WO1990003261A1 - Process and arrangement for welding thermoplastic materials using thermal radiation - Google Patents

Process and arrangement for welding thermoplastic materials using thermal radiation Download PDF

Info

Publication number
WO1990003261A1
WO1990003261A1 PCT/EP1989/000706 EP8900706W WO9003261A1 WO 1990003261 A1 WO1990003261 A1 WO 1990003261A1 EP 8900706 W EP8900706 W EP 8900706W WO 9003261 A1 WO9003261 A1 WO 9003261A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
thermoplastic
pressure
radiation
workpieces
Prior art date
Application number
PCT/EP1989/000706
Other languages
German (de)
French (fr)
Inventor
Joachim Heinzl
Karl Bühler
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1990003261A1 publication Critical patent/WO1990003261A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1454Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1496Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/545Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles one hollow-preform being placed inside the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73773General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline
    • B29C66/73774General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline the to-be-joined areas of both parts to be joined being semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/863Robotised, e.g. mounted on a robot arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0633LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0029Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/004Semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/767Printing equipment or accessories therefor

Definitions

  • the invention relates to a method and arrangement for welding thermoplastic materials by means of thermal radiation according to patent claims 1 and 5.
  • Welding as a manufacturing process can generally be subdivided into joint welding, in which materials are inseparably combined, and cladding, in which a material is coated. According to this definition, a distinction is still made between melting and
  • thermoplastic materials are joined together using a heat stamp.
  • the heat stamp is a Teflon-coated metal stamp with a built-in heating coil, designed to match the weld seam. Pulse-like heating of the heat stamp and simultaneous pressure loading of the materials to be joined weld them together. The welding energy is due to heat conduction transferred to the parts to be connected. With this process, known as heating element welding, the most varied of thermoplastic materials can be joined together. It is disadvantageous, however, that a relatively high outlay on equipment, including a stamping tool that is expensive to manufacture, is required for heating element welding.
  • thermoplastic film material is joined to a solid thermoplastic plastic part.
  • the present invention is therefore based on the object of specifying a method and an arrangement for welding thermoplastic materials in which less equipment is required to carry out or construct it and which, on the other hand, delivers faster welding results with less mechanical and thermal stress on the welding partners as well as being inexpensive and easy to use.
  • the object is achieved in the method and the arrangement for welding thermoplastic materials by means of thermal radiation by the features specified in claims 1 and 5.
  • the solution is characterized in particular by the fact that a first and second thermoplastic workpiece is welded to one another with a low mechanical and thermal load under a resilient pressing force by means of an energy-rich infrared radiation beam.
  • ink containers preferably an elastic, transparent plastic film or solid, radiation-absorbing plastic is used.
  • the solution is characterized by the use of a transparent pressure element and a reflective diaphragm, with which the infrared radiation beam emitted by the radiation device in the welding plane in the area outside the weld seam between the two thermoplastic workpieces is blanked out to form a weld seam, and this directly are arranged on the first thermoplastic workpiece.
  • a low-stress glass material with good transmission properties in the infrared range is preferably used for the transparent pressure element, while the reflecting diaphragm is advantageously made of titanium or one
  • Chromium-nickel connection is established.
  • the transparent pressure element can be connected directly to the reflective panel.
  • the smooth surface of the transparent pressure element also results in a smooth, shiny weld seam, in which there are no adhesion problems with the pressure element when the thermoplastic workpieces are shaped after the welding process.
  • the solution is also characterized by the fact that very complicated, flat contours can be welded quickly and inexpensively, the respective welding contour being able to be changed without great expenditure of time by exchanging the pressure element and the reflecting diaphragm.
  • FIG. 1 shows the basic structure of an infrared welding device
  • FIG. 2 shows the temperature distribution of infrared welding in relation to heating element welding over the thickness of the thermoplastic materials to be welded
  • 3 shows an exploded view of an infrared welding device for ink containers
  • FIG. 5 shows the transmitted and reflected infrared radiation of a mirror mask which is correctly coated for the welding process and provided with a reflection layer
  • FIG. 6 shows the transmitted and reflected infrared radiation of a mirror mask which is incorrectly coated for the welding process and provided with a reflective layer
  • FIG. 7 shows an ink container with three liquid chambers
  • FIG. 8 shows an ink container with a liquid chamber.
  • thermoplastic semi-crystalline workpiece 3 of thickness d2 resting on a stationary platform 6 and another layered thermoplastic semi-crystalline workpiece 2 of thickness.
  • d1 which are to be welded to one another at predetermined welding surfaces A in the layering plane, hereinafter also referred to as the welding plane.
  • a low-pressure pressure glass 12 for example a Tempax sheet glass made of borosilicate, which is suitable for thermal and mechanical loads, is arranged on the thermoplastic workpiece 2, the thickness dO, where it is pressed evenly onto the thermoplastic workpiece 2 with a pressure force F.
  • this pressure force F is explained by the welding practice of plastics. So is because of the relatively high dynamic viscosity of the plastics, for example > 10 4 cP, a certain pressure is required for welding. This is towards it to be attributed to the fact that the welding of partially crystalline thermoplastics must be heated up to a temperature above the crystallization temperature. Since the plastic flows apart in this plastic state, a certain pressure is required in order to achieve the confluence or welding of the interfaces. On the other hand, this welding pressure must not be too strong, since otherwise the strength of the weld seam is reduced when the melt is pushed away. This is particularly the case when the thermoplastic workpiece 2 is designed as a plastic film. In addition, when applying the pressure force F, it must be taken into account that when the plastic cools, a volume decrease occurs, which must be compensated for by appropriate measures. For example, a resilient pressure force F would be suitable for this.
  • a halogen incandescent lamp 41 is arranged above the pressure glass 12 at a distance z1.
  • This halogen incandescent lamp 41 is electrically connected to a voltage source 5, which forces a current I by applying a voltage U to the halogen incandescent lamp 41.
  • the halogen incandescent lamp 41 converts this current I into a proportional radiation flow $.
  • the radiation emitted by the halogen incandescent lamp 41 reaches the surface of the pressure glass 12 at a solid angle ⁇ .
  • infrared welding uses heat radiation to supply the energy required for welding.
  • the radiation energy emitted by the halogen incandescent lamp 41 is converted into heat by the pressure glass 12 and the two thermoplastic workpieces 2, 3 in accordance with the respective degree of reflection, absorption and transmission.
  • the relationship according to the energy conservation law that the sum of the reflection, absorption and transmission energy in relation to the radiation energy of the halogen incandescent lamp 41 is equal to 1 is to be used.
  • FIG. 2 shows the temperature distribution of the components involved in the welding process, both for infrared welding (IR) and for heating element welding (HE), as shown in FIG. 1. This qualitative representation can be seen immediately that starting at room temperature the maximum warming occurs in infrared welding directly, in the welding plane at a welding temperature, while in the heating element
  • IR infrared welding
  • HE heating element welding
  • Welding during infrared welding is also dependent on the welding temperature, the exposure time of the welding temperature, the temperature distribution in the welding plane, the welding pressure and the cooling process.
  • the welding temperature in turn is due to the power of the halogen incandescent lamp 41, the losses in the beam path, the optical properties of the thermoplastic workpieces 2, 3 to be welded together and the distance z1 between the pressure glass 12 and the halogen incandescent lamp 41.
  • the welding device essentially consists of a pressure device 1 and a welding lamp 4.
  • a base plate 10 on which a holding device 11 for the thermoplastic workpieces 2, 3 is detachably fastened in the center, is characteristic of the construction of the pressure device 1.
  • the receiving device 11, which is smaller than the base plate 10, is designed such that the workpieces 3 are supported in the area of the weld seam or weld seams.
  • the further configuration of the receiving device 11 depends on how the thermoplastic workpieces 2, 3 to be welded together are shaped.
  • the welding device shown in FIG. 3 is to be used, for example, to produce an ink container as shown in FIG. 7 for the three ink colors yellow, cyan and magenta.
  • Typical of such an ink container are a black base body 3 made of Lupolen from the HDPE group (HDPE: high-density polyethylene) with a glossy surface and a crystalline content of 90% and a natural-colored, transparent membrane film 2 made from Lupolen from the LDPE group (LDPE: low density polyethylene) with a matt surface and a crystalline content of approx. 60%. While the base body 3 is 1.5 mm thick in the area of the weld seam, the double-layered and additionally elastic membrane film 2 has a total thickness of 200 ⁇ m.
  • the base body 3 is in
  • a molded part 33 with a U-shaped cross section and closed at the end faces adjoins an open side of the cuboid base part 32.
  • On the opposite open side of the cuboid base part 32 is one of the top surface Before the base part 32 protruding edge 34 is provided.
  • This border 34 at the same time also encompasses the double-coated, elastically designed membrane film 2, which is placed on the base part 32 before the base body 3 is inserted into the receiving device 11.
  • the membrane film 2 has, according to the arrangement of the ink chambers 30 in the base body 3, flexible bulges 20 which plunge into the ink chambers 30 when the membrane film 2 is applied to the base body 3.
  • the border 34 serves as leakage protection of the ink liquid in the event that the membrane film 2 welded to the base body 3 wears out over time when the ink containers are used in ink printing devices and becomes ink-permeable.
  • the base body 3 When the base body 3 is inserted into the holding device 11 together with the membrane film 2, the base body 3 is first inserted with the U-shaped molded parts 33 into a shaft 110 of the holding device 11 provided for this purpose.
  • the shaft 111 In the shaft 111, three ribs 111 running parallel to one another are arranged in such a way that the base body 3, with the lower edge of the base part 32 and the partition walls 31 resting on the ribs 111, forms a flush surface with the receiving device 11 and supports the weld seam.
  • a double-layer, stamp-like pressure glass 12 is then used on the receiving device 11.
  • the double-layer structure of the pressure glass 12 with a fitting part 120 and a support part 121 is due to the border 34 of the base body 3.
  • the fitting part 120 is attached to an adhesive surface 701 of the support part 121 by means of a one-component adhesive and is dimensioned such that it covers the entire surface of the cover surface of the base body 3 bordered by the border 34.
  • gluing offers itself as a connection technique when the transmittance deteriorates from 0.8 to 0.7. So that the support part 121 with a support surface 700 lies flat on the receiving device 11, the thickness of the fitting part 120 corresponds to the height of the border 34.
  • the supporting part 121 of the pressure glass 12 is also dimensioned such that it is flush with the edges of the receiving device 11.
  • the fitting part 120 is provided with a reflection layer 122 on the side facing away from the support part 121.
  • the reflection layer 122 is structured in such a way that the membrane film 2 is welded to the base body 3 at the locations provided for this purpose.
  • the reflection layer 122 is also applied to the contact surface 700 of the contact part 121, in order in particular to protect the border 34 and the receiving device 11 from the infrared rays of the welding lamp 4.
  • contact welding which is undesirable, occurs in the region of the absorption layer as a result of the resulting strong heating of the pressure glass 12.
  • a low-pressure glass 12 which is constructed in the manner described and provided with the reflection layer 122 in the manner described is referred to as a mirror mask.
  • the reflection layer 122 is aluminum, which is deposited on a 1 ⁇ m thick titanium intermediate layer and still reflects 85% of the incident radiation in the infrared range.
  • silver can also be used as the material for the reflection layer 122.
  • Silver which is much more expensive in terms of reflectivity, but has the disadvantage, like aluminum, that it is very susceptible to scratches and fingerprints. It is therefore expedient to use materials for the reflective layer 122 which have a higher mechanical strength, such as CrNi compounds or titanium.
  • a rubber frame 13 is then positioned on the pressure glass 12 designed as a mirror mask, and then a pressure frame 14 for applying the pressure force F.
  • the positioning takes place via four knurled screws 15, which can be pushed through in each case in four rectangular openings 130 and 140, respectively, and can be screwed into threaded holes 100 of the base plate 10 along the pressure glass 12 and the receiving device 11.
  • Uniform tightening of the knurled screws 15 thus achieves a uniform surface pressure between the membrane film 2 and the base body 3, particularly in the area of the weld seam.
  • the knurled screws 15 are each provided with a coil spring 16 arranged around the screw shaft.
  • the resilient pressure of the pressure glass 12 designed as a mirror mask ensures that the boundary layers of the membrane film 2 and the base body 3 plasticized by the infrared radiation flow into one another in the welding plane.
  • the uniform surface pressure between the membrane film 2 and the base body 3 is also essential for a good welding result.
  • the quality of the weld depends to a large extent on the even distribution of the welding pressure over the entire weld.
  • the ribs 111 are arranged in the receiving device 11 to support the weld seam. In the middle of the rubber frame 13 and the pressure frame 14, a rectangular opening 131 and 141 is embedded.
  • the dimensions of the openings 131, 141 result on the one hand from the cross-sectional area of the shaft 110 of the receiving device 11 and on the other hand from the radiation characteristic of the welding lamp 4.
  • the welding lamp 4 draws the electrical power from a voltage source 5, in which by applying a voltage U the
  • Welding lamp 4 a current I is forced.
  • a halogen infrared reflector emitter is used as the welding lamp 4, which generates a radiation flux ⁇ proportional to the current I.
  • the radiator consists of a halogen incandescent lamp 41 and an infrared ellipsoid reflector 40.
  • the halogen incandescent lamp 41 is surrounded by the infrared ellipsoid reflector 40 and is fastened together with the latter to a lamp holder 42.
  • the radiation characteristic of the welding lamp 4 results from two focal points f1, f2 of the infrared ellipsoid reflector 40.
  • a lamp filament 410 of the halogen incandescent lamp 41 is arranged in the first focal point f1, while the second focal point f2 lies in the working point of the infrared welding device.
  • the position of this working point can be changed by moving the welding lamp 4 in the z direction.
  • the distance z1 between the lower edge of the semicircular infrared ellipsoid reflector 40 and the top surface of the pressure glass 12 designed as a mirror mask, also referred to below as the welding distance, is defined as a reference variable for determining the respective working point.
  • the welding distance zl should be chosen taking into account the refractive properties of the pressure glass 12 designed as a mirror mask so that the focal plane with the
  • Welding level coincides.
  • the maximum achievable radiation flux density at the operating point is approximately 140 W / cm 2 . Since a constant welding temperature is only present in the immediate vicinity of the focal point or working point, this results in limiting criteria for the width of a weld seam for uniform heating of the welding area.
  • the welding lamp 4 without additional optics is used, only contour welding for contour widths smaller than 6 mm is possible. A contour is welded by a relative movement between the focal point f2 and the thermoplastic workpieces 2, 3 clamped in the pressure device 1 and to be welded together along the contour defined by the reflection layer 122 on the pressure glass 12.
  • This relative movement is realized by moving the pressure device 1 with a predetermined welding speed in the x and y directions. If, however, the welding lamp 4 provides a constant radiation flux density directly or indirectly over the entire welding area, the relative movement between the pressure device 1 and the welding lamp 4 is superfluous.
  • FIG. 4 shows, in relation to FIG. 3, the course of the radiation emitted by the welding lamp 4 through the pressure glass 12, which is at a welding distance z1 from the welding lamp 4, up to the focus on a welding surface A in the welding plane between the membrane film 2 and the bottle body 3.
  • This takes into account the influence of refraction between the medium air and the support part 121 of the pressure glass 12 and the influence of refraction due to the adhesive layer between the support part 121 and the fitting part 120.
  • FIG. 4 also shows in connection with FIGS. 5 and 6 the problem that arises if, when applying the reflection layer 122 to the support part 121 and the fitting part 120, sufficient coverage of the ink chambers 30 in the area of the welding surface A is dispensed with. If, for example, the reflection layer 122 becomes too thick in this area In short, there is a risk that the membrane film 2 will fuse with the inner tub rim of the ink chamber 30. The result of this is that either the effective ink space is reduced or the membrane film 2 burns.
  • FIG. 5 shows a reflection layer 122 that is correctly structured on the fitting part 120 of the pressure glass 12, without the membrane film 2 being fused to the inner tub edge of the ink chamber 30 of the base body 3.
  • FIG. 7 shows an ink container with three ink chambers 30 for different ink colors, produced from the membrane film 2 and the base body 3 with the infrared welding device described.
  • FIG. 8 shows an ink container with an ink chamber 30 made from the membrane film 2 and the base body 3 using the infrared welding device described.
  • the following welding parameters are summarized in a table for contour welding, in which the pressure device 1 is moved relative to the welding lamp 4: ink container type 1-color container 3-color containers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

