 shows a scanning electron micrograph of the glassy blast furnace slag. After the treatment, the slag is removed and used. ⁇ Surface modification slag production method is described in Japanese Patent Publication No. 57-7093 and Japanese Patent Application Laid-Open No. H11-252559. The use of phosphorus is disclosed in Japanese Patent Application Laid-Open No. 56-51283, Japanese Patent Application Laid-Open Nos. 61-28491, and 61-64392. A method for simultaneous removal of arsenic and silicon (Japanese Patent Application Laid-Open No. 62-45394), a method for removing muddy substances from Takasawa water (Japanese Patent Application No. 60-26600), and the like are disclosed.
  • the surface modification slag varies depending on the initial state by being heated and dehydrated by heating at about 250 to 800 CC, preferably about 450 CC. BET specific area of 100 m / g can be increased to about 120 to 140 m / g.
  • the significance is extremely large (JP-A-1-252559). At this time, it is important to select temperature and time conditions that do not cause the sintering phenomenon due to heat dehydration. The use of this heat dehydration slag is preferable because the specific strength and the moisture absorption / release properties can be improved.
  • slag subjected to heat dehydration treatment is also referred to as surface-modified slag.
  • a polymer admixture that adheres uniformly to surface-modified slag particles is often used. Rubber latex, synthetic resin emulsion, etc. can be used.
  • the rubber latex is, for example, a natural rubber latex and a styrene-butadiene copolymer, an ata ⁇ -ditributyl-butadiene copolymer, a crop It is a latex such as a lene polymer.
  • Synthetic resin emulsions are, for example, polyethylene monoacetate copolymer, vinyl acetate polymer, and acrylate ester polymer. , Such as vinylidene chloride polymer and vinyl chloride polymer.
  • the appropriate amount of the polymer admixture is about 3 to 20%, especially about 5 to 10%, by weight of the solids relative to the surface modified slag. If it is less than 3%, the strength and machinability will be insufficiently improved, while if it exceeds 20%, the reduction in fire resistance becomes a practical problem.
  • Synthetic pulp is a pulp obtained by giving hydrophilicity to synthetic resin, mainly polyolefin, such as polyethylene pulp and polypropylene mouth pulp. is there. A weight ratio of about 3 to 20%, particularly about 5 to 10%, based on the surface modified slag is appropriate. If it is less than 3%, the machinability and surface gloss are not sufficiently improved, while if it exceeds 20%, the fire resistance is reduced. I do.
  • the calcium silicate hydrate can be obtained by adding water to a silica raw material and a calcareous raw material to cause a heat reaction.
  • This calcium silicate hydrate may be of any type, but it is preferable to use needle-like or zonotriy-like crystalline materials such as zonotriite and topamolite, especially Zonotrites are preferred in terms of heat resistance and dimensional stability of the body.
  • the weight ratio of the surface modified slag to the above calcium silicate hydrate is preferably in the range of -9: 1 to 1: 9, preferably 7:63 to 3: 7. Selection according to the desired performance.
  • Hydraulic stone ⁇ may be any of type and / 9 type hemihydrate stone ⁇ , anhydrous stone ⁇ , etc., but from the viewpoint of price, calcined stone mainly composed of type hemihydrate stone ⁇ . ⁇ is preferred.
  • the amount of the stone is suitably about 10 to 150%, preferably about 30 to 70% by weight based on the surface modified slag. Under 10%, the effect of improving the bending strength is small, while when it exceeds 150%, the machinability and the specific strength decrease. If necessary, stone coagulation setting agents such as sodium citrate can be added.
  • the reinforcing fibers include inorganic fibers such as glass fibers and carbon fibers, synthetic fibers, and natural fibers.
  • Synthetic fibers include polyester fibers and polyethylene fibers, and natural fibers include pulp, cotton, and mineral fibers. Of these, glass fibers are particularly preferred in terms of nonflammability and cost.
  • the amount of reinforcing iron added depends on the specific gravity of the fiber, but it is appropriate that the weight ratio to the surface-modified slag be 2 to 10%. If the groove is not 2%, the reinforcing effect is not practically effective, and if it exceeds 10%, it is difficult to secure uniform dispersion.
  • the adsorptivity of the polymer admixture to the surface reforming slag can be increased, and during the pressing process.
  • the drainage (dewatering) properties are improved, and the amount of organic substances leaking into the wastewater can be reduced, so that the wastewater treatment can be easily performed.
  • the flocculant may be an inorganic flocculant such as aluminum sulfate, but the molded article of the present invention is preferably an organic flocculant, particularly a cationic polymer flocculant.
  • the cationic polymer flocculants include polyalkylaminoalkyl acrylate, polyaminomethyl acrylamide, and polyvinylpyridinium nitro. There are quaternary amide compounds such as gen salt and polyvinylimidazoline.
  • the addition amount of the flocculant is preferably about 0.05 to 0.2 part by weight based on 1 part by weight of the polymer-admixture (weight of the solid material).
  • Lightweight aggregates can be added with lightweight aggregates. No lightweight aggregate. It is not preferable that the addition amount exceeds 60% by weight relative to the surface-modified slag, because the strength and workability of the molded body are reduced.
  • a viscous agent can be added to the lightweight molded body in order to improve the dispersibility of the reinforcing fibers and secure shape retention during molding.
  • Water-soluble polymers generally cellulose esters, are used as the thickener.
  • a dispersant can be added to the lightweight molded article to disperse the polymer and the reinforcing fiber and to improve the fluidity of the kneaded slurry.
  • a naphthalene sulfonate phormalin polycondensate, a melamin sulfonate-based compound, or the like is used as the dispersant.
  • the lightweight molded article can be colored by adding various pigments.
  • pigments include lead white, lead red, graphite, ultramarine, navy blue, cobalt oxide, titanium dioxide, titanium yellow, bengala, iron black, and molybdenum.
  • Inorganic pigments such as red, litharge, and aluminum powder, azo, phthalocyanine Organic pigments such as organic pigments.
  • the light-weight molded body of the present kiyoshi can contain other additives as long as its characteristics are not impaired.
  • This additive is appropriately selected from known additives for a calcium silicate molding.
  • a surface-modified slag powder (or slurry containing the same), hydraulic stone cocoa, a polymer admixture, and a mixture containing water are used. Kneaded, molded and dried.
  • reinforcing fibers, flocculants, synthetic pulp, calcium silicate hydrate, lightweight aggregates, thickeners, dispersing thorns, pigments, etc. add them before or during kneading.
  • Water for kneading may be added in the form of a ruminant or an aqueous solution of one or more of the above components.
  • the surface-modified slag or calcium silicate hydrate washed with water can be used without drying, and the water can be used for kneading.
  • an antifoaming agent can be added, or defoaming can be performed during or after kneading.
  • the molding method may be selected according to the purpose and application of the final product, such as pressurization, papermaking, extrusion, and pressurization.However, a method in which the slurry obtained by kneading is pressurized and dewatered is often used. Used. In this case, the slurry is usually poured into a mold such as a mold and pressurized, but in order to increase uniform molding efficiency, wire mesh, filter paper, filter cloth, perforated plate, etc. A unit that can be degassed under reduced pressure and defoamed can be incorporated, and an embossed plate can be incorporated to enhance the surface design. Also, the molded body can be cut into a predetermined shape after pressure demolding.
  • the pressurization may be performed at a pressure that allows water to reach a predetermined level.
  • the pressurization may be adjusted so that the bulk specific gravity of the molded body becomes a predetermined value.
  • Drying can remove moisture inside the molded body and leave the crystal water of the surface-modified slag, for example, heating at about 100 to 180 ° C, preferably about 110 to 150 ° C. It may be dried. In order to prevent cracks due to drying of the molded product, it is also preferable to first perform preliminary drying at about 60 to 80 ° C.
  • Lightweight molded article of the present invention Ri Do the composition excluding water from the kneaded product, or Is specific gravity 0. 2 ⁇ 1 g / cm 3 or so, the rather to preferred 0. 4 ⁇ 0. 6 g / cm 3 It is a porous body of a certain degree.
  • the composite structure mainly composed of spherical or grape tufted surface-modified slag has heat resistance, heat insulation, humidity control properties, etc. It has become.
  • This modified slag has good physical adsorptivity and also has an effect of facilitating coloring with various pigments and the like.
  • Stone co-hydrate (dihydrate stone) increases the strength, such as bending strength, of the lightweight compact without reducing the incombustibility.
  • the polymer admixture adheres to the surface of the surface-modified slag particles to bond the particles together, and toughness of lightweight compacts, workability such as cutting, cutting, nailing, bending strength, tensile strength, etc. Is improving.
  • Synthetic pulp imparts machinability, such as cutting, cutting, and nailing, to the molded product, and also improves the surface gloss and drainage (dehydration).
  • the calcium silicate hydrate improves the heat resistance and dimensional stability of the molded body.
  • Reinforcing fibers increase strength such as breaking strength.
  • the flocculant enhances the fixability of the polymer admixture to the surface modification slag and is pressurized It improves the drainage ( ⁇ water) during the molding process.
  • Light-weight aggregates reduce the weight of the compact and increase the heat insulation.
  • Thickeners promote the dispersion of reinforcing textiles.
  • Dispersants improve the dispersion of polymers, reinforcing fibers, and the like.
  • the pigment colors the molded body.
  • Fig. 1 is a perspective view of a lightweight molded body according to one embodiment of the present invention
  • Fig. 2 shows the product of the present invention and a conventional product
  • Fig. 3 shows the use of two types of surface-modified slag.
  • FIG. 4 is a graph showing the relationship between the specific surface area and the specific gravity of the slag powder.
  • Fig. 5 is a graph showing the equilibrium humidity ratio curves of the product of the present invention and the conventional product.
  • Figure 6 is a graph showing the ratio of glass fiber addition and bending strength.
  • Fig. 7 is a graph showing curves showing the moisture absorption and desorption characteristics of molded products using two types of surface reforming slag.
  • Fig. 4 is a graph showing the relationship between the specific surface area and the specific gravity of the slag powder.
  • Fig. 5 is a graph showing the equilibrium humidity ratio curves of the product of the present invention and the conventional product.
  • Figure 6 is a graph showing the ratio of glass fiber addition and bending strength
  • Fig. 8 shows the pitted product and the conventional product
  • Fig. 9 shows the curves showing the moisture absorption / desorption characteristics of the molded products using two types of surface-modified slag.
  • Fig. 1G is a daraf that shows curves showing the temperature absorption and release characteristics of a molded body using two types of surface-modified slag.
  • FIG. 11 is a graph showing curves showing the moisture absorption / desorption characteristics of the lightweight molded article obtained by the method of the present invention and the conventional lightweight molded article.
  • Fig. 12 is a scanning electron microscope photograph showing the particle structure of the surface modified slag
  • Fig. 13 is the particle structure of the glass blast furnace slag.
  • the heating time was 30 seconds.
  • Moisture absorption and desorption The moisture absorption is released for more than 72 hours at constant temperature and humidity at 20% relative humidity and 50% humidity.
  • the relative humidity was changed to 90% and the weight increase was measured.
  • the moisture release was determined to be constant weight at 90%, changed to 50%, and measured for weight loss.
  • Scratch resistance Abrasion test method for building materials and building components (falling sand method)
  • Particle size distribution of grinding waste determined by sieving with a standard sieve and measuring the weight.
  • the sample was left to reach a constant weight in a constant temperature / humidity chamber. Then, it was dried at 110 ° C for 24 hours, and the rate of change from the original height was measured. ⁇ Also, the sample was immersed in water at 20 ° C for 24 hours, and the rate of change was measured in the same manner. In this example, the dimensional stability was shown by the following length change rate. Length change rate: Zap change rate X100 (3 ⁇ 4)
  • Freeness It was evaluated by the time required to form a slurry (having a certain amount of solids), which had been conditioned to have a bulk specific gravity of 0.5, by pressing and shaping it to a certain thickness.
  • Glass-based blast furnace slag (Blast furnace granulated slag manufactured by Keihin Works, Nippon Steel Co., Ltd.) is ground to a specific surface area of 4500 oi / g with a ball mill, and this is used as a classifying material and is classified by an airflow classifier. After classification, a fine powder slag having a brain specific surface area of 140Q0cii / g was obtained.
  • This fine powder slag is added at a temperature of 90 ° C and a concentration of 3N to 100% NaOH solution at a ratio of 5 g and stirred for 3 hours to obtain a surface with a BET specific surface area of 100 nf / g.
  • the modified slag was obtained.
  • the surface slag was sufficiently washed with water to remove the alkaline content, dried, and used as a raw material for producing a molded article.
  • Polymer admixture (Styrene butagen copolymer latex, Mpol LX-438C, made by Nippon Zeon) was added to 100 parts by weight of the surface slag. , 30 parts by weight (as solid content) and water were added and kneaded. The slurry was poured into a mold and molded while gradually dehydrating under pressure. This was dried at 60 for 15 hours and at 110'C for 5 hours to obtain a lightweight molded body as shown in FIG.
  • Amorphous Kei acid powder and slaked lime and the Si0 z: molar ratio of CaO is 1: 1 and were formulated Let 's Do that, added 5 volumes of water to this, and reacted for 3 hours at 90I, first C one S- H gel (C: Ca0, S: Si0 2, H: H 2 0) was obtained. Then the scan La Li over to 3-fold amount of water of this addition, auto-click slave at 209 t, Ke I oxide Cie ⁇ -time allowed to react for 3 hours with stirring at conditions companion of 19kg f / cm z G A hydrate was obtained. The obtained hydrate was confirmed to be zonotrite by powder X-ray diffraction.
  • FIG. 2 shows the results of measuring the moisture absorption / desorption characteristics of the lightweight molded article (B) of Example 2 and the lightweight molded article (C) of Comparative Example 1.
  • the moisture absorption curve was obtained by measuring the weight change over time when the RH was increased from 0% to 90% at 20 and the moisture release curve was obtained from 90% to 50% at 20. The change with time of the weight when the value is reduced to% is shown.
  • the compact using the surface-modified slag is Zonotri It can be seen that the strength and moisture absorption / desorption characteristics are superior to the molded product using the heat treatment.
  • the surface modified slag having a BET specific surface area of lOOnf / g produced in Examples 1 to 4 was heated and dehydrated at 450'C for 4 hours to increase the BET specific surface area to 120 nf / g. I got a lag.
  • Table 2 shows the results of the physical property tests of the lightweight compacts.
  • FIG. 2 also shows the results of measuring the moisture absorption and desorption characteristics of the lightweight molded article (A) of Example 6 in the same manner as the lightweight molded article (B) of Example 2.
  • the molded product using the surface modified slag has a higher specific strength (strength / specific gravity) and moisture absorption / desorption characteristics than the molded product using zonolite. You can see that it is excellent.
  • a lightweight molded article was obtained in the same manner as in Comparative Example 1, except that the same underwater dispersion of 5 parts by weight of glass fiber as in Example 9 was added.
  • Table 3 shows the physical property test results of both molded products.
  • Example 9 To the composition of Example 9, 1 part by weight of a cationic flocculant (Sunblock C454, manufactured by Sanyo Kasei Kogyo) (0.1 part by weight per 1 part by weight of Lima admixture) was added. Polymer mixing into wastewater during pressurized dehydration molding was compared with Example 9.
  • a cationic flocculant (Sunblock C454, manufactured by Sanyo Kasei Kogyo)
  • Example 9 In Example 9 (without addition of a flocculant), a slight amount of polymer was found in the wastewater, but was not found in Example 10 (with a flocculant).
  • a coloring test of the molded article with a pigment was performed based on the formulation of Example 10.
  • Cosmetic is dyed yellowish yellow (Ti-Sb-Ni system)-Brown Four types (Fe-Zn type), green (Ti-Zn-Ni-Co type) and blue (Co-A Zn type) (all manufactured by Dainichi Seika) were used.
  • the surface admiration slag had good adsorptivity, and uniform coloring was possible without color unevenness.
  • Example 5 10 parts by weight of the same polymer admixture as in Example 10, 5 parts by weight of glass starvation, and cationic aggregation in 100 parts by weight of the surface-modified slag of 120 rrf / g produced in Example 8 An aqueous dispersion of 1 part by weight of the agent was added and kneaded.
  • This slurry was used in the same manner as in Example 10 to obtain a lightweight molded body.
  • Table 5 and FIG. 3 show the results of the physical property test of the lightweight molded article as a comparative example of Example 10 using a surface modification slag of 100 m / g.
  • FIG. 3 shows the results of measuring the moisture absorption / release characteristics of the product of the present example (D) and the product of Example 10 (E).
  • the moisture absorption curve was obtained by measuring the change in weight over time when the R ⁇ was increased from 50% to 90% at 20 ⁇ .
  • the curve shows the temporal change in weight when the RH is reduced from 90% to 50% at 20'C.
  • Glass K blast furnace slag was ground with a ball mill to a Blaine specific surface area of 4500 ⁇ / g. This was used as a classification raw material and classified with an airflow classifier to obtain a fine powder slag with a specific surface area of 8000 and 14000 cii / g.
  • Slag powder with a specific surface area of 4,500, 8,000, or 14000 of / g was used as a raw material, and added at a ratio of 5 g to 100 ⁇ NaOH aqueous solution at a temperature of 90 and a concentration of 3 N. After stirring for an hour, a surface modified K slag was obtained.
  • the BET specific surface areas of these surface-modified slags by the N 2 adsorption method were 4500, 8000, and 14000 crf / g, and were 55 and 96.103 nf / g, respectively.
  • the bulk specific gravity of surface-modified slag produced from slag powders having a specific surface area of 4,500, 8,000, and 14000 crf / g as raw materials was measured.
  • the bulk specific gravity was measured by tapping bulk density using an ABD powder property measuring device manufactured by Tsutsui Rika Kikai.
  • lightweight compacts were manufactured, and the effect of the type of raw material on the bulk specific gravity of the compacts was examined.
  • the production of lightweight moldings is based on 100 parts by weight of surface-modified slag, and a polymer admixture (Styrenbudiene copolymer latex, Nipol LX-438C Japan, On) 10 parts by weight (as solid content), glass curd (E-glass stove) 3 parts by weight of Microglass RES 06 made by Nippon Sheet Glass) and 300 parts by weight of water are added and kneaded, and a polymer flocculant (Sanfloc C-450 Sanyo Chemical Industries, Ltd.) is added.