To weld thermoplastic materials, in particular for ink containers, using thermal radiation, a thermoplastic, transparent membrane film (2) and a thermoplastic, solid basic body (3) which absorbs radiation are pressed together on a receiving device (11) by an elastic force (F) and placed in a high-energy beam produced by a radiation device (4). In order to form a weld seam, a transparent pressure element (12) with a reflective coating (122), which blocks out parts of the beam, is arranged at a welding distance (z1) from the radiation device (4).

Description

Verfahren und Anordnung zum Verschweißen von thermoplastisehen Werkstoffen mittels Wärmestrahlung  Method and arrangement for welding thermoplastic materials by means of heat radiation
Die Erfindung bezieht sich auf ein Verfahren und Anordnung zum Verschweißen von thermoplastischen Werkstoffen mittels Wärmestrahlung gemäß den Patentansprüchen 1 und 5. The invention relates to a method and arrangement for welding thermoplastic materials by means of thermal radiation according to patent claims 1 and 5.
Das Schweißen als Fertigungsverfahren ist generell in Verbindungsschweißen, bei dem Werkstoffe unlösbar vereinigt werden, und Auftragschweißen, bei dem ein Werkstoff beschichtet wird, unterteilbar. Entsprechend dieser Definition unterscheidet man weiterhin zwischen Schmelz- undWelding as a manufacturing process can generally be subdivided into joint welding, in which materials are inseparably combined, and cladding, in which a material is coated. According to this definition, a distinction is still made between melting and
Preßschweißen. So müssen beispielsweise beim Verbindungsschweißen die zu vereinigenden Werkstoffflächen auf Pressure welding. For example, when joining welding, the material surfaces to be joined must be open
Schweißtemperatur und ferner in innige Berührung gebracht werden. Während die metallischen Werkstoffe durch Schmelzoder Preßschweißen miteinander vereinigt werden, findet das Vereinigen von thermoplastischen Kunststoffen unter Anwendung von thermischer sowie mechanischer Energie statt. Dieses Preßschweißen geht im plastischen Zustand der Verbindungsflächen des Kunststoffes innerhalb einer Schweißzone vor sich. Welding temperature and also be brought into intimate contact. While the metallic materials are joined together by fusion or pressure welding, the joining of thermoplastic materials takes place using thermal and mechanical energy. This pressure welding takes place in the plastic state of the connecting surfaces of the plastic within a welding zone.
Aus der Literatur "Einführung in die Kunststoffverarbeitung" von G. Menges; Hanser-Verlag München, Wien 1979 ist ein Verfahren zum Verschweißen von thermoplastischen WerkStoffen bekannt, bei dem die Werkstoffe mit Hilfe eines Wärmestempels zusammengefügt werden. Bei dem Wärmestempel handelt es sich um einen entsprechend der Schweißnaht ausgebildeten teflonbeschichteten Metallstempel mit einer eingebauten Heizwicklung. Durch impulsartiges Erwärmen des Wärmestempels bei gleichzeitiger Druckbeanspruchung der zu verbindenden Werkstoffe werden diese miteinander verschweißt. Die Schweißenergie wird dabei durch Wärmeleitung auf die zu verbindenden Teile übertragen. Mit diesem als Heizelementschweißen bezeichneten Verfahren lassen sich die unterschiedlichsten thermoplastischen Werkstoffe miteinander verbinden. Nachteilig ist es jedoch, daß für das Heizelementschweißen ein relativ hoher apparativer Aufwand einschließlich eines von der Entwicklungsdauer aufwendig hergestelltes Stempelwerkzeug erforderlich ist. Dieses gilt insbesondere dann, wenn man zu schnellen Schweißergebnissen kommen möchte. Darüber hinaus ist es für das Heizelementschweißen problematisch, daß der zu verschweißende Werkstoff sehr stark mechanisch und thermisch beansprucht wird. Dieses ist insbesondere dann der Fall, wenn ein thermoplastischer Folienwerkstoff mit einem massiven thermoplastischen Kunststoffteil zusammengefügt wird. From the literature "Introduction to plastics processing" by G. Menges; Hanser-Verlag Munich, Vienna 1979 a method for welding thermoplastic materials is known in which the materials are joined together using a heat stamp. The heat stamp is a Teflon-coated metal stamp with a built-in heating coil, designed to match the weld seam. Pulse-like heating of the heat stamp and simultaneous pressure loading of the materials to be joined weld them together. The welding energy is due to heat conduction transferred to the parts to be connected. With this process, known as heating element welding, the most varied of thermoplastic materials can be joined together. It is disadvantageous, however, that a relatively high outlay on equipment, including a stamping tool that is expensive to manufacture, is required for heating element welding. This is especially true if you want to get quick welding results. In addition, it is problematic for heating element welding that the material to be welded is subjected to very high mechanical and thermal stresses. This is particularly the case when a thermoplastic film material is joined to a solid thermoplastic plastic part.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Anordnung zum Verschweißen von thermoplastischen Werkstoffen anzugeben, bei dem zur Durchführung bzw. für dessen Aufbau ein geringerer apparativer Aufwand erforderlich ist und das andererseits bei geringerer mechanischen und thermischen Belastung der Schweißpartner schnellere Schweißergebnisse liefert sowie kostengünstig und bedienungsfreundlich in der Durchführung ist. Erfindungsgemäß wird die Aufgabe bei dem Verfahren und der Anordnung zum Verschweißen von thermoplastischen Werkstoffen mittels Wärmestrahlung durch die in den Patentansprüchen 1 und 5 angegebenen Merkmale gelost. Die Lösung zeichnet sich danach insbesondere dadurch aus, daß ein erstes und zweites thermoplastisches Werkstück bei geringer mechanischer und thermischer Belastung unter einer federnden Andruckkraft durch ein energiereiches InfrarotStrahlenbündel miteinander verschweißt wird. Als Material für die thermoplastischen Werkstücke, insbesondere beimThe present invention is therefore based on the object of specifying a method and an arrangement for welding thermoplastic materials in which less equipment is required to carry out or construct it and which, on the other hand, delivers faster welding results with less mechanical and thermal stress on the welding partners as well as being inexpensive and easy to use. According to the invention, the object is achieved in the method and the arrangement for welding thermoplastic materials by means of thermal radiation by the features specified in claims 1 and 5. The solution is characterized in particular by the fact that a first and second thermoplastic workpiece is welded to one another with a low mechanical and thermal load under a resilient pressing force by means of an energy-rich infrared radiation beam. As a material for the thermoplastic workpieces, especially for
Herstellen von Tintenbehältern, wird vorzugsweise eine elastisch ausgebildete, transparente Kunststoffolie bzw. ein massiv ausgebildeter, strahlungsabsorbierender Kunststoff verwendet. Darüber hinaus zeichnet sich die Lösung durch die Verwendung eines transparenten Andruckelementes und einer reflektierenden Blende aus, mit denen zur Bildung einer Schweißnaht das von der Strahlungseinrichtung emittierte Infrarot-Strahlenbündel in der Schweißebene im Bereich außerhalb der Schweißnaht zwischen den beiden thermoplastischen Werkstücken ausgeblendet wird und die unmittelbar auf dem ersten thermoplastischen Werkstück angeordnet sind. Für das transparente Andruckelement wird vorzugsweise ein spannungsarmer Glaswerkstoff mit guten Transmissionseigenschaften im Infrarotbereich verwendet, während die reflektierende Blende in vorteilhafter Weise aus Titan oder einer Manufacture of ink containers, preferably an elastic, transparent plastic film or solid, radiation-absorbing plastic is used. In addition, the solution is characterized by the use of a transparent pressure element and a reflective diaphragm, with which the infrared radiation beam emitted by the radiation device in the welding plane in the area outside the weld seam between the two thermoplastic workpieces is blanked out to form a weld seam, and this directly are arranged on the first thermoplastic workpiece. A low-stress glass material with good transmission properties in the infrared range is preferably used for the transparent pressure element, while the reflecting diaphragm is advantageously made of titanium or one
Chrom-Nickel-Verbindung aufgebaut ist. Darüber hinaus läßt sich das transparente Andruckelement mit der reflektierenden Blende unmittelbar verbinden. Durch die glatte Oberfläche des transparenten Andruckelementes ergibt sich ferner eine glatte, glänzende Schweißnaht, bei der beim Ausformen der thermoplastischen Werkstücke nach dem Schweißvorgang keine Haftungsprobleme mit dem Andruckelement auftreten. Die Lösung zeichnet sich außerdem dadurch aus, daß sehr komplizierte, ebene Konturen schnell und kostengünstig geschweißt werden können, wobei die jeweilige Schweißkontur durch Austauschen des Andruckelementes und der reflektierenden Blende ohne großen zeitlichen Aufwand geändert werden kann. Chromium-nickel connection is established. In addition, the transparent pressure element can be connected directly to the reflective panel. The smooth surface of the transparent pressure element also results in a smooth, shiny weld seam, in which there are no adhesion problems with the pressure element when the thermoplastic workpieces are shaped after the welding process. The solution is also characterized by the fact that very complicated, flat contours can be welded quickly and inexpensively, the respective welding contour being able to be changed without great expenditure of time by exchanging the pressure element and the reflecting diaphragm.