  • Figure 4 shows the results of measurement of the bulk specific gravity of the slag powder, the surface-modified slag, and the compact.
  • white circles indicate slag powder
  • black circles indicate surface modified slag
  • squares indicate lightweight compacts.
  • the arrow in the figure indicates the corresponding relationship.
  • the results in Fig. 4 show that the bulk specific gravity of the compact is affected by the Blaine specific surface area of the slag powder, and the larger the Blaine specific surface area, the smaller the bulk specific gravity of the compact It shows that it is.
  • Example 10 In addition to the composition of Example 10, 0.3 parts by weight of a cellulose ester-based thickener (Shin-Etsu Kagaku Kogyo Hi-Metrose) was blended. A molded article was obtained. Table 6 shows the physical properties of this compact.
  • a cellulose ester-based thickener Shin-Etsu Kagaku Kogyo Hi-Metrose
  • a molding was obtained in the same manner as described in Example 10, except that a melamine sulfonate phormalin conjugation product (manufactured by NL-4000 Bozoris) was added as a dispersant.
  • Table 7 shows the physical properties of the obtained molded body.
  • the glass-based blast furnace slag was ground with a roller mill to a specific surface area of 4680 cmsog, which was then classified with an airflow classifier to obtain a specific surface area of 14100 crf / g. A fine slag was obtained.
  • a molded product was obtained in the same manner as in Example 10, except that the surface-modified slag was a surface-modified slag having a BET specific surface area of 100 m / g.
  • the equilibrium moisture content was measured to examine the moisture absorption / desorption characteristics of the obtained molded body (F).
  • the molded article (E) of Example 10 and the molded article (C) of Comparative Example 1 and Hinoki (G), a natural wood material were also tested.
  • the measurement of the equilibrium moisture content was performed by the following method. (1) The sample size was 3 cm cube.
  • Figure 5 shows the equilibrium humidity rate curve.
  • Example 10 In the formulation of Example 10, an acrylic modified epoxy resin (Almatex manufactured by Mitsui Toatsu Chemicals) was blended in place of the polymer admixture SBB, and molded in the same manner. I got a body. Table 9 shows the physical properties of the obtained molded body. Table 9
  • Example 10 In the formulation of Example 10, two types of SBR and acrylic modified epoxy resin (Almatex manufactured by Mitsui Toatsu Chemicals) were used instead of SBK as the polymer admixture. And a molded body was obtained in the same manner. Table 10 shows the properties of the obtained molded body.
  • Glass fiber fibers of 6, 13, 25 m were used based on the composition of Example 10 and the amount was changed to 3, 5, 8, and 10 parts by weight.
  • a molded body was obtained by a suitable method.
  • FIG. 6 shows the physical properties of the obtained molded body.
  • open circles indicate fibers of 6M
  • bags indicate fibers of 13M
  • squares indicate fibers of 25a.
  • a molded article was obtained in the same manner as in Example 10, except that 5 parts by weight of glass fiber was replaced with 3 parts by weight of pitched carbon fiber (Kureha Chemical Industry Co., Ltd.). Table 11 shows the physical properties of the product. Table 10
  • Glass fiber of 6, 13, 25 orchid was used as the glass fiber based on the composition of Example 10, and the total amount was changed to 3, 5, 8, and 10 parts by weight. A molded article was obtained in the same manner.
  • FIG. 6 shows the physical properties of the obtained molded body.
  • open circles indicate fibers with 6 sua fibers
  • bags indicate fibers with 13 fibers
  • squares indicate fibers with 25 orchids.
  • Example 10 In the formulation of Example 10, 3 parts by weight of pitched carbon fiber (manufactured by Kureha Chemical Industry) was blended instead of 5 parts by weight of glass fiber, and a molded product was obtained in the same manner. Table 11 shows the physical properties. Table 11
  • a surface-modified slag having the same BET specific surface area of 100 rrf / g as the raw material for producing a molded article of Examples 1 to 4 was used.
  • Amorphous Kei acid powder and slaked lime and the S i 0 2: molar ratio of CaO is 1: 1 and were formulated Let 's Do that, this is a five-fold amount of water was added, and reacted for 3 hours at 90, first C-S - H gel (C: Ca0, S: S i 0 2, H: H 2 0) was obtained.
  • the surface-modified slag was used for the zonolite described above, and 10 parts by weight of the synthetic pulp was used for the polymer admixture (styrene butadiene copolymer latex). This was changed to obtain a lightweight molded body in the same manner as in Example 2.
  • Table 12 shows the physical property test results.
  • Example 26 To the composition of Example 26, 5 parts by weight of a glass fiber (a chopped strand of E glass, 13am ⁇ , manufactured by Nitto Boseki) in water was added, and light molding was performed in the same manner. I got a body.
  • a glass fiber a chopped strand of E glass, 13am ⁇ , manufactured by Nitto Boseki
  • Table 13 shows the results of the physical property tests of both molded bodies.
  • Synthetic pulp (SWP-B790, manufactured by Mitsui Petrochemical Industries) and a polymer admixture (Styrene Tablet) were added to 100 parts by weight of the same surface-modified slag as in Example 1.
  • Table 14 shows the physical property test results of the obtained molded body.
  • Example 33 shows that it is desirable to be 20% or less.
  • Example 30 0.5 part by weight of a cationic coagulant (Sanblock C454, manufactured by Sanyo Chemical Industries) was added to the composition of Example 30 (0.5 part by weight with respect to 1 part by weight of the polymer admixture). was added, and the state of mixing of the polymer into the wastewater at the time of pressure dehydration molding was compared with Example 30 and observed.
  • a cationic coagulant Sanblock C454, manufactured by Sanyo Chemical Industries
  • Example 30 In Example 30 (without flocculant), a slight amount of polymer was found in the wastewater. However, in Example 33 (with flocculant), no polymer was found.
  • the flocculant By using the flocculant in this way, the water-based property (water-based property) during molding can be improved, and the drainage treatment can be facilitated.
  • Example 33 To the composition of Example 33, a light-weight aggregate (sillas balloon, bulk density 0.24, manufactured by Sanki Kogyo Co., Ltd.) was added in the composition shown in Table 15, and similarly, a lightweight molded article was obtained.
  • a light-weight aggregate sinas balloon, bulk density 0.24, manufactured by Sanki Kogyo Co., Ltd.
  • Table 15 shows the physical property test results of the obtained molded body. '
  • Example 34 Based on the composition of Example 34, a coloring test of the molded article with a pigment was performed.
  • the pigments were dye-based dyes n- (Ti-Sb-Ni), brown (Fe-Zn), green (Ti-Zji-Ni-Co) and blue_ (Co).
  • -M-Zn type all manufactured by Dainichi Seika.
  • the surface-modified slag had good adsorptivity, and uniform coloring was possible without color unevenness.
  • the surface modified slag having a BET specific surface area of 100 nf / g produced in Examples 25 to 28 was heated and dehydrated at 450 CC for 4 hours to increase the BET specific surface area to 120 nf / g. I got a lag.
  • Table 16 and Fig. 7 show the physical property test results.
  • FIG. 7 shows the results of measuring the moisture absorption / desorption characteristics of the product of this example (A) and the product of Example 33 (B).
  • the moisture absorption curve was obtained by measuring the weight change over time when the RH was increased from 50% to 90% at 20 ° C, and the moisture release curve was obtained by inverting the RH at 20'C. It shows the temporal change of the weight when it is reduced from 90% to 50%.
  • the results in Table 16 and Fig. 7 show that the use of a surface reforming slag of 120 nf / g can improve specific strength (strength Z specific gravity) and moisture absorption / desorption characteristics. I have.
  • the surface-modified slag produced in Examples 1 to 4 and the calcium silicate hydrate (zonotrite) produced in Comparative Example 1 were mixed at the ratio shown in Table 1 and mixed with the polymer.
  • One admixture ethylene butadiene copolymer latex, Nippol LX-438C, manufactured by Nippon Zeon
  • Nippol LX-438C manufactured by Nippon Zeon
  • This slurry was poured into a mold and molded while gradually dehydrating under pressure.
  • This molded product is further reduced to 110 at 60'C at 15:00. After drying at C for 5 hours, a lightweight molded body shown in FIG. 1 was obtained.
  • Admixture 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Bulk specific gravity (g / cm 3 ) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 Flexural strength (kgf / cm 21 21 18 17 16 Workability ⁇ ⁇ ⁇ ⁇ ⁇ Non-flammable-Non-flammable Non-flammable Non-flint Non-flammable Incombustible Incombustible 1 Length change rate search -0.078 -0.071 0.060 0.048
  • the surface-modified slag has very good moisture absorption and water absorption, and shows excellent moisture absorption and desorption characteristics.
  • the height change rate and the drainage time are slightly larger than those of zonotrite, but if there is a great demand for dimensional stability-formability, it is possible to mix zonotrite. Can be improved. Since the absorption and release of moisture is reduced by the mixing of zonotrite, the mixing ratio of surface modified slag and zonotrite may be determined according to the required performance of each.
  • Example 39 To the composition of Example 39, 5 parts by weight of an aqueous dispersion of glass fiber (E glass glass chopped strand, 13 Fiber, manufactured by Nitto Boseki) was added, and the weight was similarly reduced. A molded article was obtained.
  • an aqueous dispersion of glass fiber E glass glass chopped strand, 13 Fiber, manufactured by Nitto Boseki
  • Table 18 shows the results of the physical property tests of the molded body in comparison with Comparative Example 2.
  • Example 42 Comparative Example 2 Distribution Surface Modified Slag 70 0
  • Example 42 0.5 parts by weight of a cation-type flocculant (Sanfloc C454, manufactured by Sanyo Kasei Kogyo Co., Ltd.) was added to the composition of Example 42 (0.1 part by weight per 1 part by weight of the polymer admixture). Then, the state of polymer infiltration into the wastewater during pressurized dehydration molding was compared with Example 42 and observed.
  • a cation-type flocculant Sanfloc C454, manufactured by Sanyo Kasei Kogyo Co., Ltd.
  • Example 42 In Example 42 (without adding a flocculant), some polymer was found in the wastewater, but not in Example 43 (with a flocculant).
  • Example 43 In the formulation of Example 43, the amount of the polymer admixture was changed to 5 parts by weight, and 5 parts by weight of a polyethylene synthetic pulp (SWP- ⁇ 790, manufactured by Mitsui Petrochemical) was dispersed in water and cation-type coagulation. 0.5 parts by weight of the thorn was added, and a lightweight molded body was obtained in the same manner.
  • SWP- ⁇ 790 polyethylene synthetic pulp
  • Comparative Example 2 In the formulation of Comparative Example 2, the amount of the polymer-admixture was changed to 5 parts by weight, and a dispersion of 5 parts by weight of the same synthetic pulp as in Example 44 and 0.5 parts by weight of the cation-type flocculant in water was added. Similarly, a lightweight molded body was obtained.
  • Table 19 shows the physical property test results of the rain compact.
  • a lightweight aggregate (silver balloon, bulk density 0.24, manufactured by Sanki Kogyo Co., Ltd.) was added to the composition of Example 44 in the composition shown in Table 20, and a lightweight molded product was obtained in the same manner.
  • Table 20 shows the physical property test results of the molded body.
  • Example 2 A coloring test of a molded article with a pigment was carried out based on the composition of No. 45.
  • Cosmetic pigments include yellow (Ti-Sb-Ni-based), brown (Fe-Zn-based), green (Ti-Zn-Ni-Co-based) and Four types of blue (Co-Al-Zn type) (all manufactured by Dainichi Seika) were used.
  • the surface-modified slag had good adsorptivity and was capable of uniform coloring without color unevenness.
  • the surface-modified slag having a BET specific surface area of 100 irf / g produced in Examples 1 to 4 was subjected to heat dehydration treatment at 450'C for 4 hours to obtain a BET specific surface area of 120 A surface modified slag improved to rf / g was obtained.
  • a lightweight molded body was obtained in the same manner as in Example 44, using the above surface-modified slag of 120 m '/ g.
  • Table 21 and Fig. 9 show the results of the physical property tests.
  • FIG. 9 also shows the results of measuring the moisture absorption / desorption characteristics of the lightweight molded article (F) of Example 49 in the same manner as the lightweight molded article (G) of Comparative Example 8.
  • the glassy blast furnace slag is ground with a ball mill to a specific surface area of 4500 crf / g, and this is classified as a raw material for classification using an airflow classifier.
  • a fine powder slag having a surface area of 14000 cmso g was obtained.
  • This fine powder slag was added at a ratio of 5 g to 100 NaOH solution having a homogeneity of 90 ° C and a concentration of 3N and stirred for 3 hours to obtain a BET specific surface area of 100 m '/ g of surface modified slag was obtained.
  • This surface-modified slag was sufficiently removed by a water method to remove an alcohol component, dried, and used as a raw material for producing a molded article.
  • calcined gypsum manufactured by Yoshino Gypsum
  • a polymer admixture styrene-butadiene copolymer latex
  • Nipol LX-458C Made by Nihon Zeon 10 parts by weight (as solid content) and glass male fiber (E glass chopped strand, 13 m ⁇ , S 5 parts by weight of an underwater dispersion was added and kneaded, and the slurry was poured into a mold and molded while gradually applying pressure and water. This molded product was dried at 601C for 15 hours and then at 110 for 5 hours to obtain a lightweight molded product.
  • Table 22 shows the physical property test results.
  • Example 50 Example 51 Example 52 Example 53 Example 53 Example 54 Example 55 Comparative Example 2
  • Example 52 To the composition of Example 52, 1 part by weight of a Kachion type flocculant (Sunblock C454, manufactured by Sanyo Chemical Industries) (0.1 part by weight per 1 part by weight of the polymer admixture) was added. The state of polymer contamination in the wastewater during pressurized dehydration molding was compared with Example 52 and observed.
  • a Kachion type flocculant (Sunblock C454, manufactured by Sanyo Chemical Industries)
  • Example II 52 (without flocculant), some polymer was found in the wastewater, but not in Example 56 (with flocculant).
  • the flocculant By using the flocculant in this way, the water-based property (water-based property) during molding can be improved, and the drainage treatment can be facilitated.
  • a polymer admixture and a cationic type as shown in Table 23 were added to an aqueous dispersion of 100 parts by weight of surface-modified slag, 50 parts by weight of calcined stone, and 5 parts by weight of glass fiber as in Examples 50 to 55. Similarly, a light-weight molded product was obtained by changing the amount of the coagulant.
  • Table 23 shows the physical property test results of the obtained molded body.
  • a molded product was obtained in the same manner as in Example 57, without adding calcined stones.
  • the results in Table 23 show that even when the polymer admixture was reduced by adding stones, no addition was made. It shows that the same strength as that of the one can be secured.
  • Example 59 5 parts by weight of an aqueous dispersion of a polystyrene synthetic pulver (SWP-E790, manufactured by Mitsui Petrochemical Industries) was added to the formulation of Example 59, and a lightweight molded article was obtained in the same manner.
  • SWP-E790 polystyrene synthetic pulver
  • Table 24 shows the physical property test results of the obtained molded body.
  • Example 60 the surface-modified slag was 70 parts by weight, and the calcium silicate hydrate (zonotrite) prepared in Comparative Example 1 was 30 parts by weight. Thus, a lightweight molded body was obtained.
  • Table 25 shows the physical property test results of the obtained molded body.
  • Example 61 In the composition of Example 61, a lightweight aggregate (silver balloon, bulk density .24, manufactured by Sanki Kogyo Co., Ltd.) was added in the composition shown in Table 26, and a molded product was obtained in the same manner.
  • a lightweight aggregate silica balloon, bulk density .24, manufactured by Sanki Kogyo Co., Ltd.
  • Example 62 Example 63
  • Example 64
  • Example 62 Based on the formulation of Example 62, a coloring test of the molded article with a pigment was performed.
  • the pigments are dye pi-colored dyes ⁇ — (Ti-Sb-Ni), brown (Fe-Zn) and green (n-Zn-Ni-).
  • Four types (Co type) and blue (Co- ⁇ 1- ⁇ ⁇ ⁇ type) (all manufactured by Dainichi Seika) were used.
  • the surface-modified slag had good adsorptivity and was capable of uniform coloring without color unevenness.
  • the surface modification slag having a BET specific surface area of 100 n / g produced in Examples 50 to 55 was heated and dehydrated at 450 ° C for 4 hours to increase the BET specific surface area to 120 nf / g. Got a quality slag.
  • a lightweight molded body was obtained in the same manner as in Example 61, using a surface-modified slag of 120 nf / g.
  • Fig. 10 shows the results of measuring the moisture absorption / desorption characteristics of the product of this example (A) and that of Example 61 (B).
  • the moisture absorption curve was obtained by measuring the change in weight when the RH was reduced from 50% to 90% at 20 ° C, and the moisture release curve was inverted at 20 at RH. Time change of weight when decreasing from 90% to 50% Shows that
  • EVA ethylene butyl acetate
  • Table 28 shows a comparison of performance with commercially available artificial wood (Zonotriite, trade name: Woody Ceram Ube Industries) as a comparative material.
  • FIG. 11 shows the results of measuring the moisture absorption / release characteristics of the product of this example, 67 (A), the comparative product (B), which is a commercial product, and the comparative product (C), which is hinoki.
  • the lightweight molded article obtained by the method of the present invention has a humidity control property close to that of Japanese cypress. You can see that it is.
  • Example 68 5 parts by weight of a polymer admixture (styrene butadiene copolymer emulsion Nipol Lx-438C (manufactured by Nippon Zeon)) was further added to the above-mentioned composition (Example 68).
  • Example 69 5 parts by weight of a polymer admixture (styrene butadiene copolymer emulsion Nipol Lx-438C (manufactured by Nippon Zeon)) was further added to the above-mentioned composition (Example 68).
  • Example 69 Similarly, a lightweight molded body was obtained.
  • Table 29 shows a comparison of the characteristic values of artificial wood (Ube Wood Ceramic) and the lightweight compact of the present invention.
  • the performance evaluation was performed based on the particle size distribution (% by particle size classified using a standard sieve) of the cutting waste of the wood cutting machine and the glossiness according to JIS Z 8741-1962.
  • the lightweight molded product of the present invention has different basic properties and physical properties. It has a particularly superior humidity control function than products using calcium hydrate. It is easily presumed that there is virtually no effect on health as inorganic powder. Since the surface-modified slag has more water of crystallization than zonotrite, it can be expected to be self-digesting. In addition, it has good processing characteristics such as cutting, cutting, and nailing, and has characteristics such as non-combustibility, little dimensional change, and no risk of decay or deterioration. In addition, when synthetic pulp is added, the processing characteristics are excellent, dust generation during processing is reduced, the surface gloss is excellent, and the drainage during processing of the molded product is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