Weitere Vorteile und Weiterbildungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispieles anhand der Zeichnungen. Dabei zeigen: Further advantages and developments of the invention result from the following description of an exemplary embodiment with reference to the drawings. Show:
FIG 1 den prinzipiellen Aufbau einer Infrarot-Schweißvorrichtung, FIG 2 die Temperaturverteilung des Infrarotschweißens in bezug zum Heizelementschweißen über die Dicke der zu verschweißenden thermoplastischen Werkstoffe, FIG 3 in einer Explosionsdarstellung eine Infrarot-Schweißvorrichtung für Tintenbehälter, 1 shows the basic structure of an infrared welding device, FIG. 2 shows the temperature distribution of infrared welding in relation to heating element welding over the thickness of the thermoplastic materials to be welded, 3 shows an exploded view of an infrared welding device for ink containers,
FIG 4 in einer Prinzipdarstellung die Fokussierung der Infrarotstrahlen auf eine Schweißfläche, 4 shows a schematic illustration of the focusing of the infrared rays on a welding surface,
FIG 5 die transmittierte und reflektierte Infrarotstrahlung einer für den Schweißvorgang richtig beschichteten, mit einer Reflexionsschicht versehenen Spiegelmaske, 5 shows the transmitted and reflected infrared radiation of a mirror mask which is correctly coated for the welding process and provided with a reflection layer,
FIG 6 die transmittierte und reflektierte Infrarotstrahlung einer für den Schweißvorgang falsch beschichteten, mit einer Reflexionsschicht versehenen Spiegelmaske, FIG 7 einen Tintenbehälter mit drei Flüssigkeitskammern, 6 shows the transmitted and reflected infrared radiation of a mirror mask which is incorrectly coated for the welding process and provided with a reflective layer, FIG. 7 shows an ink container with three liquid chambers,
FIG 8 einen Tintenbehälter mit einer Flüssigkeitskammer. 8 shows an ink container with a liquid chamber.
Die FIG 1 zeigt den prinzipiellen Aufbau einer Vorrichtung zum Infrarotschweißen von thermoplastischen teilkristallinen Werkstoffen. Ausgangsmaterial für den Schweißvorgang sind ein auf einer ortsfesten Plattform 6 aufliegendes thermoplastisches teilkristallines Werkstück 3 der Dicke d2 und ein weiteres aufgeschichtetes thermoplastisches teilkristallines Werkstück 2 der Dicke. d1, die in der Schichtungsebene, im folgenden auch Schweißebene genannt, an vorgegebenen Schweißflächen A miteinander verschweißt werden sollen. Dazu ist auf dem thermoplastischen Werkstück 2 ein spannungsarmes Andruckglas 12, beispielsweise ein für thermische und mechanische Belastungen geeignetes Tempax-Tafelglas aus Borosilikat, der Dicke dO angeordnet, wo es mit einer Andruck kraft F gleichmäßig auf das thermoplastische Werkstück 2 gedrückt wird. Die Notwendigkeit dieser Andruckkraft F erklart sich aus der schweißtechnischen Praxis von Kunststoffen. So ist wegen der relativ hohen dynamischen Viskosität der Kunststoffe, beispielsweise
Figure imgf000006_0001
> 104 cP, beim Schweißen ein bestimmter Druck erforderlich. Dieses ist darauf zu rückzuführen, daß für das Verschweißen von teilkristallinen Thermoplasten diese bis zu einer Temperatur oberhalb der Kristallisationstemperatur erwärmt werden müssen. Da der Kunststoff in diesem plastischen Zustand auseinanderfließt, ist ein gewisser Druck erforderlich, um das Ineinanderfließen bzw. Verschweißen der Grenzflächen zu erreichen. Dieser Schweißdruck darf aber auch andererseits nicht zu stark sein, da ansonsten beim Wegdrücken der Schmelze die Festigkeit der Schweißnaht verringert wird. Dies ist insbesondere dann der Fall, wenn das thermoplastische Werkstück 2 als Kunststoffolie ausgebildet ist. Darüber hinaus muß beim Aufbringen der Andruckkraft F berücksichtigt werden, daß beim Abkühlen des Kunststoffes ein Volumenschwund eintritt, der durch entsprechende Maßnahmen ausgeglichen werden muß. Hierzu böte sich beispielsweise eine federnde Andruckkraft F an.
1 shows the basic structure of a device for infrared welding of thermoplastic semi-crystalline materials. The starting material for the welding process is a thermoplastic semi-crystalline workpiece 3 of thickness d2 resting on a stationary platform 6 and another layered thermoplastic semi-crystalline workpiece 2 of thickness. d1, which are to be welded to one another at predetermined welding surfaces A in the layering plane, hereinafter also referred to as the welding plane. For this purpose, a low-pressure pressure glass 12, for example a Tempax sheet glass made of borosilicate, which is suitable for thermal and mechanical loads, is arranged on the thermoplastic workpiece 2, the thickness dO, where it is pressed evenly onto the thermoplastic workpiece 2 with a pressure force F. The need for this pressure force F is explained by the welding practice of plastics. So is because of the relatively high dynamic viscosity of the plastics, for example
Figure imgf000006_0001
> 10 4 cP, a certain pressure is required for welding. This is towards it to be attributed to the fact that the welding of partially crystalline thermoplastics must be heated up to a temperature above the crystallization temperature. Since the plastic flows apart in this plastic state, a certain pressure is required in order to achieve the confluence or welding of the interfaces. On the other hand, this welding pressure must not be too strong, since otherwise the strength of the weld seam is reduced when the melt is pushed away. This is particularly the case when the thermoplastic workpiece 2 is designed as a plastic film. In addition, when applying the pressure force F, it must be taken into account that when the plastic cools, a volume decrease occurs, which must be compensated for by appropriate measures. For example, a resilient pressure force F would be suitable for this.
Oberhalb des Andruckglases 12 ist in einem Abstand zl eine Halogenglühlampe 41 angeordnet. Diese Halogenglühlampe 41 ist mit einer Spannungsquelle 5 elektrisch verbunden, die durch Anlegen einer Spannung U der Halogenglühlampe 41 einen Strom I aufzwingt. Die Halogenglühlampe 41 wandelt diesen Strom I in einen proportionalen Strahlungsfluß $ um. Die von der Halogenglühlampe 41 emittierte Strahlung gelangt unter einen Raumwinkel Ω auf die Oberfläche des Andruckglases 12. A halogen incandescent lamp 41 is arranged above the pressure glass 12 at a distance z1. This halogen incandescent lamp 41 is electrically connected to a voltage source 5, which forces a current I by applying a voltage U to the halogen incandescent lamp 41. The halogen incandescent lamp 41 converts this current I into a proportional radiation flow $. The radiation emitted by the halogen incandescent lamp 41 reaches the surface of the pressure glass 12 at a solid angle Ω.
Im Unterschied zum Heizelementschweißen, wo der Energietransport durch Wärmeleitung erfolgt, wird beim Infrarotschweißen die für das Schweißen notwendige Energie mittels Wärmestrahlung zugeführt. Die von der Halogenglühlampe 41 abgegebene Strahlungsenergie wird von dem Andruckglas 12 und den beiden thermoplastischen Werkstücken 2, 3 entsprechend dem jeweiligen Reflexions-, Absorptions- und Transmissionsgrad in Wärme umgewandelt. Für die Selektion des für den Schweißvorgang geeigneten Andruckglases 12 und der beiden thermoplastischen Werkstücke 2, 3 sowie für die Be rechnung der jeweiligen optischen Eigenschaften ist die Beziehung nach dem Energieerhaltungssatz, daß die Summe der Reflexions-, Absorptions- und Transmissionsenergie in bezug zur Strahlungsenergie der Halogenglühlampe 41 gleich 1 ist, anzuwenden. In contrast to heating element welding, where the energy is transported by heat conduction, infrared welding uses heat radiation to supply the energy required for welding. The radiation energy emitted by the halogen incandescent lamp 41 is converted into heat by the pressure glass 12 and the two thermoplastic workpieces 2, 3 in accordance with the respective degree of reflection, absorption and transmission. For the selection of the pressure glass 12 suitable for the welding process and the two thermoplastic workpieces 2, 3 and for the loading calculation of the respective optical properties, the relationship according to the energy conservation law that the sum of the reflection, absorption and transmission energy in relation to the radiation energy of the halogen incandescent lamp 41 is equal to 1 is to be used.
In FIG 2 ist gemäß der Darstellung in FIG 1 die Temperaturverteilung der am Schweißprozeß beteiligten Bauteile sowohl für das Infrarotschweißen (IR) als auch für das Heizelementschweißen (HE) dargestellt. Dieser qualitativen Darstellung kann unmittelbar entnommen werden, daß beginnend bei einer Raumtemperatur
Figure imgf000008_0001
die maximale Erwärmung beim Infrarotschweißen direkt, in der Schweißebene bei einer Schweißtemperatur auftritt, während beim Heizelement
Figure imgf000008_0002
FIG. 2 shows the temperature distribution of the components involved in the welding process, both for infrared welding (IR) and for heating element welding (HE), as shown in FIG. 1. This qualitative representation can be seen immediately that starting at room temperature
Figure imgf000008_0001
the maximum warming occurs in infrared welding directly, in the welding plane at a welding temperature, while in the heating element
Figure imgf000008_0002
schweißen die maximale Erwärmung an der Oberfläche des thermoplastischen Werkstükkes 2 bei einer Temperatur