明 細 書
軽量成形体およ びそ の製造方法
技術分野
こ の発明 は建築用材料、 断熱用材料家具、 裏打材等に用 い ら れる 軽量成形体およびそ の製造方法に闋す る も の で あ る 。 背景技術
ケ ィ 酸カ ル シ ウ ム系化合物を主成分と する成形体は人造木材等 と 称さ れて建築用材料 と して広 く 用い られてい る材料であ る。 そ の製 造方法 と して はま ずシ リ 力質原料 と石灰質原料に水を加えて混合ス ラ リ ー状に し、 ま ず 90て程度で反応させてゲル化させる。 こ れをォ 一 ト ク レー ブに入れて 190〜 250 'Cで数時間反応させて ゾノ ト ラ イ ト を合成する。 こ のゾノ ト ラ イ ト ス ラ リ ー に必要に よ り 靱性を向上 させ る ためにガ ラ ス繊維、 界面活性剤、 ポ リ マー混和剤等を適宜加 えて撹拌混合 し、 型枠に入れて加圧脱水成形を行い、 120 °C程度で 乾燥 して成形体を得る方法で あ る (セ メ ン ト · コ ン ク リ ー ト 、 No.469: Mar. 1986, p37-43) 。
ゾノ ト ラ イ ト は珪酸カ ルシ ウ ム水和物の一つであ り 、 CaO/S i 02モ ル比は、 ほぼ 1 であ る。 ゾノ ト ラ イ ト の結晶系は一般に擬斜方格子 ( a = 17.17 A b =3.69 A . c =6.96 A . β =89.6° ) で組成式は Ca6(Si6017) (OH) 2で あ る。 結晶構造 と して は、 县さ方向が b軸に伸 县す る繊維状形態を持つ こ とが特徴であ る。 ま た、 ゾノ ト ラ イ ト 粒 子の B E T比表面積は 25〜30rrf/g程度で あ る。
ケ ィ 酸カ ル シ ウ ム系成形体に関 して は種々 の特許出願があ り 、 例 え ば特開昭 52- 15516号公報に は粉末状の シ リ 力 質原料及び石灰質原 料を水中に混合 して加熱反応させ る こ と に よ り ケ ィ 酸カ ル シ ウ ム の 水性スラ リ ーを得、 これにポ リ マーェマルジ ョ ンを加えてポ リ マ一 をケ ィ 酸カ ルシウ ム に吸着させる方法が開示されている。 また、 特 開昭 54— 160428号公報には石灰質原料とケィ酸質原料とを水熱合成 反応させて得られたケ ィ酸カ ルシウ ム に水硬性石コ ゥ 、 重合体エマ ルジ ョ ン及び重合体ェマルジ ョ ン用凝集剤を加えて水性スラ リ 一と し、 これを成形、 乾燥して成形物とする方法が蘭示されている。 特 開昭 60— 246251号公報には石灰質原料とケィ酸質原料とを水熱合成 反応させて得られたケ ィ 酸力 ルシゥ ム に力 ルボキ シル基を龠むス チ レ ン 一 ブタ ジエ ン共重合体ラ テ ッ ク ス及びカ チオ ン型髙分子凝集剤 -を加えて水性ス ラ 一と しこれを成形、 乾燥して成形物とする方法 が開示されてい る。 特開昭 63— 85038号公報には石灰原料とケィ酸 原料との混合物に水を加えてス ラ リ 一化し、 ォー ト ク レーブ中で撹 拌しながら加熱する こ とによ ってケィ酸カ ルシウ ム結晶.ス ラ リ ーを 生成させ、 これに合成パルプ又はその熱変形物を加えて脱水、 成形, 乾燥して成形体を得る方法が開示されてい る。 特開昭 63— 201050号 公報には石灰石原料粉末とケィ 酸質原料粉末とを混合し、 水を加え て水熟反応させて得られたケ ィ酸カ ルシウ ムス ラ リ 一にポ リ マーェ マルジ ョ ンを吸着したセ ピオライ ト及び補強鐵維を加えてプ レス に よ り脫水成形し乾燥する こ とによ って成形体を得る方法が開示され てい る。 さ らに、 特開昭 63— 260847号公報には石灰質原料とケ ィ酸 賀原料とを水熱合成反応させて得られたケィ酸カ ルシウ ム水和物に カ ルボキ シル基を舍有するスチ レ ン一ブタ ジエ ン共重合体ラテ ッ ク スを加えて水性ス ラ リ ーとし、 これを成形、 乾燥して成形物とする 方法において該成形物を線維網状体で補強する方法が開示されてい る c
前述の如く 従来のケィ酸カ ルシ ウ ム系成形体はいずれも石灰質原 料と ケ ィ 酸質原料とを 190〜250 °C の飽和水蒸気圧下で数時間加熱 し て水熱合成反応させて ゾノ ト ラ イ ト 等のケ ィ 酸カ ル シ ウ ム を製造 し てお り 、 原料に純度の高い石灰質原料及びケ ィ酸質原料を用いてい たばかり でな く 多大なエ ネ ルギ ー も消費する と こ ろか ら コ ス ト がか かる と い う 問題があ っ た。 ま た、 従来のケ ィ 酸カ ル シ ウ ム系の成形 体の曲 げ強度は 80〜: L20kg f /cm 2程度であ り そ の向上が望ま れていた。 さ ら に、 ゾノ ト ラ イ ト は単位重量あた り の結晶水量が少な く 、 耐熱 性は高い も の の結晶水を放出す る 自 己消化性に は乏 しい点 も改善が 望ま れて いた。 発明の開示
本発明 は上記の課題を解決 した軽量成形体及びそ の製造方法を提 供する も のであ り、 表面改質ス ラ グ (ガ ラ ス の溶解反応 ♦ 水和反応 によ る改質と、 さ ら に加熱脱水する改質の 2 種類の改質よ り な る ス ラ グを意味する) を主材 と す る。 こ の主材に、 ポ リ マ ー混和剤、 補 強繊維、 凝集剤、 軽量骨材、 增粘剤、 分散剤、 顔料、 合成パルプ、 針状な い し繊維状のケ ィ 酸カ ル シ ゥ ム水和物およ び水硬性石コ ゥ の Ι Εί上を さ ら に用い る こ とを特徴と して い る。
ガ ラ ス の溶解反応と水和反応によ る表面改質ス ラ グはガ ラ ス質高 炉ス ラ グ粉末をア ルカ リ 水溶液で処理する こ と に よ っ てガ ラ ス の溶 解反応及び水.和反応を生 じ させ、 それに よ つ て表面を改質 した も の であ る。 形状はゾノ ト ラ イ ト と異な り 、 球状あ る い は球が重な り 合 つ たぶど う の房状で あ る。 主な水和生成物は ト バモ ラ イ ト ま た はそ の類似鉱物であ る。 原料のガ ラ ス質高炉ス ラ グ は水砕ス ラ グ、 風砕 ス ラ グ等の いずれであ っ て も よ い。 粒度は細かい も のがよ く 、 例え ばブ レ ー ン比表面積で 4000 cil / g 以上、 特に 8000〜 14000 oi /g程度 の ものが適当である。 このよ う な粒度の ものを得るために必要によ り粉碎機および分級機等で微粉化する こ とができ る。 原料ス ラ グの 比表面積は、 本発明の軽量成型体の物性、 特にかさ比重に影響を与 える。 アルカ リ 水溶液は苛性ソーダ、 苛性カ リ等の苛性アルカ リ液 がよ く 、 濃度は 0. 5 N以上、 特に 上が好ま しい。 実用上は苛 性ソ一ダが使いやすい。 また、 アルカ リ の組合せも有効である。 炭 酸ナ ト リ ゥムを苛性ソ ーダに適当量組合せる こと も有効である。 処 理時間は処理温度等によ って異なるが 30分間以上であり、 通常 1 時 間〜 10時藺程度である。 反応を促進するために処理温度は高い方が よ く 、 実用上 90 'C程度である。 また、 100てを超える水熱反応によ る こ と もよい。 こ のアル力 リ処理によ ってガラ ス質髙炉スラ グ粒子 の表面でガラ ス の溶解反応と水和物の形成反応が起こ る。 その結果- ス ラ グ表面が多孔質化して B E T比表面積は 20〜: O nf / g程度、 好 ま し く は 40 nf /g E 上、 さ らに好ま し く は 90 nf /g 上になる。 この表 面改質ス ラ グ粒子は電子顕微鏡で観察する こ と によ っ て判別する こ とができ る。 表面改質ス ラ グの走査型電子顕微鏡写真を第 12図に、 そ してガ ラ ス質高炉ス ラ グの走査型電子顕微鏡写真を第 13図にそれ ぞれ示す。 アル力 リ処理後は水洗してアル力 リ を賒去して使用する < このよ う な表面改資ス ラ グの製造方法は特公昭 57— 7093号公報およ び、 特開平 1 一 252559号公報に開示されており、 また、 その利用に ついて も、 リ ンの除去法(特開昭 56 - 51283 号公報、 特開昭 61— 28 491号公報、 特開昭 61— 64392号公報) ヒ素及びケ ィ 素の同時除丟法 (特開昭 62— 45394号公報)、 高舍水泥状物質の脫水法 (特公昭 60 - 26600号公報) 等が開示されてい る。
この表面改質スラ グは 250〜 800 'C程度、 好ま し く は 450 'C程度で 加熱して脱水する こ と によ り 、 初期の状態によ り異なるが、 例えば B E T比面積 100 m / g の ものを 120〜140 m /g程度に高める こ とがで き る。 こ のよ う に、 水和改質されたス ラ グを更に加熱脱水する こ と の有効性は、 本発明者らによ り は じめて見い出された も のであ り、 こ の工業的意義は極めて大きい (特開平 1 — 252559) 。 なお、 こ の 際、 加熱脱水による シ ンタ ー現象を起こ さ ないよ う な温度と時間条 件を選択する こ とが肝要である。 こ の加熱脱水処理ス ラグの使用に よ って比強度及び吸放湿特性を向上でき るの で好ま しい。 なお、 本 明細書では、 加熱脱水処理したス ラ グも表面改質ス ラ グと表記する ポ リ マ ー混和剤は、 表面改質ス ラ グ粒子に均一に付着する ものが よ く 、 各種のゴム ラ テ ッ ク ス、 合成樹脂ェマ ルジ ヨ ン等を使用でき る。
ゴム ラ テ ッ ク ス は、 例えば、 天然ゴム ラ テ ッ ク ス及びス チ レ ン 一 ブタ ジエ ン共重合体、 ア タ リ π 二 ト リ ル一 ブタ ジエ ン共重合体、 ク ロ ロ プ レ ン重合体等の ラ テ ッ ク ス で あ り 、 合成樹脂ェ マルジ ョ ン は 例えばヱ チ レ ン 一酢酸ビュ ル共重合体、 酢酸ビニル重合体、 ァ ク リ ル酸エ ス テル重合体、 塩化ビニ リ デ ン重合体、 塩化ビニル重合体等 の ヱ マ ル ジ ョ ンである。
ポ リ マー混和剤の添加量は、 表面改質ス ラ グに対する固形物重量 比で 3 〜 20 %程度、 特に 5 〜 10 %程度が適当である。 3 %未満では 強度及び機械加工性の向上が不充分にな り、 一方、 20 %を越え る と 耐火性の低下が実用上問題となる。
合成パルプは、 合成樹脂、 主 と してポ リ オ レ フ イ ン に親水性を与 えてパルプ状に し た も のであ り 、 ポ リ エ チ レ ンパルプ、 ポ リ プ口 ビ レ ンパルプ等がある。 表面改質ス ラ グに対する重量比で 3 〜 20 %程 度、 特に 5 〜; 10 %程度が適当である。 3 %未満では機械加工性、 表 面光沢の向上が不充分であ り、 一方、 20 %を越える と耐火性が低下 する。
ケ ィ酸カ ルシウ ム水和物は、 シ リ カ質原料と石灰質原料に水を加 えて加熱反応させる こ と によ っ て得られる。 こ のケ ィ酸カ ルシ ウ ム 水和物の種類は問わないが、 ゾノ ト ラ イ ト、 トパモラ イ ト等の針状 ない しは纈維状の結晶質のものが好ま し く 、 特に成形体の耐熱性及 び寸法安定性の面からゾノ ト ラ イ トが好ま しい。
表面改質ス ラ グ と上記のケ ィ酸カ ルシ ウ ム水和物の配合重量比は- 9 : 1 〜 1 : 9 、 好ま し く は 7 : 63 〜 3 : 7 の範囲が適当であ り、 目的とする性能によ り適宜選択する。
水硬性石コ ゥ は、 型及び /9型の半水石コ ゥ、 無水石コ ゥ等のい ずれの も のであ つてもよいが価格の面から 型半水石コ ゥを主要成 分とする焼石コ ゥが好ま しい。 石コ ゥ の添加量は、 表面改質ス ラグ に対する重量比で 10〜 150 %程度、 好ま し く は 30〜70 %程度が適当 である。 10 ¾ ¾下では曲げ強度の向上効果が少な く 、 一方、 150 % を越える と機械加工性及び比強度が低下する。 必要によ り ク ェ ン酸 ソーダなどの石コゥ の凝結調整剤を添加する こ とができ る。
補強織維は、 ガラ ス繊維、 炭素線維などの無機繊維、 合成繊維、 天然織-維等である。 合成織維はポ リ エス テル繊維、 ポ リ エチ レ ン繊 維等であり、 天然繊維はパルプ、 木綿、 鉱物璣維等である。 これら の中で不燃性及びコ ス ト の点でガラ ス綞維が特に好ま しい。
補強鐵維の添加量は、 繊維の比重にもよるが表面改質スラグに対 する重量比で 2 〜: 10 %程度が適当である。 2 %未溝では補強効果が 実用上有効でな く 、 "^方 10 %を越える と均一分散性の確保が難し く なる。
ポ リ マー混和剤の凝集剤を加える こ とによ って表面改贅ス ラグへ のポ リ マー混和剤の吸着性を高める こ とができ、 加圧成形過程での 濾水 (脱水) 性が向上し、 また、 排水中に漏出する有機物の量を少 な く でき、 排水処理を容易に行な う こ とがで き る。
凝集剤は、 硫酸ア ル ミ ニ ウ ム等の無機系の もの もあるが、 本発明 の成形体には有機系のもの、 特にカ チオ ン型高分子凝集剤が好ま し い。 カ チオ ン型高分子凝集剤の例と しては、 ポ リ ジア ルキルア ミ ノ アルキルア タ リ レー ト 、 ポ リ ア ミ ノ メ チルア ク リ ルア ミ ド、 ポ リ ビ ニルピ リ ジニ ゥ ム ノヽ ロ ゲ ン塩、 ポ リ ビニルイ ミ ダゾ リ ン等の 4 級ァ ミ ン化合物などがある。
凝集剤の添加量は、 カ チオ ン型高分子凝集剤の場合には、 ポ リ マ —混和剤 1 重量部 (固形物重量) に対し 0. 05〜 0. 2 重量部程度が好 ま しい。
軽量成形体には、 軽量骨材を添加する こ とがで き る。 軽量骨材は ノヽ。一 ラ イ ト 、 シ ラ スバルー ン等であ り 、 添加量は表面改質ス ラ グに 対する重量比で 60 %を越える と成形体の強度、 加工性等が低下する ので好ま し く ない。
軽量成形体には、 補強繊維の分散性向上や成形時の保形性などを 確保するため、 增粘剤を加える こ とができ る。 增粘剤と しては、 水 溶性高分子、 一般的にはセ ル ロ ー ス ヱ 一 テル類が用い られる。
軽量成形体には、 ポ リ マ — 、 補強繊維などの分散、 混練ス ラ リ ー の流動性向上などのため、 分散剤を添加する こ と がで き る。 分散剤 と して は、 ナ フ タ レ ン ス ルホ ン酸塩ホ ルマ リ ン高縮合物、 メ ラ ミ ン ス ルホ ン酸系化合物などが用い られる。
軽量成形体には、 各種顔料を加えて着色する こ とがで き る。 顔料 の例と しては、 鉛白、 鉛丹、 黄鉛、 群青、 紺青、 酸化コ バル ト 、 二 酸化チタ ン、 チタ ニ ウ ム イ ェ ロ ー、 ベ ンガ ラ 、 鉄黒、 モ リ ブデ ン赤、 リ サージ、 アル ミ ニ ウ ム粉等の無機顔料、 ァゾ系、 フ タ ロ シア ニ ン 系等の有機顔料を挙げる こ とができ る。
本癸明の軽量成形体は、 その特县を損なわない範囲でその他の添 加物を舎むこ とができ る。 この添加物はケィ酸カルシウム成形体用 の公知の添加物などから適宜選択される。
このよ う な軽量成形体の製造方法と しては、 表面改贅ス ラグ粉末 (またはそれを舍むス ラ リ ー) 、 水硬性石コ ゥ、 ポ リ マー混和剤等 および水を含む混合物を混練し、 成形し、 これを乾燥すればよい。 補強織維、 凝集剤、 合成パルプ、 ケィ酸カ ル シ ウ ム水和物、 軽量骨 材、 増粘剤、 分散荊、 顔料等を添加する場合には混練する前または 混練中に添加する。 混練するための水は上記いずれか 1 以上の成分 の懸芻液あるいは水溶液の形で加えて もよい。 また、 水洗した表面 改質ス ラグあるいはケ ィ 酸カ ルシ ウ ム水和物を乾燥しないで用い、 その水分を混練用に利用する こ と もできる。
また混練したス ラ リ ー に気泡が混入し、 成形体に欠陥が生ずる恐 れがあれば、 消泡剤を添加したり、 混練中や混練後減圧脫泡するこ と もでき る。
成形方法は、 加圧、 抄造、 押出、 减圧など最終製品の目的、 用途 に応じて選択すればよいが、 混練して得られたス ラ リ ーを加圧して 脱水成形する方法がよ く 用い られる。 この場合、 ス ラ リ ーは通常は 型枠等の型に流し込んで加圧するが、 均一滕永ゃ成形効率を上げる ために、 加圧面に金網、 ろ紙、 ろ布、 多孔板などを用いたり、 減圧 脱水 ' 脱泡が可能なュニ ッ トを組み込んだり、 また表面の意匠性を 上げるためェ ン ボス板を組み込んだり する こ とができ る。 また加圧 脱永後成形体を所定の形状に切出すこ と もでき る。 加圧は所定の程 度まで脫水でき る圧力で行えばよ く 、 例えば成形体のかさ比重が所 定の値になるよ う に調整すれば良く 、 通常 10〜: L00kgf / cl、好ま し く は 20〜60 kg f / cm2である。
ま た、 押出成形では加圧成形と は最適水分量が異なる。 抄造方式 によ る成形では、 ポ リ マ ー混和^など添加剤の成形体中への安定な と り込み (定着) に工夫が要るなど、 選択する成形方法によ り技術 のボイ ン トが変わるので注意すべきである。
乾燥は成形体の内部の水分を除まできかつ表面改質ス ラ グの結晶 水が残る程度がよ く 、 例えば 100〜 1 80 °C程度、 好ま し く は 1 10〜 150 て程度で加熱乾燥すればよい。 成形体の乾燥によ るひび割れを防止 するために、 まず 60〜80 °C程度で予備乾燥する こ と も好ま しい。 本発明の軽量成形体は、 混練物から水分を除いた組成にな り、 か さ比重は 0. 2 〜 1 g / cm3程度、 好ま し く は 0. 4 〜 0. 6 g/ cm3程度の多孔 質体である。
〔作用〕
本発明の軽量成形体においては、 球状ない しはぶどう の房状の表 面改質ス ラ グを主体とする複合組織は耐熱性、 断熱性、 調湿性等を 有し、 軽量成形体の主体とな っている。 こ の改質ス ラ グは物理吸着 性が良好であ り 、 各種顔料等によ る着色を容易にする作用 も有して いる。 石コ ゥ水和物 (二水石コ ゥ) は不燃性を低下させる こ と な く 軽量成形体の曲げ強度等の強度を高めている。 ポ リ マ ー混和剤は表 面改質ス ラ グ粒子の表面に付着して粒子間を結合させ、 軽量成形体 の靱性、 切断、 切削、 釘打等の加工性、 曲げ強度、 引張強度等を向 上させている。 合成パルプは成形体に切断、 切削、 釘打ち等の機械 加工性を付与する と と もに表面光沢さ らには濾水性 (脱水性) を向 上させてい る。 ケ ィ酸カ ルシ ウ ム水和物は成形体の耐熱性、 寸法安 定性等を向上させる。 補強繊維は破断強度等の強度を高めている。 凝集剤は表面改質ス ラ グへのポ リ マ 一混和剤の定着性を高め、 加圧 成形過程での瀘水性 (脫水性) を向上させている。 軽量骨材は成形 体を軽量化する と と もに断熱性を高めている。 増粘剤は、 補強織維 の分散を商上させている。 分散剤は、 ポ リ マー、 補強繊維などの分 散を向上させている。 顔料は輊量成形体を着色する。 図面の簡単な説明
第 1 図は本発明の一実施例である軽量成形体の斜視図であり、 第 2 図は本発明品と従来品についてそ して第 3 図は 2種の表面改質ス ラグを用いた成形体についてそれぞれ吸放湿特性を示す曲線をあ ら わしたダラ フである。 第 4図はス ラ グ粉末のブレー ン比表面積とか さ比重との閟係を示すグラ フである。 第 5図は本発明品と従来品の 平衡舍湿率曲線をあ らわ したグラ フである。 第 6図はガラ ス繊維の 添加率と曲げ強度の蘭係をあ らわしたグラ フである。 第 7図は 2種 の表面改贅スラグを用いた成形体についてそれぞれ吸放湿特性を示 す曲線をあ らわしたグ ラ フである。 第 8 図は本穽明品と従来品につ いてそ して第 9 図は 2種の表面改質ス ラ グを用いた成形体について それぞれ吸放湿特性を示す曲線をあ らわしたグラ フである。 第 1G図 は 2種の表面改質ス ラグを用いた成形体についてそれぞれ吸放温特 性を示す曲線をあ らわしたダラ フである。 第 11図は本発明の方法に よ り得られた軽量成形体と従来の軽量成形体についてそれぞれ吸放 湿特性を示す曲線をあ らわ したグラ フである。 第 12図は表面改質ス ラ グのそ して第 13図はガラ ス贅高炉ス ラグのそれぞれ粒子構造を示 す走査型電子顕徼鏡写真である。 発明を実施するための最良の形態
以下、 本発明の実施例を示す。 なお、 実施例中の軽量成形体の物性は、 以下の方法によ り測定し た。
かさ比重 : 成形体の重量と寸法を測定し、 計算によ り算出 した。 曲げ強度 : JIS A 1106— 1976に準じた。 試験体寸法は 40»m X 160 am x 25Mと した。
加 ェ 性 : ノ コギ リ によ る切断性、 カ ンナ によ る切削性、 釘打ち性 などを見て良好な順から〇、 △、 Xの 3 段階で評価した
M 焼 性 : JIS A 1321— 1975に準じた。 試験体寸法は 40 mi x 40wi x
50amと し、 加熱時間は 30秒と した。
吸放湿性 : 吸湿性は、 20 相対湿度 50%の恒温恒湿器 72時間以上放
. 置し、 桓量となった こ とを確認し-、 相対湿度 90%に変化 させ重量增加を測定した。 放湿性は、 同様に 90%で恒量 と し、 50%に変化させ重量減少を測定して求めた。
耐傷付性 : 建築材料および建築構成部分の摩耗試験方法 (落砂法)
JIS 1452— 1972の方法 Aおよび Cによ り行い、 表面光 沢度の失なわれる度合い、 および表層の失なわれる度合 いを目視によ り 、 良い方から◎、 〇、 X の 3段階で評価 した。
研削屑の粒度分布 : 標準篩で篩分して重量を測定して求めた。
研磨面の鏡面光沢度 : JIS Z 8741一 1962によ り実施した。
寸法安定性 : 幅 40mn X县 160ra X高 25amの試験体を 20Ϊ相対湿度 65
%の恒温恒湿器内で恒量と な る ま で放置した。 そ して、 110てで 24時間乾燥し元の县さからの変化率を測定した < また、 20°C水中に 24時間水浸させ、 同様に変化率を測定 した。 本実施例では寸法安定性は下記の县さ変化率で示 した。 县さ変化率 : 县ざ変化率 X100(¾)
I 1
£ ι·,20ΐ、 65%RI1での基準县さ
2;乾燥または吸水後の县さ
濾 水 性 : かさ比重が 0.5 となる様に諷整したス ラ リ ー (一定量の 固形分を会有) を一定厚みまで加圧脫水して成形する の . に要した時間で評価した。
実施例 1〜 4
ガ ラ ス質高炉スラグ (日本鐧管京浜製鉄所製、 高炉水砕ス ラ グ) をボール ミ ルでブ レー ン比表面積 4500oi/gまで粉碎し、 これを分級 原料と し気流分級機にて分級し、 ブ レー ン比表面積 140Q0cii/gの微 粉スラ グを得た。
こ の微粉ス ラ グを温度が 90°Cでかつ濃度が 3規定の NaOH溶液 100 に対し 5 gの割合で添加し、 3時間撹拌処理する こ と によ り B E T比表面積 100nf/gの表面改質スラ グを得た。 こ の表面 ¾質ス ラ グを充分に水洗してア ルカ リ分を除去し、 乾燥して成形体製造用原 料と して用いた。
表面改賀ス ラ グ 100重量部に対し、 ポ リ マー混和剤 (スチ レ ンブ タ ジェ ン共重合体ラ テ ツ ク ス、 Mpol LX— 438C、 日本ゼオ ン製) を 各々 5、 10、 20、 30重量部 (固形分と して) 及び水を加えて混練し た。 このスラ リ ーを型枠に注入し、 徐々に加圧脱水しながら成形し た。 これを 60でで 15時間さ らに 110'Cで 5時間乾燥し、 第 1図に示 す軽量成形体を得た。
比較钶 1
非晶質ケィ酸粉末と消石灰とを Si0z : CaOのモル比が 1 : 1 とな るよ う調合し、 こ れに 5倍量の水を加え、 90Ϊで 3時間反応させ、 まず C一 S— Hゲル (C: Ca0、 S: Si02、 H : H20) を得た。 次に こ のス ラ リ ーに 3 倍量の水を加え、 オー ト ク レーブにて 209 t、 19kg f /cm z Gの条伴で撹拌しながら 3 時間反応させケ ィ 酸カ ルシ ゥ ム水和物を得た。 得られた水和物は粉末 X線面折によ り ゾノ ト ラ ィ ト である こ とを確認した。 こ のゾノ ト ラ イ ト粉末 100重量部に対 し実施例 1 と同じポ リ マー混和剤 (ヱチ レ ンブタ ジエ ン共重合体ラ テ ッ ク ス) 10重量部および水を加え、 実施例 1〜 4 と同様な方法で 成形し、 軽量成形体を得た。
物性試験結果を表 1 及び第 2 図に示す。 表 1
Figure imgf000015_0001
実施例 2 の軽量成形体 ( B ) と比較例 1 の軽量成形体 ( C ) の吸 放湿特性を測定 した結果を第 2 図に示す。 吸湿曲線は 20でで R Hを 0 %から 90 %に高めた とき の重量変化を経時的に測定して得られた も のであ り、 放湿曲線は 20でで R Hを逆に 90 %から 50 %に下げた と き の重量の経時変化を示している。