Figure imgf000008_0003
unterhalb einer Zersetzungstemperatur er des Kunststoffes
Figure imgf000008_0004
weld the maximum heating at the surface of the thermoplastic workpiece 2 at one temperature
Figure imgf000008_0003
below a decomposition temperature of the plastic
Figure imgf000008_0004
auftritt. Aufgrund dieser Tatsache lassen sich mit dem Infrarotschweißen insbesondere schnellere Schweißergebnisse erzielen als beim Heizelementschweißen. Die Güte der occurs. Because of this fact, infrared welding in particular can achieve faster welding results than with heating element welding. The goodness of
Schweißung beim Infrarotschweißen Ist darüber hinaus im einzelnen von der Schweißtemperatur, der Einwirkdauer der Schweißtemperatur, der Temperaturverteilung in der Schweißebene, dem Schweißdruck und dem Abkühlvorgang abhängig. Die Schweißtemperatur wiederum ist auf die Leistung der Halogenglühlampe 41, den Verlusten im Strahlengang, den optischen Eigenschaften der miteinander zu verschweißenden thermoplastischen Werkstücke 2, 3 und den Abstand zl zwischen dem Andruckglas 12 und der Halogenglühlampe 41 zurückzuführen.  Welding during infrared welding is also dependent on the welding temperature, the exposure time of the welding temperature, the temperature distribution in the welding plane, the welding pressure and the cooling process. The welding temperature in turn is due to the power of the halogen incandescent lamp 41, the losses in the beam path, the optical properties of the thermoplastic workpieces 2, 3 to be welded together and the distance z1 between the pressure glass 12 and the halogen incandescent lamp 41.
Die FIG 3 zeigt in einer Explosionsdarstellung den prinzipiellen Aufbau einer Infrarot-Schweißvorrichtung für Tintenbehälter. Die Schweißvorrichtung besteht dazu im wesentliehen aus einer Andruckvorrichtung 1 und einer Schweißlampe 4. Um im folgenden das Zusammenwirken der einzelnen Bestandteile der Andruckvorrichtung 1 im Zusammenhang mit dem Verschweißen der thermoplastischen Werkstücke 2, 3 erläutern zu können, sind die einzelnen Bestandteile der Andruckvorrichtung 1 explosionsartig dargestellt. Charakteristisch für den Aufbau der Andruckvorrichtung 1 ist eine Grundplatte 10, auf der eine Aufnahmevorrichtung 11 für die thermoplastischen Werkstücke 2, 3 mittig lösbar befestigt ist. Die gegenüber der Grundplatte 10 kleinere Aufnahmevorrichtung 11 ist derart ausgebildet, daß die Werkstücke 3 im Bereich der Schweißnaht bzw. Schweißnähte eine Auflage erfahren. Die weitere Ausgestaltung der Aufnahmevorrichtung 11 richtet sich danach, wie die miteinander zu verschweißenden thermoplastischen Werkstücke 2, 3 geformt sind. Mit der in FIG 3 dargestellten Schweißvorrichtung soll beispielsweise ein Tintenbehälter, wie er in FIG 7 dargestellt ist, für die drei Tintenfarben gelb, cyanblau und magentarot hergestellt werden. Typisch für einen derartigen Tintenbehälter sind ein schwarzer Grundkörper 3 aus Lupolen der HDPE-Gruppe (HDPE: High-Density-Polyethylen) mit einer glänzenden Oberfläche sowie einem kristallinen Anteil von 90 % und eine-naturfarbene, transparente Membranfolie 2 aus Lupolen der LDPE-Gruppe (LDPE: Low-Density-Polyethylen) mit einer matten Oberfläche sowie einem kristallinen Anteil von ca. 60 % . Während der Grundkörper 3 im Bereich der Schweißnaht 1,5 mm dick ist, weist die zweifach geschichtete und darüber hinaus elastisch ausgebildete Membranfolie 2 eine Gesamtdicke von 200 μm auf. Der Grundkörper 3 wird im 3 shows an exploded view of the basic structure of an infrared welding device for ink tanks. For this purpose, the welding device essentially consists of a pressure device 1 and a welding lamp 4. In the following, the interaction of the individual components of the pressure device 1 in connection with the To be able to explain welding of the thermoplastic workpieces 2, 3, the individual components of the pressure device 1 are shown in an explosive manner. A base plate 10, on which a holding device 11 for the thermoplastic workpieces 2, 3 is detachably fastened in the center, is characteristic of the construction of the pressure device 1. The receiving device 11, which is smaller than the base plate 10, is designed such that the workpieces 3 are supported in the area of the weld seam or weld seams. The further configuration of the receiving device 11 depends on how the thermoplastic workpieces 2, 3 to be welded together are shaped. The welding device shown in FIG. 3 is to be used, for example, to produce an ink container as shown in FIG. 7 for the three ink colors yellow, cyan and magenta. Typical of such an ink container are a black base body 3 made of Lupolen from the HDPE group (HDPE: high-density polyethylene) with a glossy surface and a crystalline content of 90% and a natural-colored, transparent membrane film 2 made from Lupolen from the LDPE group (LDPE: low density polyethylene) with a matt surface and a crystalline content of approx. 60%. While the base body 3 is 1.5 mm thick in the area of the weld seam, the double-layered and additionally elastic membrane film 2 has a total thickness of 200 μm. The base body 3 is in
Spritzguß hergestellt und enthält im wesentlichen ein an zwei sich gegenüberliegenden Seiten offen ausgebildetes quaderförmiges Basisteil 32 mit einem Hohlraum 320, der durch zwei in einem äquidistanten Abstand voneinander angeordnete Trennwände 31 in drei gleichgroße Tintenkammern 30 unterteilt wird . Um die Tintenkammern 30 noch zu vergrößern , schließt sich an einer offenen Seite des quaderförmig ausgebildeten Basisteils 32 jeweils ein im Querschnitt u-förmig ausgebildetes, an den Stirnflächen geschlossenes Formteil 33 an. Auf der gegenüberliegenden offenen Seite des quaderförmigen Basisteils 32 ist eine von der Deckflä ehe des Basisteiis 32 abstehenαe Umrandung 34 vorgesehen. Mit dieser Umrandung 34 ist gleichzeitig auch die doppelt beschichtete, elastisch ausgebildete Membranfolie 2 umfaßt, die vor dem Einsetzen des Grundkörpers 3 in die AufnahmeVorrichtung 11 auf das Basisteil 32 gelegt wird. Die Membranfolie 2 weist dazu entsprechend der Anordnung der Tintenkammern 30 in dem Grundkörper 3 flexible Wölbungen 20 auf, die beim Aufbringen der Membranfolie 2 auf den Grundkörper 3 in die Tintenkammern 30 eintauchen. Die Umrandung 34 dient als Auslaufschutz der Tintenflüssigkeit für den Fall, daß die mit dem Grundkörper 3 verschweißte Membranfolie 2 bei der Verwendung der Tintenbehälter in Tintendruckeinrichtungen mit der Zeit verschleißt und tintendurchlässig wird. Injection molded and essentially contains a cuboid base part 32 which is open on two opposite sides and has a cavity 320, which is divided into three equally sized ink chambers 30 by two partition walls 31 arranged at an equidistant distance from one another. In order to enlarge the ink chambers 30 even more, a molded part 33 with a U-shaped cross section and closed at the end faces adjoins an open side of the cuboid base part 32. On the opposite open side of the cuboid base part 32 is one of the top surface Before the base part 32 protruding edge 34 is provided. This border 34 at the same time also encompasses the double-coated, elastically designed membrane film 2, which is placed on the base part 32 before the base body 3 is inserted into the receiving device 11. For this purpose, the membrane film 2 has, according to the arrangement of the ink chambers 30 in the base body 3, flexible bulges 20 which plunge into the ink chambers 30 when the membrane film 2 is applied to the base body 3. The border 34 serves as leakage protection of the ink liquid in the event that the membrane film 2 welded to the base body 3 wears out over time when the ink containers are used in ink printing devices and becomes ink-permeable.
Beim Einsetzen des Grundkörpers 3 in die Aufnahmevorrichtung 11 zusammen mit der Membranfolie 2 wird der Grundkörper 3 zuerst mit den U-förmig ausgebildeten Formteilen 33 in einen dafür vorgesehenen Schacht 110 der Aufnahmevorrichtung 11 eingeführt. In den Schacht 111 sind drei zueinander parallel verlaufende Rippen 111 derart angeordnet-, daß der eingesetzte Grundkörper 3 mit der Unterkante des Basisteils 32 und den Trennwänden 31 auf den Rippen 111 aufliegend, eine bündige Oberfläche mit der Aufnahmevorrichtung 11 bildet und die Schweißnaht unterstützt. Auf der Aufnahmevorrichtung 11 wird anschließend ein doppelschichtiges, stempelartig ausgebildetes Andruckglas 12 verwendet. Der doppelschichtige Aufbau des Andruckglases 12 mit einem Paßteil 120 und einem Auflageteil 121 ist auf die Umrandung 34 des Grundkörpers 3 zurückzuführen. Das Paßteil 120 ist auf einer Klebefläche 701 des Auflageteiles 121 mittels eines Einkomponentenklebers befestigt und dabei so bemessen, daß es die von der Umrandung 34 eingefaßte Deckfläche des Grundkδrpers 3 ganzflächig bedeckt. Um den Strahlengang der Infrarotstrahlung beim Übergang zwischen dem Auflageteil 121 und dem Paßteil 120 nur geringfügig zu beeinflussen und damit die optischen Verluste so klein wie möglich zu hal ten, bietet sich das Kleben als Verbindungstechnik bei einer Verschlechterung des Transmissionsgrades von 0,8 auf 0,7 an. Damit das Auflageteil 121 mit einer Auflagefläche 700 auf der Aufnahmevorrichtung 11 plan aufliegt, entspricht die Dicke des Paßteils 120 der Höhe der Umrandung 34. Das Auflageteil 121 des Andruckglases 12 ist darüber hinaus so dimensioniert, daß es mit den Kanten der Aufnahmevorrichtung 11 bündig abschließt. Um im folgenden die Membranfolie 2 und den Grundkörper 3 zu einem Tintenbehälter mittels Infrarotstrahlung verschweißen zu können, ist das Paßteil 120 auf der dem Auflageteil 121 abgewandten Seite mit einer Reflexionsschicht 122 versehen. Die Reflexionsschicht 