表 1 及び第 2 図よ り表面改質スラ グを用いた成形体はゾノ ト ラ イ トを用いた成形体に比べ強度及び吸放湿特性に優れている こ とがわ かる。
実施例 5〜 8
実施例 1〜 4に おいて作製した B E T比表面積 lOOnf/gの表面改 質ス ラグを 450'Cで 4時間加熱脱水処理し、 B E T比表面積を 120 nf /gまで向上させた表面改黉ス ラ グを得た。
上記 120n /gの表面改質ス ラグ 100重量部に実施树 1〜 4 と同じポ リ マ一混和剤を各々 5、 10、 20、 30重量部 (固形分と して) 及び水 を加えて混練し実施例 1〜 4 と同様にして軽量成形体を得た。
軽量成形体の物性試験結果を表 2 に示す。 表 2
Figure imgf000016_0001
実施例 6の軽量成形体 (A) の吸放湿特性を実施例 2 の軽量成形 体 ( B ) と同様に して測定した結果をあわせて第 2図に示す。
表 2及び第 2図よ り表面改資スラグを用いた成形体は、 ゾノ ト ラ ィ トを用いた成形体に比べ、 比強度 (強度/比重) 及び吸放湿特性 に優れている こ とがわかる。
実施例 9
ガ ラ ス繊維 ( E ガ ラ ス の チ ヨ ッ プ ド ス ト ラ ン ド、 1 3 县、 日東紡 績製) 5重量部の水中分散液を加えた以外は実施例 2 と同様に して 軽量成形体を得た。
比較例 2
実施例 9 と同じガ ラ ス繊維 5 重量部の水中分散液を加えた以外は 比較例 1 と同様に して軽量成形体を得た。
両成形体の物性試験結果を表 3 に示す。
表 3
Figure imgf000017_0001
補強綞維添加系でも、 表面改賀ス ラ グを用 い た成形体は、 ゾノ ト ラ ィ ト を用いた成形体に比べ強度特性に優れている こ とがこ の試験 結果からわかる。
実施例 10
実施例 9 の配合に、 カ チオ ン型凝集剤 (サ ン フ ロ ッ ク C 454、 三洋 化成工業製) を 1 重部 ( リ マ —混和剤 1 重量部に対し 0. 1 重量部) を添加し、 加圧脱水成形時における排水中へのポ リ マーの混入状況 を実施例 9 と比較した。
実施例 9 (凝集剤無添加) で は、 排水中に若干のポ リ マー混入が 認、められたが、 実施例 10 (凝集剤添加) では認め られなかっ た。
こ の様に凝集剤を使用する こ と によ り 、 成形時の饞水性 (脱水性) を向上させる こ とができ、 排液処理を容易にする こ とができた。 実施例 11〜: L3
実施例 10の配合に軽量骨材 ( シ ラ ス バルー ン、 かさ密度 0. 24、 三 機工業製) を 10、 30、 60重量部を加え同様に して軽量成形体を得た。 得られた成形体の物性試験結果を表 4 に示す。
表 4
Figure imgf000018_0001
こ の試験結果は軽量骨材の配合によ り さ らに軽量化を図る こ とが で き る こ とを示している。
実施例 14
実施例 10の配合を基に顔料による成形体の着色試験を行った。 顔 料はダィ ピ 口キサイ ドカ ラ ーの イ ェ ロ ー(T i - Sb- N i系)- ブラ ウ ン (Fe- Zn系) 、 グ リ ー ン(Ti-Zn- Ni- Co系)及びブルー (Co-A Zn系) の 4種 (いずれも大日精化製) を用いた。
表面改贊ス ラ グは吸着性が良好であ り、 色む らがな く 均一な着色 が可能であ っ た。
実施例 15
実施例 5 8 において作製した 120 rrf /gの表面改質ス ラ グ 100重 量部に実施例 10と同じポ リ マー混和剤 10重量部、 ガラ ス饑維 5重量 部及びカ チオ ン型凝集剤 1 重量部の水中分散液を加えて混練した。
こ の ス ラ リ 一を実施例 10と同様に して軽量成形体を得た。
軽量成形体の物性試験結果を 100 m /gの表面改蜇ス ラ グを用いた 実施例 10の も のを比較例と して表 5及び第 3 図に示す。
表 5
Figure imgf000019_0001
本実施例品 ( D ) と実施例 10 ( E ) の も のの吸放湿特性を測定し た結果を第 3 図に示す。 吸湿曲線は 20 ΐで R Ηを 50 %から 90 %に高 めた と き の重量変化を経時的に測定して得られた も のであ り、 放湿 曲線は 20 'Cで R Hを逆に 90 %から 50 %に下げたときの重量の柽時変 化を示している。
表 5 及び第 3 図の結果は 120 m の表面改質スラ グの使用によ り、 比強度 (強度ノ比重) および吸放湿特性の向上が可能とな る こ とを 示 してい る。
実施钶 16
ガラ ス K高炉ス ラ グをボールミ ルでブ レー ン比表面積 4500 οί /gま で粉砕した。 これを分級原料と して、 気流分級機にて分級し、 ブレ 一ン比表面積 8000、 14000 cii /gの微粉ス ラ グを得た。
ブ レー ン比表面積 4500、 8000、 14000 of /gのス ラ グ粉末を原料と して、 温度が 90てでかつ濃度が 3規定の NaOH水溶液 100 ^に対し 5 g の割合で添加し、 3時間撹拌処理し、 表面改 Kスラ グを得た。
これら表面改質ス ラ グを十分洗浄してアル力 リ分を除去し、 さ ら に乾燥し粉体を得た。
これら表面改質ス ラ グの N 2 吸着法によ る B E T比表面積は、 ブ レ ー ン比表面積 4500、 8000、 14000 crf /gで、 それぞれ 55、 96. 103 nf / であ った。
次に、 ブ レー ン比表面積 4500、 8000、 14000 crf /gのス ラ グ粉末に これらを原料と して製造した表面改質スラグのかさ比重を測定した。 かさ比重の測定は、 筒井理化機器製 A B D粉体特性測定器を用いた タ ッ ピングかさ密度と した。
また、 これら表面改贊ス ラ グを原料と して、 軽量成形体を製造し、 原料の種類が成形体のかさ比重に及ぼす影響を調べた。 軽量成形体 の製造は、 表面改質ス ラ グ 100重量部に対し、 ポ リ マ 一混和剤(ス チ レ ンブジエ ン共重合体ラ ッ テ ッ ク ス、 Nipo l LX-438C 日 本ゼ、オ ン製 ) を 10重量部 (固形分と して)、ガラ ス綣維 ( Eガラ スチ ヨ ッ プ ドス ト ラ ン ド、 マイ ク ロ グラ ス R ES 06 日本板硝子製)を 3 重量部および水 300重量部加えて混練し、 さ らに高分子凝集剤(サ ン フ ロ ッ ク C - 450 三洋化成工業製) 1 重量部を加えて混練し、 これら原料を均一に分 散したス ラ リ ーを得た。 こ の ス ラ リ ーを型枠に注入 し、 徐々 に加圧 脱水しながら成形した。 なお、 最終的な成形圧力は、 各表面改質ス ラ グと も 60 kg f / crf —定と した。 こ の成形物を 60でで 18時間、 さ らに 110 °Cで 6 時間乾燥し軽量成形体と した。
ス ラ グ粉末、 表面改質ス ラ グおよび成形体のかさ比重測定結果を 第 4図に示す。 図中、 白丸はス ラ グ粉末を、 黒丸は表面改質ス ラ グ を、 そ して四角は軽量成形体をそれぞれ示している。 図中の矢印は 対応閟係を示す。 第 4図の結果は、 成形体のかさ比重は、 ス ラ グ粉 末のブ レ ー ン比表面積に影響され、 ブ レ ー ン比表面積が大き く なる ほど、 成形体のかさ比重が小さ く なる こ とを示している。
実施例 17
実施例 10の配合に加え、 セ ル ロ ー スエー テ ル系の增粘剤 (信越化 学工業製 ハイ メ ト ロ ーズ)を 0 . 3重量部配合し、 実施例 10と同様 な方法で成形体を得た。 こ の成形体の物性を表 6 に示す。
表 6
Figure imgf000022_0001
こ の様に增粘剤を添加する こ とによ り 、 曲げ強度の高い成形体が 得られる。
実施例 18
実施例 10の配合に分散剤と してメ ラ ミ ン ス ルホ ン酸塩ホ ルマ リ ン 締合物 ( NL- 4000 ボゾ リ ス物産製) を加えて同様な方法で成形体を 得た。
得られた成形体の物性を表 7 に示す。
表 Ί
Figure imgf000023_0001
こ の様に分散剤を用いる こ とによ り、 曲げ強度の高い成形体が得 られる。
実施例 19
ガ ラ ス質高炉ス ラ グを ロ ー ラ ー ミ ルでブ レー ン比表面積 4680 cmソ g ま で粉砕し、 こ れを気流分級機で分級し、 ブ レー ン比表面積 14100 crf/gの微粉ス ラ グを得た。
こ れを NaOH水溶液 (濃度 3 M) 8重量部と K0H水溶液 (濃度 3 M) 2重量部の混合溶液中で反応させて、 BET比表面積 140m の表面改 質ス ラ グを得た。
こ の表面改質ス ラ グを実施例 10の BET比表面積 100 m/gの表面改 質ス ラ グに代えて、同様な方法で成形体を得た。 得られた成形体( F) の吸放湿特性を調べるため平衡含湿率の測定を行った。 ま た同様な 方法で実施例 10の成形体( E ) と比較例 1 の成形体( C )および天然木 材の ヒ ノ キ( G )について も行っ た。
平衡含湿率の測定は、 以下に示す方法によ り行った。 ①試料寸法は、 3 cm立方体と した。
②恒湿容器! ¾温度は、 20 ± 0. 5 で と した。
③各恒湿容器內の湿度は、 表 8 に示す 5段階の結晶共存状態の塩飽 和水溶液によ り一定に保った。
④試料は、 105土 2 'Cで恒量となるまで乾燥し、 絶乾質量を測定した
⑤試料をまず段階 1 の恒湿容器内に入れ恒量とな ったこ とを確認し た後、 J®次段階 2、 3、 4、 5 へと移し、 それぞれの舍湿率を以下 の式で算出 した。 恒量時の質量一—絶乾 K量
含湿率- x l00 (wt ¾ )
絶乾質量
表 8
Figure imgf000024_0001
第 5 図に平衡舍湿率曲線を示す。 こ の様に本実施例の成形体は、 優れた吸放湿特性を有する こ とが明 らかである。
実施例 20、 21
実施例 10の配合でポ リ マ ー混和剤の SBBに代えてァ ク リ ル変性ェ ポ キ シ樹脂(三井東圧化学製 ア ルマ テ ッ ク ス ) を配合し、 同様な方 法で成形体を得た。 得られた成形体の物性を表 9 に示す。 表 9
Figure imgf000025_0001
こ の様に ア ク リ ル変性エ ポ キ シを用 い る こ と に よ り 、 耐傷付性が 良好で しかも不燃性に優れた成形体が得 られる。
実施例 22
実施例 10の配合でポ リ マ 一混和剤と して SBKに代えて SBRとァ ク リ ル変性エ ポ キ シ樹脂 (三井東圧化学製 ア ル マ テ ッ ク ス) の 2種 類を配合し、 同様な方法で成形体を得た。 得られた成形体の特性を 表 10に示す。
表 10
Figure imgf000026_0001
この様に SBBとァク リ ル変性エポキシを併用するこ とによ り曲げ 強度の高い成形体が得られる。
実施例 23
実施例 10の配合を基準にガ ラ ス繊維の璣維县と して 6、 13、 25 m のものを用い、 配合量を 3 、 5、 8、 10重量部に変えて実施 Π 0と 同様な方法で成形体を得た。
得られた成形体の物性を第 6図に示す。 図中、 白丸は繊維县が 6 Mの ものを、 バッは線維县が 13 Mのものを、 そ して四角は襪維县が 25 «aのものをそれぞれ示している。
実施例 24
実施例 10の配合でガ ラ ス繊維 5重量部に代えて ピ ッ チ系炭素綣維 (呉羽化学工業製) 3重量部を配合し、 同様な方法で成形体を得た 得られた成形体の物性を表 11に示す。 表 10
Figure imgf000027_0001
こ の様に SBRと ァ ク リ ル変性エ ポ キ シ を併用 す る こ と に よ り 曲 げ 強度の高い成形体が得 られる。
実施例 23
実施例 10の配合を基準にガ ラ ス繊維の繊維县と して 6、 13、 25蘭 の も のを用い、 合量を 3、 5、 8 、 10重量部に変えて実施例 1 0と 同様な方法で成形体を得た。
得 られた成形体の物性を第 6 図に示す。 図中、 白丸は繊維县が 6 suaの も のを、 バッは繊維县が 13 の も のを、 そ して四角は繊維县が 25蘭の も のをそ れぞれ示 して い る。
実施例 24