122 ist dabei so strukturiert, daß ein Verschweißen der Membranfolie 2 auf dem Grundkörper 3 an dafür vorgesehenen Stellen erfolgt. Die Reflexionsschicht 122 ist ferner auf der Auflagefläche 700 des Auflageteils 121 aufgebracht, um insbesondere die Umrandung 34 und die Aufnahmevorrichtung 11 vor den Infrarotstrahlen der Schweißlampe 4 zu schützen. Wird jedoch, statt der Reflexionsschicht 122 eine Absorptionsschicht verwendet, so kommt es infolge der dadurch auftretenden starken Erwärmung des Andruckglases 12 im Bereich der Absorptionsschicht zu Kontaktschweißungen, die unerwünscht sind. Ein mit der Reflexionsschicht 122 in der beschriebenen Weise versehenes, stempelartig aufgebautes spannungsarmes Andruckglas 12 wird als Spiegelmaske bezeichnet. Als Material für. die Reflexionsschicht 122 wird Aluminium verwendet, das auf einer 1 μm dicken Titan-Zwischenschicht abgeschieden wird und im Infrarot-Bereich noch 85 % der einfallenden Strahlung reflektiert. Neben Aluminium kann aber auch Silber als Material für die Reflexionsschicht 122 verwendet werden. Das vom Reflexionsvermögen bessere jedoch wesentlich teurere Silber hat wie Aluminium den Nachteil, daß es sehr anfällig gegen Kratzer und Fingerabdrücke ist. Es ist deshalb zweckmäßig, für die Reflexionsschicht 122 Materialien zu verwenden, die eine höhere mechanische Festigkeit aufweisen, wie beispielsweise CrNiVerbindungen oder Titan. Bei der Verwendung von Silber oder Aluminium besteht alternativ die Möglichkeit, die Reflexionsschicht 122 vor Abrieb mit einer SiO2-Schicht zu schützen. Zum Schutz gegen mechanische Beschädigung wird auf dem als Spiegelmaske ausgebildeten Andruckglas 12 anschließend zunächst ein Gummirahmen 13 und danach zum Aufbringen der Andruckkraft F ein Andruckrahmen 14 positioniert. Das Positionieren erfolgt über vier Rändelschrauben 15, die in jeweils vier rechteckfδrmig angeordneten Durchtrittsöffnungen 130 bzw. 140 durchsteckbar und längs des Andruckglases 12 und der Aufnahmevorrichtung 11 in Gewindebohrungen 100 der Grundplatte 10 verschraubbar sind. Durch gleichmäßiges Anziehen der Rändelschrauben 15 wird somit eine einheitliche Flächenpressung zwischen der Membranfolie 2 und dem Grundkörper 3 insbesondere im Bereich der Schweißnaht erzielt. Darüber hinaus sind die Rändelschrauben 15 jeweils mit einer um den Schraubenschaft angeordneten Schraubenfeder 16 versehen. When the base body 3 is inserted into the holding device 11 together with the membrane film 2, the base body 3 is first inserted with the U-shaped molded parts 33 into a shaft 110 of the holding device 11 provided for this purpose. In the shaft 111, three ribs 111 running parallel to one another are arranged in such a way that the base body 3, with the lower edge of the base part 32 and the partition walls 31 resting on the ribs 111, forms a flush surface with the receiving device 11 and supports the weld seam. A double-layer, stamp-like pressure glass 12 is then used on the receiving device 11. The double-layer structure of the pressure glass 12 with a fitting part 120 and a support part 121 is due to the border 34 of the base body 3. The fitting part 120 is attached to an adhesive surface 701 of the support part 121 by means of a one-component adhesive and is dimensioned such that it covers the entire surface of the cover surface of the base body 3 bordered by the border 34. In order to influence the beam path of the infrared radiation at the transition between the support part 121 and the fitting part 120 only slightly and thus to keep the optical losses as small as possible ten, gluing offers itself as a connection technique when the transmittance deteriorates from 0.8 to 0.7. So that the support part 121 with a support surface 700 lies flat on the receiving device 11, the thickness of the fitting part 120 corresponds to the height of the border 34. The supporting part 121 of the pressure glass 12 is also dimensioned such that it is flush with the edges of the receiving device 11. In order to be able to weld the membrane sheet 2 and the base body 3 to an ink container by means of infrared radiation in the following, the fitting part 120 is provided with a reflection layer 122 on the side facing away from the support part 121. The reflection layer 122 is structured in such a way that the membrane film 2 is welded to the base body 3 at the locations provided for this purpose. The reflection layer 122 is also applied to the contact surface 700 of the contact part 121, in order in particular to protect the border 34 and the receiving device 11 from the infrared rays of the welding lamp 4. However, if an absorption layer is used instead of the reflection layer 122, contact welding, which is undesirable, occurs in the region of the absorption layer as a result of the resulting strong heating of the pressure glass 12. A low-pressure glass 12 which is constructed in the manner described and provided with the reflection layer 122 in the manner described is referred to as a mirror mask. As material for. the reflection layer 122 is aluminum, which is deposited on a 1 μm thick titanium intermediate layer and still reflects 85% of the incident radiation in the infrared range. In addition to aluminum, however, silver can also be used as the material for the reflection layer 122. Silver, which is much more expensive in terms of reflectivity, but has the disadvantage, like aluminum, that it is very susceptible to scratches and fingerprints. It is therefore expedient to use materials for the reflective layer 122 which have a higher mechanical strength, such as CrNi compounds or titanium. When using silver or Alternatively there is the possibility of aluminum to protect the reflection layer 122 from abrasion with an SiO 2 layer. To protect against mechanical damage, first a rubber frame 13 is then positioned on the pressure glass 12 designed as a mirror mask, and then a pressure frame 14 for applying the pressure force F. The positioning takes place via four knurled screws 15, which can be pushed through in each case in four rectangular openings 130 and 140, respectively, and can be screwed into threaded holes 100 of the base plate 10 along the pressure glass 12 and the receiving device 11. Uniform tightening of the knurled screws 15 thus achieves a uniform surface pressure between the membrane film 2 and the base body 3, particularly in the area of the weld seam. In addition, the knurled screws 15 are each provided with a coil spring 16 arranged around the screw shaft.
Durch den federnden Andruck des als Spiegelmaske ausgebildeten Andruckglases 12 wird gewährleistet, daß die durch die Infrarotstrahlung plastifizierten Grenzschichten der Membranfolie 2 und des Grundkörpers 3 in der Schweißebene ineinanderfließen. Die gleichmäßige Flächenpressung zwischen der Membranfolie 2 und dem Grundkörper 3 ist ebenfalls unerläßlich für ein gutes Schweißergebnis. So hängt die Güte der Schweißung maßgeblich von der gleichmäßigen Verteilung des Schweißdruckes auf der gesamten Schweißnaht ab. Damit sich infolge von Lufteinschlüssen in der Schweißebene keine Löcher in der Membranfolie 2 bilden, sind zur Unterstützung der Schweißnaht in der Aufnahmevorrichtung 11 die Rippen 111 angeordnet. In der Mitte des Gummirahmens 13 und des Andruckrahmens 14 ist jeweils eine rechteckförmige Öffnung 131 bzw. 141 eingelassen. Die Abmessungen der Öffnungen 131, 141 ergeben sich einerseits aus der Querschnittsfläche des Schachtes 110 der Aufnahmevorrichtung 11 und andererseits aus der Abstrahlcharakteristik der Schweißlampe 4. Die elektrische Leistung bezieht die Schweißlampe 4 aus einer Spannungsquelle 5, bei der durch Anlegen einer Spannung U der The resilient pressure of the pressure glass 12 designed as a mirror mask ensures that the boundary layers of the membrane film 2 and the base body 3 plasticized by the infrared radiation flow into one another in the welding plane. The uniform surface pressure between the membrane film 2 and the base body 3 is also essential for a good welding result. The quality of the weld depends to a large extent on the even distribution of the welding pressure over the entire weld. In order that no holes form in the membrane film 2 as a result of air pockets in the welding plane, the ribs 111 are arranged in the receiving device 11 to support the weld seam. In the middle of the rubber frame 13 and the pressure frame 14, a rectangular opening 131 and 141 is embedded. The dimensions of the openings 131, 141 result on the one hand from the cross-sectional area of the shaft 110 of the receiving device 11 and on the other hand from the radiation characteristic of the welding lamp 4. The welding lamp 4 draws the electrical power from a voltage source 5, in which by applying a voltage U the
Schweißlampe 4 ein Strom I aufgezwungen wird. Als Schweißlampe 4 wird ein Halogen-Infrarot-Reflektorstrahler verwendet, der einen dem Strom I proportionalen Strahlungsfluß Φ erzeugt. Der Strahler besteht aus einer Halogenglühlampe 41 und einem Infrarot-Ellipsoid-Reflektor 40. Die Halogenglühlampe 41 ist umgeben von dem Infrarot-Ellipsoid-Reflektor 40 mit diesen zusammen an einer Lampenhalterung 42 befestigt. Die Abstrahlcharakteristik der Schweißlampe 4 ergibt sich aus zwei Brennpunkten f1, f2 des Infrarot-EllipsoidReflektors 40. Im ersten Brennpunkt f1 ist eine Lampenwendel 410 der Halogenglühlampe 41 angeordnet, während der zweite Brennpunkt f2 im Arbeitspunkt der Infrarot-Schweißvorrichtung liegt. Die Lage dieses Arbeitspunktes läßt sich durch Bewegen der Schweißlampe 4 in z-Richtung verändern. Als Bezugsgröße für die Festlegung des jeweiligen Arbeitspunktes ist der Abstand zl zwischen der Unterkante des halbkreisförmig ausgebildeten Infrarot-Ellipsoid-Reflektors 40 und der Deckfläche des als Spiegelmaske ausgebildeten Andruckglases 12, im folgenden auch als Schweißabstand bezeichnet, definiert. Um innerhalb kürzester Zeit eine maximale Erwärmung in der Schweißebene zwischen der Membranfolie 2 und dem Grundkörper 3 zu gewährleisten, sollte der Schweißabstand zl unter Berücksichtigung der Brechungseigenschaften des als Spiegelmaske ausgebildeten Andruckglases 12 so gewählt werden, daß die Brennebene mit der  Welding lamp 4 a current I is forced. A halogen infrared reflector emitter is used as the welding lamp 4, which generates a radiation flux Φ proportional to the current I. The radiator consists of a halogen incandescent lamp 41 and an infrared ellipsoid reflector 40. The halogen incandescent lamp 41 is surrounded by the infrared ellipsoid reflector 40 and is fastened together with the latter to a lamp holder 42. The radiation characteristic of the welding lamp 4 results from two focal points f1, f2 of the infrared ellipsoid reflector 40. A lamp filament 410 of the halogen incandescent lamp 41 is arranged in the first focal point f1, while the second focal point f2 lies in the working point of the infrared welding device. The position of this working point can be changed by moving the welding lamp 4 in the z direction. The distance z1 between the lower edge of the semicircular infrared ellipsoid reflector 40 and the top surface of the pressure glass 12 designed as a mirror mask, also referred to below as the welding distance, is defined as a reference variable for determining the respective working point. In order to ensure maximum heating in the welding plane between the membrane film 2 and the base body 3 within a very short time, the welding distance zl should be chosen taking into account the refractive properties of the pressure glass 12 designed as a mirror mask so that the focal plane with the
Schweißebene zusammenfällt. Für die Halogenglühlampe 41 der Infrarot-Schweißvorrichtung beträgt die maximal erzielbare Strahlungsflußdichte im Arbeitspunkt ca. 140 W/cm2. Da eine konstante Schweißtemperatur nur in unmittelbarer Umgebung des Brennpunktes bzw. Arbeitspunktes vorliegt, ergeben sich hieraus für die gleichmäßige Erwärmung des Schweißbereiches Begrenzungskriterien an die Breite einer Schweißnaht. Für den Fall, daß die Schweißlampe 4 ohne zusätzliche Optiken benutzt wird, ist nur noch ein Konturschweißen für Konturbreiten kleiner als 6 mm möglich. Das Schweißen einer Kontur erfolgt durch eine Relativbewegung zwischen dem Brennpunkt f2 und den in der Andruckvorrichtung 1 eingespannten, miteinander zu verschweißenden thermoplastischen Werkstükken 2, 3 entlang der durch die Reflexionsschicht 122 auf dem Andruckglas 12 festgelegten Kontur. Realisiert wird diese Relativbewegung durch Verschieben der Andruckvorrichtung 1 mit einer vorgegebenen Schweißgeschwindigkeit in xund y-Richtung. Liefert die Schweißlampe 4 hingegen mittelbar oder unmittelbar über dem gesamten Schweißbereich eine konstante Strahlungsflußdichte, so ist die Relativbewegung zwischen der Andruckvorrichtung 1 und der Schweißlampe 4 überflüssig. Welding level coincides. For the halogen incandescent lamp 41 of the infrared welding device, the maximum achievable radiation flux density at the operating point is approximately 140 W / cm 2 . Since a constant welding temperature is only present in the immediate vicinity of the focal point or working point, this results in limiting criteria for the width of a weld seam for uniform heating of the welding area. In the event that the welding lamp 4 without additional optics is used, only contour welding for contour widths smaller than 6 mm is possible. A contour is welded by a relative movement between the focal point f2 and the thermoplastic workpieces 2, 3 clamped in the pressure device 1 and to be welded together along the contour defined by the reflection layer 122 on the pressure glass 12. This relative movement is realized by moving the pressure device 1 with a predetermined welding speed in the x and y directions. If, however, the welding lamp 4 provides a constant radiation flux density directly or indirectly over the entire welding area, the relative movement between the pressure device 1 and the welding lamp 4 is superfluous.
In FIG 4 ist in Bezug zu FIG 3 der Verlauf von der Schweißlampe 4 emittierten Strahlung durch das im Schweißabstand zl von der Schweißlampe 4 entfernte Andruckglas 12 bis zur Fokussierung auf eine Schweißfläche A in der Schweißebene zwischen der Membranfolie 2 und dem Flaschenkörper 3 dargestellt. Berücksichtigung findet hierbei der Brechungseinfluß zwischen dem Medium Luft und dem Auflageteil 121 des Andruckglases 12 und der Brechungseinfluß infolge der Klebeschicht zwischen dem Auflageteil 121 und dem Paßteil 120. Letzterer ist wegen der geringen Schichtdicke des Einkomponentenklebers von maximal 0,2 mm bei einem Brechungsindex von n = 1,472 für das Andruckglas 12 sowie einem Brechungsindex n = 1,59 für den Einkomponentenkleber zu vernachlässigen. Wegen unterschiedlicher Dicken des Andruckglases 12 ergibt sich somit für einen Tintenbehälter gemäß FIG 7 ein Schweißabstand von 13,4 mm, während für einen Tintenbehälter gemäß FIG 8 der Schweißabstand zl 11,5 mm beträgt. Die FIG 4 zeigt außerdem im Zusammenhang mit der FIG 5 und 6 das Problem auf, das entsteht, wenn beim Aufbringen der Reflexionsschicht 122 auf das Auflageteil 121 und das Paßteil 120 auf eine ausreichende Abdeckung der Tintenkammern 30 im Bereich der Schweißfläche A verzichtet wird. Wird beispielsweise die Reflexionsschicht 122 in diesem Bereich zu knapp ausgelegt, so besteht die Gefahr, daß die Membranfolie 2 mit dem inneren Wannenrand der Tintenkammer 30 verschmilzt. Dieses hat zur Folge, daß sich entweder der effektive Tintenraum verkleinert oder aber die Membranfolie 2 durchbrennt. In FIG 5 ist hierzu im Unterschied zu FIG 6 eine auf dem Paßteil 120 des Andruckglases 12 richtig strukturierte Reflexionsschicht 122 dargestellt, ohne daß es zu einem Verschmelzen der Membranfolie 2 mit dem inneren Wannenrand der Tintenkammer 30 des Grundkδrpers 3 kommen kann. FIG. 4 shows, in relation to FIG. 3, the course of the radiation emitted by the welding lamp 4 through the pressure glass 12, which is at a welding distance z1 from the welding lamp 4, up to the focus on a welding surface A in the welding plane between the membrane film 2 and the bottle body 3. This takes into account the influence of refraction between the medium air and the support part 121 of the pressure glass 12 and the influence of refraction due to the adhesive layer between the support part 121 and the fitting part 120. The latter is due to the low layer thickness of the one-component adhesive of a maximum of 0.2 mm with a refractive index of n = 1.472 for the pressure glass 12 and a refractive index n = 1.59 for the one-component adhesive. Because of different thicknesses of the pressure glass 12, a welding distance of 13.4 mm results for an ink container according to FIG. 7, while for an ink container according to FIG. 8 the welding distance zl is 11.5 mm. FIG. 4 also shows in connection with FIGS. 5 and 6 the problem that arises if, when applying the reflection layer 122 to the support part 121 and the fitting part 120, sufficient coverage of the ink chambers 30 in the area of the welding surface A is dispensed with. If, for example, the reflection layer 122 becomes too thick in this area In short, there is a risk that the membrane film 2 will fuse with the inner tub rim of the ink chamber 30. The result of this is that either the effective ink space is reduced or the membrane film 2 burns. In contrast to FIG. 6, FIG. 5 shows a reflection layer 122 that is correctly structured on the fitting part 120 of the pressure glass 12, without the membrane film 2 being fused to the inner tub edge of the ink chamber 30 of the base body 3.
In FIG 7 ist ein aus der Membranfolie 2 und dem Grundkörper 3 mit der beschriebenen Infrarotschweißvorrichtung hergestellter Tintenbehälter mit drei Tintenkammern 30 für unterschiedliche Tintenfarben dargestellt. FIG. 7 shows an ink container with three ink chambers 30 for different ink colors, produced from the membrane film 2 and the base body 3 with the infrared welding device described.
In FIG 8 ist ein aus der Membranfolie 2 und dem Grundkörper 3 mit der beschriebenen Infrarot-Schweißvorrichtung hergestellter Tintenbehälter mit einer Tintenkammer 30 dargestellt. Für be-ide Tintenbehälter-Varianten ergeben sich für das Konturschweißen, bei dem die Andruckvorrichtung 1 relativ zur Schweißlampe 4 bewegt wird, folgende in einer Tabelle zusammengefaßten Schweißparameter: Tintenbehältertyp 1-Farb-Behälter 3-Farb-BehälteFIG. 8 shows an ink container with an ink chamber 30 made from the membrane film 2 and the base body 3 using the infrared welding device described. For be-ide ink container variants, the following welding parameters are summarized in a table for contour welding, in which the pressure device 1 is moved relative to the welding lamp 4: ink container type 1-color container 3-color containers
Schweißtemperatur/ (ºC) 180 180 Welding temperature / (ºC) 180 180
Schweißdauer/(s) 25 35  Duration of welding / (s) 25 35
Schweißweg/(mm) 156 293  Welding path / (mm) 156 293
Schweißgeschwindigkeit/(mm/s) 6-6.5 8-8.5 Lampenabstand/ (mm) 11.8 13.4 Welding speed / (mm / s) 6-6.5 8-8.5 Lamp spacing / (mm) 11.8 13.4
Schweißdruck/ (bar) 2 2 Welding pressure / (bar) 2 2
Spannung/(V) 11.5 11.5 Voltage / (V) 11.5 11.5
Strom/(A) 8.5 8.5Current / (A) 8.5 8.5
Lampenleistung/(W) ca. 100 ca. 100 Lamp power / (W) approx. 100 approx. 100
Abkühldauer/(s) ca. 15 ca. 15 Cooling time / (s) approx. 15 approx. 15