実施例 10の配合でガ ラ ス繊維 5 重量部に代えて ピ ッ チ系炭素繊維 (呉羽化学工業製) 3 重量部を配合し、 同様な方法で成形体を得た 得 られた成形体の物性を表 1 1に示す。 表 11
Figure imgf000028_0001
こ の様に炭素繊維を用いる こ とにより、 軽量で強度の高い成形体 を得る こ とができ る。
実施例 25〜28
実施例 1 〜 4 の成形体製造用原料と同一の BET比表面積 100 rrf /g の表面改質ス ラ グを用いた。
上記の表面改質ス ラ グ 100重量部に対し、 ポ リ エチ レ ン合成パル プ (SW P - E790三井石油化学工業製) を各々 5 、 10、 20、 30重量部 (面形分と して) の水中分散液を加えて混練し、 こ のス ラ リ ーを型 捽に注入し、 徐々に加圧脱水しながら成形した。 こ の成形体を 60で で 15時藺さ らに 110 'Cで 5時閭乾燥し、 第 1図に示す軽量成形体を 得た。
比較例 3
非晶質ケィ酸粉末と消石灰とを S i 02 : CaOのモル比が 1 : 1 とな るよ う調合し、 こ れに 5倍量の水を加え、 90でで 3時間反応させ、 まず C— S — Hゲル (C : Ca0、 S : S i 02、 H : H 20) を得た。
次に こ のス ラ リ ーに 3倍量の水を加え、 オー ト ク レープにて 209 ΐ、 1 9kg f /cm 2 Gの条件で撹拌 しなが ら 3 時間反応させケ ィ 酸カ ルシ ゥ ム水和物を得た。 得 られた水和物は粉末) ί線面折に よ り ゾノ ト ラ ィ ト で あ る こ とを確認 した。
表面改質ス ラ グを上記の ゾノ ト ラ イ ト に、 そ して合成パルプ 10重 量部をポ リ マ ー混和剤 (ス チ レ ンブタ ジヱ ン共重合体ラ テ ツ ク ス ) に変更 し、 実施例 2 と同様に して軽量成形体を得た。
物性試験結果を表 12に示す。
表 12
レ^ 0
1 ΛΛ
表面改質スラグ inn Λ u 配
合 ケィ酸力) ゥム水和物
0 0 0 0 100 (ゾノ トライ ト)
合成パルプ 5 10 20 30 0 部
ポリマ-混和剤 (SBR) 0 0 0 0 10 かさ比重 (gん 0.50 0.50 0.50 0.50 0.50 物 曲げ強度 (kgf/c 10 19 28 37 16 性 加工性 〇 〇 〇 〇 〇
燃焼性 不燃 不燃 不燃 燃焼 不燃 研粒 + 1190^ 41 48 58 67 8 削度
690〜1190卿 11 12 15 16 11 の布
29マ〜 580卿 9 12 7 9 27
(wt¾) -291 urn 39 28 20 8 54 鏡面光沢度 Gs (75° ) 31 49 53 64 21 \ t 表 12よ り、 合成パルプを添加する こ と によ り 、 ポ リ マーに比べ加 ェ時の粉塵を低減でき、 研磨面も美しい光沢を示すこ と がわかる。 実施例 29
実施例 26の配合に、 ガ ラ ス繊維 ( E ガ ラ ス の チ ョ ッ プ ド ス ト ラ ン ド、 13am县、 日東紡績製) 5重量部の水中分散液を加え同様に して 軽量成形体を得た。
比較例 4
比較例 1 の ゾノ ト ラ イ ト粉末 100重量部に実施例 29と同じ合成パ ルプ 10重量部およびガラ ス繊維 5重量部の水中分散液を加え、 比較 例 3 と同様に して軽量成形体を得た。
両成形体の物性試験結果を表 13に示す。
表 13
Figure imgf000030_0001
こ の試験結果から表面改質ス ラ グを用いた成形体は、 ゾノ ト ラ イ トを用いた成形体に比べ強度特性に優れる こ と がわかる。
実施例 30〜 32
実施例 1 と同じ表面改質ス ラ グ 100重量部に、 合成パルプ (SWP- B790. 三井石油化学工業製) 、 ポ リ マ一混和剤 (ス チ レ ンブ タ ジェ ン共重合体ラ テ ッ ク ス、 N i po l LW - 438C . 日本ゼオ ン製)、 ガ ラ ス 繊維 ( E ガ ラ ス のチ ョ ッ プ ドス ト ラ ン ド、 13 as县、 日東紡績製) を 表 14に示す配合で加え、 同様に して軽量成形体を得た。
得られた成形体の物性試験結果を表 14に示す。 表 14
Figure imgf000031_0001
こ の試験結果から合成パルプ及びポ リ マー混和剤の配合によ り強 度向上が可能であ り、 ま た具体的な配合物に もよ るが、 概して燃焼 性の面からその合量が 20 %以下である こ とが望ま しい こ とがわかる 実施例 33
実施例 30の配合に、 カ チオ ン型凝集剤 (サ ン フ ロ ッ ク C454、 三洋 化成工業製) を 0. 5 重部 (ポ リ マー混和剤 1 重量部に対し 0. 5重量 部) を添加し、 加圧脱水成形時における排水中へのポ リ マ ー の混入 状況を実施例 30と比較し観察した。
実施例 30 (凝集剤無添加) で は、 排水中に若干のポ リ マ —混入が 認め られたが、 実施例 33 . (凝集剤添加) では認め られなかつ た。 こ の様に凝集剤を使用する こ と によ り 、 成形時の饞水性 (脫水性) を向上させる こ とができ、 排液処理を容易にする こ とができた。
実施例 34〜36
実施例 33の配合に軽量骨剤 ( シ ラ ス バルー ン、 かさ密度 0.24、 三 機工業製) を表 15に示す配合で加え、 同様に して軽量成形体を得た。
得られた成形体の物性試験結果を表 15に示す。 '
表 15
Figure imgf000032_0001
こ の試験結果から軽量骨材の配合によ り、 さ らに軽量化を図る こ とが出来、 また、 加工性の面から配合量は 60 %未溝が望ま しいこ と がわ■力、る。
実施例 37
実施例 34の配合を基に顔料による成形体の着色試験を行った。 顏 料はダイ ピロキサイ ドカ ラーのイ エ n— (Ti- Sb- Ni系)、ブラ ウ ン(Fe - Zn系) 、 グ リ ー ン(Ti- Zji- Ni- Co系〉 及びブル _ (Co-M- Zn系) の 4 種 (いずれも大日精化製) を用いた。 表面改質ス ラ グは吸着性が良好であ り、 色む らがな く 均一な着色 が可能であ っ た。
実施例 38
実施例 25〜 28において作製した B E T比表面積 100 nf /gの表面改 質ス ラ グを 450 'C で 4時間加熱脱水処理し、 B E T比表面積を 120 nf /gまで向上させた表面改質ス ラ グを得た。
こ の 120 nf /gの表面改質ス ラ グを用いて実施例 33と同様に して軽 量成形体を得た。
物性試験結果を表 16及び第 7 図に示す。
表 16
Figure imgf000033_0001
本実施例品 ( A ) と実施例 33 ( B ) の も のの吸放湿特性を測定し た結果を第 7 図に示す。 吸湿曲線は 20 °Cで R Hを 50 %から 90 %に高 めた と き の重量変化を経時的に測定して得 られた も のであ り、 放湿 曲線は 20 'Cで R Hを逆に 90 %から 50 %に下げた と き の重量の柽時変 化を示している。 表 16及び第 7 図の結果は 120 nf /gの表面改贅ス ラ グの使用によ り 比強度 (強度 Z比重) および吸放湿特性の向上が可能とな る こ とを 示 している。
実施例 39〜 41、 比較树 5 、 6
実施例 1 〜 4で作製した表面改質スラ グと比較例 1 で作製したケ ィ酸カルシウ ム水和物 (ゾノ ト ラ イ ト ) を表 1 に示す割合で混合し こ れにポ リ マ 一混和剤 (エチ レ ンブタ ジエ ン共重合体ラ テ ッ ク ス、 N i p- o l LX- 438C. 日本ゼオ ン製) を 10重量部 (固形分と して) 及び 水を加えて混練し、 こ のス ラ リ ーを型枠に注入し、 徐々に加圧脱水 しながら成形した。 こ の成形物を 60 'Cで 15時藺さ らに 110。Cで 5時 間乾燥し、 第 1 図に示す軽量成形体を得た。
物性試験結果を表 17及び第 8 図に彔す。
表 Γ7
比較例 5 実施例 39 実施例 40 実施例 41 比較例 6 ,
配 1表面改質スラグ 100 70 50 30 0 ! 入 ;
'口
ケィ酸お ゥ A水和物
0 30 50 70 100 量 (ゾノ トライ ト)
混和剤 (SBE) 10 10 10 10 10 かさ比重 (g/cm3) 0.50 0.50 0.50 0.50 0.50 曲げ強度 (kgf/cm 21 21 18 17 16 物 加工性 〇 〇 〇 〇 〇 性 不燃-性 不燃 不燧 不燃 不燃 不燃 1 县さ変化率 探 -0.078 -0.071 0.060 0.048
(%) 吸水 +0.105 +0.084 0.067 0.052 +0.033 漏生 (秒) 820 710 650 630 610 実施例 39(B )、 実施例 40(C)の実施例 41(D)、 比較例 5 (A)及び 比較例 6 ( E )の各軽量成形体の吸放湿特性を測定した結果を第 8 図 に示す。 吸湿曲線は 20 'Cで R Hを 50 %から 90 %に高めたと き の重量 変化を経時的に測定して得られた も のであり、 放湿曲線は 20 °Cで R Hを 90 %から 50 %に下げた と き の重量の経時変化を示している。 表 17及び第 8 図の結果から、 表面改質ス ラ グは吸湿、 吸水性が非 常に良好であ り、 優れた吸放湿特性を示す。 一方、 县さ変化率ゃ濾 水時間などは、 ゾノ ト ラ イ ト に比べればやや大き いが、 寸法安定性- 成形性に対する要求が大き ければ、 ゾノ ト ラ イ ト を混合する こ とで 改善でき る。 ゾノ ト ラ イ ト の混合によ り吸放湿性が低下する ので、 表面改蜇ス ラ グとゾノ ト ラ イ ト の混合割合は、 それぞれの要求性能 に応じて決定すればよい。
実施例 42
実施例 39の配合にガ ラ ス繊維 ( Eガ ラ ス のチ ヨ ッ プ ドス ト ラ ン ド, 13纖县、 日東紡績製) 5重量部の水中分散液を加え、 同様に して軽 量成形体を得た。
成形体の物性試験結果を比較例 2 と比較して表 18に示す。
表 18
実施例 42 比較例 2 配 表面改質ス ラ グ 70 0
ケィ酸力 ftシゥ λ水和物(ゾゾトライト) 30 100 ポリマ-混和剤 (SBR) 10 10 部
ガ ラ ス繊維 5 5 かさ比重(g/on3) 0.50 0.50 物 曲げ強度(kgf/cif) 78 69
性 加工性 〇 〇
燃焼性 不燃 不燃 表 18の結果から表面改質ス ラ グとゾノ ト ラ イ ト混合系の方が強度 特性に優れている こ とがわかる。
実施例 43
実施例 42の配合に、 カチオ ン型凝集剤 (サ ンフロ ッ ク C454、 三洋 化成工業製) を 0. 5重量部 (ポ リ マー混和剤 1 重量部に対し 0. 1重 量部) を添加し、 加圧脱水成形時における排水中へのポ リ マーの混 入伏況を実施例 42と比較し観察した。
実施例 42 (凝集剤無添加) では、 排水中に若干のポ リ マー混入が 認め られたが、 実施例 43 (凝集剤添加) では認め られなかった。
この様に凝集剤を使用する こ とにより、 成形時の濾水性 (脱水性) を向上させる こ とができ、 排液処理を容易にする こ とができた。
実施例
実施例 43の配合において、 ポ リ マー混和剤を 5重量部に変更し、 ポ リ エ チ レ ン合成パルプ (SWP - Ε790、 三井石油化学製) 5重量部の 水中分散液およびカチォ ン型凝集荊 0 . 5重量部を加えて、 同様に し て軽量成形体を得た。
比較例 7
比較例 2 の配合において、 ポ リ マ —混和剤を 5重量部に変更し、 実施例 44と同じ合成パルプ 5重量部およびカチオ ン型凝集剤 0. 5重 量部の水中分散液を加えて、 同様に して軽量成形体を得た。
雨成形体の物性試験結果を表 19に示す。 表 19
Figure imgf000037_0001
表 19の結果から表面改質ス ラグとゾノ ト ラ イ ト混合系の方が強度 特性に優れている こ とがわかる。 実施例 45〜 47
実施例 44の配合に軽量骨材 ( シ ラ ス バ ル ー ン 、 かさ密度 0 . 24、 三 機工業製) を表 20に示す配合で加え、 同様に して軽量成形体を得た 得 られた成形体の物性試験結果を表 20に示す。
表 20
Figure imgf000038_0001
こ の試験結果は軽量骨材の配合により さ らに軽量化を図る こ とが でき る こ とを示している。 なお加ェ性の面から配合量は 60 %未溝が 望ま しい。