Claims

Patentansprüche Claims
1. Verfahren zum Verschweißen von thermoplastischen Werkstoffen mittels Wärmestrahlung mit folgenden Merkmalen: 1. Process for welding thermoplastic materials by means of thermal radiation with the following features:
a) ein erstes und zweites thermoplastisches Werkstück (2 bzw. 3) werden übereinander gelegt und zum Verschweißen in ein energiereiches Strahlenbündel gebracht, a) a first and a second thermoplastic workpiece (2 or 3) are placed one above the other and brought into an energy-rich beam for welding,
b) zum Festlegen einer Schweißnaht wird das Strahlenbündel bereichsweise ausgeblendet und b) to define a weld seam, the beam is partially masked out and
c) die thermoplastischen Werkstücke (2, 3) werden unter einer federnden Andruckkraft (F) gleichmäßig auf eine Aufnahmevorrichtung (11) gepreßt, die die thermoplastischen Werkstücke (2, 3) im Bereich der Schweißnaht unterstützt. c) the thermoplastic workpieces (2, 3) are pressed uniformly under a resilient pressing force (F) onto a receiving device (11) which supports the thermoplastic workpieces (2, 3) in the area of the weld seam.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Strahlenbündel in einer Schweißebene zwischen den thermoplastischen Werkstücken (2, 3) fokussiert wird und die thermoplastischen Werkstücke (2, 3) auf der Aufnahmevorrichtung (11) zur Bildung der 2. The method according to claim 1, so that the beam is focused in a welding plane between the thermoplastic workpieces (2, 3) and the thermoplastic workpieces (2, 3) on the receiving device (11) to form the
Schweißnaht relativ zum Fokus bewegt werden. The weld seam can be moved relative to the focus.
3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Strahlenbündel durch eine geeignete Optik aufgeweitet wird, um in der Schweißebene zwischen den thermoplastischen Werkstücken (2, 3) eine gleichmäßige Bestrahlungsstärke zu erreichen. 3. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t that the beam is expanded by a suitable optics to achieve a uniform irradiance in the welding plane between the thermoplastic workpieces (2, 3).
4. Verfahren nach einem der Ansprüche 1 bis 3, d a a d u r c h g e k e n n z e i c h n e t , daß die thermoplastischen Werkstücke (2, 3) Elemente eines Tintenbehälters einer Tinteneinrichtung bilden. 4. The method according to any one of claims 1 to 3, that the thermoplastic workpieces (2, 3) form elements of an ink container of an ink device.
5. Anordnung zum Verschweißen von thermoplastischen Werkstoffen mittels Wärmestrahlung mit folgenden Merkmalen: a) ein erstes und zweites thermoplastisches Werkstück (2 bzw. 3) sind auf einer Aufnahmevorrichtung (11) überein ander geschichtet angeordnet, die die thermoplastischen Werkstücke (2, 3) im Bereich einer Schweißnaht unterstützt, 5. Arrangement for welding thermoplastic materials by means of thermal radiation with the following features: a) a first and a second thermoplastic workpiece (2 and 3) are on a receiving device (11) arranged in layers that support the thermoplastic workpieces (2, 3) in the area of a weld seam,
b) eine Strahlungseinrichtung (4) ist auf einer optischen Verbindungslinie zum thermoplastischen Werkstück (2) angeordnet, b) a radiation device (4) is arranged on an optical connecting line to the thermoplastic workpiece (2),
c) zum Festlegen der Schweißnaht ist eine Spiegelmaske (12, 122) vorgesehen, die ein transparentes Andruckelement (12) und eine dem ersten thermoplastischen Werkstück (2) zugewandte reflektierende Blende (122) aufweist, c) a mirror mask (12, 122) is provided for fixing the weld seam, which has a transparent pressure element (12) and a reflecting diaphragm (122) facing the first thermoplastic workpiece (2),
d) die Spiegelmaske (12, 122) ist in einem Schweißabstand (zl) zwischen der Strahlungseinrichtung (4) und dem thermoplastischen Werkstück (2) unmittelbar auf diesem angeordnet und d) the mirror mask (12, 122) is arranged at a welding distance (zl) between the radiation device (4) and the thermoplastic workpiece (2) and
e) eine Andruckvorrichtung (1) ist für den Schweißvorgang vorgesehen, die die thermoplastischen Werkstücke (2, 3) auf der Aufnahmevorrichtung (11) mit einer federnden Andruckkraft (F) gleichmäßig zusammendrückt. e) a pressing device (1) is provided for the welding process, which uniformly compresses the thermoplastic workpieces (2, 3) on the receiving device (11) with a resilient pressing force (F).
6. Vorrichtung nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß das transparente Andruckelement (12) mehrschichtig, stempelartig ausgebildet ist. 6. The device according to claim 5, d a d u r c h g e k e n n z e i c h n e t that the transparent pressure element (12) is multilayered, stamp-like.
7. Vorrichtung nach Anspruch 5 oder 6, d a d u r c h g e k e n n z e i c h n e t , daß die reflektierende7. The device of claim 5 or 6, d a d u r c h g e k e n n z e i c h n e t that the reflective
Blende (122) mit dem transparenten Andruckelement (12) unmittelbar verbunden ist. Aperture (122) is directly connected to the transparent pressure element (12).
8. Vorrichtung nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die reflektierende Blende (122) aus Aluminium mit einer Siliziumdioxid-Schutzschicht sowie einer Zwischenschicht aus Titan zwischen dem Aluminium und dem Glas aufgebaut ist. 8. The device according to claim 7, d a d u r c h g e k e n n z e i c h n e t that the reflective screen (122) made of aluminum with a silicon dioxide protective layer and an intermediate layer of titanium between the aluminum and the glass.
9. Vorrichtung nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die reflektierende Blende (122) aus Silber mit einer Siliziumdioxid-Schutzschicht so wie einer Zwischenschicht aus Titan zwischen dem Silber und dem Glas aufgebaut ist. 9. The device according to claim 7, characterized in that the reflective diaphragm (122) made of silver with a silicon dioxide protective layer like an intermediate layer of titanium between the silver and the glass.
10. Vorrichtung nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die reflektierende Blende (122) aus einer Chrom-Nickel-Verbindung aufgebaut ist. 10. The device according to claim 7, that the reflective diaphragm (122) is constructed from a chromium-nickel compound.
11. Vorrichtung nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die reflektierende Blende (122) aus Titan aufgebaut ist. 11. The device according to claim 7, d a d u r c h g e k e n n z e i c h n e t that the reflective diaphragm (122) is made of titanium.
12. Vorrichtung nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß die Strahlungseinrichtung (4) aus einer Halogenglühlampe (41) und einem Infrarot-E1- lipsoid-Reflektor (40) besteht. 12. The apparatus of claim 5, d a d u r c h g e k e n n z e i c h n e t that the radiation device (4) consists of a halogen incandescent lamp (41) and an infrared E1 lipsoid reflector (40).
13. Vorrichtung nach Anspruch 5, 8 oder 10, d a d u r c h g e k e n n z e i c h n e t , daß das erste thermoplastische Werkstück (2) als transluszente Membranfolie mit teilkristallinem Aufbau und das zweite thermoplastische Werkstück (3) als massiver strahlungsabsorbierender Kunststoff mit ebenfalls teilkristallinem Aufbau ausgebildet sind. 13. The apparatus of claim 5, 8 or 10, so that the first thermoplastic workpiece (2) is designed as a translucent membrane film with a partially crystalline structure and the second thermoplastic workpiece (3) as a solid radiation-absorbing plastic with also partially crystalline structure.
14. Vorrichtung nach einem der Ansprüche 5 bis 15, d a d u r c h g e k e n n z e i c h n e t , daß ein Gummirahmen vorgesehen ist, der das Andruckelement (12) gegen mechanische Beschädigungen schützt. 14. Device according to one of claims 5 to 15, d a d u r c h g e k e n n z e i c h n t that a rubber frame is provided which protects the pressure element (12) against mechanical damage.
15. Vorrichtung nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß die Andruckvorrichtung (1) relativ zur Strahlungseinrichtung (4) bewegbar ausgebildet ist. 15. The apparatus of claim 5, d a d u r c h g e k e n n z e i c h n e t that the pressure device (1) is designed to be movable relative to the radiation device (4).
16. Vorrichtung nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , daß die Andruckvorrichtung (1) auf einem Kreuztisch befestigt und von einem Schrittmotor antreibbar ist. 16. The apparatus according to claim 15, characterized in that the pressure device (1) is attached to a cross table and can be driven by a stepper motor.
17. Vorrichtung nach einem der Ansprüche 5 oder 15, 16, d a d u r c h g e k e n n z e i c h n e t , daß die Andruckvorrichtung (1) eine Grundplatte (10) enthält, auf der die Aufnahmevorrichtung (11) mit den thermoplastischen Werkstücken (2, 3) angeordnet ist, und einen Andruckrahmen (14) aufweist, der zum Aufbringen der federnden Andruckkraft (F) über Befestigungselemente (15) mit der Grundplatte (10) verbunden ist. 17. Device according to one of claims 5 or 15, 16, characterized in that the pressure device (1) contains a base plate (10) on which the receiving device (11) with the thermoplastic workpieces (2, 3) is arranged, and a pressure frame (14), which is connected to the base plate (10) by means of fastening elements (15) for applying the resilient pressure force (F).
18. Vorrichtung nach einem der Ansprüche 5 oder 15 bis 17, d a d u r c h g e k.e n n z e i c h n e t , daß die Andruckvorrichtung (1) geneigt angeordnet und der Andruckrahmen (14) mit dem Andruckelement (12) und der reflektierenden Blende (122) befestigbar sowie zum Ausformen der thermoplastischen Werkstücke (2, 3) aus der Aufnahmevorrichtung (11) mit Auswerfelementen koppelbar ist, die an der Aufnahmevorrichtung (11) befestigt sind. 18. Device according to one of claims 5 or 15 to 17, dadurchge ke nnzeich that the pressure device (1) arranged inclined and the pressure frame (14) with the pressure element (12) and the reflecting diaphragm (122) attachable and for molding the thermoplastic Workpieces (2, 3) from the receiving device (11) can be coupled with ejection elements which are attached to the receiving device (11).
PCT/EP1989/000706 1988-09-29 1989-06-23 Process and arrangement for welding thermoplastic materials using thermal radiation WO1990003261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3833110A DE3833110A1 (en) 1988-09-29 1988-09-29 METHOD AND ARRANGEMENT FOR WELDING THERMOPLASTIC MATERIALS BY MEANS OF HEAT RADIATION
DEP3833110.1 1988-09-29

Publications (1)

Publication Number Publication Date
WO1990003261A1 true WO1990003261A1 (en) 1990-04-05

Family

ID=6363999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/000706 WO1990003261A1 (en) 1988-09-29 1989-06-23 Process and arrangement for welding thermoplastic materials using thermal radiation

Country Status (2)

Country Link
DE (1) DE3833110A1 (en)
WO (1) WO1990003261A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444814A (en) * 1993-11-01 1995-08-22 Hofius, Sr.; David V. Method of infrared welding on thermoplastic parts utilizing contoured energy reflecting shields
EP0831997A1 (en) * 1995-06-07 1998-04-01 Edison Welding Institute Joining method
KR101003275B1 (en) 2002-12-27 2010-12-21 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 Method and apparatus for welding thermoplastic articles

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19748209A1 (en) * 1997-10-31 1999-05-06 Thomas Schuerhoff Process for fusion bonding plastic parts
US6054072A (en) * 1998-12-29 2000-04-25 Ford Motor Company Infrared bonding of transparent plastics articles
DE10012760B4 (en) * 2000-03-16 2012-02-02 Volkswagen Ag Method for mounting the headlight of a motor vehicle
DE10106734A1 (en) * 2001-02-14 2002-09-05 Mahle Filtersysteme Gmbh Method for producing a connection between a fluid-impermeable plastic and a fluid-permeable filter material
GB0327773D0 (en) * 2003-11-29 2003-12-31 Barkston Plastics Engineering Welding of plastics materials
US20050186377A1 (en) * 2004-02-19 2005-08-25 Hurst William S. Solventless plastic bonding of medical devices and container components through infrared heating
DE102005000002B4 (en) * 2005-01-13 2016-06-09 Lpkf Laser & Electronics Ag Method for detecting thermal damage during laser transmission welding and apparatus for carrying out this method
DE102008036467A1 (en) * 2008-08-05 2010-02-11 Fresenius Medical Care Deutschland Gmbh Method for producing a composite part by means of transmission laser welding
DE102016209950A1 (en) 2016-06-07 2017-12-07 Robert Bosch Gmbh Method for connecting two components
DE102016224734A1 (en) 2016-12-12 2018-06-14 Robert Bosch Gmbh Method and device for connecting two components

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE629609A (en) *
US3384526A (en) * 1965-09-02 1968-05-21 Research Inc Method and machine for joining plastics
FR1536496A (en) * 1966-07-22 1968-08-16 Itt Laser deposition process
US3514299A (en) * 1967-12-08 1970-05-26 Pantasote Co Of New York Inc T Packaging method
DE1778884A1 (en) * 1968-06-14 1971-08-26 Nirona Werke Kg Process for welding structures made of thermoplastics and device for carrying out the process
DE2130819A1 (en) * 1970-08-19 1972-02-24 Zentralinstitut Schweiss Continuously welding thermoplastic sheet - using revolving - transparent disc and focussed light beam
DE2157951A1 (en) * 1971-11-23 1973-05-30 Messer Griesheim Gmbh Plastic film separation - using focused infra-red rays to melt thermoplastic layer from woven carrier
FR2297143A1 (en) * 1975-01-09 1976-08-06 Anvar LASER BEAM MICROGRAVING PROCESS
US4081654A (en) * 1976-12-27 1978-03-28 Western Electric Co., Inc. Methods and apparatus for selectively removing a metallic film from a metallized substrate
GB2074070A (en) * 1980-04-21 1981-10-28 Gillette Co Laser-welded shaving unit
GB2118885A (en) * 1982-04-26 1983-11-09 Macken John A Method and apparatus for laser cutting of smoke-sensitive materials
JPH0644194A (en) * 1992-07-23 1994-02-18 Nec Corp Parallel processor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD84474A (en) * 1900-01-01
DE1778422A1 (en) * 1968-04-27 1971-10-07 Klebetechnik Gmbh Device for thermal shrinking or welding a plastic film
DE1779656C2 (en) * 1968-09-07 1973-01-04 Eltro Gmbh & Co Gesellschaft Fuer Strahlungstechnik, 6900 Heidelberg Device for welding thermoplastic foils

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE629609A (en) *
US3384526A (en) * 1965-09-02 1968-05-21 Research Inc Method and machine for joining plastics
FR1536496A (en) * 1966-07-22 1968-08-16 Itt Laser deposition process
US3514299A (en) * 1967-12-08 1970-05-26 Pantasote Co Of New York Inc T Packaging method
DE1778884A1 (en) * 1968-06-14 1971-08-26 Nirona Werke Kg Process for welding structures made of thermoplastics and device for carrying out the process
DE2130819A1 (en) * 1970-08-19 1972-02-24 Zentralinstitut Schweiss Continuously welding thermoplastic sheet - using revolving - transparent disc and focussed light beam
DE2157951A1 (en) * 1971-11-23 1973-05-30 Messer Griesheim Gmbh Plastic film separation - using focused infra-red rays to melt thermoplastic layer from woven carrier
FR2297143A1 (en) * 1975-01-09 1976-08-06 Anvar LASER BEAM MICROGRAVING PROCESS
US4081654A (en) * 1976-12-27 1978-03-28 Western Electric Co., Inc. Methods and apparatus for selectively removing a metallic film from a metallized substrate
GB2074070A (en) * 1980-04-21 1981-10-28 Gillette Co Laser-welded shaving unit
GB2118885A (en) * 1982-04-26 1983-11-09 Macken John A Method and apparatus for laser cutting of smoke-sensitive materials
JPH0644194A (en) * 1992-07-23 1994-02-18 Nec Corp Parallel processor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 172, (M-397) (1895), 9. Marz 1985; & JP-A-6044194 (Mitsubishi Denki K.K.) 9. Marz 1985 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444814A (en) * 1993-11-01 1995-08-22 Hofius, Sr.; David V. Method of infrared welding on thermoplastic parts utilizing contoured energy reflecting shields
EP0831997A1 (en) * 1995-06-07 1998-04-01 Edison Welding Institute Joining method
EP0831997A4 (en) * 1995-06-07 1998-09-30 Edison Welding Inst Joining method
KR101003275B1 (en) 2002-12-27 2010-12-21 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 Method and apparatus for welding thermoplastic articles

Also Published As

Publication number Publication date
DE3833110C2 (en) 1991-01-10
DE3833110A1 (en) 1990-04-05

Similar Documents

Publication Publication Date Title
WO1990003261A1 (en) Process and arrangement for welding thermoplastic materials using thermal radiation
EP0751865B1 (en) Plastic workpiece and process for producing it
DE4318114C2 (en) Sensor device
DE69920773T2 (en) STEG STRUCTURE FOR SLIP LIMITING, FOR USE IN ENERGY LIGHTING DEVICES FOR ULTRASOUND WELDING
DE69904844T3 (en) PROCESS FOR WELDING
DE102005024076B4 (en) Production method for vehicle lamp and vehicle lamp
DE3007160C2 (en) Device for laser beam processing of metallic workpieces
DE102005034155B3 (en) Lens for focusing electromagnetic radiation in forming layers in three-dimensional rapid prototyping includes a heating element in the exit window
DE10297423T5 (en) Welding process for thermoplastic resin casts
WO1999046546A1 (en) Cold light-uv-radiation device
DE102005028691A1 (en) Method and device for producing vehicle lights
DE10109594A1 (en) Vehicle lamp unit, has front lens with sealing web formed along outer edge of lens, and lamp body with reception surface and end surface of web
EP2897758B1 (en) Device for position control of a laser machining beam
WO2004058485A1 (en) Method and device for welding thermoplastic material shaped parts, particularly for contour-welding three-dimensional shaped parts
DE102007050097A1 (en) An optical sensor, method for manufacturing an optical sensor and method for detecting an object with an optical sensor
DE3813570C2 (en)
DE1479239A1 (en) Process for joining structures made of thermoplastics under the influence of heat
DE19944745A1 (en) Infrared connection of transparent plastic objects
DE19814298A1 (en) Plastic fuel tank production by bonding shells together, using laser transmission welding
DE10220671A1 (en) Method for producing an optical system for a camera involves production of a lens and a tube by a multicomponent injection molding process
DE68910822T2 (en) METHOD AND ARRANGEMENT FOR CONNECTING THERMOPLASTIC MATERIALS.
EP2764981B1 (en) Device for laser transmission welding, method for laser transmission welding and container sealed with film produced with the same
DE102021131399A1 (en) METHOD AND DEVICE FOR APPLYING AN ACTIVE JOINING FORCE DURING LASER WELDING OF OVERLAPPING WORKPIECES
DE3626446A1 (en) Process for producing bodies with high surface quality
EP1475219B1 (en) Tool provided with a laserbeam for joining synthetic materials by the use of a filler material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WR Later publication of a revised version of an international search report