実施例 48
実施钶 45の配合を基に顔料による成形体の着色試験を行った。 顔 料はダイ ピ ロ キサイ ドカ ラ ーの イ ェ ロ ー (Ti- Sb- Ni系) 、 ブ ラ ウ ン (Fe-Zn系)、 グ リ ー ン(Ti- Zn- Ni- Co系) 及びブル一(Co- Al - Zn系) の 4種 (いずれも大日精化製) を用いた。
表面改質ス ラ グは吸着性が良好であり、 色むらがな く 均一な着色 が可能であった。
実施例 49、 比較例 8
実施例 1 〜 4 において作製した B E T比表面積 100 irf /gの表面改 質ス ラグを 450'Cで 4時藺加熱脱水処理し、 B E T比表面積を 120 rf /gまで向上させた表面改質ス ラ グを得た。
上記 120 m' / g の表面改質ス ラ グを用いて実施例 44と同様に して 軽量成形体を得た。
物性試験結果を表 21、 第 9 図に示す。
表 2 1
Figure imgf000039_0001
実施例 49の軽量成形体( F )の吸放湿特性を比較例 8 の軽量成形体 ( G ) と同様に して測定 した結果をあわせて第 9 図に示す。
表 2 1及び第 9 図の結果は 120 nf / gの表面改質ス ラ グの使用によ り 比強度 (強度 Z比重) および吸放湿特性の向上が可能とな る こ とを 示 してい る。
実施例 50〜 55
ガラ ス質高炉ス ラ グをボールミ ルでブ レ ー ン比表面積 4500 crf / gま で粉砕し、 これを分級原料と し気流分級機にて分級し、 ブ レ ー ン比 表面積 14000 cmソ gの微粉スラグを得た。
こ の微粉ス ラ グを瘟度が 90 °Cでかつ濃度が 3規定の NaOH溶液 100 に対し 5 gの割合で添加し、 3時間撹拌処理する こ とによ り B E T比表面積 100 m' / g の表面改質ス ラグを得た。 この表面改質ス ラ グ を充分に水法してアル力 リ分を除去し、 乾燥して成形体製造用原料 と して用いた。
上記の表面改黉ス ラグ 100重量部に、 焼石膏(吉野石膏製) を表 22に示す配合で加え、 さ らにポ リ マー混和剤 (スチ レ ンブタ ジエ ン 共重合体ラ テ ッ ク ス、 Ni po l LX- 458C . 日 本ゼォ ン製) 10重量部 (固形分と して) およびガラ ス雄維 ( Eガラ スのチ ョ ッ プ ドス ト ラ ン ド、 13 m县、 S東紡績製) 5重量部の水中分散液を加えて混練し こ のス ラ リ一を型枠に注入し、 徐々 に加圧脫水しながら成形した。 こ の成形物を 60 1Cで 15時間さ らに 110てで 5時間乾燥し軽量成形体 を得た。
物性試験結果を表 22に示す。
表 22 比較例
実施例 50 実施例 51 実施例 52 実施例 53 実施例 54 実施例 55 比較例 2
(実施例 9 ) 表面改質スラグ 100 100 100 100 100 100 100 0 配 ケィ酸カ1 ½水和物
U π υ U U υ η U υ
合 <■、 ノ ト, ラノイ ト) i 石コゥ 10 30 50 70 100 150 0 0 C
CO
m
部 ボリマ-混和剤 (SBR) 10 10 10 10 10 10 10 10
>— '
ガラス繊維 5 5 5 5 5 5 5 5 かさ比重 (g/crf) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 物 曲げ強度 (kgf/dl) 85 92 101 94 88 72 82 69 性 加工性 O 〇 〇 〇 〇 厶 〇 〇 燃焼性 不燃 不燃 不燃 不燃 不燃 不燃 不燃 不燃
表 22の結果は焼石コ ゥ の配合により、 軽量成形体の加工性及び不 燃性を損なわずに強度向上が可能である こ とを示している。
実施例 56
実施例 52の配合に、 カチォ ン型凝集剤 (サ ンフ ロ ッ ク C454、 三洋 化成工業製) を 1重量部 (ポ リ マー混和剤 1 重量部に対し 0 . 1重量 部) を添加し、 加圧脱水成形時における排水中へのポ リ マーの混入 状況を実施例 52と比較し観察した。
実施树 52 (凝集剤無添加) では、 排水中に若干のポ リ マー混入が 認め られたが、 実施例 56 (凝集剤添加) では認め られなかった。
こ の様に凝集剤を使用する こ と によ り 、 成形時の饞水性 (脫水性) を向上させる こ とができ、 排液処理を容易にする こ とができた。
実施例 57〜 59
実施例 50〜 55と同じ表面改踅ス ラグ 100重量部、 焼石コ ゥ 50重量 部、 ガラス線維 5重量部の水中分散液に表 23のよ う にポ リ マ ー混和 剤及びカ チオ ン型凝集剤配合量を変えて同様に して軽量成形体を得 た。
得られた成形体の物性試験結果を表 23に示す。
表 23
Figure imgf000043_0001
比較例 9
実施例 57の配合で焼石コ ゥを加えないで同様に して成型体を得た 表 23の結果は石コ ゥ の添加によ り、 ポ リ マ ー混和剤を低減しても 無添加の ものと同等の強度が確保でき る こ とを示している。
実施例 60
実施例 59の配合にポ リ ヱチ レ ン合成パルブ ( SWP- E790、 三井石油 化学工業製) 5重量部の水中分散液を加え同様に して軽量成形体を 得た。
得られた成形体の物性試験結果を表 24に示す。 表 24
Figure imgf000044_0001
表 24の結果は合成パルプの添加によ り加工時の粉塵低滅、 表面光 沢の向上ができ る こ とを示している。
実施例 61
実施例 60の配合において、 表面改質ス ラ グ 70重量部と し、 比較树 1 で調製したケィ酸カ ル シ ウ ム水和物 (ゾノ ト ラ イ ト) 30重量部と し、 同様に して軽量成形体を得た。
得られた成形体の物性試験結果を表 25に示す。 表 25
Figure imgf000045_0001
表 25の結果から寸法安定性、 成形性の向上のため、 表面改質ス ラ グの一部をゾノ ト ラ イ ト に置換える こ とができ る こ とがわかる。 実施例 62〜 64
実施例 61の配合において 、 軽量骨材 ( シ ラ ス バ ル ー ン 、 かさ密度 . 24、 三機工業製) を表 26に示す配合で加え、 同様に して成形体を 得た。
物性試験結果を表 26に示す。 比較例
実施例 62 実施例 63 実施例 64
1 (実施例 61)
表面改質スラグ 70 70 70 70 配 ケィ酸 シゥ λ水和物
U oU n U
(ゾノ トライト)
骨材(クラス ン) 0 10 30 50
焼 コゥ 50 50 50 50 ポリマ-混和剤 (SBR) 5 5 5 5 里
合成パルプ 5 5 5 5 部
ガラス線維 5 5 5 5
0.5 0.5 0.5 0.5 かさ比重 (g/cd) 0.50 0.48 0.45 0.41 物 曲げ強度 (kgf/αέ) 95 92 80 61 性 加工性 ! o ! 〇 〇 Δ
1
1 画生 | 不 ¾ 1不燃 1 不燃 不燃 表 26の結果は軽量骨材の配合によ り さ らに軽量化、 断熱性の向上 を図る こ とができる こ とを示している。 なお、 加工性の面から配合 量は本実施例では 50%未溝が望ま しい。
実施例 65 .
実施例 62の配合を基に顔料による成形体の着色試験を行った。 顔 料はダ イ ピ ロ キサ イ ド カ ラ ー の イ エ π —(T i - Sb - N i系)、ブ ラ ウ ン(Fe - Zn系) グ リ ー ン (n -Zn- Ni-Co系)及びブル— (Co- Α1-Ζ·η系) の 4 種 (いずれも大日精化製) を用いた。
表面改質ス ラ グは吸着性が良好であり、 色むらがな く 均一な着色 が可能であった。 実施例 66
実施例 50〜 55に お いて作製した B E T比表面積 100 n /gの表面改 資ス ラ グを 450 °Cで 4 時間加熱脱水処理し、 B E T比表面積を 120 nf /gまで向上させた表面改質ス ラ グを得た。
120nf/gの表面改質ス ラ グを用いて実施例 61と同様に して軽量成 形体を得た。
物性試験結果を表 27及び第 10図に示す。
表 27
Figure imgf000047_0001
本実施例品 ( A ) と実施例 61 ( B ) の も の の吸放湿特性を測定し た結果を第 10図に示す。 吸湿曲線は 20°Cで R Hを 50 %から 90 %に髙 めた と き の重量変化を鉉時的に測定して得られた も のであ り、 放湿 曲線は 20でで R Hを逆に 90 %から 50 %に下げた と き の重量の経時変 化を示している。
表 27及び第 12図の結果は 120 m' / gの表面改質ス ラ グの使用によ り - 比強度 (強度ノ比重) および吸放湿特性の向上が可能となる こ とを 示している。
実施例 67
B E T比表面積 100 nf の表面改質ス ラグ 100重量部にポ リ マー 混和剤と してエチ レ ン酢酸ビュル( E V A ) (モ ビ ト ン J、 へキス ト 合成製) を固形分と して 10重量部、 Eガラ ス線維 (チ ヨ ッ プ ドス ト ラ ン ド 25 ) を 5重量部、 水 390重量部を加えて混練し、 更に凝集 剤と してサ ンロ ッ ク C454 (三洋化成工業製) をポ リ マー混和剤 1 重 量部に対し 0. 10重量部を添加し、 加圧脱水作成した。 この成形体を 60 1で 15時閭、 110 'C で 5時藺乾燥し、 かさ密度 0. 50g/ の軽量成形 体を得た。 表 28に比較材と して市販の人造木材 (ゾノ ト ラ イ ト系、 商品名 : ゥ ッデイ セ ラ ム 宇部興産製) と の性能比較を示す。
表 28
Figure imgf000048_0001
本実施例品.67 ( A ) と市販品である比較例品( B ) と ヒノ キである 比較例品( C ) と の吸放湿特性を測定した結果を第 11図に示す。 本 発明の方法により得られた軽量成形体はヒ ノ キに近い調湿性を持 ている こ とが判る。
実施例 68
B E T比表面積 100 nf /gの表面改質ス ラ グ 100重量部にポ リ ェチ レ ン合成パルプ (商品名 : SWP-E790 〔三井石油化学工業製〕 ) を 10重 量部、 ガ ラ ス繊維 3.0重量部、 水 400重量部を加えて混練 し、 こ れに 凝集剤 (サ ン フ ロ ッ ク C454 〔三洋化成工業製〕 ) 0. 1重量部を加え て加圧脱水成形した。 こ の成形体を 110でで 15時間乾燥した。
次いで、 前述の組成 (実施例 68 ) に更にポ リ マー混和剤 (スチ レ ンブタ ジ エ ン共重合体ェ マルジ ヨ ン Nipol Lx-438C 〔日本ゼオ ン製〕 ) 5重量部を加えて (実施例 69) 同様に軽量成形体を得た。
表 29に人造木材 (宇部ゥ ッ デ イ セ ラ ム) と本発明の軽量成形体と の特性値の比較を示す。
性能評価は、 木材用切断機の切削屑の粒度分布 (標準篩を使用 し て区分した粒度別% ) と JIS Z 8741一 1962によ る光沢度によ り行つ た も ので あ る。
表 29
Figure imgf000049_0001
*吸湿量は JIS A 2104 - 1957 (24時間吸水)
以上の結果から、 合成パルプを添加する こ と に よ り粉塵の発生を 防止し表面光沢の向上効果が得 られる こ とが判る。 産業上の利用分野
本発明の軽量成形体は安価な高炉ス ラ グの改質品を使用 したにも かかわらず基本的な性状、 物状の違いから、 従来のゾノ ト ラ イ ト等 の針状性のケィ酸カ ル シ ウ ム水和物使用品よ り も特に調湿機能が優 れている。 無機粉体と しての健康への影響も実質的に無いと、 容易 に推察される。 表面改質ス ラ グはゾノ ト ラ イ ト よ り も多 く の結晶水 をもつこ とから、 自己消化性も期待できる。 また、 切新、 切削、 釘 打ち等の加工特性も良好であ り、 不燃で寸法変化がほとんどないこ と、 腐朽、 変質等のおそれがない等の特性を併せて有している。 ま た、 合成パルプを添加した場合は、 加工特性が優れ、 加工時の発塵 が低減し、 さ らに、 表面光沢が優れ、 成形体の加工成形時の瀘水性 が向上する。 ゾノ ト ラ イ ト等の結晶水量が少な く 、 かつ針状性の高 いケィ酸力'ルシ ゥム水和物を添加した場合は、 耐熱性、 寸法安定性 成形時の濾水性等が向上する。 石コ ゥを添加した場合は、 不燃性低 下等の問題を生じないで曲げ強度等の強度が高ま る。

Claims

請 求 の 範 囲
. ガ ラ ス質高炉ス ラ グ粉末をア ル力 リ 水溶液でガ ラ ス の溶解反応 と水和反応によ り 改質して得られる粉末又はこ の粉末をさ らに加 熱脱水した粉末とポ リ マー混和剤とを含有してなる軽量成形体。 . 補強繊維、 凝集剤、 軽量骨材、 增粘剤、 分散剤及び顔料の う ち の 1 種以上をさ らに舍む請求の範囲第 1 項に記載の軽量成形体。 . ガ ラ ス質高炉ス ラ グ粉末を ア ル力 リ 水溶液でガ ラ ス の溶解反応 と水和反応によ り 改質して得 られる粉末又はこ の粉末をさ らに加 熱脱水した粉末と合成パルプ とを含有してなる軽量成形体。
. 補強繊維、 ポ リ マー混和剤、 凝集剤、 軽量骨材、 増粘剤、 分散 剤及び顔料の う ちの 1 種以上をさ らに含む請求の範囲第 3 項に記 载の軽量成形体。
. ガラ ス質高炉ス ラ グ粉末をア ル力 リ 水溶液でガ ラ ス の溶解反応 と水和反応によ り改質して得 られる粉末又はこ の粉末をさ らに加 熱脱水した粉末と、 針状ない し繊維状のケ ィ酸カ ル シ ウ ム水和物 及びポ リ マ 一混和剤とを含有してなる軽量成形体。
. 補強繊維、 凝集剤、 合成パルプ、 軽量骨材、 增粘荊、 分散剤及 び顔料の う,ち 1 種以上をさ らに含.む請求の範囲第 5 項に記載の軽 量成形体。
. ガラ ス質高^ス ラ グ粉末をア ル力 リ 水溶液でガラ スの溶解反応 と水和反応によ り 改質して得 られる粉末又はこ の粉末をさ らに加 熱脫水した粉末と、 水硬性石コ ゥ及びポ リ マ ー混和剤とを舍有し て な る軽量成形体。
. 補強繊維、 凝集剤、 合成パルプ、 針状ない し繊維状のケ ィ 酸力 ル シ ゥ ム水和物、 軽量骨材、 増粘剤、 分散剤及び顔料の う ち の 1 種以上をさ らに含む請求の範囲第 7 項に記載の軽量成型体。
9 . ガラス質高垆ス ラ グ粉末をアル力 リ水溶液でガラスの溶解反応 と水和反応によ り改質して得られる粉末に、 ポ リ マ一混和剤、 補 強線維、 水を加えて混練し、 更に凝集剤を加えて加圧脱水成形し 乾燥せしめる こ とを特徵とする軽量成形体の製造方法。
10. ポ リ マー混和剤の添加量を、 ア ルカ リ 改質スラ グの重量に対し 3 〜 20 %と した請求の範囲第 9項に記載の軽量成形体の製造方法
11. 補強縫維の添加量を、 アルカ リ改質ス ラ グの重量に対し、 2〜 10 %と した請求の範囲第 9項に記載の軽量成形体の製造方法。
12. ガ ラ ス質高炉ス ラ グ粉末をア ル力 リ氷溶液でガ ラ ス の溶解反応 - と水和反応によ り改踅して得られる粉末に、 合成バルブ、 補強線 維、 水を加えて混練し、 更に凝集剤を加えて加圧脱水成形し、 乾 燥せしめる こ とを特徵とする軽量成形体の製造方法。
13. ガラ ス質高炉ス ラ グ粉末をァル力 リ水溶液でガ ラ ス の溶解反応 と水和反応によ り改質して得られる粉末に、 合成パルプ、 補強繊 維、 ポ リ マー混和剤、 水を加えて混練し、 更に凝集剤を加えて加 圧脱水成形し、 乾燥せしめる こ とを特徵とする軽量成形体の製造 方法。
PCT/JP1989/001337 1988-06-12 1989-12-28 Lightweight molding and production thereof WO1990007472A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019900701913A KR910700208A (ko) 1988-06-12 1989-12-28 경량 성형체 및 이의 제조방법
GB9018906A GB2236526B (en) 1988-12-28 1989-12-28 Lightweight formed body and producing the same
DE19893991544 DE3991544T1 (de) 1988-12-28 1989-12-28 Leichter formkoerper und verfahren zu seiner herstellung
FI904231A FI904231A0 (fi) 1988-12-28 1990-08-27 Laett, formad produkt och foerfarande foer framstaellning av denna.
SE9002740A SE9002740D0 (sv) 1988-12-28 1990-08-27 Formkropp med laag vikt samt framstaellning daerav

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP32914988 1988-12-28
JP32914888 1988-12-28
JP63/329149 1988-12-28
JP63/329148 1988-12-28
JP14666989 1989-06-12
JP1/146668 1989-06-12
JP1/146667 1989-06-12
JP1/146670 1989-06-12
JP14666789 1989-06-12
JP1/146669 1989-06-12
JP14666889 1989-06-12
JP14667089 1989-06-12
JP23129489 1989-09-06
JP1/231294 1989-09-06

Publications (1)

Publication Number Publication Date
WO1990007472A1 true WO1990007472A1 (en) 1990-07-12

Family

ID=27566108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/001337 WO1990007472A1 (en) 1988-06-12 1989-12-28 Lightweight molding and production thereof

Country Status (7)

Country Link
EP (1) EP0407602A4 (ja)
KR (1) KR910700208A (ja)
FI (1) FI904231A0 (ja)
GB (1) GB2236526B (ja)
NL (1) NL8921406A (ja)
SE (1) SE9002740D0 (ja)
WO (1) WO1990007472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772985A (zh) * 2021-09-06 2021-12-10 太仓北新建材有限公司 一种高效促凝剂的制备方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010085026A (ko) * 2001-07-20 2001-09-07 박흥혜 제철 슬래그를 이용한 경량 세라믹 소재의 조성방법과건축자재 제조방법
CN108863129A (zh) * 2018-08-06 2018-11-23 万国雄 一种强度高耐腐蚀改性高碳铬铁渣骨料配方

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828515A (ja) * 1971-07-06 1973-04-16
JPS577093B2 (ja) * 1979-08-31 1982-02-08
JPS5727958A (en) * 1980-07-24 1982-02-15 Asahi Glass Co Ltd Gypsum slag hardened body
JPS5727959A (en) * 1980-07-24 1982-02-15 Asahi Glass Co Ltd Gypsum slag hardened body
JPS57129859A (en) * 1981-01-30 1982-08-12 Toyo Ink Mfg Co Inorganic formed body
JPH01252559A (ja) * 1987-12-29 1989-10-09 Nkk Corp 高炉水砕スラグの改質方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828515A (ja) * 1971-07-06 1973-04-16
JPS577093B2 (ja) * 1979-08-31 1982-02-08
JPS5727958A (en) * 1980-07-24 1982-02-15 Asahi Glass Co Ltd Gypsum slag hardened body
JPS5727959A (en) * 1980-07-24 1982-02-15 Asahi Glass Co Ltd Gypsum slag hardened body
JPS57129859A (en) * 1981-01-30 1982-08-12 Toyo Ink Mfg Co Inorganic formed body
JPH01252559A (ja) * 1987-12-29 1989-10-09 Nkk Corp 高炉水砕スラグの改質方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0407602A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772985A (zh) * 2021-09-06 2021-12-10 太仓北新建材有限公司 一种高效促凝剂的制备方法及系统
CN113772985B (zh) * 2021-09-06 2022-11-08 北新建材(苏州)有限公司 一种高效促凝剂的制备方法及系统

Also Published As

Publication number Publication date
NL8921406A (nl) 1990-12-03
KR910700208A (ko) 1991-03-14
SE9002740L (sv) 1990-08-27
EP0407602A4 (en) 1991-10-02
GB2236526B (en) 1993-03-17
GB2236526A (en) 1991-04-10
GB9018906D0 (en) 1990-11-14
EP0407602A1 (en) 1991-01-16
FI904231A0 (fi) 1990-08-27
SE9002740D0 (sv) 1990-08-27

Similar Documents

Publication Publication Date Title
CA1319473C (en) Process for manufacture of fibre-reinforced shaped articles
JP5579608B2 (ja) セメント系配合物
US20050072056A1 (en) Cementitious product in panel form and manufacturing process
US20050058817A1 (en) Cementitious product in panel form and manufacturing process
EP0562112B1 (en) High-strength molding of calcium silicate and production thereof
US5256349A (en) Light weight formed body and method for producing the same
TW201915276A (zh) 高壓方法製造之輕質高強度非石棉波形纖維水泥屋頂板材
JP2002166406A (ja) 木質セメント板の製造方法
JP5190399B2 (ja) けい酸カルシウム板の製造方法
JP5350060B2 (ja) 木質セメント板及びその製造方法
EP0047158B1 (en) A process for the manufacture of fibre reinforced shaped articles
WO1990007472A1 (en) Lightweight molding and production thereof
WO1988009777A1 (en) Calcium silicate crystal board
US5411793A (en) Molded boards of calcium silicate and process for producing the same
JP5350061B2 (ja) 木質セメント板及びその製造方法
KR100361460B1 (ko) 원적외선 방사물질이 함유된 합성지층을 갖는 벽지 또는 장판지의 제조방법 및 동 제조방법에 의해 제조된 벽지 또는 장판지
JPS623109B2 (ja)
JPH0725601B2 (ja) 軽量成形体およびその製造方法
JP2525187B2 (ja) 珪酸カルシウム板の製造方法
JP2519075B2 (ja) 珪酸カルシウム結晶のボ―ド
JPH0444636B2 (ja)
JP3910044B2 (ja) 模様付き建材及びその製造方法
JP2000211958A (ja) 脱水プレス成形体およびその製造方法
JPS63117943A (ja) 水硬性硬化物
CA2018800A1 (en) Light weight formed body and producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE FI GB KR NL SE US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): FR

WWE Wipo information: entry into national phase

Ref document number: 1990901027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 90027400

Country of ref document: SE

Ref document number: 904231

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 90027400

Country of ref document: SE

WWP Wipo information: published in national office

Ref document number: 1990901027

Country of ref document: EP

RET De translation (de og part 6b)

Ref document number: 3991544

Country of ref document: DE

Date of ref document: 19910221

WWE Wipo information: entry into national phase

Ref document number: 3991544

Country of ref document: DE

WWW Wipo information: withdrawn in national office

Ref document number: 1990901027

Country of ref document: EP